Filmes de Langmuir e vesículas multilamelares de fosfolipídios e suas interações com um peptídeo oriundo da proteína p24 do HIV-1

Marli Leite de Moraes

Dissertação apresentada ao Instituto de Física de São Carlos, da Universidade de São Paulo, para obtenção do título de Mestre em Ciências: Física Aplicada opção Biomolecular.

Orientador: Profa. Dra. Leila Maria Beltramini

São Carlos – 2003
Moraes, Marli Leite de

“Filmes de Langmuir e vesículas multilamelares de fosfolipídios e suas interações com um peptídeo oriundo da proteína p24 do HIV-1”
Marli Leite de Moraes – São Carlos, 2003

Tese (Mestrado) – Área de Física aplicada opção Biomolecular do Instituto de Física de São Carlos da Universidade de São Paulo,
2003 - Páginas: 79

Orientador: Profa. Dra. Leila Maria Beltramin

1. Filmes de Langmuir. 2. Dicroísmo circular. 3. Peptídeo

1. Título

COMISSÃO JULGADORA:

Prof. Dra. Leila Maria Beltramini (Orientador e Presidente) – IFSC/USP

Prof. Dra. Rosângela Itri – IF/USP

Prof. Dr. Cleber Renato Mendonça – IFSC/USP
"A coisa mais nobre que podemos experimentar é o mistério. Ele é a emoção fundamental, paralela ao berço da verdadeira ciência. Aquele que não o conhece, que não mais pode cogitar, que não mais sente admiração, está praticamente morto."

(Albert Einstein)
Agradeço a Deus, por estar comigo em todos os momentos da minha vida e por propiciar momentos tão especiais, como a realização deste trabalho.

Ao meu namorado Miguel, pelo amor, paciência, dedicação, estímulo e incansável ajuda em todas as etapas de minha vida.

Aos meus pais, Hélio e Rosa, que ao longo desses anos souberam me compreender e apoiar tanto no âmbito financeiro quanto no sentimental.

Aos meus irmãos Ivan e Marcelo e ao meu sobrinho Dudu, pelo amor, carinho e alegria que me proporcionam.
AGRADECIMENTOS

A elaboração deste trabalho só foi possível graças à colaboração direta ou indireta de muitas pessoas. Manifesto minha imensa gratidão a todos e de uma forma especial:

À Profa. Dra. Leila Maria Beltramin, minha orientadora, pelo apoio, confiança e dedicação em transferir seus conhecimentos contribuindo para minha formação.

Ao Prof. Dr. Osvaldo Novais de Oliveira Júnior (Chu), pela orientação, dedicação, incentivo e pela confiança depositada no meu trabalho.

Ao Prof. Dr. Cleber Renato Mendonça, pela dedicação, amizade e por todas as vezes que me prestou assistência quando eu estava dentro da sala limpa precisando de ajuda.

À Profa. Dra. Cláudia Bonardi, pelo ensinamento, amizade e principalmente por me ouvir quando eu estava triste desanimada.

À Profa. Dra. Georgina Tonarelli, por sintetizar e fornecer os peptídeos, objeto chave deste trabalho.

Aos Professores da biofísica Ana Paula, Jabá e Otacílio, pelo ensinamento, convivência e amizade.

Aos funcionários e meus amigos Andressa, Bel e Beto, que sempre me socorreram nos momentos mais difíceis que encontrei nesta caminhada.

Aos técnicos do grupo Bernhard Gross, em especial a Débora Balogh, pela confiança e pelas incontáveis vezes que me prestou auxílio.

Aos meus amigos da biofísica, pelos cafézinhos na cantina, por me ouvirem e me ajudarem em todos os obstáculos que encontrei nesta jornada.

Aos meus amigos, Aislan, Bi, Fá, Fabinho, Jack, Val..., pela alegria, convivência e por todos os momentos que passamos juntos.

Ao Instituto de Física de São Carlos e aos órgãos financeiros: Capes, CNPq e Fapesp, pela oportunidade.

Enfim, a todos aqueles que de alguma forma colaboraram para a realização deste trabalho, os meus mais sinceros agradecimentos.
SUMÁRIO

LISTA DE FIGURAS iii
LISTA DE TABELAS v
LISTA DE ABRÉVIATURAS vi
LISTA DE SÍMBOLOS viii
RESUMO ix
ABSTRACT x

Capítulo 1
INTRODUÇÃO 1
1.1 Aspectos gerais da membrana celular 2
1.2 Propriedades dos vírus 4
1.3 O vírus da imunodeficiência humana (HIV) 6
1.3.1 Proteínas do envelope 9
1.3.2 Enzimas virais 11
1.3.3 Proteínas estruturais 12
1.4 Estudos de interação de peptídeos com monocamadas de fosfolipídios 16
1.5 Objetivos do trabalho 18

Capítulo 2
PARTE EXPERIMENTAL 19
2.1 Materiais 19
2.2 Equipamentos 20
2.3 Metodologia de filmes de Langmuir 21
2.4 Pressão de superfície 23
2.4.1 Estados da monocamada 25
2.5 Potencial de superfície 26
2.6 Microscopia no ângulo de Brewster 29
2.7 Espectroscopia de dicroismo circular 31
2.8 Procedimentos de limpeza dos materiais 35
2.9 Preparação das monocamadas e vesículas 36
2.9.1 Peptídeo puro 36
<table>
<thead>
<tr>
<th>Capítulo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULTADOS E DISCUSSÕES</td>
</tr>
<tr>
<td>3.1 Análise da estrutura do peptídeo p24-l</td>
</tr>
<tr>
<td>3.2 Análise da interação do peptídeo p24-l com monocamadas de DPPC</td>
</tr>
<tr>
<td>3.3 Análise da interação do peptídeo p24-l com monocamadas de DPPG</td>
</tr>
<tr>
<td>CONCLUSÕES</td>
</tr>
<tr>
<td>PERSPECTIVAS</td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
</tr>
</tbody>
</table>
LISTA DE FIGURAS

Figura 1: Modelo do Mosaico Fluido para estrutura da membrana celular. 2
Figura 2: Estrutura simplificada de uma célula infectada pelo vírus HIV-1. 5
Figura 3: Características estruturais das proteínas do vírus HIV-1 “adulto”. 8
Figura 4: Mecanismo de fusão do vírus. 9
Figura 5: Estrutura da porção N-terminal da proteína p24 do HIV-1 resolvida por difração de raio-X. 14
Figura 6: Representação da cuba de Langmuir. 21
Figura 7: Representação esquemática de uma molécula anfipática sobre uma subfase aquosa. 22
Figura 8: Representação esquemática da formação do filme de Langmuir. 22
Figura 9: Isoterma de pressão de superfície da monomamada de DPPC puro e representação esquematizada das fases estruturais com as diferentes regiões de compressão do filme. 26
Figura 10: Representação esquemática da prova de potencial. 27
Figura 11: Representação de um capacitor de 3 camadas para uma monomamada condensada na interface ar/água. 28
Figura 12: Esquema representativo da luz incidindo sobre a interface ar/água e filme/água com o ângulo de Brewster. 31
Figura 13: Origem do efeito do dicroismo circular. 33
Figura 14: Espectro de CD no UV distante, de vários tipos de estrutura secundária. 35
Figura 15: Índice de hidropatia para cada resíduo de aminoácido do p24-1 a partir da sequência N-C terminal. 42
Figura 16: Espectro de CD do p24-1 em água e diferentes proporções de metanol. 44
Figura 17: Predição da estrutura secundária do p24-1. 46
Figura 18: Espectro de CD do p24-1 em solução aquosa com 10 mM de NaCl e na presença de vesículas multimamelas. 48
Figura 19: Medidas de isoterma de pressão de superfície e potencial de superfície em relação à área por molécula de p24-1. 49
Figura 20: Histerese da monomamada mista de DPPC/p24-1 (0,4% mol de p24-1). 51
Figura 21: Isoterma de pressão de superfície para diferentes proporções em mol do peptídeo p24-1. 53
Figura 22: Razão entre a área de DPPC/p24-1 (A) e DPPC puro (A0) das isotermas de pressão de superfície versus a concentração molar das misturas. 55
Figura 23: Isoterma de potencial de superfície para diferentes proporções em mol do peptídeo p24-1. 57
Figura 24: Razão entre momento de dipolo do DPPC das isoterma de pressão de superfície DPPC/p24-1 e o momento de dipolo do DPPC puro versus a concentração molar das misturas. 59
Figura 25: Isoterma de pressão de superfície da monomamada de DPPC puro (A) e da mistura DPPC/p24-1 0,5% mol (B) seguidas de micrografias obtidas pela microscopia no ângulo de Brewster. 61
Figura 26: Ampliação das micrografias representadas na figura 25 das monocamadas de DPPC puro (esquerda) e da mistura DPPC/p24-1 0,5% mol (direita) mostradas na sequência da compressão das monocamadas.

Figura 27: Isotermas de pressão de superfície da monocamada de DPPG com diferentes proporções em mol do peptídeo p24-1.

Figura 28: Razão entre a área da monocamada da mistura DPPG/p24-1 (A) e DPPG puro (A₀) das isoermas de pressão de superfície versus a concentração molar das misturas.

Figura 29: Representação esquemática das possíveis interações do p24-1 com as monocamadas de fosfolipídios.
LISTA DE TABELAS

Tabela 1: Massas molares e concentrações (mg/ml) do peptídeo p24-1 e dos fosfolipídios DPPC e DPPG. 37
Tabela 2: Diferentes proporções em porcentagem de DPPC e p24-1 e a suas massas moleculares média. 38
Tabela 3: Proporções água/metanol utilizadas nas medidas de dicroísmo circular para o peptídeo p24-1. 41
Tabela 4: Frações de estruturas secundárias obtidas a partir da desconvolução dos espectros do peptídeo p24-1 em solução aquosa e na presença de metanol. 45
Tabela 5: Frações de estruturas secundárias obtidas a partir da desconvolução dos espectros do peptídeo p24-1 em solução aquosa (10 mM NaCl) e na presença de vesículas multilamelares (10 mM NaCl). 48
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome (síndrome da imunodeficiência adquirida)</td>
</tr>
<tr>
<td>AZT</td>
<td>Zidovudine (azidotimidina)</td>
</tr>
<tr>
<td>BAM</td>
<td>Brewster angle microscopy (microscopia no ângulo de Brewster)</td>
</tr>
<tr>
<td>C34</td>
<td>peptídeo da proteína gp41 (resíduos 628-661)</td>
</tr>
<tr>
<td>CAP-1</td>
<td>(N-3-cloro-4-metilfenil)-N’-2-[(5-((dimetilamino)-metil)-2-furil]-metil]-sulfanil]-etil] urea</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device – sensor para captação de imagens</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism (dicroismo circular)</td>
</tr>
<tr>
<td>ddC</td>
<td>dideoxycytidine (dideoxicitidina)</td>
</tr>
<tr>
<td>ddI</td>
<td>dideoxynosine (dideoxiinosine)</td>
</tr>
<tr>
<td>DIP</td>
<td>Dipiridamol</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid (ácido desoxirribonucleático)</td>
</tr>
<tr>
<td>DP178 ou T20</td>
<td>peptídeo da proteína gp41 (resíduos 638-673)</td>
</tr>
<tr>
<td>DPPC</td>
<td>dipalmitoil fosfatidil colina</td>
</tr>
<tr>
<td>DPPG</td>
<td>dipalmitoil fosfatidil glicerol</td>
</tr>
<tr>
<td>EIAV</td>
<td>equine infectious anemia virus (vírus da anemia infecciosa eqüina)</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>G</td>
<td>estado gásoso</td>
</tr>
<tr>
<td>gp120</td>
<td>proteína de superfície do vírus HIV-1</td>
</tr>
<tr>
<td>gp41</td>
<td>proteína transmembânica do vírus HIV-1</td>
</tr>
<tr>
<td>HA</td>
<td>Hemaglutinina A</td>
</tr>
<tr>
<td>HAV</td>
<td>hepatitis A virus (vírus da hepatite A)</td>
</tr>
<tr>
<td>HIV-1</td>
<td>human immunodeficiency virus type 1 (vírus da imunodeficiência humana tipo 1)</td>
</tr>
<tr>
<td>IN</td>
<td>enzima integrase do vírus HIV-1</td>
</tr>
<tr>
<td>K159</td>
<td>peptídeo da proteína IN (resíduos 147-175)</td>
</tr>
<tr>
<td>LC</td>
<td>fase líquido-condensado</td>
</tr>
<tr>
<td>LE</td>
<td>fase líquido-expandido</td>
</tr>
<tr>
<td>MLV</td>
<td>multilamellar vesicle (vesícula multimembrana)</td>
</tr>
<tr>
<td>N36</td>
<td>peptídeo da proteína gp41 (resíduos 546-581)</td>
</tr>
<tr>
<td>P.A.</td>
<td>para análise</td>
</tr>
<tr>
<td>p17</td>
<td>proteína matriz do vírus HIV-1</td>
</tr>
<tr>
<td>p24 (CA)</td>
<td>proteína do capsídeo do vírus HIV-1</td>
</tr>
<tr>
<td>p24-1</td>
<td>seqüência peptídica da proteína p24 (resíduos 64-92)</td>
</tr>
<tr>
<td>p7 (NC)</td>
<td>proteína do nucleocapsídeo do vírus HIV-1</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PR</td>
<td>enzima protease do vírus HIV-1</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid (ácido ribonucleico)</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcriptase (transcriptase reversa)</td>
</tr>
<tr>
<td>S</td>
<td>fase sólida</td>
</tr>
<tr>
<td>SIV</td>
<td>simian immunodeficiency virus (vírus da imunodeficiência do macaco)</td>
</tr>
<tr>
<td>TFE</td>
<td>trifluoroetanol</td>
</tr>
<tr>
<td>VP3</td>
<td>proteína do capsídeo do vírus HAV</td>
</tr>
</tbody>
</table>
LISTA DE SÍMBOLOS

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>Pressão de superfície</td>
</tr>
<tr>
<td>γ_0</td>
<td>Tensão superficial na presença de moléculas</td>
</tr>
<tr>
<td>γ</td>
<td>Tensão superficial na ausência de moléculas</td>
</tr>
<tr>
<td>F</td>
<td>Força resultante</td>
</tr>
<tr>
<td>ρ_w</td>
<td>Densidade do material preso na placa de Wilhelmy</td>
</tr>
<tr>
<td>g</td>
<td>Aceleração da gravidade</td>
</tr>
<tr>
<td>w</td>
<td>Espessura do material preso na placa de Wilhelmy</td>
</tr>
<tr>
<td>t</td>
<td>Largura do material preso na placa de Wilhelmy</td>
</tr>
<tr>
<td>l</td>
<td>Comprimento do material preso na placa de Wilhelmy</td>
</tr>
<tr>
<td>ρ_l</td>
<td>Densidade do líquido</td>
</tr>
<tr>
<td>h</td>
<td>Profundidade de imersão do material preso na placa de Wilhelmy</td>
</tr>
<tr>
<td>$\Delta \gamma$</td>
<td>Variação da tensão superficial</td>
</tr>
<tr>
<td>ΔF</td>
<td>Variação da força resultante</td>
</tr>
<tr>
<td>ΔV</td>
<td>Potencial de superfície</td>
</tr>
<tr>
<td>A</td>
<td>Área média por molécula</td>
</tr>
<tr>
<td>ε_0</td>
<td>Permissividade no vácuo</td>
</tr>
<tr>
<td>μ</td>
<td>Momento de dipolo por molécula</td>
</tr>
<tr>
<td>ψ_0</td>
<td>Dupla camada de Gouy-Chapman</td>
</tr>
<tr>
<td>n</td>
<td>Índice de refração</td>
</tr>
</tbody>
</table>
RESUMO

A investigação dos mecanismos de interação dos vírus com as células do hospedeiro trazem informações relevantes para a identificação de alvos no desenvolvimento de drogas para impedir a penetração e/ou desenvolvimento dos vírus. Peptídeos desenhados a partir de proteínas virais foram desenvolvidos e testados quanto às suas capacidades de inibir o processo de fusão do vírus com a célula do hospedeiro. Alguns se encontram em fase de avaliação clínica. Anticorpos contra a proteína p24 do HIV-1 foram detectados no soro de pacientes HIV-positivos, e estes reconhecem pequenas sequências peptídicas desta proteína. Neste trabalho foi analisada a interação entre uma sequência peptídica correspondente aos aminoácidos 196-224 (AAMQMLKETINEAAEWDHRVHPVHGPIA) da proteína p24, denominado p24-1, com sistemas biomiméticos. Os sistemas utilizados foram filmes de Langmuir (monocamadas) de dipalmitoil fosfatidil colina (DPPC) e dipalmitoil fosfatidil glicerol (DPPG) e vesículas multilamelares (MLVs) de DPPC. O p24-1 encontra-se desorganizado em solução aquosa, mas com a interação com as MLVs de DPPC teve induzido uma conformação hélice α, de acordo com o espectro de dicroísmo circular (CD). Esta característica foi confirmada pela predição de hélice α seguida por uma estrutura não ordenada contendo 11 resíduos do p24-1. As isotermas de pressão e potencial de superfície das monocamadas de DPPC foram afetadas com a presença de 0,05% mol de p24-1, com uma expansão de aproximadamente 5%. Para concentrações acima de 0,5% mol de p24-1 a expansão foi de 20%, com saturação do efeito da concentração. O efeito de expansão foi acompanhado por uma alteração na morfologia das monocamadas, estudados com microscopia no ângulo de Brewster (BAM). A incorporação do p24-1 impede a formação de grandes domínios de DPPC. O efeito cooperativo causado na monocamada de fosfolipídios pelo p24-1 sugere que esse tem um potencial na atividade antiviral por participar da expansão da membrana da célula hospedeira.
ABSTRACT

The investigation of the interaction mechanisms between the viruses and the host cells brings relevant information for the identification of targets on the development of drugs to prevent the penetration and/or development of the viruses. Peptides designed from viral proteins have been developed and tested on its capacities of inhibiting the merging process of the virus with the host cell. Some of them are in clinical evaluation. Antibodies against the protein p24 of the HIV-1 have been detected in the serum of HIV-positive patients, and they are able to recognize short peptide sequences of this protein. In this work, it was analyzed the interaction between a peptide sequence corresponding to amino acids 196-224 (AAMQMLKETINEEAAEWDRVHPVHAGP1A) of the protein p24, called p24-1, and biomimetic systems. The systems used were Langmuir films (monolayers) of dipalmitoyl phosphatidyl choline (DPPC) and dipalmitoyl phosphatidyl glycerol (DPPG) and multilamellar vesicles (MLVs) of DPPC. p24-1 is found disorganized in watery solution, but with the interaction with the MLVs of DPPC it had induced a conformation α-helix, according to the circular dichroism spectra (CD). This characteristic was confirmed by the prediction of α-helix followed by an unordered structure with 11 residues of p24-1. The isotherms of pressure and potential of surface of the DPPC monolayers were affected by the presence of 0.05% mol of p24-1, with an expansion of approximately 5%. For concentrations above 0.5% mol of p24-1 the expansion was 20%, with saturation of the concentration effect. The expansion effect was followed by a morphologic alteration of the monolayers, studied with microscopy of the Brewster angle (BAM). The incorporation of p24-1 prevents the formation of large domains of DPPC. The cooperative effect caused in the phospholipid monolayer by p24-1 suggests that this peptide has a potential in the antiviral activity, once its participates on the expansion of the host cell membrane.
INTRODUÇÃO

Desde a descoberta dos vírus em 1892 pelo fitopatologista Dmitri Ivanovski, tem-se verificado que as doenças infecto contagiosas mediadas por vírus são responsáveis por grande número de mortes, superando as mortes causadas por guerras, acidentes e infartos. Esta situação é amenizada graças ao avanço contínuo das ciências, principalmente na área de prevenção e desenvolvimento de vacinas, bem como estudos estruturais de proteínas, membranas, suas interações com drogas e mecanismos de infecções virais\(^{(1)}\).

O processo inicial de uma infecção ocorre devido à penetração do vírus na membrana da célula hospedeira. Um exemplo é o vírus da imunodeficiência humana (HIV), que se aloja nos linfócitos T (CD4+) onde promove o seu ciclo de replicação e quando no seu estado “adulto” causa a destruição da célula hospedeira\(^{(2)}\). Portanto, as interações entre componentes virais e membranas biológicas são extremamente relevantes tanto no processo inicial da infecção, como na disseminação do vírus para o meio extracelular. Geralmente estas interações ocorrem via proteínas de membrana ou afetam diretamente a estrutura de fosfolipídios presentes na membrana. Estes eventos podem ser estudados usando modelos biomiméticos que estão sendo amplamente utilizados em estudos envolvendo interações com proteínas, peptídeos e drogas que afetam e/ou se incorporam na membrana celular, além de serem usados
para investigar a ação fisiológica de peptídeos citotóxicos que aparentemente não dependem de receptores específicos\[3].

Para entender melhor tais processos de interações com modelos de membranas celulares é necessário fazer uma abordagem ampla das características, funções e estruturas da membrana celular a fim de que se crie um sistema o mais adequado possível para esses estudos.

1.1 Aspectos gerais da membrana celular

Através da microscopia eletrônica, estudos da composição química e de mobilidades físicas levaram ao desenvolvimento do Modelo do Mosaico Fluido, proposto por Singer e Nicholson em 1972 para determinar a estrutura de membranas biológicas (figura 1). Até hoje utiliza-se este modelo esquemático para representar a estrutura e composição da membrana celular\[4].

![Diagrama de membrana cellular](image)

Figura 1: Modelo do Mosaico Fluido para estrutura da membrana celular.
As membranas biológicas se caracterizam pela existência de uma bicamada lipídica que age como uma barreira para o transporte de determinadas moléculas. As moléculas que constituem a bicamada não se apresentam ligadas covalentemente entre si, desta maneira possuem uma certa flexibilidade, mudança na sua forma e nos seus movimentos\(^5\). São constituídas basicamente por lipídios (tais como: fosfolipídeos, esfingolipídeos, e colesterol), proteínas especializadas e carboidratos como parte de glicoproteínas e glicolipídeos. As proporções relativas a proteínas e lipídios variam com o tipo de membrana e função da mesma. Por exemplo, na membrana plasmática existem mais de 100 diferentes moléculas de fosfolipídeos e em sua maioria está presente o fosfatidilcolina, lipídio neutro\(^4,6\).

A composição e as propriedades físicas da matriz dos fosfolipídeos das membranas biológicas são parâmetros essenciais para compreender muitas das funções biológicas. Devido à complexidade da membrana celular estes eventos são estudados através de modelos de membranas simplificados denominados sistemas biomiméticos como bicamada de fosfolipídio (vesículas de lipídio unilamelar\(^7\) e multilamelar\(^8\)), micelas constituídas de detergentes\(^9\), monocamadas de Langmuir de fosfolipídeos\(^10\) e outros sistemas constituídos por moléculas de interesse biológico. A monocamada lipídica representa um modelo eficiente, pois mimetiza aspectos de algumas funções da membrana nativa. Substâncias incorporadas dentro de uma monocamada podem proporcionar mudanças em suas características, como a densidade de empacotamento, a organização das moléculas durante formação do filme de Langmuir, as propriedades elétricas da monocamada, entre outras\(^10\).
Outro tipo de abordagem é a vesícula multilamelar (MLV), sistema biomimético constituído por bicamadas lipídicas formando uma “grande esfera”, sendo possível estudar a influência destas bicamadas na organização estrutural de proteínas e peptídeos incorporados e/ou em contato com estas, bem como o estudo da suposta localização de compostos como drogas ou proteínas e peptídeos que interagem nessas bicamadas[8].

A seguir serão considerados alguns aspectos sobre as estruturas virais, uma vez que neste trabalho foi enfocada a interação de uma seqüência peptídica de uma proteína viral com sistemas modelos de fosfolipídio dipalmitoil fosfatidil colina (DPPC), na forma de filmes de Langmuir e vesículas multilamelares (MLV).

1.2 Propriedades dos vírus

Os vírus são os menores agentes infecciosos, contendo somente um tipo de ácido nucléico: ácido desoxiribonucléico (DNA) ou ácido ribonucléico (RNA). O ácido nucléico encontra-se envolvido por uma capa protética, denominada capsídeo, cuja função é proteger o ácido nucléico e facilitar a fixação e/ou penetração do vírus na célula hospedeira. Existem vírus no qual o capsídeo está recoberto por um envelope, que são denominados de vírus envelopados. Este envelope que recobre o capsídeo viral usualmente consiste de algumas combinações de lipídios, proteínas e carboidratos, os quais são liberados da célula hospedeira pelo processo de extrusão, (figura 2)[11,12].

O agente infectante de um vírus é o seu ácido nucléico, que se comporta como se fosse o material genético da célula hospedeira, que passa a ser duplicado
pelas enzimas do hospedeiro, e dirige também, a formação de proteínas específicas do vírus. A maturação do vírus compreende na organização do novo ácido nucléico sintetizado e de subunidades protéicas que formam as partículas virais maduras, que são liberados para o meio extracelular[11,12].

![Image of virus and host cell](image)

Figura 2: Estrutura simplificada de uma célula infectada pelo vírus HIV-1. Processo de extrusão do vírus envelopado com a membrana derivada da célula hospedeira: bicamada lipídica (verde), proteínas ancoradas (amarelo). Figura obtida pela BioCam Ordering Information.

Os vírus estão classificados por famílias de acordo com o ácido nucléico, tamanho, forma, subestrutura e modo de redupcação da partícula viral. Um exemplo, o retrovírus HIV, membro da família lentivirus, possui um capsídeo cônico e apresenta-se envelopado. Outros exemplos de lentivirus são o vírus da imunodeficiência do macaco (SIV), vírus visna e anemia infecciosa eqüína (EIAV).

Em todos os retrovírus o genoma é codificado pelo seu RNA a partir da sua entrada
numa nova célula hospedeira, que é transcrito para DNA viral pela enzima denominada transcriptase reversa (RT)13.

Quando a célula hospedeira é infectada pelo vírus, o sistema imune do hospedeiro é estimulado a produzir anticorpos, que interagem com proteínas do vírus resultando na inativação do mesmo, impedindo a infecção. Porém alguns vírus podem escapar da ação dos anticorpos, pois essas proteínas virais podem sofrer mutações nas regiões de reconhecimento dos anticorpos.14.

1.3 O vírus da imunodeficiência humana (HIV)

Desde o início da epidemia da Síndrome da Imunodeficiência Adquirida (AIDS) causada pelo vírus da imunodeficiência humana (HIV), este infectou cerca de 58 milhões de pessoas dentre elas homens, mulheres e crianças, e tem custado a vida de aproximadamente 22 milhões de adultos e crianças. Apesar da intensa divulgação internacional para a conscientização da população, o HIV continua espalhando-se, causando mais de 15 mil novas infecções todos os dias11. O vírus HIV infecta os linfócitos T CD4+ causando a sua destruição com uma meia vida de menos de dois dias21. A infecção pelo vírus ocorre através da membrana celular da célula hospedeira e é iniciado por interações entre proteínas do envelope do vírus (gp120) com moléculas CD4+ e receptores chemokine da célula hospedeira13.

As estruturas e características gerais das proteínas do retrovírus HIV “adulto” estão representadas na figura 3. A bicamada lipídica está representada em amarelo que é derivada da membrana da célula hospedeira. As glicoproteínas (SU, gp120; azul claro) apresentam-se expostas na superfície do vírus e estão ancoradas via
interações com as proteínas transmembrânicas (TM, gp41; violeta). Na estrutura do vírus existem aproximadamente 2 mil cópias da proteína matriz (MA, p17; verde) que encontram-se na superfície interna da membrana viral. Duas mil cópias da proteína do capsídeo (CA, p24; vermelho) formam o capsídeo cônico do núcleo do vírus que está localizado no centro do vírus encobrindo o material genético do mesmo. Além disso, existem outras 2 mil cópias da proteína do nucleocapsídeo (NC, p7; azul) e três enzimas essenciais: protease (PR; rosa), transcriptase reversa (RT; violeta) e integrase (IN; verde escuro)[13].
Figura 3: Características estruturais das proteínas do vírus HIV-1 "adulto". Todas as estruturas das proteínas apresentadas na figura encontram-se na mesma escala. (Figura obtida por Turner and Summers13).

O controle desta epidemia tem sido alvo de inúmeros estudos em várias áreas do conhecimento. Entre elas encontram-se a Biologia, a Bioquímica e a Biologia Estrutural. O enfoque destas áreas está relacionado com a investigação dos componentes virais, dentre eles proteínas estruturais e enzimas essenciais para o design de novas drogas.
1.3.1 Proteínas do envelope

Alguns estudos indicam que a infecção da célula hospedeira pelo vírus HIV-1 é iniciada através da interação entre a proteína gp120 e moléculas CD4 da célula hospedeira. Propõe-se que a proteína gp120 liga-se às moléculas CD4 e apóia o vírus na superfície da célula hospedeira. Na sequência ocorre a interação com os receptores chemokine que permite a ocorrência de uma mudança conformacional na hélice N-terminal da proteína gp41 que dirige a fusão do vírus na membrana celular (figura 4)[13,15].

O mecanismo de fusão do vírus HIV-1 na membrana ainda não é bem compreendido, portanto esta proposta é baseada no mecanismo do processo de fusão do vírus influenza, o qual também induz mudança conformacional na proteína do envelope hemaglutinina (HA). Esta proposta só foi possível devido àsimilaridade na sequência de aminoácidos da gp41 do HIV-1 com a HA do vírus influenza, e devido aos estudos estruturais e bioquímicos, foi sugerido o mesmo tipo de mudança conformacional desta proteína[13,15].

Figura 4: Mecanismo de fusão do vírus. A molécula CD4 (bege) reconhece a proteína gp120 (azul), em seguida liga o receptor chemokine (azul escuro) induzindo então uma mudança conformacional na gp41 (laranja e rosa). Figura obtida por Turner[13].
Ambas gp120 e gp41 têm sido consideradas alvos promissores para o desenvolvimento de drogas terapêuticas antiviral. O design de sequências peptídicas das regiões N e C-terminal é utilizado para tentar evitar esta mudança conformacional e inibir a fusão da sequência peptídica. Dentre os peptídeos já estudados estão os peptídeos C34 (resíduos 628-661) e o DP178 também denominado T20 (resíduos 638-673) da gp41 do HIV-1 que estão na terceira fase de teste clínico[16,17].

O peptídeo sintético DP178 pertencente à região C-hélice da proteína gp41 do HIV apresenta-se como inibidor da fusão da membrana. Testes clínicos realizados com o DP178 sugerem que este possui atividade antiviral in vivo, resultando na redução da capacidade de infecção viral. Testes feitos a partir das características estruturais do interior da gp41 mostraram que este peptídeo liga-se no centro do coiled coil da proteína e dirige a inativação desta[17].

Outra sequência peptídica estudada para o design e caracterização de um novo inibidor da fusão do vírus HIV-1 é o N36Mut derivado da N-hélice da gp41, onde o sítio de interação com a C-hélice foi mudado, mas foi preservado o sítio de contato com as N-hélices. Este peptídeo tem se mostrado 50 vezes mais efetivo, inibindo a fusão da célula via envelope do vírus HIV-1, do que o peptídeo N36 (resíduos 546-581) da gp41 na sua forma nativa[18].
1.3.2 Enzimas virais

Outra linha de pesquisa está relacionada aos estudos de inibidores de enzimas virais, que apesar de não participarem diretamente da infecção viral, também são alvos interessantes para o design de drogas. Dentre as enzimas virais do vírus HIV-1 têm-se a transcriptase reversa (RT), a protease (PR) e a integrase (IN).

Em 1987 foi aprovada pela FDA (Food and Drug Administration) a primeira droga para o tratamento da AIDS, obtida através de estudos relacionados com inibidores da transcriptase reversa (RT), onde os inibidores de nucleotídeos tais como AZT (zidovudine), dideoxyinosine (ddI) e dideoxyctydine (ddC) são incorporados durante a transcrição reversa e resultam na terminação da síntese do DNA viral. Apesar desta droga deter a progressão da doença, ela não a evita, e ocorrem mutações que direcionam a resistência à droga13.

Em 1993 foi introduzida uma nova classe de drogas, os inibidores de protease (PR). Quatro diferentes inibidores de PR estão sendo comercializados atualmente. A partir das informações estruturais de alta resolução obtidas para a protease (PR) e o complexo PR-inibidor foram desenvolvidas drogas baseadas na estrutura via estratégias de design de drogas, em que as drogas candidatas são desenhadas, testadas e modificadas13. Mas o retrovírus HIV-1 é capaz de desenvolver resistência contra estes inibidores. Embora acredita-se que uma dada célula é infectada somente uma vez pelo HIV, estima-se que no mínimo 10^9 novas células são infectadas por dia em pacientes HIV-positivos, e que pontos de mutações ocorrem ao longo de toda a extensão do genoma na relação de 10^4 a 10^5 vezes por dia19.
Em 1997 foi desenvolvido o “coquetel de drogas” contendo combinações de inibidores de protease (PR) e transcriptase reversa (RT) que pode reduzir a resistência viral num nível não detectável, e esse baixo nível pode ser mantido por dois anos ou mais. Este método é eficaz, mas não leva à cura da doença201. Uma outra enzima denominada integrase (IN) também tem sido alvo de estudos. Esta enzima possui um papel essencial no ciclo de reprodução do HIV, a incorporação do DNA viral no DNA cromossomal da célula alvo, tornando-se um alvo atrativo para o desenvolvimento de terapias anti-HIV. Estudos revelam que anticorpos contra epitopos desta proteína IN inibiram especificamente a sua atividade. Assim, uma região pertencente a um desses epitopos foi sintetizada, denominado peptídeo K159 (147-175), com o intuito de estimular a expressão de fragmentos de anticorpos nas células infectadas para que ocorra a diminuição da replicação do HIV-1211.

1.3.3 Proteínas estruturais

Os trabalhos mencionados acima estão direcionados a inibidores da fusão do vírus na célula do hospedeiro a partir das proteínas gp41 e gp120 e inibidores da replicação do vírus através de enzimas. Essas pesquisas tiveram um grande avanço no controle da proliferação da infecção viral, mas ainda não foi desenvolvida uma vacina efetiva ou até mesmo a cura da doença. Assim, outros alvos de pesquisas têm sido explorados como as proteínas estruturais localizadas no interior do envelope viral, denominadas matriz (MA; p17), capsídeo (CA; p24) e nucleocapsídeo (NC; p7). Essas proteínas são codificadas pelo gene gag formando uma poliproteína Gag que consequentemente é clivada pela protease viral. Este processo ocorre durante a maturação do vírus221.
A estrutura da proteína p17 da matriz do HIV-1 (MA) consiste num trimerio e está organizado de modo a gerar uma grande superfície com pH básico. Estudos propõem que esta superfície interage diretamente com a membrana interna do vírus através de uma série de resíduos básicos e do grupo miristoil presente no N-terminal. Esta interação ocorre devido à inserção do grupo miristoil na bicamada lipídica e interações iônicas entre os resíduos básicos da matriz e a superfície ácida da membrana[13]. A região C-terminal da MA constitui numa hélice que não está inserida na membrana e está na direção do centro do vírus, possuindo um papel importante como guia na maturação durante a montagem do vírus. A estrutura cristalina da matriz também proporciona uma base para o design de novos agentes antivirais que inibe a montagem, a desmontagem e/ou a ligação na membrana da proteína matriz do HIV-1[23].

A proteína nucleocapsídeo (NC) exibe duas regiões CCHC (Cys-X₂-Cys-X₄-His-Cys; onde X=resíduo de aminoácido variável) presentes tanto no N como no C-terminal. O domínio N-terminal é essencial para o reconhecimento do genoma e o domínio C-terminal possui um papel essencial no estágio inicial do ciclo de infecção viral[24]. Esses domínios têm sido um alvo bem sucedido como agentes antivirais contendo um grupo nitroso que libera zinco à sequência CCHC, altamente susceptível ao Zn²⁺, propiciando assim mais uma abordagem no controle dessa doença através do surgimento de novas classes de agentes zinco-ejecting devido ao seu potencial quimioterápico. Atualmente dois desses agentes estão em testes clínicos para AIDS[25].
A estrutura da proteína do core capsídeo p24 do HIV-1 difere significativamente de outras estruturas do capsídeo dos demais RNA vírus e também difere significativamente de modelos de epitopos usados para mapear e estimular design de drogas[13]. O capsídeo encontra-se em forma cônica, formando uma estrutura eletro densa localizada no centro do vírus maduro, envolvendo o RNA viral, proteínas NC, e enzimas essenciais[26,27]. Estudos de difração de raios-X revelaram a estrutura da porção N-terminal da proteína p24 do HIV-1, resíduos 1-151, representada na figura 5[28].

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig5.png}
\caption{Estrutura da porção N-terminal da proteína p24 do HIV-1 resolvida por difração de raio-X. Esta estrutura foi obtida pelo Protein Data Bank (PDB)[29].}
\label{fig5}
\end{figure}

A proteína p24 tem como principal função proteger o RNA viral, mas existem vários estudos mostrando que a estrutura da p24 assume um papel essencial durante a montagem e a desmontagem do capsídeo. A ocorrência de mutações e/ou anulações
nos domínios pode danificar e/ou abolir essa montagem viral, provavelmente não permitindo a formação de um capsídeo normal, e consequentemente impedindo a proliferação do vírus para o meio extracelular[30]. A organização do capsídeo é essencial para a infectividade viral, o que faz com que a p24 seja alvo como potencial antiviral[31].

Estudos realizados \textit{in vitro} identificaram compostos que se ligam no domínio N-terminal da proteína p24 do HIV-1 e inibem a montagem do capsídeo. Um dos compostos, denominado \textit{CAP-1} (N-3-cloro-4-metilfenil)-N′-{2-[{(5-[(dimetilamino)-metil]-2-furil}-metil]-sulfanil}-etil}urea, é bem tolerado em culturas celulares, capacitando estudos de mecanismos antiviral \textit{in vivo}. O \textit{CAP-1} inibe a infectividade viral, mas não interfere no processo de entrada do vírus na célula hospedeira, sugerindo um novo mecanismo antiviral. As partículas do vírus geradas na presença de \textit{CAP-1} exibem tamanhos heterogêneos e morfologias anormais do \textit{core} do capsídeo. É provável que o composto iniba a interação CA-CA durante a montagem e maturação do vírus. Esta descoberta marcou o início do desenvolvimento de inibidores da montagem do CA, dando origem a uma nova classe de agentes terapêuticos para o tratamento da AIDS[32].

A partir destas observações pode-se afirmar que determinadas sequências da proteína p24 são essenciais para estabilizar a morfologia do \textit{core} do capsídeo cônico e também representam um papel importante no recobramento do componente viral.

laboratório e uma delas é a AAMQMLKETINEAAEWDRVHPVHAGPIA, denominada p24-1. Este peptídeo contém 29 resíduos de aminoácidos e está localizado na região 196-224\cite{33}. Este peptídeo foi sintetizado por Tonarelli et al.\cite{34} e foi o objeto de nossos estudos. A região selecionada na figura 5 (azul) corresponde à sequência peptídica descrita.

1.4 Estudos de interação de peptídeos com monocamadas de fosfolipídios

Existem inúmeros trabalhos de pesquisas que envolvem sistemas biomiméticos. Estes sistemas são estudados a fim de avaliar as interações de drogas com potencial farmacológico e peptídeos derivados de sequências específicas com sistemas que mimetizam a membrana celular.

Trommehauser et al. investigaram a interação da sequência peptídica gp41_{828-848}, correspondente à região C-terminal da gp41 do envelope do vírus HIV-1, com monocamadas de fosfolipídios carregados negativamente (DPPG; dipalmitoil fosfatidil glicerol) e neutro (DPPC; dipalmitoil fosfatidil colina). Os pesquisadores observaram que a gp41_{828} interage preferencialmente com lipídio carregado negativamente, uma vez que este peptídeo contém seis resíduos de arginina (carregado positivamente), e que ocorrem interações eletrostáticas entre o lipídio e o peptídeo. Esta interação causa um aumento na permeabilidade da membrana e isso pode corresponder a uma função citopatológica do fragmento da proteína\cite{35}.

O mesmo grupo estudou a influência de íons Ca^{++}. Os experimentos realizados mostraram que esses íons provocam uma forte interferência na interação lipídio-peptídeo até gerar uma completa anulação desta interação. Estes efeitos foram
observados em lipídeos de natureza ácida (DPPG) e pode contribuir para um melhor entendimento da interação do HIV-1 com a membrana durante a infecção. Além disso, foi possível propor um mecanismo de inserção da região C-terminal da gp41 na superfície da membrana, que causa uma expansão na mesma. Isto facilita o entendimento do processo de penetração e/ou liberação do vírus da célula hospedeira por desestabilização da membrana[36]

Este tipo de abordagem também foi empregado em estudos que envolvem sequências peptídicas da proteína VP3, do capsídeo do vírus da hepatite A (HAV). Assim verificou-se a importância das interações com fosfolipídios de cargas diferentes, onde foi observada uma expansão na monocamada constituída por fosfolipídio catiônico. Um modelo de membrana mais complexo utilizando a técnica da monocamada com diferentes tipos de lipídio e colesterol foi estudado para o mesmo peptídeo da hepatite A, e esses estudos não foram conclusivos[37]

Estudos desta natureza, utilizando sistemas biomiméticos, podem contribuir para um melhor entendimento da interação de vírus com a membrana, além de ser possível propor um modelo de interação de componentes virais com a bicamada lipídica da membrana. Neste sentido iniciamos estudos visando investigar a interação de sequências peptídicas da proteína do capsídeo do HIV-1, p24, com dois sistemas biomiméticos diferentes.
1.5 Objetivos do trabalho

A disponibilidade na utilização de diferentes sistemas biomiméticos existentes neste Instituto, bem como os diferentes sistemas para o monitoramento destas interações, nos levaram a investigar como o peptídeo denominado p24-1 (AAMQMLKETINEAAEWDRVHPVHAGPIA), correspondente à sequência 196-224 da proteína p24 do HIV-1, interage com fosfolipídios dispostos em monocamadas (filmes de Langmuir) e na forma de vesículas multilamelares (MLV). Assim, os seguintes objetivos foram propostos:

a) Estudar a interação do p24-1 com filmes de Langmuir, constituídos pelos fosfolipídios dipalmitoil fosfatidil colina (DPPC) e dipalmitoil fosfatidil glicerol (DPPG), utilizando as técnicas de isotermas de pressão de superfície, isotermas de potencial de superfície e microscopia no ângulo de Brewster.

b) Estudar a interação do p24-1 com vesículas multilamelares, constituídas pelo fosfolipídio dipalmitoil fosfatidil colina (DPPC) utilizando espectroscopia de dicroïsmo circular.
Capítulo 2

PARTE EXPERIMENTAL

2.1 Materiais

- Dipalmitoil fosfatidil colina (DPPC), obtido pela Sigma Chemical Corporation com grau espectroscópico de pureza (> 99%).

- Peptídeo p24-1 (AAMQMLKETINEEAEWDRVHPVHAGPIA), sintetizado, purificado e caracterizado pelo Departamento de Química Orgânica da Faculdade de Bioquímica e Ciências Biológicas de Santa Fé, Argentina.

- Clorofórmio (CHCl₃) com grau de pureza para cromatografia, obtido pela Mallinkrodt.

- Metanol (CH₃OH) com grau de pureza para cromatografia, obtido pela Merck.

- Ácido nítrico (HNO₃) e ácido sulfúrico (H₂SO₄), com grau P.A..

- Pipetadores automáticos, ponteiras e eppendorfs.
2.2 Equipamentos

Para a realização deste trabalho foi necessária a utilização dos seguintes equipamentos:

- Espectropolarímetro Jasco (*Jasco Corporation*, Japão), modelo J-715, e uma cubeta cilíndrica com caminho óptico de 1 mm.

- Sistemas centrífugo/liofilizadoras Speed-vac (Savant).

Os equipamentos listados a seguir estão instalados numa sala limpa de classe 10000, cujo ar é purificado através de um sistema de filtração sob temperatura controlada.

- Cuba de Langmuir da KSV, sistema KSV 5000 (Finlândia) com balança de Wilhelmy, onde a placa Wilhelmy é um retângulo de 2 cm x 1 cm de papel de filtro.

- Placa vibrante (freqüência 300 Hz) com uma prova Kelvin da KSV. A placa vibrante e o eletrodo de referência são constituídos de platina.

- Microscópio no ângulo de Brewster da Nanofilm Technology (Alemanha), acoplado a uma cuba de Langmuir Nima (Inglaterra).

- Sistema de purificação MILLI-Q UV PLUS, purifica a água tornando-a ultrapura com resistividade de 18,2 MΩ.cm e pH ~ 5,7.

- Controlador de temperatura com sistema de banho de circulação da Neslab, série RTE. Este sistema mantém a temperatura da subfase controlada.
2.3 Metodologia de filmes de Langmuir

Existe uma ampla descrição na literatura sobre a formação e propriedades físicas de filmes monomoleculares\cite{6,38,39}. A técnica utiliza um equipamento que ficou conhecido como cuba de Langmuir, geralmente feita de um material hidrofóbico como o Teflon (politétrafluoroetileno), a ser preenchida com uma subfase, usualmente aquosa. Sobre a cuba há duas barreiras móveis constituídas por um material hidrofilico (figura 6).

![Figura 6: Representação da cuba de Langmuir. Esta cuba é revestida com Teflon, contém duas barreiras móveis, uma balança com uma placa de Wilhelmy e um controle remoto para operar os instrumentos. Figura obtida da KSV Instruments Ltd.](image)

Para que ocorra a formação de um filme sobre a subfase aquosa é essencial que o material a ser depositado consista de moléculas antipáticas (figura 7), pois os grupos hidrofílicos são atraídos por meios polares (subfase aquosa) e os hidrofóbicos são repelidos. Assim, impede-se a solubilização total das moléculas, ou seja, as moléculas se mantêm sobre a superfície da subfase aquosa.
Figura 7: Representação esquemática de uma molécula anfipática sobre uma subfase aquosa.

Um filme monomolecular pode ser produzido espalhando-se uma solução contendo moléculas anfipáticas dissolvidas em solvente orgânico volátil sobre uma subfase aquosa, o solvente evapora e inicia-se o movimento das barreiras. As moléculas, antes dispersas, começam então a ser comprimidas e são forçadas a formar um arranjo regular. Assim ocorre a formação de uma camada monomolecular, onde a parte hidrofílica das moléculas fica em contato com a água e a hidrofóbica em contato com o ar (figura 8).

Figura 8: Representação esquemática da formação do filme de Langmuir. Moléculas anfipáticas em contato com a interface ar/água: (a) inicialmente dispersas, (b) sendo comprimidas pelas barreiras e (c) até alcançarem um estado orientado. (Figura fora de escala).
Os filmes de Langmuir produzidos neste trabalho foram avaliados através de isotermas de pressão e potencial de superfície, bem como experimentos de histereses e microscopia no ângulo de Brewster.

2.4 Pressão de superfície

Uma vez espalhadas as moléculas entre as barreiras móveis, a tensão superficial (γ) diminui com a compressão das barreiras, em comparação com a superfície aquosa na ausência das moléculas anfípáticas (γ₀). A diferença na tensão superficial é denominada pressão na superfície (π), definida por:

\[\pi = \gamma_0 - \gamma \]

(1)

A pressão de superfície surge da diferença na tensão superficial sobre cada lado das duas barreiras (γ₀>γ) à medida que a área disponível para a monocamada é reduzida. A densidade superficial das moléculas aumenta, diminuindo então γ e aumentando π. Ao construir o gráfico de π versus área por molécula (A), π aumenta à medida que a área disponível na cuba diminui\(^{16,38}\).

A pressão superficial pode ser obtida medindo-se a força por unidade de comprimento numa placa de Wilhelmy. O método de Wilhelmy é uma medida absoluta das forças que agem numa placa, usualmente feita de platina ou papel de filtro, parcialmente imersa na subfase aquosa. Isto é possível acomodando-se a placa a uma eletrobalança que funciona como sensor na interface ar/água da monocamada. O sensor sofre uma ação da força gravitacional, da tensão superficial do material que compõe a subfase e do empuxo\(^{40}\).
Para um sensor retangular de dimensões \(l, w\) e \(t\) feito de um material com densidade \(\rho_w\) e imerso a uma profundidade \(h\) em um líquido de densidade \(\rho_l\), a força resultante é dada por:

\[
F = \rho_w glwt - \rho_l ghwt + 2\gamma(t + w)\cos\theta
\] \(\text{(2)}\)

onde \(\gamma\) é a tensão superficial do líquido, \(\theta\) é o ângulo de contato do sensor sólido e \(g\) é a aceleração da gravidade. O procedimento inicial é procurar um material que fique totalmente perpendicular ao líquido da subfase (\(\theta = 0\)) e na seqüência acompanha-se a mudança de \(F\) a partir de um sensor estacionário. A mudança na força \(\Delta F\) é então relacionada com a mudança na tensão superficial \(\Delta\gamma\) por

\[
\Delta\gamma = \Delta F \left/ \frac{2(t + w)}{2}\right.
\] \(\text{(3)}\)

Se o sensor for tão fino que \(t \ll w\), então \(\Delta\gamma = \Delta F / 2w\).

As isotermas de pressão de superfície-área por molécula (\(\pi\)-\(A\)) podem fornecer informações a respeito do empacotamento, da formação, área molecular, estabilidade da monocamada, possíveis interações que existam entre diferentes moléculas na monocamada mista, bem como a verificação da presença de fases distintas na monocamada durante o processo de compressão.
2.4.1 Estados da monocamada

As isotermas de pressão de superfície do DPPC apresentam regiões distintas, que correspondem aos diferentes estados da monocamada e regiões de coexistência entre dois estados. Através das isotermas é possível identificar alguns desses estados à medida que a monocamada é comprimida\[^{61}\].

O primeiro estado é conhecido como estado gasoso ou gasoso expandido (G) e é determinado pela ausência de interação significativa entre as moléculas que compõem o filme, as quais se dispõem distantes umas das outras. Nesta fase a pressão superficial permanece constante e próximo de zero, ou seja, a tensão superficial é praticamente a mesma da subfase. Ao longo da compressão observa-se o surgimento da fase líquido-expandida (LE), onde as moléculas começam a interagir entre si e formam domínios e/ou agregados lipídicos. A pressão de superfície nesta fase atinge valores maiores que 1mN/m. Em seguida ocorre o aparecimento da coexistência das fases líquido-expandido (LE) e líquido-condensado (LC), região em que as moléculas encontram-se num estado mais organizado e os domínios lipídicos ficam cada vez maiores. Finalmente a fase sólida (S), onde a pressão de superfície é bem elevada e as moléculas encontram-se totalmente empacotadas. Os domínios que anteriormente estavam separados se unem em um só, formando um filme compacto e rigido. A figura 9 representa uma típica isotema de pressão de superfície de DPPC puro em diferentes regiões.

2.5 Potencial de superfície

O potencial de superfície de uma monocamada é determinado pela diferença de potencial (ΔV) entre o filme presente na subfase e a subfase limpa. Esta diferença de potencial é monitorada em uma prova de medida milímetros acima da superfície da subfase. O potencial surge devido à presença de dipolos elétricos permanentes do material que compõe o filme.

A medida de potencial é realizada através de uma prova Kelvin ou prova do capacitor vibrante, onde uma corrente é gerada pela vibração com amplitude pequena de uma placa de ouro ou platina colocada a milímetros da interface. A amplitude é
zerada quando uma fonte de tensão variável é ligada a um eletrodo na subfase de água, como mostrado na figura 10.

![Diagrama de capacitor vibrante e eletrodo](image)

Figura 10: Representação esquemática da prova de potencial.

A condição da corrente nula implica em que os potenciais da placa de ouro ou platina e da superfície aquosa sejam iguais. Depois de confirmado que o potencial na placa é igual ao potencial na superfície limpa da água, o passo seguinte é zerar o sistema e depositar o filme a ser estudado, já que a diferença de potencial, ΔV, será a relativa ao filme absorvido ou espalhado na superfície.[40]

O potencial de superfície de filmes de Langmuir tem sido interpretado utilizando-se o modelo de capacitores de Demchak e Fort (modelo DF) [Demchak *apud* Dynarowicz-Łatka[439]] ou de Vogel-Möbius [Vogel *apud* Dynarowicz-Łatka[439]], em que a monocamada é considerada como um capacitor de 3 ou 2 camadas (figura 11), respectivamente. Estes modelos são empregados com sucesso na análise dos valores de potencial de superfície resultantes do efeito da presença e orientação de grupos substituintes presentes nas monocamadas de lipídios.

Figura 11: Representação de um capacitor de 3 camadas para uma monocamada condensada na interface ar/água.

Através dos métodos desenvolvidos por Davies e Rideal [Davies *apud* Dynarowicz-Łątka\(^{[169]}\)] e posteriormente aperfeiçoados por Oliveira *et al.*\(^{[42]}\), que consideram a mudança no potencial interfacial devido à presença da monocamada como uma soma de termos independentes. Estes métodos levam em consideração a contribuição dos dipolos da água reorientada na vizinhança das cabeças polares do lipídio, dos dipolos da cabeça polar e das cadeias hidrofóbicas que se posicionam na interface com o ar, onde os valores de momento de dipolo bem como valores de constantes dielétricas independentes foram atribuídos a cada uma dessas regiões. O potencial superfície \(\Delta V\) é então dado por:

\[
\Delta V = \frac{1}{\varepsilon_0 A} \left(\frac{\mu_1}{\varepsilon_1} + \frac{\mu_2}{\varepsilon_2} + \frac{\mu_3}{\varepsilon_3} \right) + \psi_0 \tag{4}
\]

onde \(A\) é a área média por molécula, \(\varepsilon_0\) permissividade no vácuo (8,854x10\(^{-12}\) Fm\(^{-1}\)). \(\mu_1\) é a contribuição causada pela reorientação das moléculas de água induzidas pelas moléculas do filme; \(\mu_2\) é a contribuição referente ao grupo hidrofílico e \(\mu_3\) é devido à

contribuição da cauda hidrofóbica. Ressalta-se que \(\mu_1, \mu_2 \) e \(\mu_3 \) referem-se à componente vertical do momento de dipolo. \(\psi_0 \) é a contribuição da dupla camada elétrica de Gouy-Chapman [Adamson \textit{apud} Dynarowicz-Łątka[139]], que só aparece se a monocamada estiver pelo menos parcialmente ionizada.

Portanto o potencial de superfície da membrana \(\Delta V \) é a soma de um termo elétrico, \(\psi_0 \), e um termo de polarização \(\Delta V_p \). \(\psi_0 \) pode variar com o sinal e o número de cargas das cabeças polares do fosfolipídio, com a densidade de carga superficial \(\sigma \), e com a quantidade de íons presentes em solução. Para a monocamada de DPPC puro não foi verificada a contribuição da dupla camada \((\psi_0 = 0) \), uma vez que o DPPC se encontra neutro.

As medidas de potencial de superfície são utilizadas para analisar o comportamento das monocamadas, orientação dos dipolos moleculares, agregações e interações que ocorrem entre as moléculas numa monocamada mista.

2.6 Microscopia no ângulo de Brewster

Quando uma luz \(p \)-polarizada incide num substrato, existe um ângulo específico de incidência onde não ocorre reflexão da luz, ou seja, toda a luz é refratada dentro do substrato. Um detector observa toda intensidade da luz refletida que produzirá um sinal mínimo (idealmente zero), este efeito ocorre para o ângulo descoberto por Sir David Brewster em 1815. O ângulo de Brewster está relacionado

1 Dynarowicz-Łątka, P. 2001 \textit{apud} Adamson, A.W. the Physical Chemistry of Surfaces. 2nd ed, Interscience, New York, 1967.
com os índices de refração dos dois meios ópticos, que no caso da interface ar/água o ângulo é de 53.1°, obtido da definição:

\[n_{ar} \cdot \text{sen} \alpha = n_s \cdot \text{sen} \theta \] \hspace{1cm} (5)

\[\alpha + \theta + 90^0 = 180^0 \] \hspace{1cm} (6)

\[\theta = 90^0 - \alpha \]

\[n_{ar} \cdot \text{sen} \alpha = n_s \cdot \cos \alpha \] \hspace{1cm} (7)

\[\tan \alpha = \frac{n_s}{n_{ar}} \] \hspace{1cm} (8)

onde \(\alpha \) é o ângulo de Brewster e \(n_s \) e \(n_{ar} \) são os índices de refração da água e do ar, respectivamente.

Se um filme fino está presente numa subfase aquosa com índice de refração diferente do índice de refração da água, as condições para o ângulo de Brewster não são satisfeitas nem para a interface ar/filme e nem para a interface filme/água. Portanto, parte da luz é refletida em ambas interfaces, essas reflexões da luz sobrepõem-se coerentemente e produzem um sinal que pode ser detectado através de um sensor, neste caso uma câmera CCD\(^{[43]}\).

A figura 12 representa esquematicamente como a luz é totalmente refratada na interface ar/água e parcialmente refletida na interface filme/água quando um feixe de luz é incidido no ângulo de Brewster.
A microscopia do ângulo de Brewster (BAM) possibilita o estudo da organização bi-dimensional do material que compõe a monocamada, incluindo tamanho e forma dos domínios, características morfológicas, o processo de formação dos domínios, agregação, entre outros39.

2.7 Espectroscopia de dicroismo circular

O dicroismo circular (CD) é uma propriedade observada em moléculas assimétricas, denominadas cromóforos, e que apresentam diferenças na absorção da luz circularmente polarizada à esquerda e à direita. Este fenômeno é muito observado em proteínas, pois elas possuem diversos centros de assimetria (carbonos α) distribuídos ao longo de sua cadeia principal. Assim, a espectroscopia CD torna possível caracterizar e quantificar diferentes tipos de estrutura secundária destas macromoléculas tais como: hélice α, folhas β (paralelas e antiparalelas), vários tipos de voltas β e estruturas randônicas44.

Na aplicação desta técnica, o feixe plano polarizado é decomposto através de um modulador, em duas componentes. Numa, a luz é circularmente polarizada à direita, R, e na outra a luz é circularmente polarizada à esquerda, L, (figura 13a). Se
uma das componentes é absorvida pela amostra numa intensidade diferente da outra, a radiação resultante da componente combinada estará elipticamente polarizada, traçando uma elipse⁴⁵¹ (figura 13b). Assim, o dicroísmo circular pode ser definido como a diferença entre a absorção das componentes polarizadas à esquerda e à direita (ΔA). Para calcular o ΔA, utiliza-se a lei de Beer-Lambert-Bouquer onde I₀ é a intensidade da luz incidente na amostra e I é a intensidade da luz após passar pela amostra. A absorbância é definida como:

\[A = \log_{10}(I_0 / I) \] \hspace{2cm} (9)

Aplicando a lei para ambos os feixes circularmente polarizados à esquerda (e) e à direita (d):

\[A_e = \log_{10}(I_0 / I_e) \quad A_d = \log_{10}(I_0 / I_d) \] \hspace{2cm} (10)

Sendo assim ΔA é descrito como:

\[\Delta A = A_e - A_d = \log_{10}(I_e / I_d) \] \hspace{2cm} (11)

A absorbância também pode ser descrita em função do caminho ótico l, da concentração c, e da capacidade de absorção dos compostos, definido como coeficiente de extinção molar ε, então:

\[A = \varepsilon cl \quad \Delta \varepsilon = (1 / cl) \Delta A \] \hspace{2cm} (12)

Ao passar pela molécula a luz plano polarizada é convertida em luz elipticamente polarizada. Quando os vetores campo elétrico das duas componentes
circulares estão na mesma direção sua soma resulta no semi-eixo maior da elipse, e quando estão em direções opostas sua soma resulta no semi-eixo menor. Desta forma o CD pode ser caracterizado pela razão entre os dois semi-eixos, que é a tangente de um ângulo \(\theta \) denominado elipticidade, como \(\theta \) é sempre um ângulo muito pequeno, a tangente de \(\theta \) pode ser aproximada para \(\theta \). O ângulo \(\alpha \) é a dispersão ótica rotatória, formado pela inclinação da luz antes de passar pela amostra e o eixo central da elipse após passar pela amostra (figura 13c).

![Diagrama](image)

Figura 13: Origem do efeito do dicroísmo circular. Decomposição do feixe plano polarizado em duas componentes circulares à esquerda (L), e à direita (R), antes (a) e depois (b e c) de passar pela amostra. Modificado a partir de Fasman, 1996 [40].

Existe uma relação numérica entre \(\Delta A \) e \(\theta \) (\(\theta \) em graus), onde \(\theta = 32,98 \Delta A \).

Essa relação foi obtida através da equação descrita:

\[
\theta (rad) \approx \tan(\theta) = \frac{|E_l| - |E_r|}{|E_l| + |E_r|} \tag{13}
\]

\[
= \frac{\exp(-A/2) - \exp(-A/2)}{\exp(-A/2) + \exp(-A/2)}
\]
expandido as exponenciais, ignorando os termos de menor ordem e convertendo em graus, tem-se:

\[
\theta(\text{graus}) = 180 \cdot \ln 10 \cdot \Delta A / 4\pi
\]

\[
\theta = 32,98 \cdot \Delta A
\]

A elipticidade também tem uma dependência linear com o caminho ótico e com a concentração da solução, onde a elipticidade molar [\(\theta\)]:

\[
[\theta] = 100\theta / cl
\]

Como no século passado a concentração era dada por g/100cm\(^3\), e a elipticidade molar em deg.cm\(^2\).g\(^{-1}\). Portanto, para corrigir as unidades a equação foi multiplicada por 100.

A técnica permite estudos na região do ultravioleta distante (240 nm a 190-180 nm) que podem ser usados para avaliar, quantitativamente, o conteúdo total de estrutura secundária de proteínas e peptídeos. Nesta região o grupo que absorve é a ligação peptídica que permite transições n\(\rightarrow\pi^*\) e \(\pi\rightarrow\pi^*\) proveniente do grupamento amida. A transição n\(\rightarrow\pi^*\) apresenta-se centrada em torno de 210 nm e a transição correspondente a \(\pi\rightarrow\pi^*\) próximo de 190 nm\(^{[45]}\). Na figura 14 estão representados espectros distintos de cada tipo de estrutura secundária.
Esta técnica de CD é amplamente utilizada em estudos de mudanças conformacionais, vizinhanças locais, interações de ligantes com proteínas, desnaturação e renaturação de proteínas, bem como estimativa do conteúdo das frações de seus componentes de estrutura secundária.

2.8 Procedimentos de limpeza dos materiais

Uma vez que se trabalha em nível molecular, filmes de Langmuir, as medidas tornam-se muito sensíveis a qualquer tipo de interferente (sueira, por exemplo). Portanto, é necessário que todos os recipientes a serem utilizados passem por um processo de limpeza muito rigoroso, pois qualquer tipo de impureza pode afetar os resultados. Portanto, segue-se o roteiro descrito a seguir para a limpeza dos materiais.
Toda a vidraria ficou submersa numa solução sulfonitríca (H₂SO₄ e HNO₃, 1:1) por um período de 30 minutos. Após este período o material foi enxaguado no mínimo 8 vezes com água ultrapura, e no momento do uso foram tratados com cloroformio ou metanol dependendo do solvente a ser utilizado. Os eppendorfs e as ponteiras foram adquiridos esterilizados e foram descartados após o uso. A cuba de Langmuir passou por um processo de limpeza onde a superfície interna e as barreiras foram limpas com lenços de papel umedecidos com cloroformio. Em seguida foi lavada com água ultrapura trocando-se a água por três vezes. O controle deste processo se faz aplicando uma compressão na interface ar/água, e após a medida, a pressão e o potencial de superfície devem ser constantes e muito próximos de zero.

2.9 Preparação das monocamadas e vesículas

2.9.1 Peptídeo puro

Inicialmente foi preparada uma solução contendo 0,5 mg/mL do peptídeo p24-1 em metanol e cloroformio (1:4). Uma alíquota desta solução (100 µL) foi retirada com um pipetador automático, e espalhada na interface ar/água entre as barreiras móveis da cuba de Langmuir. Após 10 minutos de espera, tempo necessário para a evaporação total do solvente, foi iniciada a compressão seguida das medidas de potencial e de pressão de superfície. Este procedimento foi realizado a fim de averiguar se este peptídeo formava uma monocamada estável.

2.9.2 Monocamada mista

Foram preparadas três soluções equimolares dos fosfolipídios DPPC e DPPG e outra de peptídeo p24-1 contendo 6,8 x 10⁻⁴ M cada solução. As três soluções
foram feitas no dia em que foram utilizadas e vedadas com fita de teflon para que não ocorresse evaporação do solvente durante o período de utilização. A solução de DPPC foi dissolvida em clorofórmio, a solução de DPPG foi dissolvida em metanol e clorofórmio (1:4) e a solução de p24-1 em metanol. O DPPG e o peptídeo foram dissolvidos em metanol devido a sua baixa solubilidade em clorofórmio. A Tabela 1 apresenta as massas molares e as concentrações em mg/ml dos compostos descritos.

<table>
<thead>
<tr>
<th>Composto</th>
<th>Massa Molar</th>
<th>Concentração (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPC</td>
<td>734</td>
<td>0,5</td>
</tr>
<tr>
<td>DPPG</td>
<td>744</td>
<td>0,5</td>
</tr>
<tr>
<td>P24-1</td>
<td>3215,8</td>
<td>2,2</td>
</tr>
</tbody>
</table>

As soluções equimolares de DPPC e p24-1 foram misturadas em quantidades desejadas de DPPC/p24-1 (Tabela 2). O método empregado na preparação das monocamadas mistas foi o método do co-espalhamento, ou seja, foi retirada com um pipetador automático uma aliquota de 100 μL de cada solução mista e espalhada sobre a subfase da água ultrapura entre as barreiras móveis da cuba de Langmuir. Após 10 minutos iniciou-se a compressão dessas monocamadas, seguida pelas medidas de pressão e potencial de superfície ou microscopia no ângulo de Brewster.
Tabela 2: Diferentes proporções em porcentagem de DPPC e p24-1 e a suas massas moleculares média.

<table>
<thead>
<tr>
<th>% em mol de DPPC</th>
<th>% em mol de p24-1</th>
<th>Massa molecular média</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>734,0</td>
</tr>
<tr>
<td>99,95</td>
<td>0,05</td>
<td>735,2</td>
</tr>
<tr>
<td>99,9</td>
<td>0,1</td>
<td>736,5</td>
</tr>
<tr>
<td>99,8</td>
<td>0,2</td>
<td>738,9</td>
</tr>
<tr>
<td>99,7</td>
<td>0,3</td>
<td>741,4</td>
</tr>
<tr>
<td>99,6</td>
<td>0,4</td>
<td>743,9</td>
</tr>
<tr>
<td>99,5</td>
<td>0,5</td>
<td>746,4</td>
</tr>
<tr>
<td>99</td>
<td>1</td>
<td>758,8</td>
</tr>
</tbody>
</table>

2.9.3 Preparação das vesículas multilamelares

As vesículas multilamelares (MLV) foram preparadas inicialmente dissolvendo 10 mg de DPPC em clorofórmio e evaporado com nitrogênio até formar um filme fino no tubo. O filme de fosfolipídio ficou aproximadamente 12 horas em um dessecador a vácuo, para a completa evaporação do solvente. Posteriormente este filme foi hidratado com 1mL de água ultrapura contendo 10 mM de NaCl. Para obter as MLVs esta solução foi vortexada por um período de aproximadamente 30 minutos ou até que a solução estivesse translúcida. Após a formação das MLVs foi adicionado 0,25 mg/mL do p24-1. As vesículas foram preparadas à 22°C, temperatura na qual o fosfolipídio está na fase líquido-cristalino. As misturas
contendo vesículas e peptídeos foram avaliadas através de medidas de diicroísmo circular.

2.10 Medidas de pressão e potencial de superfície

As isotermas de pressão de superfície foram realizadas empregando o método de Wilhelmy, em que a placa de wilhelmy consistia de um retângulo de 2 cm x 1 cm de papel, colocado perpendicular às barreiras móveis. O elevador da KSV foi movido para mergulhar o papel de filtro preso à balança eletrônica deixando aproximadamente 2/3 da sua área dentro da subfase aquosa.

As medidas de potencial de superfície foram realizadas utilizando o método da placa vibrante (freqüência 300 Hz) utilizando uma prova Kelvin com o eletrodo de referência e a placa vibrante feitos de platina. Um outro elevador é movido até que a prova de potencial fique milímetros acima da subfase aquosa. Os valores da pressão e do potencial de superfície são zerados e em seguida são espalhadas as moléculas na subfase. Após o tempo da evaporação do solvente (10min) inicia-se a compressão das barreiras com uma velocidade estipulada de 10 mm/min até a formação de uma monocamada compacta.

Experimentos de histerese também foram realizados a fim de averiguar se ocorreu perda de material para a subfase e se a monocamada se mantém estável. Nestes experimentos a monocamada foi comprimida até uma pressão de superfície fixada em 50 mN/m e depois expandida até o estado inicial. As histereses foram conduzidas por 3 ciclos de compressão e expansão da monocamada e a velocidade
das barreiras foi a mesma utilizada para as isotermas, 10 mm/min. O tempo de espera para cada início de compressão ou de expansão foi fixado em 60 segundos.

Para obter resultados reproduzíveis todas as experiências tiveram a temperatura controlada por um sistema de banho de circulação, que fica circulando água no interior da cuba de Langmuir com uma temperatura de 22° C.

2.11 Medidas de microscopia no ângulo de Brewster

Os experimentos utilizando a microscopia no ângulo de Brewster foram iniciados com o ajuste do ângulo de Brewster para a subfase aquosa (próximo de 53°). Nesta condição, a luz era totalmente refratada e não se detectava qualquer imagem, pois não havia luz refletida. Após o ajuste do ângulo seguiu-se o mesmo procedimento para a preparação da monocamada mista e o aparecimento das imagens.

2.12 Medidas de dicroísmo circular

Neste trabalho foram realizadas medidas de CD do peptídeo p24-1 em solução de água e/ou metanol. Duas soluções estoque de p24-1 (0,5 mg/mL) foram preparadas, uma em metanol e a outra em água. Estas soluções foram diluídas em água ou metanol dependendo da proporção água:metanol desejada. A tabela 3 mostra as proporções (água/metanol) em porcentagem utilizadas.
Tabela 3: Proporções água/metanol utilizadas nas medidas de dicroísmo circular para o peptídeo p24-1.

<table>
<thead>
<tr>
<th>Nº amostra</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>% metanol</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>% água</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Em todas as medidas de dicroísmo circular as amostras foram acondicionadas em cubetas de quartzo circulares com caminho ótico de 1 mm, com monitoramento num intervalo de comprimento de onda de 195 a 250 nm. Todos os espectros resultantes foram médias de 16 varreduras e tratados através de desconvolução utilizando o programa SELCON 1⁴⁶.
RESULTADOS E DISCUSSÕES

Uma análise inicial do peptídeo p24-1 (AAMQMLKETINEAEEWDRVHP VHAGPIA) foi realizada através do índice de hidropaticidade de cada resíduo de aminoácido que o constitui. Estes valores foram calculados usando o método desenvolvido por Kyte e Doolittle147. De acordo com estes dados foi traçado um perfil comparativo para os 29 resíduos de aminoácidos presentes no peptídeo p24-1. A figura 15 demonstra que este peptídeo não apresenta uma região dominante hidrofílica ou hidrofóbica. A partir desta análise não foi possível fazer uma avaliação do comportamento deste peptídeo quando em contato com moléculas anfífilicas.

![Diagrama de índice de hidropatia](image)

Figura 15: Índice de hidropatia para cada resíduo de aminoácido do p24-1 a partir da sequência N-C terminal.
3.1 Análise da estrutura do peptídeo p24-1

O peptídeo p24-1 foi analisado por dicroísmo circular (CD) em solução aquosa e em diferentes proporções de metanol. O espectro obtido para o p24-1 em solução aquosa apresentou um mínimo acentuado em 201,6 nm e outro discreto ao redor de 221 nm (figura 16). Esta mesma figura também representa os espectros deste peptídeo em diferentes proporções (água:metanol). Na presença de 10% de metanol, ocorreu um deslocamento do mínimo para 202,6 nm e começou acentuar-se o mínimo ao redor de 221 nm. Esta tendência foi mais evidente quando se aumentou a concentração de metanol. Estas análises foram necessárias para avaliação do comportamento estrutural do peptídeo p24-1, quando em contato com metanol e/ou água, uma vez que este peptídeo foi dissolvido em metanol puro e posteriormente a solução foi colocada em contato com a subfase aquosa da cuba de Langmuir.

Os mínimos são bem definidos para estrutura secundária de conformação hélice α, onde a banda negativa em 222 nm representa a transição n-π*, polarizada paralelamente ao eixo da hélice. A banda negativa em 208 nm e a banda positiva em 190 nm são resultantes do desdobramento da banda de absorção π-π* dos componentes polarizados: paralelamente ao eixo da hélice (208 nm) e perpendicularly ao eixo da hélice (190 nm).
Figura 16: Espectro de CD do p24-1 em água (---), metanol 10% (--), metanol 20% (---), metanol 30% (---), metanol 50% (---), metanol 60% (---) e metanol 70% (---).

Foram realizadas as desconvoluções dos espectros do p24-1 em solução aquosa e na presença de 70% de metanol, utilizando o método SELCON-1\(^{[46]}\) (Tabela 4). Os resultados obtidos para o espectro da p24-1 em solução aquosa foram: 9% de hélice, 27% de estrutura beta e 64% de elementos desordenados, e para o espectro da mistura p24-1 em 70% de metanol foram: 30% de hélice, 18% de estruturas beta e 52% de elementos desordenados.
Tabela 4: Frações de estruturas secundárias obtidas a partir da desconvenção dos espectros do peptídeo p24-1 em solução aquosa e na presença de metanol.

<table>
<thead>
<tr>
<th>Peptídeo p24-1</th>
<th>Hélice α (%)</th>
<th>Estruturas β (%)</th>
<th>Desordenadas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solução aquosa</td>
<td>9</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>70% de metanol</td>
<td>30</td>
<td>18</td>
<td>52</td>
</tr>
</tbody>
</table>

Ao adicionar metanol na solução, ficou evidente a ocorrência de indução na estrutura hélice-α, ao passo que aumentou a proporção de metanol o espectro mostrou um deslocamento nos mínimos indicando uma maior porcentagem de hélice α. Isso ocorre até 70% de metanol que foi o máximo de hélice que se pode observar utilizando este solvente. A indução de formação de hélice por solventes polares é bastante citada na literatura[44]. A estabilização da estrutura hélice do peptídeo é devida à ocorrência de ligações de hidrogênio intramoleculares. O metanol, o TFE (trifluoroetanol) e outros álcoois estabilizam a estrutura, em hélice, pois não competem com as ligações de hidrogênio intramoleculares do peptídeo tão efetivamente quanto a água. Além de disso, a incorporação de álcool diminui a constante dielétrica do meio fortalecendo essas ligações.

A estrutura secundária também foi avaliada através de modelo teórico de estrutura por homologia. Foi utilizando o SWISS-MODEL (Protein Modeling Server)[48], baseado na análise comparativa de seqüências homólogas com determinadas regiões de estruturas de proteínas catalogadas no banco de dados. Neste caso a análise foi baseada na estrutura da proteína do capsídeo do HIV-1.
denominada p2449,50,51. A figura 17 representa a estrutura do peptídeo p24-1 na sequência N-C terminal, gerada pelo programa RasMol52.

![Figura 17](image)

Figura 17: Predição da estrutura secundária do p24-1, obtida através do Swiss-Model e gerada no programa RasMol. Figura do peptídeo na sequência N-C terminal.

O resultado obtido na previsão teórica apresentou homologia com a estrutura da região correspondente à proteína p24. Aproximadamente 70% do peptídeo compõe uma hélice-α do N-terminal até o resíduo Val20, seguida por uma região não ordenada contendo os 9 resíduos de aminoácidos restantes. Nota-se que este valor de 70% de hélice é muito maior que o obtido experimentalmente nas soluções de p24-1 (tabela 4), em que o máximo de hélice foi 30% na mistura água-metanol (com 70% de metanol). A razão para a discrepância é que a previsão teórica é baseada na estrutura da proteína p2428 que possui outros resíduos de aminoácidos que favorecem uma estrutura estável.
3.1.1 Análise do p24-1 na presença de vesículas multilamelares

As vesículas multilamelares (MLV) constituídas por DPPC foram objetos de estudos para uma possível avaliação estrutural do peptídeo na presença das moléculas de fosfolipídios organizadas. O p24-1 na presença das MLVs foi analisado por dicroismo circular (CD). O comportamento estrutural do peptídeo em solução aquosa contendo 10 mM de NaCl, apresentou mínimo acentuado em 200,6 nm e outro bem discreto próximo de 222 nm (figura 18). Na presença da MLV o espectro de CD do peptídeo apresentou mínimo acentuado em 205,6 nm e em 222,2 nm.

A desconvolução desses espectros foi realizada utilizando o método SELCON-1[46], como mostrado na tabela 5. A desconvolução do espectro do p24-1 na presença das MLVs de DPPC mostrou uma maior porcentagem de hélice-α (24%) quando comparado com o espectro do p24-1 em solução aquosa contendo 10 mM de NaCl (9%). Este efeito também está descrito na literatura para outros peptídeos, sugerindo que vesículas de fosfolipídios também induzem formação de hélice. Isso ocorre devido às interações eletrostáticas provenientes da densidade de carga e da força iônica da superfície de contato e também da interação lipídeo-peptídeo[53]. A partir desses resultados pode-se propor que as monocamadas de DPPC também induzem a formação da estrutura secundária do peptídeo.
Figura 18: Espectro de CD do p24-1. (—) em solução aquosa com 10mM de NaCl e (—) na presença de vesículas multilamelares.

Tabela 5: Frações de estruturas secundárias obtidas a partir da desconvolução dos espectros do peptídeo p24-1 em solução aquosa (10mM NaCl) e na presença de vesículas multilamelares (10 mM NaCl).

<table>
<thead>
<tr>
<th>Peptídeo p24-1</th>
<th>Hélice α (%)</th>
<th>Estruturas β (%)</th>
<th>Desordenadas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM de NaCl</td>
<td>9</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>10 mM de NaCl e MLV</td>
<td>24</td>
<td>24</td>
<td>52</td>
</tr>
</tbody>
</table>

48
3.2 Análise da interação do peptídeo p24-1 com monocamadas de DPPC

Estes estudos foram iniciados preparando-se uma monocamada do peptídeo puro para averiguar a formação da monocamada estável na interface ar/água. Foram espalhados 100 µL da solução contendo 0,5 mg/mL do p24-1 e monitoradas as isotermas de pressão e potencial de superfície em função da área por molécula. A isoterma de pressão de superfície teve um pequeno aumento sem nenhuma inclinação ingreme atingindo um máximo de 5 mN/m. O potencial não apresentou alterações consideráveis que indicam formação de uma monocamada (figura 19).

Figura 19: Medidas de isoterma de pressão de superfície e potencial de superfície em relação à área por molécula de p24-1.
Estes dados demonstram que as moléculas de p24-1 não ficaram organizadas sobre a superfície da subfase aquosa da cuba de Langmuir. Assim, ficou demonstrado que o peptídeo não formou uma monocamada nestas condições, provavelmente ficando dissolvido na subfase aquosa.

3.2.1 Histerese da mistura DPPC e p24-1

O fato de o peptídeo não formar uma monocamada estável levanta a hipótese de que ao longo de ciclos consecutivos de compressão e relaxamento de uma monocamada mista (DPPC/p24-1), ocorreria perda de material. Isto pode ser verificado com medidas de histerese com ciclos de compressão e expansão consecutivas da monocamada. A figura 20 ilustra a formação da monocamada mista (DPPC/p24-1 0,4% mol) durante 3 ciclos de compressão e expansão. Nota-se que as isotermas de pressão e potencial de superfície se sobreopem a cada ciclo de compressão e expansão. Este resultado permite afirmar que houve um tipo de interação estável entre o peptídeo e a monocamada de DPPC, portanto não ocorrendo perda significativa de peptídeo, pelo menos para baixas concentrações.
Figura 20: Histerese da monocamada mista de DPPC/p24-1 (0,4% mol de p24-1). Pressão (—) e potencial (—) de superfície versus área por lipídio.

3.2.2 Isotermas de pressão de superfície

Na figura 21 estão apresentadas as isotermas de pressão de superfície, a 22°C, do DPPC puro e na presença de diferentes concentrações de p24-1 em função de área por molécula de DPPC.

Na isotema do DPPC puro (curva preta) observou-se que até uma área por lipídio de 90 Å² a monocamada estava na fase gasosa (G), região onde as moléculas de DPPC se distribuem em uma grande área superficial e interagem fracamente entre
si, sem induzir qualquer mudança visível na pressão de superfície. A partir de 90 Å² observou-se o início do crescimento da pressão superficial e as moléculas passaram para a fase líquido-expandida (LE). À medida que prossegue a compressão surge a fase líquido condensado (LC) com valor de pressão próximo de 10 mN/m, em que as moléculas estão mais próximas umas das outras. Quando a pressão atinge o valor de 40 mN/m numa área de 43 Å², fase condensada (C) ou sólida, as moléculas de DPPC estão completamente empacotadas, formando uma monocamada compacta [6].

Os efeitos causados nas isotermas das misturas DPPC/p24-1, mesmo em baixas proporções de p24-1, mostraram mudanças em todos os estágios da compressão, incluindo a região da transição LE-LC, cuja forma é visivelmente modificada. Na isoterma da mistura DPPC/p24-1 com concentração 0,05% mol de p24-1 (curva vermelha) observou-se que a pressão começou a aumentar após a área de 95 Å² sendo que para a isoterma do DPPC puro a pressão iniciou em 90 Å². Na fase condensada referente à pressão de 40 mN/m, a isoterma da mistura aparece numa área de 46 Å², apresentando uma diferença de 3 Å² em relação ao DPPC puro. Nas concentrações de 0,1 e 0,2 % mol de p24-1 (não mostrado) o efeito observado foi o mesmo.

Para as proporções de 0,3; 0,4 e 0,5% mol de p24-1 as monocamadas encontram-se mais expandidas, a transição LE inicia-se em 100, 108 e 110 Å² respectivamente, e na fase sólida com pressão próxima de 40 mN/m, apresentaram áreas de 47, 51 e 53 Å², respectivamente. Em concentrações mais altas de p24-1 as isotermas seguem o mesmo perfil que as de baixas concentrações, mantendo os deslocamentos na área por molécula de DPPC puro. Quando utilizamos
concentrações muito elevadas (acima de 5% em mol) ocorreu uma contração na monocamada, sugerindo uma saturação da monocamada, e provavelmente estaria ocorrendo passagem de p24-1 para a subfase aquosa.

![Diagrama de pressão de superfície vs área por lipídio](image)

Figura 21: Isotermas de pressão de superfície para diferentes proporções em mol do peptídeo p24-1. DPPC puro (—) e DPPC na presença de 0,05(—); 0,3(—); 0,4 (—); 0,5 () e 5 () % em mol de p24-1.

A influência do peptídeo na monocamada em três diferentes regiões das isotermas de pressão de superfície (1 mN/m, transição LE-LC e 30 mN/m) foi avaliada e está representada na figura 22.
Na região em que a pressão é de 1mN/m (curva preta) a presença do p24-1 promoveu expansões nas monocamadas de DPPC, mesmo quando a concentração do peptídeo era muito pequena. Para a menor concentração estudada, 0,05%mol de p24-1, ocorreu uma expansão da monocamada de 5% em área. Para as concentrações intermediárias 0,1; 0,2 e 0,3% mol de p24-1 surgiu um patamar no qual a área por molécula não aumentou significativamente e manteve uma expansão próxima de 8% em área. Nas concentrações acima de 0,3% mol de p24-1 (0,4 e 0,5%) observou-se um crescimento acentuado na área de 18 e 20% respectivamente. Para valores de altas concentrações (1, 5 e 10% mol de p24-1) a monocamada sofreu expansão não linear de 14, 31 e 20% em área respectivamente. Existe uma tendência de contração da monocamada para valores de altas concentrações, que pode ocorrer devido à saturação de material e perda para a subfase.

Na transição de fase LE-LC (curva vermelha) a expansão é menos acentuada, mas com o mesmo comportamento da curva referente à região 1mN/m. Na concentração de 0,05% mol de p24-1 a monocamada expandiu 3% em área. O patamar se manteve para concentrações de 0,1; 0,2 e 0,3% mol de p24-1 com uma expansão próximo de 5%. Nas concentrações de 0,4 e 0,5% mol de p24-1 observou-se um aumento na área por molécula de DPPC de 14 e 19% respectivamente, e para as concentrações mais elevadas como 1, 5 e 10% mol ocorreu uma descontinuidade havendo expansões de 13, 27 e 14% respectivamente.

Na região de pressão 30 mN/m (curva azul), o perfil da curva continuou sendo o mesmo que obtido para as outras regiões já descritas. Em 0,05% mol de p24-1 a monocamada expandiu 6% em área. O patamar apresentou uma expansão de 7%
nas concentrações 0,1; 0,2 e 0,3% mol de p24-1. A mesma elevação acentuada ocorreu para as concentrações de 0,4 e 0,5% mol de p24-1 (expansão de 17 e 22% em área) e ocorreu a descontinuidade para as concentrações muito altas (1, 5 e 10%).

Figura 22: Razão entre a área de DPPC/p24-1 (A) e DPPC puro (A₀) das isotermas de pressão de superfície versus a concentração molar das misturas. Curva (—) referente à região 1 mN/m, curva (—) transição LE-LC e curva (—) região 30 mN/m.

O comportamento das isotermas demonstrou que o p24-1 altera o estado da monocamada de DPPC mesmo em pequenas quantidades. Por exemplo, para 0,05% mol de p24-1, que corresponde a uma relação de uma molécula de p24-1 em 2 mil de DPPC, uma explicação para tal efeito é a possibilidade de ocorrência de cooperatividade entre as moléculas de DPPC, induzida pela interação com apenas uma molécula do peptídeo, que resultou em um efeito que pode ser medido.
3.2.3 Isotermas de potencial de superfície

As isotermas de potencial de superfície das monocamadas de DPPC puro e DPPC na presença do p24-1 em função da área por molécula de lipídio estão apresentadas na figura 23. O perfil das isotermas de potencial de superfície das misturas DPPC/p24-1 não mudou significativamente quando comparado com a isotema do DPPC puro, diferentemente do ocorrido com as isotermas de pressão de superfície, em que a curva mudou de perfil com a presença do p24-1.

Na região da fase de transição LE-LC observada entre 0,25 e 0,3 V ocorreu um deslocamento de aproximadamente 7 Å². Este efeito é notado para as curvas de concentrações 0,05 à 0,3% mol de p24-1, que não apresentam grandes diferenças entre si. Para as concentrações de 0,4 e 0,5% mol de p24-1 as curvas praticamente se sobrepõem e apresentam uma expansão maior, aproximadamente 20 Å². Em concentrações mais elevadas, como 5% mol, o deslocamento da curva foi ainda maior que 37 Å². Entretanto para estas concentrações muito elevadas observou-se também uma contração da monocamada, ou seja, ocorreu perda de material para a subfase aquosa, o mesmo efeito visto para as isotermas de pressão de superfície.
Figura 23: Isotermas de potencial de superfície para diferentes proporções em mol do peptídeo p24-1. DPPC puro (---) e DPPC na presença de 0,05(--), 0,3(---), 0,4 (---), 0,5 () e 5 () % em mol de p24-1.

Para as isotermas de potencial de superfície também foi avaliada a influência da presença do peptídeo na monocamada para diferentes regiões de valores de potenciais. As curvas foram obtidas através da razão entre o momento de dipolo da mistura DPPC/p24-1 (μ) e o momento de dipolo do DPPC puro (μ₀) das isotermas de potencial de superfície versus a concentração molar do p24-1. Na figura 24 estão representados os gráficos para as regiões em que as pressões de superfícies estavam
em 1 mN/m, transição LE-LC e 30 mN/m. Para elaboração destes gráficos o momento de dipolo aparente foi calculado através da expressão:

\[\mu = \Delta V A \varepsilon_0 \] \hspace{1cm} (16)

onde \(\Delta V \) é o potencial de superfície, \(A \) é a área por molécula e \(\varepsilon_0 \) a permissividade do vácuo\[^{39}\]. O cálculo da razão entre momento de dipolo da mistura do DPPC/p24-1 e do DPPC puro a partir das isotermas de potencial é dado por \(\mu/\mu_0 \).

Na curva para a região 1 mN/m (linha preta) a presença de 0,05% do peptídeo p24-1 provocou um aumento no momento de dipolo de 10% em relação à monocamada de DPPC puro. Aumentando as concentrações para 0,1 a 0,3% mol de p24-1 observou um patamar com as mesmas características observada nas curvas de \(A/A_0 \), com o momento de dipolo maior (14%) em relação ao momento de dipolo da monocamada de DPPC puro. A presença de 0,4 e 0,5% mol de p24-1 aumentou a momento de dipolo em 34 e 39%, respectivamente. Para as demais concentrações 1, 5 e 10% observou-se uma descontinuidade no momento de dipolo, similarmente ao ocorrido para as isotermas de pressão de superfície.

Na fase de transição LE-LC (linha vermelha), o aumento no momento de dipolo foi menor quando comparado com a região de 1 mN/m, mas mesmo assim o crescimento é notório. Na presença de 0,05% mol o momento de dipolo teve um aumento de 8%, e ocorreu um patamar no momento de dipolo (12%) nas concentrações de 0,1 a 0,3% mol de p24-1. Nas concentrações de 0,4 e 0,5% mol
ocorreu um aumento íngreme do momento de dipolo para 27 e 33%, respectivamente.

O perfil da curva na região de pressão 30 mN/m foi o mesmo para as regiões já descritas, mas com decréscimo acentuado na presença de altas concentrações de p24-1. Neste caso o aumento do momento de dipolo é ainda menor quando comparado com a região da fase de transição. Na concentração de 0,05% mol de p24-1 o aumento foi de 5% e nas de 0,1; 0,2 e 0,3% mol de p24-1 ocorreu o patamar característico, com um crescimento de aproximadamente 7% em relação ao momento de dipolo da monocamada de DPPC puro. Para 0,4 e 0,5% mol de p24-1 o crescimento é visivelmente maior de 16 e 25%, respectivamente. Nas concentrações mais elevadas (1, 5 e 10% mol) a curva sofreu um decréscimo no momento de dipolo. Este efeito se deve a saturação de peptídeo em altas concentrações, favorecendo a perda do peptídeo para a subfase aquosa.

\[\text{Figura 24}: \text{Razão entre momento de dipolo do DPPC das isotermas de pressão de superfície DPPC/p24-1 e o momento de dipolo do DPPC puro versus a concentração molar das misturas.}\]
3.2.4 Microscopia no ângulo de Brewster

As figuras 25 e 26 mostram as micrografias obtidas através da microscopia no ângulo de Brewster para a isoterma de DPPC puro e da mistura DPPC/p24-1 (0,5% mol) em vários estágios da formação da monocamada.

Na monocamada de DPPC puro durante a fase gasosa foi possível observar pequenos domínios circulares distantes entre si. Com o início da compressão estes domínios começaram a aumentar e ficaram mais próximos uns dos outros, quando a pressão atingiu 10 mN/m (fase LE-LC) os domínios ficaram ainda maiores e adotou formas irregulares. Entre 20 mN/m e 30 mN/m esses domínios começaram a interagirem entre si e quando a pressão atingiu 40 mN/m (fase sólida) os domínios se uniram formando uma monocamada uniforme e compacta. O comportamento da monocamada de DPPC puro está descrito na literatura[54].

As micrografias da monocamada mistas (DPPC/p24-1 0,5% mol) na fase gasosa apresentaram domínios circulares e menores do que os domínios observados para o DPPC puro, e em número maior. Na fase LE-LC e em todo processo de compressão os domínios mantiveram a mesma forma e permaneceram pequenos. Ao longo da compressão os domínios ficaram cada vez mais próximos até atingir a fase sólida onde ocorreu a formação de uma monocamada compacta. Estes resultados são consistentes com as expansões observadas nas isotermas. Portanto, uma vez que pequenas quantidades de peptídeo afetaram significativamente a monocamada de DPPC, enfatizando o efeito cooperativo. Os pequenos domínios nos filmes contendo p24-1 parecem indicar que o peptídeo impede a formação de agregados maiores de
DPPC. É difícil saber se isto corresponde a uma tendência à ruptura da membrana, mas esta é uma possibilidade.

Figura 25: Isotermas de pressão de superfície da monocamada de DPPC puro (A) e da mistura DPPC/p24-1 0,5% mol (B) seguidas de micrografias obtidas pela microscopia no ângulo de Brewster.
Figura 26: Ampliação das micrografias representadas na figura 25 das monocamadas de DPPC puro (esquerda) e da mistura DPPC/p24-I 0,5% mol (direita) mostradas na sequência da compressão das monocamadas.
3.3 Análise da interação do peptídeo p24-1 com monocamadas de DPPG

Devido à complexidade da membrana celular em seus diferentes fosfolipídios, verificamos se o efeito cooperativo causado devido à interação do peptídeo p24-1 com a monocama de DPPC seria somente uma particularidade deste fosfolipídio neutro. Desde modo, iniciamos experimentos de monocamadas utilizando um fosfolipídio carregado (DPPG). A figura 27 representa as isotermas de pressão de superfície, a 22 °C, do DPPG puro e na presença de diferentes concentrações de p24-1 em função de área por molécula de DPPG.

As isotermas de pressão de superfície das misturas DPPG/p24-1 apresentaram-se expandidas em relação à isoterma do DPPG puro, mesmo para as concentrações baixas de p24-1. Na região em que as moléculas estão empacotadas, 0,1% em mol de p24-1 causou uma expansão de 4 Å² na isoterma de pressão de superfície. Em uma concentração maior de 1% em mol de p24-1, ocorreu uma expansão da monocamada de 8 Å². Entretanto, quando comparada com a isoterma de pressão de superfície contendo 0,5% em mol de p24-1 em que a expansão foi de 12 Å², observou-se uma contração na monocamada na concentração maior (1% mol de p24-1). Isso estaria ocorrendo devido à perda de p24-1 para a subfase aquosa, quando a monocamada está no estado condensado e as moléculas de p24-1 são expulsas da interface.
Figura 27: Isotermas de pressão de superfície da monocamada de DPPG com diferentes proporções em mol do peptídeo p24-1. DPPG puro (---) e DPPG na presença de 0,1 (---), 0,5 (---), 1 (---) % em mol de p24-1.

Foi avaliada a influência do p24-1 na monocamada de DPPG em duas regiões diferentes das isotermas de pressão de superfície (1 mN/m e 30 mN/m), como representado na figura 28. Na região de pressão 1 mN/m a presença do p24-1 promoveu grandes expansões nas monocamadas de DPPG. Na concentração de 0,1% mol de p24-1, ocorreu uma expansão de 10% na área por moléculas de DPPG e para as concentrações 0,5 e 1% mol de p24-1 a monocamada expandiu 40%. Na região onde a pressão é de 30 mN/m o perfil da curva modificou quando comparado com a curva da região 1 mN/m e ficou evidente a ocorrência de uma contração da
monocamada na isoterma de maior concentração (1% em mol de p24-1). Na concentração mais baixa (0,1% mol de p24-1) a monocamada expandiu 10% em área e nas concentrações maiores 0,5% e 1% a expansão da monocamada foi de 30 e 20% mol de p24-1.

![Graph](image)

Figura 28: Razão entre a área da monocamada da mistura DPPG/p24-1 (A) e DPPG puro (A₀) das isotermas de pressão de superfície versus a concentração molar das misturas. Curva (—) referente à região 1 mN/m, curva (—) transição região 30 mN/m.

O comportamento das isotermas demonstrou que este peptídeo também alterou o estado da monocamada de DPPG mesmo em pequenas quantidades (0,1% em mol de p24-1) correspondendo a uma relação de uma molécula de p24-1 em mil de DPPG. O efeito cooperativo também foi confirmado para as monocamadas de DPPG, indicando que o p24-1 interage com a monocamada de fosfolipídio.
independentemente da carga da monocamada. Portanto este efeito pode ocorrer em uma membrana mais complexa, como por exemplo, a membrana celular.

Em resumo, a interação do p24-1 com moléculas de DPPC e DPPG pode estar ocorrendo via a porção C-terminal (sequência VHGPIA) devido aos seus resíduos hidrofóbicos, forçando uma flexibilidade do peptídeo devido à cauda hidrofóbica dos fosfolipídios e provavelmente induzindo estrutura hélice α na porção N-terminal. Esta hipótese é baseada no trabalho realizado por Dixon et al. [55], que adicionaram resíduos isoleucina nas regiões N e C-terminal de um peptídeo pequeno (IICNNPHII) pertencente a uma região ligante de anticorpo da hemaglutinina A. Eles demonstraram que as porções N e C-terminais interagem com a porção hidrofóbica do detergente que constitui as micelas.

A maioria dos trabalhos sobre interação de peptídeos – ou outras moléculas de interesse biológico – com filmes de Langmuir de fosfolipídios é feita utilizando-se o protocolo no qual as moléculas são dissolvidas na subfase aquosa. Embora esta abordagem seja mais próxima do que ocorre no sistema vivo, em que uma droga ou substância de um meio aquoso se aproxima da membrana celular, ela tem a desvantagem de não permitir uma informação detalhada da quantidade de moléculas que estão interagindo com o filme. Nessas experiências, é colocada uma grande quantidade de moléculas na subfase, e então monitoradas as alterações nas propriedades do filme de Langmuir. Entretanto, tais propriedades podem ser alteradas mesmo sem uma interação direta das moléculas com o filme, mas simplesmente porque a subfase está diferente. Uma alternativa atraente é o emprego do co-espalhamento como fizemos neste trabalho, pois a quantidade de moléculas
interagindo com o filme de Langmuir é conhecida com precisão, desde que não haja perdas para a subfase. Resultados anteriores 110,411 mostraram que a alta afinidade de moléculas como fármacos com a membrana é suficiente para impedir a perda para a subfase, mesmo nos casos em que os fármacos são solúveis em água.

Especificamente com relação à interação de peptídeos, Trommeshauser \textit{et al.} empregaram os dois protocolos para investigar filmes de DPPC e DPPG com o peptídeo gp41\textsubscript{828}. No co-espalhamento, em particular, obtiveram efeitos consideráveis na monocamada de DPPC, como mostra a figura 29, mas apenas ao empregar grandes concentrações do peptídeo. Tais efeitos para as isotermas de pressão de superfície são até menores do que os que relatamos na figura 21 para uma concentração de apenas 0,05\% mol de p24-1. É provável que efeitos maiores pudessem até ser observados para pequenas concentrações de gp41\textsubscript{828}, mas Trommeshauser \textit{et al.} aparentemente não exploraram tais concentrações, talvez por acreditarem num crescimento monotônico do efeito com a concentração. De fato, os resultados desses autores mostraram que a expansão do filme de DPPC cresce com a concentração de gp41\textsubscript{828}, e talvez poder-se-ia esperar que os efeitos para concentrações menores que 1\% seriam desprezíveis. De fato, na literatura diferentes autores utilizaram concentrações de moléculas de interesse biológico cerca de 20 vezes maiores do que nós usamos (1\% mol). Entretanto, sistemas biomiméticos também são utilizados para compreender o mecanismo molecular de ação farmacológica de muitas drogas que agem através de membranas. É o caso do Dipiridamol (DIP), vasodilatador coronário e coativador de atividade anti-tumor, que forma uma monocamada estável na interface ar/água com lipídeo zwiteriônico (DPPC) e carregado negativamente (DPPG). A droga liga-se às moléculas de lipídeo
e observa-se uma mudança no empacotamento e densidade da monocamada durante o processo de compressão. O efeito depende da localização da droga na monocamada, protonação da droga e também da carga do lipídeo. Através dos resultados obtidos foi possível propor a localização do DIP na monocamada lipídica. Neste estudo observaram como uma reversão na tendência de alteração do filme com o aumento da concentração da droga, a relação droga/monocamada foi muito baixa (0,2% mol de DIP) os autores propuseram que o efeito observado ilustra um mecanismo cooperativo[^56].

Os resultados de expansão dos filmes de DPPC e DPPG com a incorporação de p24-1, obtidos neste trabalho, mostraram que não há reversão na tendência de alteração do filme, outros resultados indicam uma saturação do efeito de expansão, provavelmente causada pela expulsão das moléculas quando a concentração de p24-1 aumenta. A possibilidade de uma resposta cooperativa do filme de Langmuir, que simula a superfície da membrana, ao peptídeo p24-1 pode ser indicativo de que este peptídeo seja um alvo interessante como agente na atividade antiviral. Os dados de microscopia BAM, por exemplo, mostram que o p24-1 de alguma maneira impede a formação de domínios grandes de DPPC, comuns no filme de Langmuir de DPPC puro. Embora não se saiba se tal efeito é semelhante à ruptura da membrana, certamente a ação do p24-1 é de impedir contacto próximo de moléculas de DPPC para a formação dos domínios. Note também que o máximo efeito pode ocorrer para uma concentração muito baixa, como nos resultados de dipiridamil de Caetano et al.[^56], ou seja, há uma concentração na qual o efeito cooperativo é amplificado. Este tipo de resultado encontra paralelos na ação farmacológica nos seres vivos, em que existe uma dosagem ideal.
A partir dos resultados obtidos foi possível propor interações do peptídeo com as monocamadas de fosfolipídios. A figura 29 representa as interações do p24-1 com DPPC e DPPG, onde a sequência VHGPintegral interage com a cauda hidrofóbica dos fosfolipídios e a porção N-terminal interage com a cabeça hidrofílica dos fosfolipídios ou pode permanecer livre na solução.

Figura 29: Representação esquemática das possíveis interações do p24-1 com as monocamadas de fosfolipídios. Sequência VHGPIA interagindo com a cauda hidrofílica dos fosfolipídios e a porção N-terminal interagindo com a cabeça hidrofílica dos fosfolipídios (a) ou livre na solução (b).
CONCLUSÕES

Os resultados da interação do peptídeo p24-1 com as vesículas multilamelares (MLV) de DPPC e as monocamadas de DPPC e DPPG demonstraram os seguintes efeitos:

a) O p24-1 após a interação com MLV de DPPC mostrou mudanças em sua conformação, aumentando o conteúdo de estrutura hélice α, sugerindo que em contato com as moléculas de fosfolipídios induzem a mudança conformacional no peptídeo.

b) A presença de peptídeos nas monocamadas de DPPC e DPPG alterou a organização das moléculas, em pequenas quantidades equivalentes a 1:2000, p24-1/DPPC e 1:1000, p24-1/DPPG, sugerindo um efeito cooperativo induzido pelo mesmo.

c) A alteração morfológica da monocamada de DPPC foi confirmada pelas análises feitas através da microscopia no ângulo de Brewster. Esta técnica mostrou que a interação DPPC/p24-1, induzem mudanças nos domínios em todo o estágio de compressão da monocamada de DPPC.
O trabalho apresentado aqui abriu várias perspectivas de atividades futuras, como as seguintes:

a) Analisar a interação do peptídeo p24-1 com vesículas multilamelares (MLV) constituídas de DPPG através de espectroscopia de dicroismo circular, para verificar se este fosfolipídio induz estrutura secundária ao peptídeo. Realizar medidas de isoterma de potencial de superfície das monocamadas mista (DPPG/p24-1) a fim de averiguar a contribuição do momento de dipolo deste peptídeo e obter micrografias utilizando microscopia do ângulo de Brewster para analisar sua morfologia.

b) Estudar monocamadas mais complexas utilizando diferentes fosfolipídios misturados com colesterol, uma vez que a membrana celular é rica em colesterol, e suas interações com o p24-1.

c) Utilizar sistemas que mimetizam a membrana celular empregando misturas de fosfolipídios e colesterol e avaliando a interação destas com o p24-1.

d) Seleccionar peptídeos para posteriores estudos, in vitro, utilizando cultura celular.

Todos estes experimentos têm como finalidade o conhecimento dos mecanismos moleculares envolvidos na interação de peptídeos com membranas.
celulares, possibilitando o desenho de peptídeos que possam atuar como inibidores antivirais, para a identificação de uma nova classe de drogas.
REFERÊNCIAS BIBLIOGRÁFICAS

[36] TROMMESAUSER, D. et al. The effect of lipid composition and physical state of phospholipid monolayer on the binding and incorporation of a

