• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.76.2014.tde-24092014-104641
Documento
Autor
Nome completo
Lucas Assirati
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2014
Orientador
Banca examinadora
Bruno, Odemir Martinez (Presidente)
Levada, Alexandre Luis Magalhães
Nonato, Luis Gustavo
Título em português
Entropia aplicada ao reconhecimento de padrões em imagens
Palavras-chave em português
Análise de imagens
Entropia
Reconhecimento de padrões
Resumo em português
Este trabalho faz um estudo do uso da entropia como ferramenta para o reconhecimento de padrões em imagens. A entropia é um conceito utilizado em termodinâmica para medir o grau de organização de um meio. Entretanto, este conceito pode ser ampliado para outras áreas do conhecimento. A adoção do conceito em Teoria da Informação e, por consequência, em reconhecimento de padrões foi introduzida por Shannon no trabalho intitulado "A Mathematical Theory of Communication", publicado no ano de 1948. Neste mestrado, além da entropia clássica de Boltzman-Gibbs-Shannon, são investigadas a entropia generalizada de Tsallis e suas variantes (análise multi-escala, múltiplo índice q e seleção de atributos), aplicadas ao reconhecimento de padrões em imagens. Utilizando bases de dados bem conhecidas na literatura, realizou-se estudos comparativos entre as técnicas. Os resultados mostram que a entropia de Tsallis, através de análise multi-escala e múltiplo índice q, tem grande vantagem sobre a entropia de Boltzman-Gibbs-Shannon. Aplicações práticas deste estudo são propostas com o intuito de demonstrar o potencial do método.
Título em inglês
Entropy applied to pattern recognition in images
Palavras-chave em inglês
Entropy
Image analysis
Pattern recognition
Resumo em inglês
This work studies the use of entropy as a tool for pattern recognition in images. Entropy is a concept used in thermodynamics to measure the degree of organization of a system. However, this concept can be extended to other areas of knowledge. The adoption of the concept in information theory and, consequently, in pattern recognition was introduced by Shannon in the paper entitled "A Mathematical Theory of Communication", published in 1948. In this master thesis, the classical Boltzmann-Gibbs-Shannon entropy, the generalized Tsallis entropy and its variants (multi-scale analysis, multiple q index, and feature selection) are studied, applied to pattern recognition in images. Using well known databases, we performed comparative studies between the techniques. The results show that the Tsallis entropy, through multiscale analysis and multiple q index has a great advantage over the classical Boltzmann-Gibbs- Shannon entropy. Practical applications of this study are proposed in order to demonstrate the potential of the method.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-09-25
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.