• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.76.2014.tde-24092014-104641
Document
Author
Full name
Lucas Assirati
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2014
Supervisor
Committee
Bruno, Odemir Martinez (President)
Levada, Alexandre Luis Magalhães
Nonato, Luis Gustavo
Title in Portuguese
Entropia aplicada ao reconhecimento de padrões em imagens
Keywords in Portuguese
Análise de imagens
Entropia
Reconhecimento de padrões
Abstract in Portuguese
Este trabalho faz um estudo do uso da entropia como ferramenta para o reconhecimento de padrões em imagens. A entropia é um conceito utilizado em termodinâmica para medir o grau de organização de um meio. Entretanto, este conceito pode ser ampliado para outras áreas do conhecimento. A adoção do conceito em Teoria da Informação e, por consequência, em reconhecimento de padrões foi introduzida por Shannon no trabalho intitulado "A Mathematical Theory of Communication", publicado no ano de 1948. Neste mestrado, além da entropia clássica de Boltzman-Gibbs-Shannon, são investigadas a entropia generalizada de Tsallis e suas variantes (análise multi-escala, múltiplo índice q e seleção de atributos), aplicadas ao reconhecimento de padrões em imagens. Utilizando bases de dados bem conhecidas na literatura, realizou-se estudos comparativos entre as técnicas. Os resultados mostram que a entropia de Tsallis, através de análise multi-escala e múltiplo índice q, tem grande vantagem sobre a entropia de Boltzman-Gibbs-Shannon. Aplicações práticas deste estudo são propostas com o intuito de demonstrar o potencial do método.
Title in English
Entropy applied to pattern recognition in images
Keywords in English
Entropy
Image analysis
Pattern recognition
Abstract in English
This work studies the use of entropy as a tool for pattern recognition in images. Entropy is a concept used in thermodynamics to measure the degree of organization of a system. However, this concept can be extended to other areas of knowledge. The adoption of the concept in information theory and, consequently, in pattern recognition was introduced by Shannon in the paper entitled "A Mathematical Theory of Communication", published in 1948. In this master thesis, the classical Boltzmann-Gibbs-Shannon entropy, the generalized Tsallis entropy and its variants (multi-scale analysis, multiple q index, and feature selection) are studied, applied to pattern recognition in images. Using well known databases, we performed comparative studies between the techniques. The results show that the Tsallis entropy, through multiscale analysis and multiple q index has a great advantage over the classical Boltzmann-Gibbs- Shannon entropy. Practical applications of this study are proposed in order to demonstrate the potential of the method.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2014-09-25
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.