• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.76.2007.tde-15042008-211812
Documento
Autor
Nombre completo
Sylvio Barbon Júnior
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2007
Director
Tribunal
Guido, Rodrigo Capobianco (Presidente)
Maciel, Carlos Dias
Travieso, Gonzalo
Título en portugués
Dynamic Time Warping baseado na transformada wavelet
Palabras clave en portugués
Dynamic Time Warping
Processamento digital de sinais
Reconhecimento automático de fala
Reconhecimento de voz
Transformada wavelet
Resumen en portugués
Dynamic Time Warping (DTW) é uma técnica do tipo pattern matching para reconhecimento de padrões de voz, sendo baseada no alinhamento temporal de um sinal com os diversos modelos de referência. Uma desvantagem da DTW é o seu alto custo computacional. Este trabalho apresenta uma versão da DTW que, utilizando a Transformada Wavelet Discreta (DWT), reduz a sua complexidade. O desempenho obtido com a proposta foi muito promissor, ganhando em termos de velocidade de reconhecimento e recursos de memória consumidos, enquanto a precisão da DTW não é afetada. Os testes foram realizados com alguns fonemas extraídos da base de dados TIMIT do Linguistic Data Consortium (LDC)
Título en inglés
Dynamic Time Warping based-on wavelet transform
Palabras clave en inglés
Automatic speech recognition
Digital signal processing
Dynamic Time Warping
Speech processing
Transformada wavelet
Resumen en inglés
Dynamic TimeWarping (DTW) is a pattern matching technique for speech recognition, that is based on a temporal alignment of the input signal with the template models. One drawback of this technique is its high computational cost. This work presents a modified version of the DTW, based on the DiscreteWavelet Transform (DWT), that reduces the complexity of the original algorithm. The performance obtained with the proposed algorithm is very promising, improving the recognition in terms of time and memory allocation, while the precision is not affected. Tests were performed with speech data collected from TIMIT corpus provided by Linguistic Data Consortium (LDC).
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2008-04-23
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.