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ABSTRACT

BISPO JUNIOR, A.G. Patterns and randomness in digital chaos. 2024. 290 p.
Thesis (Doctor in Science) - Instituto de Física de São Carlos, Universidade de São
Paulo, São Carlos, 2024.

Dynamical deterministic systems with chaotic properties have been actively studied and

new applications are established as the qualities of these systems are tested and proved.

The k-logistic map is a variation of the logistic map that presents interesting properties

for applications in generating pseudo-random numbers (PRNGs) and encryption. Given

that the orbits generated by the k-logistic map present characteristics of high entropy

and uniform distribution under statistical tests, question arises on which transforma-

tions and projections on the orbit of the k-logistic map are able to reveal patterns that

are imperceptible in the original space. And another question also arises about which

combinations of computer-based and mathematics-based techniques and methods of the

arsenal of mathematics should be included into the toolset. This proposal has applica-

tions in the areas of cryptoanalysis, dynamical systems analysis and pattern recognition.

The following methods were employed: generation of orbits with the k-logistic map, sta-

tistical test suites, local density measurements, topological graphs on objects contained

in metric spaces, Dynamic Time Warping, spectral analysis, random matrix theory and

machine learning. When projecting an orbit or distributions of orbits in metric spaces,

and constructing topological graph distributions from these projections, even simple and

conventional statistical tests revealed previously imperceptible patterns that were consid-

ered to be mere random noises. The results that were found from this development have

relevance in improving test batteries for number sequences and analysis of dynamical

systems.

Keywords: Dynamical systems. Chaos. Pattern recognition.





RESUMO

BISPO JUNIOR, A.G. Alavancando abordagens melhoradas para a
investigação de padrões e aleatoriedade no caos digital. 2024. 290 p. Tese
(Doutorado em Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo,
São Carlos, 2024.

Sistemas dinâmicos determinísticos com propriedades caóticas vêm sendo estudados ativa-

mente e novas aplicações são estabelecidas à medida em que as qualidades desses sistemas

são postas à prova e aclamadas. O k-mapa logístico é uma variação do mapa logístico

que apresenta propriedades interessantes para aplicações em geração de números pseu-

doaleatórios (PRNGs) e criptografia. Dado que as órbitas geradas pelo k-mapa logístico

apresentam características de alta entropia e distribuição uniforme sob testes estatísticos,

surge a questão sobre quais transformações e projeções sobre a órbita do k-mapa logístico

são capazes de revelar padrões que são imperceptíveis no espaço de origem. E também

surge a questão sobre quais combinações de técnicas e métodos do arsenal da matemática

e da computação devem ser incluídos no ferramental. A presente proposta possui aplicação

nas áreas de criptoanálise, análise de sistemas dinâmicos e reconhecimento de padrões. Os

seguintes métodos foram empregados: geração de órbitas com o k-mapa logístico, suítes

de testes estatísticos, medidas de densidade local, grafos topológicos sobre objetos con-

tidos em espaços métricos, Dynamic Time Warping, análise espectral, teoria de matrizes

aleatórias e aprendizado de máquina. Ao se projetar a órbita ou distribuições de órbitas

em espaços métricos, e construindo-se distribuições de grafos topológicos a partir dessas

projeções, mesmo testes estatísticos simples e convencionais revelaram padrões antes im-

perceptíveis e considerados como meros ruídos aleatórios. Os resultados encontrados a

partir desse desenvolvimento possuem relevância no aperfeiçoamento de baterias de testes

para sequências de números e análise de sistemas dinâmicos.

Palavras-chave: Sistemas dinâmicos. Caos. Reconhecimento de padrões.
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1 INTRODUCTION

Chaos theory has a curious history. During centuries, passing through the Middle

Ages (centuries V to XV) and the Modern Age (centuries XV to XVIII), scientific expo-

nents such as Kepler and Galileo and their peers studied the predictability of motion in

nature and its laws, specialising themselves in the calculation of the orbits of planets and

stars. It was later observed that such movements do not occur precisely as expected by

the stated laws which, so far, were not proved incorrect (13). The observation of this fact

shows us that there are, in nature, variables of difficult quantification and analysis that

influence the behavior of natural systems with virtually unpredictable results.

More recently, Edward Lorenz incidentally discovered during his lab experiments

at MIT, in the 1960s, that very small changes in non-linear equations’ input values can

produce results or outputs sporting high discrepancy one another. Until then, it was

thought that changes affecting output values were approximately proportional to changes

affecting input values. This discovery opened a range of studies related to the behavior of

dynamical systems. It was later discovered that the logistic map and its variations model

with significant adherence the evolution of systems found in nature. Figure 1 illustrates

the Lorenz system, also known as a strange attractor.

Such systems, in their initial stages, are forecasteable. However, past a certain

evolution interval of the system, its behavior may become unpredictable. Applications

Figure 1 – Lorenz attractor.
Source: By the author.



40

in computer modeling confer objects of study to researchers: the system’s future state,

according to their initial conditions. Following the study of those systems, it becomes

possible to know under which conditions the system remains stable and under which

such stability is lost, conducting the system to chaos (14, 15). There are applications of

dynamical systems and chaos being actively researched. An example is the generation

of pseudo-random numbers. Another example are techniques and methods of machine

learning that have become very powerful. Chaos is a source of studies and experiments

that is being paired with techniques and methods of the state of the art in machine

learning (16,17). The study of nonlinear systems such as deterministic dynamical systems

under chaotic regime is, in considerable part, an exploratory analysis restricted to a given

dataset extracted off the system’s evolution. Together, it is subjected to numerical and

storage precision restrictions. Physics deals with high dimensionality systems, such as

those formed by electromagnetic waves, which are nevertheless tractable when unfolded

into linear equations, for which there is a capable toolset for the task of pattern extraction,

including temporal patterns. Such a toolset is not directly applicable to non-linear systems

and it is rarely known non-linear general solutions in closed form, hence the need to

develop specific techniques and methods (18), such as heuristics, which work at least

reasonably well for scenarios of interest.

Furthermore, the dynamics of natural environments and ecological systems can be

understood in more depth with the development of dynamical systems theory and meth-

ods (5). A recent study built upon qualitative analysis concluded that chaos is much more

common in nature than previously thought (19). More specifically, one of the important

applications for the study of interacting animal populations within the ecosystem and also

of their movement and proliferation regimes is pest control (20,21). Events of interest may

arise at very long timescales and be abrupt (22). Given the inter and multidisciplinary

theme of the dynamical systems, that encompasses fields as diverse as Physics, Biology,

Chemistry, Mathematics and Computer Science, it is only natural that research and de-

velopment in any of these impacts other fields.

There is no clear delimitation between random and chaotic sequences. Chaotic

sequences may hide patterns and self-similarity that are sometimes not obvious. The

logistic map has chaotic configurations that, however, present intricate patterns and the

distribution of its orbit does not obey the uniform distribution. Cellular automata (CA)

under rule 30 are used as PRNGs (23), despite generating several (discarded) regions with

undesirable patterns.

There is a proficuous development for the natural extension of the study of chaotic

dynamical systems in their representation via complex networks. A large number of tools

have been developed for the study of complex networks. However, deficits in metrics

and measurements with objective meaning regarding the statistical parameters extracted
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Figure 2 – Bifurcation diagram for the logistic map.
Source: By the author.

under use of a significant portion of such complex network analysis tools hinder the

interpretability of results and the comparability between systems (24). At first, we will

limit ourselves to design or transform orbits into mathematical objects that are more

receptive to simple and traditional statistical methods, progressively passing on to more

complex approaches, envisaging their application in cryptography and cryptanalysis.

This work may be summarised as an effort for the advancement of methodologies

and techniques for the study of patterns in dynamical systems that can model natural

environments and their biological aspects. One of our aims is to elucidate, at first empiri-

cally, the conditions under which the patterns, may periodic or chaotic, emerge. Patterns,

by their very nature, are predictable. We apply techniques that improve contrast, dis-

playing thus such patterns. As the numerical precision is finite in computers, computer

simulations of orbits of dynamical systems are guaranteed to be periodic. Care must be

taken with computer simulations as numerical artifacts can lead to misleading results

(25) and the shadowing lemma, e.g. chaotic-like perturbed periodic orbits, is guaranteed

to apply only to hyperbolic dynamical systems.

The main objectives of this D.Sc. project are, succinctly:

• To analyze dynamical systems, to find patterns and describe constraints related to

their surge.

• To shed a clarifying light on chaotic orbits: about their periodicity and statistical
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aspects of dynamical systems implemented under the constraints of finite machine

precision.

• To improve on the chaotic orbits for the purpose of building improved PRNGs.

• To unravel a capable toolset composed of techniques and methods from Computing,

Physics and Mathematics that serves as a means of achieving the desired purpose.
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2 DEVELOPMENT

2.1 Literature review

In this section, we highlight historical, scientific and technical facts that are im-

portant to our endeavor. This work takes advantage of developments in the following

areas of knowledge: dynamical systems, topology, machine learning, statistics, random

matrix theory and complex networks. There is a vast bibliography regarding each of

these disciplines. The need to couple statistics and statistical tests for small or medium-

sized, low-dimensional, samples to dynamical systems comes from explanatory studies on

the structure and the laws of evolution for a given dynamical system. The techniques

and methods of machine learning that deal with a large number of samples and high-

dimensionality, with a potentially higher cost on computing resources, serve better for

exploratory studies.

2.1.1 Dynamical systems

Autonomous differential equations of the form

ẋ = f(x(t))

give rise to continuous-time dynamical systems (26). As the regimes in real-life

evolve through continuous time, they can be faithfully modelled by nonlinear differential

equations like the Lorenz and Lotka-Volterra systems. Lotka-Volterra is particularly a

predator-prey system (27) that can be described by the equation

ẋ = αx− βxy

ẏ = δxy − γy

where

• x is the number of prey;

• y is the number of predators;

• ẋ and ẏ are the instantaneous growth rates of the populations;

• α, β, γ, δ are positive real parameters describing the interaction between species.
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For the context of simulation of phenomena, we can either opt to model their

individual interactions or to quantify population density, that is, the ratio of individuals

of interest to the area of interest. The latter, for the purposes of ecological modelling, is

regarded as the better approach (28). Other choices are the inclusion of a diffusive regime

for the species and movement of the species over the space itself. Modelling of movement

may account for transport of specimen groups by wind and even by other species. When

diffusion-reaction is also taken into consideration, the system can be described by the

following general form:

∂Ui(R, T )

∂T
= Di∇2Ui(R, T ) + fi(U1, . . . , Un)

for i assuming values from 1 to n, Ui as population density, R as the three-

dimensional spatial position, Di as the diffusion coefficient of the ith species and where

the Laplace operator, ∇2, is denoted by

∇2 =
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

Despite differences between discrete and continuous-time systems, simple discrete

dynamical systems still retain much of the qualitative behavior and complexity of their

high-dimensional continuous-time dynamical systems counterparts, including bifurcations,

periodicity and onset of chaos, making them useful for the study of dynamical systems

theory.

A conjunction of diverse equations may apply to a single dynamics. Also, some

noise and stochasticity that do not make part of the attempted modelling may diverge

phenomena from typical asymptotical behaviors that are predicted by these models (29),

giving rise to transients. Figure 2.1.1 presents some examples of complex interactions

found in nature (5, 30). A number of researchers rely intensively upon computational

prowess to investigate dynamics. There is currently a misconception that analytical ap-

proaches are limiting and of little practical value. Unbeknownst is that numerical methods

are prone to a disadvantage due to the vast array of parameter values to investigate (31)

and also due to exposure to numerical artifacts. Analytical forms of dynamics can fur-

nish exact solutions and breadth of knowledge about parameter influence. Dynamics in

analytical form also lead to an elegant and comprehensive presentation of the problems

themselves and their constraints (25).

Some authors model ecological contexts as mostly or purely stochastic processes.

For an example, see Garcia et al. (21), but it is known that beings like insects do not

always move randomly and their behavior is influenced by food resources, habitats, prey,

predators, or competitors (32–35). Along stochasticity, there are also other important

companion phenomena like synchronization and resonance in dynamical systems (36–38).
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Figure 3 – Some examples of transient dynamics. (A to C) Empirical examples of regime
shifts after long transients. (A) Population abundance of voles in northern
Sweden [redrawn from (1)]. (B) Biomass of forage fishes in the eastern Scotian
Shelf ecosystem; redrawn from (2)]. (C) Spruce budworm [dots; data from
Imperial College London] has a fast generation time that results in extended
periods of low budworm density interrupted by outbreaks. The blue line with
fast budworm dynamics and slow foliage dynamics agrees with the data (3). (D
and E) Examples of long transients on population dynamics: (D) apparently
sustainable chaotic oscillation suddenly results in species extinction (2); (E)
high-energy periodic oscillations that persist over several generations transition
to oscillations with a much smaller amplitude and non-stationary regime (4).
Source: HASTINGS et al. (5).

2.1.1.1 Chaotic orbits

Chaos theory tries to explain unpredictable behaviors of a deterministic dynamical

system as it is case of the logistic map after a certain number of iterations. The logistic

map, that is studied and debated intensively in the literature (39–45), has the form

xn+1 = rxn(1 − xn). Its input parameters are r and x0, with the following restrictions:

r ∈ U = (0, 4) and xn|n ∈ N0 ∈ M = (0, 1). Another example of dynamical system

is the tent map xn+1 = µmin(xn, 1 − xn) (46, 47). Dynamical systems as maps are also

discrete. Orbits are collections of points related to the evolution function f : M → M of

a dynamical system. An orbit of a discrete dynamical system can be formalized by:

O(µ, x0) = x0, x1, . . . , xt

Two interesting properties of deterministic dynamical systems are causality and

determination.

• Causality: a given advanced stage of a deterministic dynamical system is caused by

previous systems of the system itself.
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• Determination: given intial conditions and an evolution function, the orbit is fixed.

For a certain class of dynamical systems, taken that they progressed significantly in

time, another characteristic is that its statistic is invariant, being influenced by the initial

state of the system no more (14,48). The logistic map is a an example of such class and an

interesting model for study of systems found in nature, such as the biological (40,49). For

example, reproduction of microorganisms. But, the logistic map can only be calculated

without errors with arbitrarily high numerical precision. Reductions in numerical precision

can result in arbitrarily large calculation errors. Those errors are due to a "butterfly effect",

in which the error propagation is locally exponential in relation to the evolution of the

system, as noted by Lorenz (50). This problem occurs with an orbit type of special interest:

chaotic orbits (51,52). The Lyapunov exponent characterizes the separation rate between

distinct trajectories. In chaotic orbits, changes that are at first insignificant in the input

parameters lead to unrecognizable trajectories and, thus, to high values of the Lyapunov

exponent for a given limited interval of the trajectory.

Lyapunov Exponent (vector spaces): given a map Φ, a direction vector ei and a

perturbation δ, if δ travels in the ei direction, then Φ(x + δ) − Φ(x) also travels in that

direction. Like this, under repeated map applications we observe

‖Φn(x+ δ)− Φn(x)‖
‖δ‖ = (Ai(x))n = en log(Ai(x))

We will use the abbreviation Λ instead of logAi. The set of d numbers

Λ1(x),Λ2(x), . . . ,Λd(x)

represent the local Lyapunov exponents in x. ei directions where Λi > 0 are locally

unstable, directions where Λi < 0 are locally stable and those for which Λi = 0 are neutral.

Let Λi(x) be a function of the coordinates in the space of states. The average calculated

through the trajectory will be

1

T

T
∑

n=1

Λi(xn)

If the dynamics are independent of the initial conditions of the system, then the

sum will converge to an invariant

λi ≡
∫

Λi(x)ρ(x)dx

ρ(x) is the invariant measure. The expected values λi are the global Lyapunov

exponents.
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Figure 4 – On the left, fiduciary trajectory on the calculation algorithm for the Lyapunov
exponent, on the right, chaos control via framing or "linearization" of attrac-
tors.
Source: WOLF et al.; FARMER; SIDOROWICH (6,7).

Several developments related to the Lyapunov exponents led to developments in

chaos control and stabilization (53–60) accompanied by the surge of the discipline of cy-

bernetical physics (61). The heart of proposals like Wolf et al. and Farmer and Sidorowich

(6,7) is to assume that the system behaves (approximately) linearly under certain domains

(Figure 4). Farmer and Sidorowich’s proposal, in particular, explores computation in va-

rieties for chaos control by exploring attraction or repulsion properties as the system

evolves. Techniques as delay-coordinate embedding obeying Takens’ theorem for soft at-

tractors preserve topology in the orbits of the dynamical systems after transformations

such as diffeomorphisms that change the orbit’s measures (48,62,63).

Chaoticity in dynamical systems aroused interest of researchers in view of their

application in encryption (64–70). Construction of a random number generator is widely

known as one of the key parts in developing encryption tools (71).

A limited sequence of values {xi}∞ of a map is chaotic if

• {xi} is not asymptotically periodic.

• No Lyapunov exponent vanish.

• The largest Lyapunov exponent is strictly positive.

Random or stochastic processes are fundamentally different to chaos, understood

here as deterministic chaos (46). Even if two initial states for a stochastic process are

identical to each other, successive realizations of a stochastic process will result in different

sequences with probability 1−ε, ε being the probability for the occurrence of two identical

sequences. As a stochastic process is not deterministic, in this case there is no strict

definition for computing of the Lyapunov exponent. The Wolf approach applied to a
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sequence seeks the nearest neighbor y0 = xk of a point xj and uses it as the initial value

of another sequence. The expected value of the separation rate is

ln

(

‖xk+1 − xj+1‖
‖xk − xj‖

)

and it is used as a measure of the Lyapunov exponent.

Let us consider the case where the xi are randomly and evenly distributed within

a limited range in R
+. If the values xi are truly random then the denominator of the

expected value can be arbitrarily small while the numerator remains large. As new values

are drawn, the minimum separation distance tends to zero, while the expected separation

distance between any two values remains limited and far from zero. As a result, the

Lyapunov exponent will increase without limit as the amount of values tends to infinity.

Despite this important difference between chaos and randomness, chaotic maps whose

Lyapunov exponent may not tend to infinity, as it is the case with the logistic map, are

studied in the construction of pseudorandom number generators.

2.1.2 Sources of randomness

Several sources of randomness can be found in nature. (38,40) They are intimately

related to modern physics and thermodynamics. It is known that the state transitions for

matter under thermodynamics are largely unpredictable and that the quantum noise be-

haves like a true random generator (72,73). Quantum noise obeys fundamental principles

of quantum mechanics and arises from the indeterminate state of matter, two of those

fundamental principles are the uncertainity principle and fluctuations of the lowest possi-

ble energy held on a quantum mechanical system. Quantum noise has also the advantage

that for an actual well-designed quantum system it is exceedingly difficult to tap into the

process of its state transitions (74), which is a desirable property for many applications.

2.1.2.1 Applications of sources of randomness

Sources of randomness are needed wherever unpredictability is desired (75). Ac-

curacy of approximate algorithms may benefit from random initializations or random

state transitions. Approximate algorithms such as K-means for clustering, simulated an-

nealing for solution of optimization problems and Monte Carlo for solution of numerical

problems are of paramount importance in the fields of the sciences, engineering, financial

applications, gaming, gambling and last but not least, cryptography. Life-Like Network

Automata (76–78) assigns initially a random value of 0 or 1 to every cell of its domain

network.

Dice, shuffling playing cards, and roulette wheels are all examples of applications of

mechanical random generators. Interestingly, a small bias can be detected when flipping
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coins (79). But even when the random generator is practically perfect, clustering and

pathologies like apophenia, which is seen at type I errors in statistical tests, causes great

burden to finance, and in our own experience it also affects negatively the analysis of

patterns in chaotic dynamics, since the detection of false patterns is undesirable.

2.1.2.2 Pseudorandom number generation

The main issue with true random generation of numerical values is that the whole

process would churn out an entirely different set of values each time, thus harming re-

peatability and replicability of experiments. To circumvent this limitation, pseudorandom

number generators (PRNG) were idealized and came to conception (80,81).

PRNGs are conceived to behave deterministically, contrary to true random gen-

erators that behave stochastically (82). Which means every time the PRNG is fed with

a certain seed parameter, and given that the inner workings of the machine obey some

protocol e.g. the static discipline and guarranted logical operation, it is guarranted that

the PRNG will always churn out the exact same set of values for the same input se-

quence, thus ensuring repeatability and replicability for experiments. On Chapter 3, we

conduct experiments using a composition of the LFSR and the logistic map for showing

how PRNGs of diverse natures show better results together than each one of them alone.

2.1.2.3 Cryptography

Cryptology, that is, the study of codes or secret systems of words or numbers, has

been used through the millennia for the purpose of hiding secret messages. The systematic

study of cryptology is more recent but, nonetheless, remarkable and took during the

last century. The first known evidence, somewhat in dispute (83), of an application of

encryption was found in an inscription circa 1900 BC in Egypt, most exactly in the main

chamber of the nobleman Khnumhotep II. It is not clear what the purpose of encryption,

even if it was to obfuscate the message in the inscription at all. However, it is worthy

of note. "Arthashastra", a classic work on statecraft credited to Kautalya, describes the

espionage service in ancient India and some form of "secret writing" given as assignments

to spies is mentioned there.

Circa 100 BC, the Roman army under the command of Julius Caesar employed

some form of encryption to convey secret messages between high-ranking combatants.

Such an example is given in Figure 2.1.2.3.

It is what is now known as a substitution cipher, the Caesar cipher. A cipher is an

algorithm used for encryption or decryption. In a substitution cipher, each character of the

message which has to be encrypted, which we call the plain text, is substituted by another

character to form the encrypted message or cipher text. Each character was shifted by

3 places, so the character ’A’ was replaced by ’D’, ’B’ was replaced by ’E’, and so on.
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Figure 5 – Symbol-to-symbol mapping for the Caesar cipher.
Source: By the author.

The characters would wrap around at the end, so ’X’ would be replaced by ’A’. Later into

the 20th century, beginning from World War II, leadership on encryption techniques and

reverse engineering would play pivotal role for intelligence regarding battlefield awareness

and combat actions.

Diffie and Hellman in 1976 (84) introduced the concept of public-key cryptography,

solving the problem of key exchange, and also paved the way for our current digital

signatures (85). Every person involved in message exchange has a key constructed by the

pair k = (pk, sk), pk being the public encryption key and sk the secret decryption key. in

order to send a message m to Bob, Alice encrypts m into a ciphertext by means of Bob’s

pk. To read the message, Bob decrypts the ciphertext by means of his personal encryption

key sk. In a nutshell,

D(sk, E(pk,m)) = m

Public-key encryption is an one-way function with a trapdoor that presents ease-

ness to its user when encrypting any message using a known public key, but ups the

ante when decryption is required, as the decryption key is maintained in secretion. Before

public-key cryptography, which is assymetric, meaning different keys are used for encryp-

tion and decryption, symmetric methods where a single key is used for the means of

both encryption and decryption were in vogue. Cryptography is nowadays used in secure

communications employed in everyday’s financial transactions, mailing systems and the

internet.

Kerckhoffs’ principle of cryptography (86) states that a cryptography should re-

main secure even if anything save the key about the cryptographic system is known. Let

parameters x and r of the logistic map as parts of an encryption key. Starting from every

value admissible for x0 up to subsequent values, the orbit with nevertheless always reach

to the same attractor. That is due to the own definition of attractor in chaotic orbits.

Thus, values of x are irrelevant as much as cryptographic features of state are concerned.

Furthermore, while the shadowing lemma on a hyperbolic set guarrantees that a simulated
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chaotic orbit remains for all purposes chaotic (87, 88) , on the other side, the simulated

orbit is now in practice periodic. r is left as a possible key for chaotic cyphers. We know

from the bifurcation diagram that some regions are pathological and should be avoided.

As a safeguard against improper decryption of the ciphertext, if two different keys

are close enough to each other, the sensitivity to parameters must guarantee that two

orbits starting with slightly different parameters will diverge early enough, and the secret

parameter should be sensitive enough to guarantee the so-called avalanche property: under

even the smallest parameter change, the ciphertext will change dramatically (66)

Some authors (65,66) do not stress that many chaotic maps are not merely fractal,

being in truth multifractal and endowed with a singularity spectrum. In many cases found

in nature their non-random patterns are easy to spot, but they can also assume random

formations under certain configurations (89) and, as such, they are usable as PRNGs save

the set of their loci with poor randomness qualities. For applications of cipher generation

in real-time, processing speed is also a concern, as it is not doable to perform calcula-

tions in arbitrarily high precisions and maintain sustained high performance. Speaking

of symmetric methods for cryptography, they are generally faster than their assymetric

counterparts.

2.1.2.4 Logistic and k-logistic maps and their application in cryptography

The interest for the logistic map arose in considerable part due to the scientific

endeavor of tackling complex phenomena via simple mathematical descriptions (45, 90) .

The logistic map has as one of its predecessors the logistic function

f(x) =
L

1 + e−k(x−x0)

that is well-known in the field of ecology.

One interesting relationship is the topological conjugacy between the logistic map

with parameter r = 4 and the tent map

xn+1 = fµ(xn) =











µxn for xn <
1
2

µ(1− xn) for xn ≥ 1
2

with parameter µ = 2. A description for topological conjugacy is that a given

function f can be mapped into a function g via a homeomorphism, that is, a bijective and

continuous function between topological spaces that has a continuous inverse. Figures 6

and 7 present bifurcation diagrams of these maps.

Other relationship of the logistic map is the Feigenbaum constant – ratios for suc-

cessive bifurcations in a nonlinear map. Something remarkable in this modern realization

in the discipline of mathematics is that computer-assisted proofs of the Feigenbaum con-
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Figure 6 – Bifurcation diagram for the logistic map.
Source: By the author.

Figure 7 – Bifurcation diagram for the tent map.
Source: By the author.

jectures followed (91), thus marking the era of the supporting role of the digital computer

in mathematics research. The logistic map, for its simplicity and ease of implementation

and verification, was one of the ingredients that led to the Feigenbaum result.

For pedagogical reasons, it is rather common to find examples of measures of

qualitative behavior and chaoticity like the calculation of the Lyapunov exponent and the

cobweb plot applied on the logistic map as in Figure 8. Concentrated pathways in blue

mean low-period attractors and unconcentrated pathways mean high-period or chaotic

attractors.
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Figure 8 – Cobweb diagrams for the logistic map.
Source: By the author.
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Given parameters r and x0 for some logistic map we observe that changing r even

minimally leads to the system’s evolution function to become another, unrecognizable

with respect to the previous. As r approaches four, the number of possibilities for the map

grows exponentially and without bound. We can say, therefore, that chaos is infinite. Then,

the usage of r as a control parameter is cogitated. The proposal of the seminal work (64)

determines thresholds xmin and xmax of the logistic map, xmin < xmax, xmin > 0, xmax < 1,

and mapping of the set of n input symbols S = s1, s2, . . . , sn within interval [xmin, xmax).

Therefore, each symbol sy is represented by the range

[

(y − 1)
xmax − xmin

|S| + xmin, y
xmax − xmin

|S| + xmin

)

, y ∈ Is = {1, 2, . . . , n}

of the logistic map. The value for i in the i-th iteration of the logistic map with

symbolic value sy is registered in the cipher. In this step the value for i reverts to zero and

a new count is done. Still, the map is iterated at least N0 times before the next numeric

value under sy gets registered. There are objections about the proposal mentioned here.

It is questioned that, without additional care for cryptography security, the proposed

method is not strong and neither recommendable for production cryptographic systems

(65,66,92).

Pseudorandom numbers are ideally generated under a perfectly uniform distribu-

tion. The uniform distribution has invariant density measure equal to

1

b− a

(conservative) mean equal to

a+ b

2

and standard deviation equal to

b− a√
12

The logistic map, however, presents invariant density measure equal to

1

π
√

x(1− x)

whose distribution is not uniform, being this one of the factors that prevent its

use in encryption.
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One of the proposed solutions to improve the distribution characteristics for the

orbit of the logistic map in terms of numerical implementation is Deep Zoom (8, 69,

70). Deep Zoom is an elegant computational solution consisting of the calculation of a

dynamical system, for example, the logistic map, with the following changes. The k to the

left of the separator in numerical representation in decimal base are removed. The Figure

9 illustrates, base-2 instead of base-10, how certain digits present better randomness

characteristics than others. The vertical bar indicates the tests of NIST SP 800-22 Rev.

1a successful for each bit position in 48-bit and 104-bit words.
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“/dev/urandom” “logistic map with r = 3.96”

“logistic map with r = 3.9999” “tent map with r = 1.9999”

“logistic map with r = 3.96” “logistic map with r = 3.9999”

“tent map with r = 1.9999”

Figure 9 – NIST SP 800-22 Rev. 1a. -based tests, bit position vs. # successes.
Source: By the author.
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Figure 10 – Stability of the Lyapunov exponent for the k-logistic map.
Source: MACHICAO; BRUNO (8).

A precision of L digits is kept after the separator. The new map with transformed

orbit is defined as the k-logistic map, and formally defined by the following equation:

xk+L
t =

bxt10k+Lc
10L

− bxt10kc

Experiments demonstrate reinforcement of pseudorandom characteristics of a dy-

namical system via Deep Zoom (69, 70). It is a robust state-of-the-art method for ap-

plications of chaos theory wherever pseudorandomness is desired. However, it does not

improve on the short periodicity of the orbits of the original logistic map.

Figure 10 shows the values of the Lyapunov exponent λ for different values µ and 4

distinct values for k with the k-logistic map. Values of λ > 0 indicate chaotic orbits, λ ≈ 0

indicates chaotic orbits and λ 6 0 indicates stable orbits. Figure 11 shows a bifurcation

diagram for 4 distinct values for k. The diagram for k2 and k3 shows that the distribution

for the values of the k-logistic map is approximately uniform.

2.1.3 Patterns

While the intuitive notion of patterns is not hard to grasp, as they are for the hu-

man eye distinctive and intricate in a particular way at a glance, how do we define and/or

measure patterns? Tiffany Winn and Paul Calder say (93) "In the current climate, pat-

tern is an often misused buzzword. However, there is no clear definition of patternness,

perhaps because patterns do not lend themselves to prescriptive, formal definitions." Al-

though we do not yet have a clear and robust formal definition as for what is a pattern,

we are bound to recognize immediately that patterns are, by definition, bound to repeat

themselves over and over upon a given object of interest, and the object in question might

be a physical system or a mathematical structure. For that reason, and for the purposes

of this investigation, we act our studies upon relatively small samples of orbits of a dy-
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Figure 11 – Stability of the Lyapunov exponent for the k-logistic map.
Source: MACHICAO; BRUNO (8).

namical system, although we make efforts to make sample sizes large enough, assuming

these patterns are repetitive enough. Attempts to spot what are the dominant patterns

is also important. If a pattern is dominant, that also means we can use it as a proxy for

defining our object of interest itself.

The task of pattern recognition is a complex problem that is attacked inter and

multidisciplinarily via an intermix of graph theory, dynamical systems theory, measure-

ments on complex networks, texture analysis and fractal measures (94–98).

Patterns may arise from spatial or temporal data. The computerized definition of

pattern search applies for patterns in a numerical setting. There are programs developed

for the purpose of analysis of chaos, as in Figure 12.

2.1.3.1 Digital degradation of a computer-generated map

When run on a digital computer, dynamical systems are subject to a phenomenon

called digital degradation. Orbits that were ideally to be chaotic turn into periodic and

as the digital precision is limited it impoverishes the calculations that have to be done

(99). Let’s remember that arbitrary-precision calculations are not really arbitrary since

the maximum number of digits that can be allocated at any given time for the numerical

representation is limited. The mean period length 〈L〉 scales with machine precision ∆
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Figure 12 – Chaos Data Analyzer by J.C. Sprott.
Source: CHAOS ...(9).

as 〈L〉 ≈ ∆−D(2)/2 (100,101) under certain assumptions (102). What remains is to certify

that the results obtained via computer simulations are precise enough to qualitatively

describe the same systems that were formally idealized via mathematical abstractions.

Dynamical systems theory is useful here as it provides formal guarrantees just like the

shadowing lemma.

2.1.3.2 Diffusion phenomena in media and long-range correlations

Published works present and explain the breadth of examples of diffusion phenom-

ena in media and long-range correlations (103, 104). They were discovered to happen in

a variety of settings: nucleotide sequences, sequences of letters in several famous books,

heart beats in healthy patients, bits of a computer storage with subsequent editing and

drop forming times off a leaky tap (105–109). When the characteristic diffusion exponent

deviates significantly off the value of 1/2, the sequence of consecutive events sport some

kind of correlation with high probability.

Systems with reaction-diffusion properties are extensively used in modelling chem-

istry and biophysics problems (110). In Section 2.2 we present an analysis based on diffu-

sive principles that makes it possible to treat the logistic map, instead of a noisy signal, as

a time series in the conventional sense, and thus enables conventional time series analysis

methods to succeed, for example, methods of separation of components such as singular

spectrum analysis.

2.1.4 Complex networks

Complex networks can be traced back to the field of graph theory. In 1735, the

mathematician Euler developed the first rigorous proof using a representation by means
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of graphs of the seven bridges across the river Pregel that surrounded the merchant city

of Königsberg in Eastern Prussia as a step. Between the two branches of the Pregel and

connected by five of these bridges to the mainland there was the island Kneiphof. The

remaining two bridges crossed the two branches of the river to each side. The question to

be answered was if one could walk across all seven bridges and never cross the same one

twice. Euler demonstrated that the answer is no.

Formally, a graph can be represented as a pair G = (V,E) where V is a set of

vertices and E is a set of unordered pairs v1, v2 called edges. An adjacency matrix A with

elements ai,j where the i-th row and the j-th column denote an edge connecting vertex i

to vertex j.

In modern times, graph theory has a very important place in spite of its widespread

applicability and connections to linear algebra, providing complementary formalism for

the mathematical modelling of physical phenomena (111).

Advantages of using graphs for data representation include:

• Graphs can represent about any kind of relationship.

• A variety of known and straightforward algorithms can be applied to graphs.

As the number of vertices and edges grows and the combinational properties of

such graphs are also enriched, one of the questions that arise is what kind or form the

aforementioned properties assume when the graph is sufficiently large? Another question

is, when the parameters for the nodes and vertices of the graph are dynamically modified,

what kind of new behavior is to be seen? Dynamic graph models are routinely seen in

compilers, databases, fault tolerance, artificial intelligence and computer networks (112,

113). Finally, when we move from relatively simple and well-defined toy network structures

to representations of real systems via network modelling, what phenomena can be seen

(114)? The discipline of complex networks deals with such questions.

Graphs in the usual academic sense were for a long time treated mostly as math-

ematical structures subject to a kind of formalism in the way of proofs and algebraic

formulae (115, 116). The field of complex networks, much due to input of social and bio-

logical sciences, gets more concerned about the statistical properties of graphs (24, 117).

During the development of the discipline of complex networks, themes such as complex

network characterization (95, 97, 118–121), machine learning (122), pattern recognition

(120,123) and resonance (124,125) in complex networks gained traction.

We describe here two properties of complex networks: the scale-free property and

the small-world property. We also comment briefly on spatial networks, a structure that

extends the array of purely topological properties of a graph and is fundamental for the

purposes of the present work.
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Figure 13 – Random network with 1,000 nodes.
Source: By the author.

Some measures for networks (126), assuming the graph is undirected.

• Measures of network connectivity:

The degree ki of the vertex i, is the number of its connections with other nodes

or even itself, that can be defined as

ki =
n
∑

j=1

ai,j.

The maximum possible degree for every node in a simple graph, that is, a graph

where every pair of nodes has at most one edge leads to a complete graph.

The degree distribution P (k) denotes the fraction of nodes with degree k, where

P =
∑

i

ki.

Stranting from the degree distribution we derive other measures such as

〈kn〉 =
∑

k

knP (k)

is the moment of order n. Starting from order n = 1, we derive the mean degree 〈kn〉
of the network, from order n = 2 we derive the mean variance which is a measure

of fluctuations in the network connectivity and so on.
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Entropy Hk of the degree distribution, related to network complexity and also

an indicator of robustness, where

H = −
kmax
∑

k=kmin

P (k) logP (k).

Hierarchical degree kh. Obtained by traversing the network recursively until

reach every node at hierarchy level h, compute their respective numbers of neighbors

and then sum them all.

〈kh〉 =
1

N

∑

i

kh(i)

• Measures of correlation:

Average degree of the nearest neighbors

knn(i) =
1

ki

∑

j∈Ni

kj =
1

ki

N
∑

j=1

ai,jkj

Pronounced differences in the average degree of the NNs in relation to the current

vertex indicate a dynamical generating regime for the graph.

Pearson correlation coefficient

ρP =
(1/M)

∑

j>i kikjai,j − [(1/M)
∑

j>i(1/2)(ki + kj)ai,j]
2

(1/M)
∑

j>i(1/2)(k2
i + k2

j )ai,j − [(1/M)
∑

j>i(1/2)(ki + kj)ai,j]2

• Measures of clustering:

Average clustering coefficient

〈cc〉 =
1

N

∑

i

cci

It can be seen that in most real-world networks, an object of study for complex

networks, nodes tend to create tightly knit groups of nodes where the edges represent

the links, this probability higher than the probability of a randomly established link

between any two nodes (127,128). Akin to the concepts of a multifractal, there are

under disposition either global or local measures of clustering. As every subnetwork

can also be analyzed as a whole network, local measures of clustering can lead to

multiscale analysis techniques.

• Measures of distance:

Average geodesic distance

〈l〉 =
1

N(N − 1)
∑

i6=j di,j

Network efficiency

E =
1

N(N − 1)

∑

i6=j

1

di,j
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Figure 14 – Example of Barabási-Albert network with 1,000 nodes and proeminent scale-
free and small-world properties.
Source: By the author.

• Measures of centrality:

Betweenness

bi =
∑

j 6=k

njk(i)

njk

Normalized betweenness

bi =
1

n2

∑

j 6=k

njk(i)

njk

2.1.4.1 Scale-free property

Networks with the scale-free property are known to be robust to random failures

but, on the other side, they are highly susceptible to anomalous spreads (129) which, if

of viruses or other harmful entity, would prove problematic in a real setting. Figure 14

gives one example of a network with proeminent scale-free property, in contrast with the

random network in Figure 13. Another distinctive feature of such networks is that their

local degree distributions cannot be predicted from the global degree distribution for the

network. Node degrees with the scale-free property follow not a Poisson distribution but a

power law distribution. One implication of the power law is that the degree distribution of

these networks has no characteristic scale. In contrast, networks with a single well-defined

scale like random graphs are alike to lattices in that the mean degree of the network

can roughly predict the degree of every node. Current terminology defines nodes with

sufficiently large degrees as hubs of the network, although the definition is somewhat

arbitary in virtue of the scale-free feature itself.
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Figure 15 – Milgram’s description of social connections with small-world property.
Source: MILGRAM (10)

2.1.4.2 Small-world property

The scale-free property gives rise to another property, the small-world property. In

networks with the small-world property, few hops can lead to a travel from some vertex

of the graph to virtually any other, even in arbitrarily large graphs. A hop is a jump from

one vertex of the graph to another via one edge. Stanley Milgram tested this property

experimentally while at Harvard (130), see Figure 15, leading researchers to analyses of

degrees of connectedness. The famous six degrees of separation concept derived from their

research. In a real-world setting, we witness that modern advances in communications

and travel enabled the growing and widening span of relationship networks. This ever-

increasing connectedness of human beings, despite considerable physical distances between

the individuals and their large total number, results in a growing density of social networks

that increases significantly the possibilities for any two individuals to connect or to be

tighly related in some form.

Formally, the typical number of hops needed to connect any two nodes in a network

with the small-world property grows proportionally to the logarithm of the number of

nodes in the network, and most pairs of nodes will be connected by at least one hop.

Other properties are often associated with small-world networks are the over-abundance

of concentration nodes or hubs serving as the common connections mediating the short

paths between vertices. A metric, namely the degree distribution of the network, allows

one to analyze this property by taking into account the fraction of nodes in the network

that have a particular number of incoming connections.

2.1.4.3 Spatial networks

Spatial network is a graph endowed with spatial properties as coordinates, length

and area. Its vertices and edges are associated with geometric objects in a metric space.

Topological properties are very important for the purposes of making analyses of universal

properties across a plethora of network instances, but they alone are not capable to
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Figure 16 – Example of elementar cellular automata.
Source: ELEMENTARY ...(11).

provide every information that is actually relevant. Transportation and mobility networks,

Internet, mobile phone networks, power grids, social and contact networks, and neural

networks, are all examples of the high relevance of spatial properties (131) and to project

networks onto geometric objects helps where topology alone does not contain all the

information when a cost is associated with the length of edges as it is induced in the

case of spatial network, and such cost will in turn effect the topological structure of

these networks (132). Thus, to characterize and to understand structural and evolutionary

aspects of spatial networks is crucial for many different fields.

One of the most straightforward examples are objects like cities, streets, avenues,

estate neighborhoods, transport lines etc. that are equipped with a metric and can be

represented as networks (133) and are also conductible to network analysis techniques

(134). However, the definition of spatial does not convey spaces in the usual physical

sense solely, but also spaces of probabilities or spaces of functions.

2.1.5 Cellular Automata

Cellular automata, which are examples of dynamical systems, have remarkable

computational advantages over classic numerical implementations of dynamical systems

formulae, due to their all-around discrete nature. Cellular automata do not suffer severe

limitations in terms of numerical accuracy when they are represented through the use of

computers.

Cellular automata are defined by a d-dimensional grid of cells. Each cell is as-

sociated with an on-off state. The evolution of a cellular automaton is associated with

evolution rules, which determine the next state of a given cell from its current state and

that of its neighbors. The application of rules in a cellular automaton, depending on its

complexity, it can be computationally costly in terms of time, even without the severe

issues regarding numerical accuracy and the use of available storage. Figure 16 exemplifies

an elementary cellular automaton of dimension 1, considering the dimension of evolution
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Figure 17 – Possibilities for rule 30.
Source: ELEMENTARY ...(11).

aside. An elementary cellular automaton considers only its immediate neighbors. Cellular

automata are most useful for the simulation of individual interactions in discrete time and

discrete space. A classical example of cellular automaton that is known to have universal

computing capabilities is John Conway’s Game of Life (135).

Figure 17 shows a table that breaks down the evolution possibilities for rule 30 of

an elementary cellular automaton. This rule is formerly used by the Wolfram application

to generate pseudorandom numbers (136), due to the fact that it is chaotic and presents

interesting pseudorandomness. There are works that exploit cellular automata to simulate

complex reaction-diffusion behavior as it is seen in a class of chemical experiments (137).

2.1.5.1 Life-like Network Automata

Life-like Network Automata (LLNA) is a technique conceived for the analysis and

study of complex networks (76–78). Much of the collected data that is stored nowadays can

be projected onto networks for an informative and sophisticated representation. Issue is,

this data, in sole virtue of its sheer volume might be untractable and thus it is imperative

to have efficient algorithms that help harvest the data for the purposes of machine learning

and knowledge discovery (138). The pivotal concept in LLNA is that living beings are

capable of performing intelligent actions. If this behavior is simulated to some extent by

a computer, then automated analysis on the data is effected.

LLNA may be considered as a generalization of John Conway’s Game of Life

(Figure 18) that exploits life-like intelligent performance in order to help effect analysis

over complex networks. The parameters for this type of cellular automaton assume the

form of rules, whose notation is of the form Bx/Sy, where x and y are strings of digits.

The rule notation for the standard Game of Life is assumed as the string B3/S23. A cell

assumes state 1 at time t is it is alive or state 0 if it is dead, it is born if it has three

neighbors, survives if it has two or three living neighbors, and dies otherwise. The main

difference here is that while for the standard Game of Life the graph is represented as

grid of cells, where every cell equals one node, each with a maximum of eight neighbors,

for LLNA graphs whose nodes have an arbitrary number of neighbors and potentially

imbalanced connections are employed.

The pivotal idea behind LLNA is to expand the application of rules from the

game of life to a more general form that acknowledges connectivity imbalances and a
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Figure 18 – John Conway’s Game of Life.
Source: By the author.

huge variety of network types. Formally, we have cells ci in the graph each evolving over

time t and assuming state values s(ci, t) 1 or 0. For each cell ci, it is applied the density

measure

ρ(ci, t) =
1

ki

∑

j

s(ci, t)A(i, j) ∈ [0, 9]

where A is the adjacency matrix of the graph whose elements with value equal

to 1 denote an existing edge between nodes i and j, and value equal to 0 otherwise.

Density information in turn determines the next state according to the rules Bx/Sy, and

transition function φ : s(ci, t)→ s(ci, t+ 1).

s(ci, t+ 1) =























1, if s(ci, t) = 0 and xx

r
6 ρ(ci, t) <

xx+1
r
→ Born (B)

1, if s(ci, t) = 0 and yy

r
6 ρ(ci, t) <

yy+1
r
→ Survive (S)

0, otherwise

where r = 9. At time t = 0 LLNA performs a random initialization of cell states

where the expected value for the probability of dead or alive cells at the beginning is equal

to 0.5. Iterations are effectively counted only after a small transient period ψ of about 20

iterations needed for the automaton to attempt achieved equilibrium.

Measurements extracted from LLNA and converted in histograms as feature vec-

tors are the Shannon entropy, Word Length and Lempel-Ziv complexity.

LLNA-BP improves on the original LLNA by the means of histograms for the

2n possible bit patterns, where n is the fixed length for the bit patterns. In this fashion,

combinatorial properties of evolution-related bit patterns can be developed into a statistic

and provide alternative information about a network.

LLNA-DTEP leads to another improvement, as it explores temporal patterns.

A binary T × N matrix T with elements s(ci, t) depicts the state for each cell over

the evolution steps, where N is the number of cells of the network automaton and T
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is the number of timesteps for the evolution process. One description for TEP is the

concatenation of the states of cells of an automaton as the automaton evolves. TEP

employs two matrices D-TEP and SD-TEP. The D-TEP matrix D is a N×T matrix whose

elements are equal to ρ(ci, t). SD-TEP provides additional information to complement D-

TEP, withstanding nevertheless the same basic principles of exploiting temporality. The

SD-TEP matrix S is a N × T matrix equal to D � 2T − 1, where � is the Hadamart

product between matrices.

2.1.6 Random matrix theory

John Wishart and Eugene Wigner presented original work envisaging how to bet-

ter understand the interacting nuclei of atoms (139,140), taking into account that strongly

interacting particles at the quantum level cannot be easily described at the level of the

individual particle. Thus, it should be more fruitful to attack the problem leveraging

statistical descriptions of the highly-correlated nuclei, analog to application of thermody-

namics ensembles as in the case of classic matter.

Wishart’s work went into the realm of modelling statistical descriptions as ma-

trices, namely sample covariance matrices. It was found to be very useful in the field

of Statistics (141–143), however his work has also a physics underpinning that must be

taken into account, and which developed into random matrix theory (144). Random ma-

trix theory finds applications also in the fields of Engineering, Mathematical statistics and

numerical analysis, Number theory, Combinatorics, Finance, Free probability, theoretical

neuroscience, Optimal control and computational mechanics (145).

One of the objects of interest related to random matrix theory is the theory’s gen-

eralization and the profound implications for a wide range of phenomena of the properties

embedded deep into the structure of the mathematical entities considered in the theory

(146–152).

2.1.6.1 Wigner matrices and semicircle distribution

Wigner matrices or random matrices are symmetric and every of its entriesMi,j16i,j6n

is a random variable. One interesting application of Wigner matrices in image processing

and computer vision is image denoising.

The Wigner semicircle distribution is the probability distribution on the interval

[−R,R] with probability density function f which is a semicircle with center at (0, 0).

f(x) =
2

πR2

√
R2 − x2,−R 6 x 6 R, f(x) = 0∀|x| > R

The semicircle distribution is related to the Wigner semicircle law (140,153) stated

below:
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Figure 19 – Tracy-Widom distribution and parameters β for the three gaussian ensembles,
GOE (β = 1), GUE (β = 2), and GSE (β = 4).
Source: By the author.

Let {Mn}∞
n=1 be a sequence of Wigner matrices, and for each n denote Xn =

Mn/
√
n. Then the mean of Xn converges weakly, in probability to the semicircle distri-

bution.

The elements of Mn must be random and i.i.d. with identical values for densities,

second moments m2 and n-th moments bounded by constants Bn independent of i, j

and N . Let S = Sα,β(v,N) be the number of eigenvalues of Mn that lie in the interval

(α
√
N, β
√
N) for α < β ∈ R. Then

lim
N→∞

E[S]

N
=

1

2πm2

∫ β

α

√
4m2 − x2dx

2.1.6.2 Tracy-Widom distribution on the asymptotic limit for the length of Longest
Increasing Subsequence for random sequences

The Tracy-Widom distribution is related to the Wigner semicircle distribution. In

the seminal paper by Robert May (154), the critical point 1/αc =
√

2 described for the

matrix of species’ interactions incides on the upper edge of the semicircle distribution,

and happens when µλmax =
√

2. In fact, a region of the left tail of the Tracy-Widom

distribution intersects with the Wigner semicircle.

There are typically three Tracy-Widom distributions, Fβ, with β ∈ {1, 2, 4}. They

correspond to the three gaussian ensembles: orthogonal (β = 1), unitary (β = 2), and

symplectic (β = 4) (Figure 19). GOE is related to projections over the real set, GUE over

the complex set and GSE over the quartenion set, which hints to their important relations

and fundamental properties (155).
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The distribution of the maximal eigenvalue λmax for the Wigner matrices and for

the dynamics of certain phenomena converges to the Tracy-Widom distribution in the

asymptotic limit. The distribution of the Longest Increasing Subsequence for random

variables also converge into this distribution in the asymptotic limit (156). The Tracy-

Widom distribution for LIS specifically belongs to the unitary ensemble.

2.1.6.3 Phase transitions and the Tracy-Widom distribution

Statistical distributions for critical phenomena like phase transitions (150) that

approach the Tracy-Widom distribution at its centre need not follow it through their

range (157). Strange events might affect both tails of the distribution, pointing to phase

transitions that are unusual and unexpected. We will use this assumption further in order

to devise complex networks that capture certain behaviors of RNGs and the k-logistic

map. Furthermore, stochastic processes are often characteristical of phase transitions in

physical systems. As such, there is justification for studying the phase transitions, the

Tracy-Widom distribution and random number generation in tandem.

2.1.6.4 The Dynamic Time Warping algorithm

The Dynamic Time Warping algorithm (DTW) has found widespread use in time

series classification tasks, more specifically the nearest neighbor time series classification

task. Time series classification is a form of the classification task where temporal prece-

dence and subsequence of points possess a meaning that is taken into account by some

algorithm’s calculations on similarity.

A formal definition for the L2-DTW follows:

DTW2(x, y) = min
π∈A(x,y)





∑

(i,j)∈π

|xi − yj|2




π is an alignment path of length k, equivalently, it is a sequence of k pairs of

indices ((i1, j1), (i2, j2),..., (ik, jk)) and A(x, y) is the set of all admissible paths.

DTW and its computational efficiency are built upon the paradigm of dynamic

programming. Dynamic programming reduces the exponential complexity of the naive ap-

proach to worst-case polynomial complexity. However, practical runtimes for time series

of even moderate length are still significant and impede large-scale applications. Approx-

imate approaches and parallel implementations have been developed in order to placate

this issue (158,159).

Furthermore, other algorithms have been developed with the goal of superseding

DTW in terms of classification accuracy. It is worthy of note that even conceptually more

advanced alternatives to DTW could not readily beat it in overall terms, largely due to
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Algorithm 1 Algorithm for Dynamic Time Warping.
Require: Vectors s and t;
Ensure: Matrix DTW ;

for i← 2 to n+ 1 do

for j ← 2 to m+ 1 do

DTWi,j ←∞
end for

end for

DTW1,1 ← 0
for i← 2 to n+ 1 do

for j ← 2 to m+ 1 do

cost← d(si, tj)
DTWi,j ← cost+ min(DTWi+1,j, DTWi,j−1, DTWi+1,j−1)

end for

end for

both DTW’s ease of implementation and its noted robustness and general effectiveness

for a large and varied set of inputs (160–162).

2.1.6.5 The Matrix Profile

The Matrix Profile (163) is a data structure that allows for largely parameter-free

in-depth time series analysis. Several time series analysis tasks can be performed through

means of exploiting this data structure. Akin to the DTW it is based upon, MP allows for

practical results that are not necessarily the most accurate, but it is admirably flexible

and shares with DTW its largely robust behavior. Devoted research and development

efforts have been leased in order to reduce the burden of calculations related to MP

on computational resources through reductions in computational complexity and novel

high-performance algorithm implementations like STAMP, STAMPI, STOMP, SCRIMP,

SCRIMP++, SWAMP, DAMP, SCAMP, GPU-STOMP, TranSCRIMP, TranSCAMP and

TranSCAMPfpga (164) have paving the way for a more widespread adoption of MP in

both academic research and also day-to-day non-academic-related routine tasks. The basic

data structure is built off computations of the DTW between non-intersecting windows

of a fixed size m and between any given time series, even within the sole time series

itself. Every window has a predefined fixed size and they all contain a subsequence of the

original values.

The matrix profile data structure is constructed by means of fixed-size windows.

A vector of pairs stores the distances of time series windows to their respective nearest

neighbor and also the indices of the nearest neighbors. Using mathematical notation:

W represents the window size, TS the time series vector, MP the matrix profile vector

where each element is the distance d of the time sequence (TSp)i6p6i+W −1 starting at i

and bounded by i+W to its nearest neighbor, and IDX the indices of the time sequences
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(TSq)j6q6j+W −1 starting at j and bounded by j +W which are nearest neighbors to each

(TSp)i6p6i+W starting at i and bounded by i+W , j /∈ [i−W + 1, i+W − 1]. Algorithm

2 is depicted.

Algorithm 2 Naive algorithm for matrix profile.
Require: Time series vector ts, window size W ;
Ensure: Vectors MP and IDX;

for i← 1 to T do

MPi ←∞
IDXi ← −∞

end for

for i← 1 to T −W + 1 do

for j ← 1 to T −W + 1 do

if j /∈ [i−W+1, i+W−1] and DTW ((TSp)i6p6i+W −1, (TSq)j6q6j+W −1) < MPi

then

IDXi ← j
MPi ← minMPi,DT W ((T Sp)i6p6i+W −1,(T Sq)j6q6j+W −1)

end if

end for

end for

2.1.6.6 Anomaly detection

A widely-accepted definition of outlier states that an outlier is "an observation that

deviates so much from other observations as to arouse suspicion that it was generated by

a different mechanism" (165). Research has been devoted into developing and refining

automated methods for anomaly detection (166–176) and also to placate ever-growing

issues – due to the exponential increase of stored data – such as the high dimensionality

curse (177–179).

One possible grasp of anomaly detection, also known as outlier detection, is to

understand it as a very specific form of classification. The classification task in its most

general form is comparatively loose and does not usually deal with highly imbalanced

classes. Several important challenges follow relaxing constraints due to imbalanced classes.

If the instantiation of a class comprise of a very small set of points, every false positive

and false negative shows up with magnified weight. Furthermore, a given classification

method may engulf altogether one low cardinality class within another high cardinality

class. For the general classification task, it is even desirable to remove outliers before

instantiating the task, since they steer the classification method into deviating from the

expected result (180,181).

Therefore, imbalanced classes and outlying points are problematic in much of the

context of machine learning. The diverse class instantiations tend to comprise approxi-

mately the same cardinality for several tasks. Classification methods take clever advantage

of this constraint by simplifying the problem, but they end up not tuned to deal with the
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scenarios belonging to anomaly detection. Outlier detection as a classification task deals

precisely with such difficult issues. In the context of machine learning, outlier detection

is not as widespread as clustering and classification. However, when outlier detection is

called into action, it is usually of paramount importance. Under the context of a factory,

outliers mean severe failures in a production facility; under the context of neighboring

natural events, outliers might be dangerous tornadoes or giant sea waves; under the con-

text of a medical faciltiy, outlers mean unusual electrocardiograms and patient abnormal

cardiac rhythm and, under the context of a financial transaction, outliers mean costly

frauds and abuse of the system (181).

In practice, the bias sensitivity that is collateral to outlier detection methods in-

hibits efforts to formal generalization for the notion of outlierness. Methods that perform

well under certain groups of anomaly/outlier detection tasks tend to perform poorly in

other tasks, leading thus to the increasing interest in outlier ensembles (180), as ensem-

bles adapt better to the diverse kinds of tasks. Because assumptions cannot be simplified

too much for any given outlier detection method that is aimed to perform with at least

reasonable accuracy, these methods cannot be easily sped up unlike the bulk of classi-

fication methods. And an additional caveat is the manner the literature approaches the

experimental facet of scientific validation. Experiments are performed under very con-

trolled environments and synthetic datasets, without too much regard to common and

important real-world tasks. Comparisons between methods are hardened by the lack of

standardized benchmarks (182,183).

2.1.6.7 Applications of computational geometry methods

Modern computational geometry theory and methods have significant recogni-

tion due to widespread computer graphics and computer-aided design and manufacturing

(CAD/CAM) uses. The field of application for computational geometry is stretched on

by the classical nature of many of its problems, which also come from the task of vi-

sualization of mathematical structures. Other important applications of computational

geometry comprise robotics, geographic information systems (GIS), integrated circuit de-

sign, computer-aided engineering and computer vision.

Purely topological methods provide network measurements that prove useful. Nonethe-

less, applied fields related to computational geometry are interesting two-fold: to provide

output that taps further upon human sensory abilities (184) and to project object prop-

erties in a way that an array of further analyses can be conducted and other methods and

techniques now can be applied (185), shedding light on the data in a new perspective.

Alves and Bruno (12) projected networks originating from the k-logistic map using

computational geometry concepts and methods. On Figures 20 and 21, the deployment

of network links or edges between vertices within a radius r centered at vertex i and the



74

Figure 20 – Plots from the k-logistic map with k = 0.
Source: ALVES; BRUNO (12).

Figure 21 – Plots from the k-logistic map with k = 4.
Source: ALVES; BRUNO (12).

vertex i itself on the R
2 plane, for all i, is seen.

A graph is constructed over vertices that are derived from a sequence of n points

pi selected out of some orbit of the k-logistic map. The geometry on the R
2 plane is

projected by repeating the edge creation process for every vertex. Axis x is valued by the

indices i ∈ N of the points in the sequence and axis y is valued by pi ∈ R. Scaling factors

are applied to each of the axes and then a coordinate (x, y) is assigned to every point.

Finally, the maximal component of the graph is computed.

On Figure 22, it is seen the Delaunay Triangulation on the R plane that is com-

puted over the network.

2.1.6.8 Residual Analysis for Anomaly Detection in Attributed Networks

RADAR (186) was developed with the goal of performing anomaly detection on

networks, given attribute information associated with the network. It is based on the
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Figure 22 – Delaunay triangulation from the k-logistic map.
Source: ALVES; BRUNO (12).

assumption that to combine attribute information of nodes and structural information of

the network is a powerful method to locate anomalous nodes. The usefulness of anomaly

detection in the context of complex networks is clear. Anomalous nodes, in a certain way,

serve as a signature for the network.

It relies on an iterative optimization algorithm that attempts to reconstruct the

original attribute matrix associated with the network. The catch here is that the residual

error of the reconstruction process tends to vary significantly between inlier and outlier in-

stances, that is, the attribute patterns between anomalous instances and normal instances

are quite different each other.

Let the set of n interconnected instances U = {u1, u2, . . . , un} with interconnection

represented by edges ej. And associate every instance with a feature set in d dimensions

F = {f1, f2, . . . , fd}. Attribute information of all n instances is denoted by X ∈ R
n×d .

Furthermore, let X̃ denote the estimated attribute matrix and let R denote the residual

matrix of approximation errors X − X̃. If representative instances at hand conduct to

accurate estimates of the attribute information matrix, then it is improbable that such

instances are anomalous. On the other side, a large value for the norm of Ri indicates

that a given instance has a high probability to be an anomaly and this result is used to
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spot anomalies.

The objective function for RADAR is

min
W ,R
‖X −W

′
X −R‖2

F + α‖W ‖2,1 + β‖R‖2,1 + γtr(R′
LR) (2.1)

And the update equations are

R = (I + βDR + γL)−1(X −W
′
X) (2.2)

W = (XX
′ + αDW )−1(XX

′ −XR
′) (2.3)

Algorithm 3 describes the workings of the concept.

Algorithm 3 The RADAR algorithm for anomaly detection in attributed networks.
Require: Attribute matrix X, adjacency matrix A, parameters α, β, γ.
Ensure: Top m instances with the highest anomaly scores.

Build Laplacian matrix L from the adjacency matrix A;
Initialize DR and DW to be identity matrix;
Initialize R = (I + βDR + γL)−1X;
while objective function in Eq. 1 does not converge do

Update W by Eq. 3;

Update DW by setting DWi,i
=

1

2‖Wi‖2

;

Update W by Eq. 2;

Update DR by setting DRi,i
=

1

2‖Ri‖2

;

end while

Calculate the anomaly score for the i-th instance as ‖Ri‖2

Return top m instances with the highest anomaly score.

2.2 Methodology

Here we describe the concepts and methods devised to tackle the problem of lever-

aging improved methods for pattern search and detection in chaotic orbits and seemingly

random outputs.

2.2.1 Multi-tap logistic map

Weaknesses in encryption can be used by techniques that exploit the algebraic

properties of the map, properties such that conventional statistical tests are not able

to detect. One example are the weaknesses found in elliptical curves. We do not know

formulations that successfully exploit possible algebraic weaknesses of the k-logistic map.

However, numerical and computational methods for exploitation of these weaknesses are
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not to be excluded. An ingenious direct application of machine learning is glimpsed,

noting that values of any random sequence with uniform distribution will not present

patterns beyond casual and random clusters. Unexpected patterns can be considered

as a "signature" for the dynamical system. Machine learning algorithms can be divided

among those based on global optimization, such as support vector machines (SVM), and

those of local optimization, such as decision trees, random forests (RF) and multilayered

perceptron (MLP).

We present here an application of the logistic map and the k-logistic map for

pseudorandom number generation (PRNG) which we refer to as the Multi-Tap Logistic

Map (MTLM), where the orbits constructed from multiple parameters are fused. Due to

the fact that the orbit of the k-logistic map derives directly from the orbit of the orig-

inal logistic map, the characteristic cycle lengths of the digital form are retained. This

characteristic presents issues to number generation applications, since periods for each in-

dividual orbit might be too small to be of any use, or the runtime may be prohibitive and

impractical. We show how the use of a coupled Linear Feedback Shift Register (LFSR)

improves number generation application along with the logistic map and the k-logistic

map.

The logistic map, due to its orbits of high complexity and chaotic behavior, has

been studied for the purposes of pseudorandom number generation. It warrants non-linear

relationship between elements inside the orbit set, however, the digital form of the logistic

map suffers from degradation. One such issue related to digital degradation is that lengths

of the periods formed upon the basin of attraction, which are small and do not span well

over the space of possible values. The k-logistic map, as already presented in Section

2.1.2.4 is a variant of the logistic map that extracts the statistically most relevant digits

of the orbit, thus improving both non-linearity and statistical distribution of the orbit,

however, issues that are related to small periods remain unabatted. The Linear Feedback

Shift Register, known by the acronym LFSR, is commonly used for pseudorandom num-

ber generation. With a correct polynomial it spans every numerically doable value over

the space, with its value statistics representative of a distribution adequate for number

generation, with certain limitations e.g., the relationship between elements is linear and

when full word size is taken into account, the fact that no value repeats itself until the

full realization of the period is of concern. If the qualities of non-linearity inherent to the

logistic map and of long period length from the LFSR are combined, then we can improve

pseudorandom number generation.

Many works execute digital perturbations over the chaotic orbit in order to im-

prove period length. In a number of these works, the digital perturbation is essentially a

parameter value switch during the execution of the algorithm. Such perturbation imposes
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a constraint and expose the run to characteristic pathological cases, if there are no guar-

rantees as for the sanity of orbits under the parameter change. Also, depending on the

size of the state space and the function space, not all cases could be determined empiri-

cally. In our proposal, we run maps in parallel. Since it is probable that no relationship

can be found between the orbits, beside the LFSR selector of bits in orbit elements, the

probability of the PRNG being dominated by a rare pathological case is reduced. The

entropy bits are collected from several orbits via multi-tap procedure and concatenated

sequentially.

Computing the k-logistic map with precision of several thousands of digits should

attain long periods. However, the computational cost is significant and even more so for

time-sensitive cryptographic operations. We provide a brief analysis of the weaknesses of

digital chaos and describe our steps taken to improve on it. Due to the fractal nature

of the logistic map and similar dynamical systems, under certain parameters the period

repeats itself too early. We describe these situations as pathological cases. This limitaton

is directly related to the set of attractors with small period lengths which, are simply put,

not adequate for cryptographic applications. It is important to note that simply switching

from the logistic map to the k-logistic map does not alleviate this issue.

As already said, a measure that can be taken to improve both period length and

reduce digital degradation is to employ arbitrary length arithmetic which demands more

computing resources and, due to the inherently serial nature of the logistic map, might

impede high performance real time applications. Since our proposal runs several maps in

parallel, commonplace multi core computers can be taken advantage of.

Considering numerical representation with many digits, it is increasingly necessary

to develop methods for lengthening cycles in lieu of the needs of cryptographic applica-

tions.

LFSR’s and the logistic map, despite showing desirable statistical properties, they

do not operate or behave like a true RNG e.g. after producing a certain value, the map

will redo itself from there, therefore generating a period. Some techniques can be applied

to make these maps simulate more closely a true RNG, e.g. discard a subset of digits off

the map’s numerical image.

If the shortest period of the generator is large enough, then it is little cause for

concern. For the logistic map, Table 2.2.1 presents mean period lengths.

The period is a measure of the predictability of the PRNG. For PRNGs based

upon deterministic algorithms and run by a deterministic machine, its next state after

one pass of the execution of the algorithm is completely defined by its current state. The

period also presumes a cyclic operation of the machine. See Figures 23, 24, 25 and 26.

One pass after the last state under the period and the PRNG begins to repeat itself, with
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Table 1 – Digital precision for logistic map calculations under base 10 followed by mean
period length.

Base 10 digital precision Mean period length
10 39,086.32
11 119,717.11
12 366,510.19
13 1,099,759.87
14 3,374,700.89
15 10,315,441.27
16 31,697,223.91
17 99,019,100.52

Source: By the author.

Figure 23 – Period length for logistic map, machine IEEE-754-compliant single precision
from r = 3.7 to r = 3.99.
Source: By the author.

all its subsequent output values perfectly matched by equality to a given previous output

sequence. The average period of a PRNG is directly related to the number of symbol

streams, however. Thus, combining outputs from several k-logistic map sources increases

the period by the order of the least common multiple of all periods. Combining outputs

it is also more computationally efficient because the time complexity for every base-n

digit added increases only linearly, and the time complexity for the k-logistic map, due

to a costly multiplication operation, increases by order of the square of n, if schoolbook

multiplication algorithm is employed.



80

Figure 24 – Period length for logistic map, machine IEEE-754-compliant single precision
from r = 3.7 to r = 3.99.
Source: By the author.

Figure 25 – Period length for logistic map, machine IEEE-754-compliant double precision
from r = 3.7 to r = 3.99.
Source: By the author.
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Figure 26 – Period length for logistic map, machine IEEE-754-compliant double precision
from r = 3.7 to r = 3.99.
Source: By the author.
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LFSRs obey the Golomb statistical properties for maximal length sequences, namely,

the balance property, the run property and the autocorrelation property. They resemble

certain properties one expect to find in random sequences (187). Due to these properties,

they are extensively employed in communication and data/stream ciphers. The generation

of binary sequences in GF(2) is a well-known use case.

Let a run in a binary sequence be a subsequence of consecutive zeros or ones. We

denote a run of zeros a gap and a run of ones a block. A gap of length k is a set of k

consecutive zeros flanked by ones. A block of length k is a set of k consecutive ones flanked

by zeros. A run of length k is either a gap or block, of length k. Then, we present three

randomness postulates of a periodic sequence:

Balance property:

In a period of the sequence, the number of ones and the number of zeros differ by

at most one. Run property:

In every period, half the runs have length 1, one-fourth have length 2, one-eight

has length 3, etc., as long as the number of runs so indicated exceeds 1. Moreover, for

each of these lengths, there are equally many gaps and blocks. Autocorrelation property:

The out-of-phase autocorrelation of the sequence always has the same value.

It is important to note that we see in truly random sequences a wider spread of

values.

The LFSR is endowed with desirable properties, furthermore, non-linear outputs

that do not sport such properties but otherwise present other interesting properties can be

coupled to this class of generators. However, there are known weaknesses of the LFSR that

exploit its conception as a linear combination of polynomials in a field. Of special interest,

there is the iterative Berlekamp-Massey algorithm that can be applied to a sequence of

(not necessarily consecutive) 2n or more stream bits.

One method we employ is to conceal what the LFSR output in fact is, as the

k-logistic map is non-linear, using a LFSR as a selector into bits of the k-logistic map

output makes it therefore harder to find a suitable function to reverse the output into a

primitive generator, since the relationship of the output to the input is purely linear no

more.

For the k-logistic map, we output its value times 256 as a cast 8-bit integer. For

the LFSR-sourced k-logistic map, we run one LFSR and one map at a time and we extract

sequentially eight triples of bits off the LFSR. The value of each triple is used to select

one bit off each value output by the map. All eight bits are concatenated and their value

is output as a cast 8-bit integer. For the multi-source k-logistic map, we run eight maps

in parallel and output sequentially their values times 256 as a cast 8-bit integer. For the
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LFSR-multi-source k-logistic map, we run eight maps and eight LFSRs in parallel. For

each LFSR, in proper sequence, eight triples of bits are read and their value is used to

select the bit off the 8-bit value output by each of the maps. All bits are concatenated

and their value is output times 256 as a cast 8-bit integer.

2.2.1.1 Estimation of probability density functions

Knowing the exact value for the natural invariant density, then we also know

which symbols are more likely to appear in a given sequence and also which sequences are

more or less common among all. For conventional symbolic dynamics the state space is

partitioned into regions, and each region is associated to a symbol. The regions may not

necessarily be of the same size.

A histogram is built upon the symbolic dynamics information. Sufficiently many

points are needed for a precise estimation for the value of ∗p, the true probability. Argu-

ment can be made that in the case of the logistic map it is possible to sample up to millions

of points, which leads to a precise estimation, but this possibility is not necessarily true

for every dynamical system or process. And we cannot always take for granted that we

know the natural invariant density in analytical fashion for every case, as it is the case of

the Ulam map, that is, the logistic map with r = 4. We are down to one of the following

issues that make difficult to determine precise values for ∗p: a selection of resolutions for

the regions of the state space are coarse-grained and, as such, of little use for practical

purposes, or higher resolutions require prohibitively high computational resources, or cer-

tain dynamical processes of interest are intrinsically restricted as the number of samples

that can be obtained tends to be very low.

We now argue, under these assumptions, that an alternative concept used very suc-

cessfully for the task of unsupervised machine learning, when boiled down into a practical

method, is able to present improved results for the one-dimensional case in comparison

to conventional symbolic dynamics and also the Lyapunov exponent alone. We partition

the phase space and apply measures on a ball of radius ε or ε-ball to obtain estimates

for the dynamical system. Interpreting the symbolic dynamics in the light of numerical

representation, we now consider a point and its iterations in the state space, computed

numerically down to its ulp, and we associate a strict region to this point centering onto

it a ε-ball, and count the number of points inside the ball. In practice, we are estimating

a measure related to ∗p, but not the value of ∗p directly. If certain topological character-

istics of the system or process, such as relative ordering of the points under the measure,

are more important than the measure itself, then one collateral is that the bias of the

estimator used in this fashion can be neglected.

We stress that our alternative numerical approach is experimental by concept as

the estimate might be far off the value of the true local measure. In this case, it is needed
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Figure 27 – Three cumulative empirical orbit distributions. Octave PRNG, k-logistic map
k = 0 and k = 3
Source: By the author.

Figure 28 – Three density distributions. Octave PRNG, k-logistic map k = 0 and k = 3
Source: By the author.

to increase sample sizes and shrink the ε-ball.

An ε-neighbourhood is the collection of points that reside at most ε units away from

a given point. A local density measure is a estimate for the probability of points belonging

to any metric space X to be contained in a given region of the whole domain A, X ∈ A.

Such a measure allows to infer correlations between points. As it is computationally very

expensive to scour the entire space for the calculation of densities, samples are used. An

estimate of local density over A works as follows: given a point p, calculate how many

points are contained in the neighbourhood of p. Local density measures are consecrated

by their high sensitivity in the detection of anomalous patterns in challenging data sets

(188–190).

2.2.1.2 Topological counterparts of density estimators

Figures 27, 28 and 29 give distinct perspectives on the same dynamical system or

stochastic process.
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Figure 29 – Three "topological" distributions. Octave PRNG, k-logistic map k = 0 and
k = 3
Source: By the author.
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Figure 30 – Graphs built from the orbit of the k-logistic map with neighbor radius at
values 0.06, 0.12 and 0.24.
Source: By the author.

From the attraction basin for the logistic map xn+1 = rx(1 − x) a structure is

generated for some given parameter value r. For arbitrary values of r, the logistic map

will generate periodic or chaotic orbits. Works have approached the evolution of logistic

map with attention to orbit terms, that we call a horizontal approach. The Figure 30

exemplifies this approach with graphs built from 1,000 orbit points to the k-logistic map

with k = 3 and µ = 3.99999. In this exploration in dense matrices, we will use an horizontal

and vertical approach. Horizontal because it scans a given orbit, and vertical because it

scans the different parameters µ of the dynamical system. In encryption applications, the

parameters may be used as part of the key, so it is interesting to study the evolution of

the dynamical system also in the direction of the parameters.

An important observation. In computational terms, the logistic map presents low

efficiency in leveraging the range of floating point values, even more considering the re-

peats of exponents for normalized numbers in the IEEE-754 standard within range (0, 1).

In finite accuracy, every computed orbit is periodic, although the shadowing lemma, re-

strictions applied, ensures that periodic behavior is the closest to the chaos as the machine

accuracy lets on. Hence the importance of using arbitrary accuracy numbers whenever

feasible. Some proposals suggest the insertion of orbit disturbances in order to increase

efficiency. Taking cycle size averages for µ in the range of 3.7 to 3.99, step 0.01, the mean

for double precision is equal to 23,288,148.13, for simple precision is equal to 1,377.96.

The range of standardised floating point values for double precision in IEEE-754 stan-

dard is on the order of 256, and simple precision floating point is on the order of 225. This

means that, on average, for the cases studied, utilization in double precision is about 1 in

400,000,000,000, and in simple precision, it gets to about 1 in 1,000,000.

We now present the following concepts:

• Local density measure: A measure of local density can be induced. The orbit of a

chaotic dynamical system is contained within some range, presumably within the set



87

Figure 31 – A topological graph.
Source: By the author.

of the real numbers. For some map xn+1 = f(xn) the collection of points is discrete

and therefore countable. By projecting this collection, we obtain a distribution of

points in space. M is the projection of the orbit from the attraction basin and d

is the Euclidean distance. From each point, we calculate its local density measure.

Put informally, given that a stone thrown by the dynamical system fell on the

coordinates xA, how many of the other stones thrown had fallen within the region

at most ε units away from xA? Regions over which no stone has fallen are not

especially informative about the behavior of the dynamical system, especially for

sparse sets.

• Topological graphs on objects contained in metric spaces: A topology preserves

mathematical information about some mathematical object. Through employing

topology methods and techniques, we try to cancel or at least compensate the

interference of precision and sampling errors in the distribution of numerical values.

Numerical indices are conferred on the n density values distributed on the real line,

order 1 for the lowest numeric value or weight attributed to a vertex and order

n for the largest, in increasing order by weight, respecting the total order in the

continuous line. In a topological graph, if vertex i comes before the vertex j, then

the vertex index i will also come before the vertex index j on the tuple.

Consider a frequency computation of indices over m distinct density distributions.

Given odds p, frequencies f and indices A and B withdrawn from the same uniform

distribution, then P (fA 6 fB) = P (fB 6 fA) for any pair of indices. This is a equivalence

relation for the ideal RNG. The histogram of an ensemble of several orderings illustrates

the distribution of the vertices of the graph. Obviously, if the ensemble includes the

entire topological graph population, then the histogram distribution will be uniform. The

global distribution is invariant, however the distribution for a portrait that includes only

a small sample of the population may not be equal to distribution for the complete set

of ensembles. For the ideal RNG, it is expected that the distribution for any ensemble

of topological graphs approaches that of the complete ensemble, given that the density

estimates, the amount of topological graphs and the sample range all have achieved a

high level of statistical significance. By analyzing a piece of the system with a high level

of statistical significance for the histograms, it is also possible to evaluate the topological

randomness of the values.
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Figure 32 – An unordered vector.
Source: By the author.

Figure 33 – An ordered density estimate vector.
Source: By the author.

We observe in the time series approach experiments that the trends of the logistic

map orbit or the data after decomposition of the diffused logistic map orbit vary from

one sample to another, therefore, it is justified to use several orbits or sections of orbits

in the analysis. The topological matrix is built upon topological graphs, with each graph

representing an orbit. In thermodynamics formalism, each realization of the system, with

its orbit O, is a state. So, the topological matrix works as an ensemble of states where each

estimate is represented by one histogram bar and it is assigned to one matrix column.

Figures 33, 32, 31 and 34 picture the method. P represents the set of positions, D is

the unordered sequence of density estimates and Do is the ordered sequence of density

estimates.

In a nutshell, we take m sequences of n orbits as one ensemble. Every sequence of n

values is taken as one microstate. In our implementation, the 10% highest density values

are highlighted as peak representatives in the distribution that estimates the invariant

density measure.

Take into account the following orbits:

O1 = (x1,1, x1,2, ..., x1,n)

O2 = (x2,1, x2,2, ..., x2,n)

Om = (xm,1, xm,2, ..., xm,n)

The topological matrix is formalized as follows: given functions density ρr(x), in-

dex i(x) such that 1 ≤ i(x) ≤ n ∈ N , sort ρ̂r(x) such that if ρ̂r(x) < ρ̂r(y), then
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Figure 34 – A topological matrix.
Source: By the author.

i(ρ̂r(x)) < i(ρ̂r(y)) for all x, y, and count c(x):

• Given that x ∈ O is random:











x1,1 x1,2 ... x1,n

... ... ... ...

xm,1 xm,2 ... xm,n











=⇒











ρr(x1,1) ρr(x1,2) ... ρr(x1,n)

... ... ... ...

ρr(xm,1) ρr(xm,2) ... ρr(xm,n)











=⇒











(ρr(x1,1), i(x1,1)) (ρr(x1,2), i(x1,2)) ... (ρr(x1,n), i(x1,n))

... ... ... ...

(ρr(xm,1), i(xm,1)) (ρr(xm,2), i(xm,2)) ... (ρr(xm,n), i(xm,n))











=⇒











i(x1,i(x)|i(ρ̂r(x))=1) i(x1,i(x)|i(ρ̂r(x))=2) ... i(x1,i(x)|i(ρ̂r(x))=n)

... ... ... ...

i(xm,i(x)|i(ρ̂r(x))=1) i(xm,i(x)|i(ρ̂r(x))=2) ... i(xm,i(x)|i(ρ̂r(x))=n)











=⇒

















c1(i(xj,k) = 1)

c2(i(xj,k) = 2)

...

cn(i(xj,k) = n)

















∼

















cb9n/10c+1(i(xj,k) = b9n/10c+ 1)

cb9n/10c+2(i(xj,k) = b9n/10c+ 2)

...

cn(i(xj,k) = n)
















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















m

m

...

m
















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1 ≤ j ≤ m

1 ≤ k ≤ n
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2.2.1.3 Diffusion-based time series analysis

It is readily acknowledged that a dissipative and chaotic map like the k-logistic

map does not lend itself to standard time series analysis and tools. Reason is that the

orbit of an highly chaotic system is usually indistinguishable from random noise. Let us

remind that the eigenvalues for a diffusive chaotic dynamical system expand and contract.

The expansion and contraction processes take place during the continued iteration of the

system. If we take a snapshot of a given iteration of the system, it is like if the system

ceased dissipation momentarily, and it is now energy-preserving.

The (one-dimensional) heat equation

∂U

∂t
= ∆U

is diffusive but, contrary to chaos, the diffusion process here moves towards equi-

librium. Therefore, if we apply the heat equation onto a snapshot of a chaotic orbit, in a

sense, we are reordering or "dechaotizing" the system.

Let the finite difference approach

∂U

∂t
= c2∂

2U

∂x2
⇒

Ut = Uxx, c = 1⇒

un+1
i − un

i

k
=
un

i+1 − 2un
i + un

i−1

h2
, k = ∆t, h = ∆x = 1⇒

un+1
i = k(un

i−1 + un
i+1) + (1− 2k)un

i .

Now we set the boundary conditions, assuming the first point of the orbit lies at

0 and the last point lies at L, to

U(0, t) = 0,

U(L, t) = 0,

t > 0.

And the initial condition
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Figure 35 – Time series decomposition on the k-logistic map with k = 0.
Source: By the author.

U(x, 0) = U0(x)

in order to transform the snapshot.

Note: after we apply the heat equation, the system is still energy-preserving.

Figure 35 examplifies time series decomposition on the original k-logistic map and

Figure 36 for the k-logistic map after heat equation is applied.

As the heat equation is linear and diffusion in dynamical systems is non-linear, de-

composition methods would readiliy distinguish between their respective diffusive bands.

Thus, after application of the heat equation, the system is still amenable to an array of

methods for chaos analysis.

Motif is a technical term that essentially defines patterns in time series. Motif

search is an important task on time series (191). It was previously unattainable for the

original k-logistic map, however we show in Chapter 3 that after rounds of the one-

dimensional heat difference equation we now can search for motifs in chaotic orbits in a

fashion that is coherent. For more information on motifs induced from time series we refer

to the work of Xu et al. (192).

2.2.1.4 Reduction of Longest Increasing Subsequence to Dynamic Time Warping

Sakai and Inenaga demonstrated that the dynamic time warping distance for any

given pair of value sequences can be calculated as the longest increasing subsequence

of an input variable that is a transformation of the original input (193). The converse
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Figure 36 – Time series decomposition on the diffused k-logistic map with k = 0.
Source: By the author.

must be true, that is, the longest increasing subsequence of a given input variable can

be calculated as the dynamic warping distance of a pair of input variables that is the

inverse transformation applied. As this relationship is biunivocal, an equivalence relation,

it is doable that both output values from different algorithms share the same statisti-

cal distribution, that is known for the LIS problem to be in the asymptotic limit the

Tracy-Widom distribution if the input variables are random. There is the issue that the

DTW input variables go through a sequence of transformations for this exchange. The

original variables are in R × R and the transformed variables are in R. This fact does

not immediately negate our assumption, if the distribution for the random DTW input

variables is measure-preserving transformable from a joint probability distribution to an

univariate probability distribution. It can be readily seen that further transformations in

the reduction process are of linear type and, as such, it effects for some distributions such

as the Gaussian and uniform types only the parameters of the distribution but not its

family.

Let us construct the following to show that the relationship between the outputs for

the DTW and the transformed LIS is indeed linear: we set the constant c for the reduction

from DTW to LIS to any arbitrary value for any x > 0 ∈ R. It is straightforward that

scalings for the LIS input variables depend only on the constant c. As we change c, every

input variable for the corresponding problem is scaled accordingly.

The transformation also relies on the length m of the first DTW (vector) input

variable and the length n of the second DTW input variable for the resulting (m+ (m−
1)(n − 1)) × (n + (m − 1)(n − 1)) graph. It leads to a joint probability distribution for
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the transformed input variable. The probability distribution for the pair of DTW input

variables can also be interpreted as a joint probability distribution of the same family

as that of the transformed input variables. By means of performing a measure-preserving

transformation from the joint probability distribution to R, as we change the values for m

or n, the map for the joint probability distribution for input variables is scaled accordingly

in P (X) ∈ [0, 1] ⊂ R. As for the convergence of the joint probability distribution, if one

random variable is drawn from a distribution X, and the other from a distribution Y ,

and either distribution converges, then the joint characteristic function

E[ei(uXn+vYn)] = E[eiuXn ]E[eivYn ]⇒

E[eiuX ]E[eivY ] = E[ei(uX+vY )]

also converges.

For the case of the convergence for the distribution of inputs that are random vari-

ables, the distribution of outputs in the asymptotic limit converges to the Tracy-Widom

distribution. Alternatively, there is the combinatorial argument that two discrete random

variables X and Y independently drawn from univariate distribution U each in probabil-

ity space (Ω,F ,P) over Ω of cardinality equal to 2n have a joint probability distribution

isomorphic to U for the variable Z whose probability space over Ω of cardinality equal to

22n.

One consequence of importance is related to the First Passage Percolation and

Last Passage Percolation over the directed Z
2 lattice where the distances from some point

at (x, y) to its neighbors at (x + 1, y) and at (x, y + 1) are randomly weighted. Walks

are allowed only in the north and east directions. FPP relates to the optimal path or

geodesic between (0, 0) and (m,n). Conversely, LPP relates to the maximal path without

cycles. For LPP the distribution of maximum is known to converge to the Tracy-Widom

distribution for some cases (194). It is conjectured that the distribution of the geodesic

also converges to this distribution (195). We see that a solution for the DTW can also be

represented over a Z
2 lattice. The essential difference between DTW and FPP paths is

that FPP allows "north" and "east" walks only, whereas DTW allows "north", "northeast"

and "east" walks. Figure 37 shows experimentally the similarity of the distributions for

FPP and DTW. It can be observed that the constraint of i.i.d. random weights for the

FPP and LPP is not satisfied as weights for the DTW lattice are drawn from the distance

function (x−y)2 between points x and y ∈ R applied over X×Y, where X,Y are random

vectors, X ∈ R
m, Y ∈ R

n. However, Figure 38 makes it noticeable that the distribution

of weights obtained is virtually indistinguishable from the empirical random distribution

of (x− y)2, x ∈ X, y ∈ Y.
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distribution of 1M DTWs, conventional DTW lattice

distance

F
re

q
u

e
n

c
y

1 2 3 4 5

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

distribution of 1M DTWs, percolation lattice

distance

F
re

q
u

e
n

c
y

2 3 4 5 6 7 8

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
3

0
0

0
0

distribution of 1M maximal paths, conventional DTW lattice

distance

F
re

q
u

e
n

c
y

10 15 20 25 30

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

distribution of 1M maximal paths, percolation lattice

distance

F
re

q
u

e
n

c
y

10 15 20 25 30

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

distribution of 1M random paths, conventional lattice

distance

F
re

q
u

e
n

c
y

5 10 15

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

distribution of 1M random paths, percolation lattice

distance

F
re

q
u

e
n

c
y

5 10 15

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Figure 37 – Distributions for DTW, maximal path length and random path length. By
"conventional" we mean the standard DTW lattice walkable in the "north",
"northeast" and "east" directions. By "percolation" we mean the FPP and
LPP lattices in Z2.
Source: By the author.
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distribution of 1M distances between random vectors X and Y
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Figure 38 – Distributions for weights and random variables.
Source: By the author.

Thus, assuming equivalence between the DTW and LIS we use concepts and meth-

ods from random matrix theory to perform analyses upon chaotic orbits and RNGs.

2.2.1.5 Projections over Complex Networks

Deterministic flavors and the application of the map both induce obvious cor-

relations that interfere with the investigation by means of immediate or nearby strong

correlations. For example, for the logistic map, there is the quadratic curve space repre-

sented per Poincaré plot between two adjacent orbit points that is a very obvious pattern.

Therefore, two any adjacent points are somehow correlated, however that is not the be-

havior of our interest. It is desirable to find objects related to a memory of the system or

patterns that are preserved even after several iterations of the evolution of the dynami-

cal system. i.e. long-range correlations characteristic of one-dimensional systems that are

preseved even after the decay of the nearby correlations.

We can mark potential correlations as relations in a graph (196). For the graph to

be as information-rich as possible, we must consider as many non-straightforward correla-

tions as possible. Non-straightforward correlations can be interesting due to the property

of decay, which is expected to be of exponential order for one-dimensional chaotic dynam-

ical maps. In the Alves and Bruno approach (12), nodes that represent the point iterates

i and i+1 with straightforward quadratic correlation are linked together along with other

nodes within a radius. We want to get rid of this type of network connection in order to

depthen our study of the long-range correlations. Luchesi and Bruno demonstrated via

empirical experiments that the expected correlation strength for the logistic map weakens

significantly after ten iterations or more (197). Therefore, we introduce a modification in

the proposed method of Alves and Bruno (12), which we now call the baseline method,

and set a gap of 10 points in the original phase space between any nodes on the projected
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Table 2 – Mean and standard deviations for diverse measures. RANDU is a legacy random
number generator that was developed by IBM.

generator DTW > 1σ < −1σ > 2σ < −2σ euclidean
k = 0 3.93±0.73 5.04±0.34 2.43±1.00 5.68±0.28 1.10±1.10 0.50±0.35
k = 1 5.38±0.74 6.52±0.36 3.64±1.49 7.18±0.30 1.83±1.78 0.50±0.31
k = 2 5.59±0.68 6.66±0.34 3.96±1.58 7.26±0.29 1.77±1.98 0.50±0.30
k = 3 5.72±0.69 6.82±0.37 4.08±1.62 7.44±0.32 1.72±2.04 0.50±0.29
k = 4 5.65±0.66 6.70±0.34 4.05±1.60 7.28±0.29 1.74±2.03 0.50±0.29
k = 5 5.65±0.67 6.71±0.35 4.05±1.60 7.30±0.30 1.71±2.03 0.49±0.29
k = 6 5.64±0.67 6.71±0.35 4.04±1.60 7.31±0.30 1.69±2.02 0.51±0.29
k = 7 5.64±0.68 6.73±0.36 4.02±1.59 7.34±0.32 1.65±2.00 0.51±0.29
k = 8 5.62±0.67 6.68±0.35 4.03±1.59 7.27±0.30 1.68±2.01 0.50±0.29
k = 9 5.65±0.66 6.70±0.34 4.05±1.60 7.29±0.29 1.73±2.03 0.50±0.29

RANDU 5.61±0.65 6.64±0.33 4.04±1.59 7.21±0.29 1.77±2.04 0.50±0.29
/dev/random 5.65±0.69 6.77±0.38 4.03±1.60 7.39±0.34 1.60±1.99 0.50±0.29

ANU 5.61±0.67 6.68±0.36 4.02±1.59 7.28±0.31 1.67±2.00 0.50±0.29

Source: By the author.

network. As such, after this modification we suggest to investigate surges of unusual high

correlation where such correlation is not of short-term and/or expected.

Next improvement is what we call the Correlation Network Projection. Alves and

Bruno employed a radius to induce correlations between points and an empirical approach

which is an impediment to the induction of scale-free network features, since the radius

imposes a scale. The CNP does not use a radius but certain statistical moments that are

independent of scale, computed over a DTW adjacency matrix built after application of

the all-pairs DTW with a window size W onto the orbit points. It works much like the

matrix profile, but instead of the vector with minimal distances like in the matrix profile,

we keep the full DTW matrix. We are justified in the use of the DTW measure in virtue

of its discrimination ability as seen on Table 2.2.1.5. Additional preliminary results are

presented in the Appendix.

We perform the CNP on the original k-logistic map orbit instead of the diffused

orbit for the sake of preserving the original dynamics. The decay for the probability of

observing a given sequence of symbols is usually exponential. Therefore, in order to use

a window with low probability of collisions when the orbit is small (m ≥ 30), we chose to

apply a similarity measure, which does not require exact matching between sequences of

symbols. The purpose of computing the DTW between non-intersecting windows, like in

the matrix profile, is to extract as much information as possible from the orbit, considering

each network maps – in the sense of ensembles – to exactly one orbit. It is like a single

state which then turns into a complete ensemble, with its contained windows and their

sequences of values as the new states.
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One possible physical meaning of DTW, depending on the measure employed,

could be to calculate how much energy is needed for state A to jump onto state B,

assuming the process is reversible. However, we pay attention that were the aimed goal

to perform comparisons of microstates as symbol sequences independently of the value

of the actual symbol si, save for si = sj, i 6= j , a better fit would be to use a family of

algorithms like those of Longest Common Subsequence. Furthermore, DTW is not ideal

to investigate issues related with the multiscale behavior of nonlinear systems. Instead,

we choose the DTW for its robust performance on the time scale and that its output is

distributed obeying a Tracy-Widom-like distribution. We justify choosing the value of 30

for window size on the basis of the probabilistic argument that the probability, considering

the IEEE-754 floating-point double-precision, that any two distinct regions of a sequence

of 30 draws from random variables are exactly the same and subsequently, have a time

warping distance of exactly zero, is significantly small and lies below the threshold of

5× 10−958

The tails of the Tracy-Widom distribution are able to indicate certain statistical

features of the random processes and phase transitions that deviate from the center of

the distribution, as it is seen in experiments (157). As the Tracy-Widom distribution does

not have a straightforward analytical form, a simple and conservative starting point for

our analysis is to induce graphs onto the DTW adjacency matrix by means of the usual

standard deviations. In our experiment we apply 1σ, 2σ and 3σ below and above the

mean.

Our approach is to induce a network comprised only of outlying edges and project

it as a spatial network, and we have thus a cue as for the differences between networks.

Complex networks analysis of the structure of dynamical systems has been met with

success (198). Applying this rationale to a PRNG or true RNG, we then attempt to verify

their fitness by the means of a distribution that, in the case of LIS and, we assume, also

DTW, converges to its asymptotic form when the inputs are merely random noise and

should present deviations when the input is not perfectly random.

Ideally, we want the orbits and also the windows to be impossibly large. In turn,

we would have incredibly informative networks but computational constraints prevent us

from doing so. In practice, we attained networks of about 2,000 nodes which led to several

days of processing time under 8-core/16-thread clusters. Shrinking the networks to 500

nodes, we note a remarkable decline in terms of accuracy during preliminary tests, as

shown in Figures 39 and 40.

< −3σ and > 3σ CNP with 2,000 nodes have shown very small networks, some-

times without any edges. < −1σ, > 1σ and > 2σ networks with 2,000 nodes possess an

exceedingly high number of edges, which barred us from proceeding due to computational

constraints. The only remaining candidate were the < −2σ CNP.
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Figure 39 – Ratio of accuracy between 500-node and 2000-node networks, k ∈
{0, 1, 2, 3, 4}.
Source: By the author.

Figure 40 – Ratio of accuracy between 500-node and 2000-node networks, k ∈
{5, 6, 7, 8, 9}.
Source: By the author.
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Furthermore, we use the RADAR algorithm to spot the outlying nodes and it is

combined with computational geometric methods such as the Delaunay Triangulation.

An improvement here over the approach used in (12) is that while the preceding work

allowed for an unique visualization for each network only, by using RADAR in combination

with computational geometric methods we allow instead for a selection of the outlying

nodes induced by the outlying edges and, in this manner, we generate several distinct

visualizations of the same orbit. In other words, the exact same network now can produce

several geometries, depending on the parameters used.
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3 RESULTS

We present results for the topological matrix, multi-tap LFSR, heat diffusion,

correlation network projection, and anomaly network projection. We ran our tests in

double-precision floating point conformant to the IEEE-754 standard or arbitrary preci-

sion decimal arithmetic up to 1,000 digits. We made use of software packages R (199),

Octave (200), Mathematica (201), Weka (202), LIBSVM (203), JGraphT (204), NetworkX

(205) and Gephi (206).

For the topological matrix, we built its data structure as a dense matrix with

dimensions of 105 × 105 – 10 billion elements total. That is, we compute 105 different

parametrizations of the k-logistic map with r ∼ 4 save for the small perturbations –

< 0.001 – added to the system, and the orbits’ size is always equal to 105. We allow

for several thousand transient iterations of the k-logistic map before doing any actual

computation. Then, we compute a window with the frequency distributions of the top-n

points. This window has sizes ∈ {1, 000, 5, 000, 10, 000, 20, 000}.

For verifying the robustness of the PRNG, statistical tests are applied via NIST

SP 800-22 Rev. 1a and SP 800-90B (71, 207), TestU01 version 1.2.3 of the University of

Montréal, Canada (208) and PractRand pre-release version 0.95 by Chris Doty-Humphrey

(209) suites. The implementation of the SP 800-22 suite Rev. 1a available on the site of

the NIST presents flaws as instability and output presenting wrong results for the tests,

for this reason for this work it was employed an alternative implementation in Python

in place of official implementation. The NIST results are condensed in the Figure 9.

The orbits studied have 10 million bytes for NIST, 480 million bytes for TestU01 and

1 trillion bytes for PractRand. NIST and PractRand received as inputs base-2 maps

k ∈ {0, 5, 10, 15, 20, 25, 30}, instead of the decimal map. As the orbits differ only up to

a simple change of numeric base, the principles studied in the base-2 k-logistic map are

precisely the same we investigate using the base-10 k-logistic map, which we use in all

other tests. The complete set of NIST results is presented in the Appendix. TestU01’s

SmallCrush test received IEEE-754 floating-point data each converted from one 8-byte

stream.

For the heat equation applied on the k-logistic map, we used a ∆t = 0.1 and

sufficient boundary conditions in order to conserve the energy of the system. Orbits of

the k-logistic maps are sets with 2,000 points each. 10 distinct diffused orbits were subject

to all-pairs DTW computation, that is, a 10×10 matrix with its element Mi,j as the DTW

distance of the pair i, j and then their mean and standard deviation were recorded.

For the baseline networks, we projected the networks onto the Cartesian plane



102

using a radius r = 0.12, vertical factor of y = 1.0 and a horizontal factor of x = 0.005.

PCA plots were drawn taking into account the components with highest variances and,

therefore, the highest weight and significance. To generate the violin plots we followed

the procedure of Alves and Bruno (12), partitioning the space into 11 horizontal stripes

or bands.

For building the X matrix of attributes for use with RADAR, we choose as at-

tributes x and y coordinates of the nodes, indices ∆ between the point and its near-

est neighbor in the matrix profile, mean Spearman correlation between windows, vari-

ance of the Spearman correlation between windows, mean DTW distance between win-

dows, variance of the DTW distance between windows, number of neighbors within radii

= {0.03, 0.06, 0.12} and estimate of density for radii = {0.01, 0.02, 0.04, 0.08}. Structural

tests on graphs whose DTW values ∈ {> 1σ,> 2σ,< −1σ} would not complete, due

to an exceedingly large number of edges, in the order of over 290K. We present results

with smaller network sizes in place of the larger networks in the Annex. The projected

networks were used for the Delaunay Triangulation plots after application of the RADAR

algorithm. We use 3 samples for each k-logistic map parametrization.

Transformation of networks into feature vectors via LLNA, LLNA-BP and LLNA-

DTEP performed as specified on their respective references. Rules used for LLNA, LLNA-

BP and LLNA-DTEP were B135678/S03456 and B0157/S457 due to their strong perfor-

mance on synthetic networks. All LLNAs ran for 500 iterations and the first 20 transient

iterations were thrown out. Structural measurements relied on a six-features histogram:

comprising of the average hierachical degrees levels 1, 2 and 3, the average path length,

average transitivity and degree assortativity. Statistics from Gephi include unweighted,

undirected network diameter, mean clustering coefficient, modularity, average path length,

mean degree and statistical inference community detection (206). Classification was per-

formed via SVM 100 times for every test and mean accuracy plus standard deviation

are reported in percentages. Classes were split in two sets. The first comprises of classes

k ∈ {0, 1, 2, 3, 4} and the other of classes k ∈ {5, 6, 7, 8, 9}. SVM was preferred over

other alternatives due to its learning consistency guarrantees with a convex optimization

algorithm.

All the LLNA implementations and DTW distance calculations were coded in Java

by the author, to ensure a sane and parametrically consistent comparison between the

diverse applied methods. RADAR was coded by the author in Python. The matrix profile

codes makes extensive use of the package SCAMP (210).

• Application of 8 threshold values for 8 different monochrome realizations.

• Morphological transformations into spatial, weighted, graphs.

• Topological transformations into unweighted, undirected graphs.
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“k = 0, top 1k” “k = 0, top 5k”

“k = 0, top 10k” “k = 0, top 20k”

Figure 41 – Histograms of topological 105×105 matrices for the k-logistic map with k = 0
and r ∼ 4.0.
Source: By the author.

Default visualizations were performed by Mathematica for unweighted, undirected

graphs. It was computationally doable to visualize the {> 1σ,> 2σ,< −1σ} graphs beside

the < −2σ counterparts.

Eventually we compare the k-logistic map, k ∈ [0, 9], against the quantum random

numbers deployed by the Australian National University (211, 212) and also the random

numbers generated by the /dev/random Linux device.
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“k = 1, top 1k” “k = 1, top 5k”

“k = 1, top 10k” “k = 1, top 20k”

Figure 42 – Histograms of topological 105×105 matrices for the k-logistic map with k = 1
and r ∼ 4.0.
Source: By the author.



105

“k = 2, top 1k” “k = 2, top 5k”

“k = 2, top 10k” “k = 2, top 20k”

Figure 43 – Histograms of topological 105×105 matrices for the k-logistic map with k = 2
and r ∼ 4.0.
Source: By the author.
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“k = 3, top 1k” “k = 3, top 5k”

“k = 3, top 10k” “k = 3, top 20k”

Figure 44 – Histograms of topological 105×105 matrices for the k-logistic map with k = 3
and r ∼ 4.0.
Source: By the author.
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“k = 4, top 1k” “k = 4, top 5k”

“k = 4, top 10k” “k = 4, top 20k”

Figure 45 – Histograms of topological 105×105 matrices for the k-logistic map with k = 4
and r ∼ 4.0.
Source: By the author.
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“k = 5, top 1k” “k = 5, top 5k”

“k = 5, top 10k” “k = 5, top 20k”

Figure 46 – Histograms of topological 105×105 matrices for the k-logistic map with k = 5
and r ∼ 4.0.
Source: By the author.
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“k = 6, top 1k” “k = 6, top 5k”

“k = 6, top 10k” “k = 6, top 20k”

Figure 47 – Histograms of topological 105×105 matrices for the k-logistic map with k = 6
and r ∼ 4.0.
Source: By the author.
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“k = 7, top 1k” “k = 7, top 5k”

“k = 7, top 10k” “k = 7, top 20k”

Figure 48 – Histograms of topological 105×105 matrices for the k-logistic map with k = 7
and r ∼ 4.0.
Source: By the author.
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“k = 8, top 1k” “k = 8, top 5k”

“k = 8, top 10k” “k = 8, top 20k”

Figure 49 – Histograms of topological 105×105 matrices for the k-logistic map with k = 8
and r ∼ 4.0.
Source: By the author.
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“k = 9, top 1k” “k = 9, top 5k”

“k = 9, top 10k” “k = 9, top 20k”

Figure 50 – Histograms of topological 105×105 matrices for the k-logistic map with k = 9
and r ∼ 4.0.
Source: By the author.
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Table 3 – Failures for Smallcrush RNG tests for the k-logistic map with k = 0 (base 2)
and r ∼ 4.0.

test # test baseline x8 LFSR x8 LFSR
1 BirthdaySpacings * *
2 Collision * *
3 Gap * * *
4 SimpPoker * *
5 CouponCollector * *
6 MaxOft * *
6 MaxOft AD * * *
7 WeightDistrib * * * *
9 HammingIndep * * * *
10 RandomWalk1 H * * * *
10 RandomWalk1 M * * * *
10 RandomWalk1 J * * * *
10 RandomWalk1 R * * *
10 RandomWalk1 C * *

Source: By the author.

Table 4 – Failures for Smallcrush RNG tests for the k-logistic map with k = 5 (base 2)
and r ∼ 4.0.

test # test baseline x8 LFSR x8 LFSR
1 BirthdaySpacings * *
2 Collision * *
3 Gap * * *
4 SimpPoker * *
5 CouponCollector * *
6 MaxOft * *
6 MaxOft AD * * *
7 WeightDistrib * * *
9 HammingIndep * * * *
10 RandomWalk1 H * * * *
10 RandomWalk1 M * * * *
10 RandomWalk1 J * * * *
10 RandomWalk1 R * *
10 RandomWalk1 C * *

Source: By the author.



114

Table 5 – Failures for Smallcrush RNG tests for the k-logistic map with k = 10 (base 2)
and r ∼ 4.0.

test # test baseline x8 LFSR x8 LFSR
1 BirthdaySpacings *
2 Collision * *
3 Gap * *
4 SimpPoker *
5 CouponCollector * *
6 MaxOft * *
6 MaxOft AD * * * *
7 WeightDistrib * * *
9 HammingIndep * * *
10 RandomWalk1 H * * * *
10 RandomWalk1 M * * * *
10 RandomWalk1 J * * * *
10 RandomWalk1 R *
10 RandomWalk1 C *

Source: By the author.

Table 6 – Failures for Smallcrush RNG tests for the k-logistic map with k = 15 (base 2)
and r ∼ 4.0.

test # test baseline x8 LFSR x8 LFSR
1 BirthdaySpacings *
2 Collision * *
3 Gap *
4 SimpPoker
5 CouponCollector * *
6 MaxOft *
6 MaxOft AD * *
7 WeightDistrib
9 HammingIndep
10 RandomWalk1 H *
10 RandomWalk1 M
10 RandomWalk1 J
10 RandomWalk1 R *
10 RandomWalk1 C *

Source: By the author.
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Table 7 – Failures for Smallcrush RNG tests for the k-logistic map with k = 20 (base 2)
and r ∼ 4.0.

test # test baseline x8 LFSR x8 LFSR
1 BirthdaySpacings *
2 Collision
3 Gap * *
4 SimpPoker
5 CouponCollector * *
6 MaxOft *
6 MaxOft AD
7 WeightDistrib *
9 HammingIndep
10 RandomWalk1 H
10 RandomWalk1 M
10 RandomWalk1 J
10 RandomWalk1 R
10 RandomWalk1 C

Source: By the author.

Table 8 – Failures for Smallcrush RNG tests for the k-logistic map with k = 25 (base 2)
and r ∼ 4.0.

test # test baseline x8 LFSR x8 LFSR
1 BirthdaySpacings
2 Collision
3 Gap * *
4 SimpPoker
5 CouponCollector * *
6 MaxOft *
6 MaxOft AD
7 WeightDistrib
9 HammingIndep
10 RandomWalk1 H
10 RandomWalk1 M
10 RandomWalk1 J
10 RandomWalk1 R
10 RandomWalk1 C

Source: By the author.
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Table 9 – Failures for Smallcrush RNG tests for the k-logistic map with k = 30 (base 2)
and r ∼ 4.0.

test # test baseline x8 LFSR x8 LFSR
1 BirthdaySpacings
2 Collision
3 Gap * *
4 SimpPoker
5 CouponCollector * *
6 MaxOft *
6 MaxOft AD
7 WeightDistrib *
9 HammingIndep
10 RandomWalk1 H
10 RandomWalk1 M
10 RandomWalk1 J
10 RandomWalk1 R
10 RandomWalk1 C

Source: By the author.

Table 10 – # failures for PractRand RNG tests for the k-logistic map (base 2) and r ∼ 4.0.

k baseline x8 LFSR x8 LFSR
0 107 147 199 96
5 111 158 212 97
10 125 187 223 95
15 125 202 251 96
20 121 201 252 97
25 125 200 245 96
30 127 205 252 95

Source: By the author.

Table 11 – Assessed minimal entropy for the k-logistic map (base 2) and r ∼ 4.0.
Minimal entropy for the vanilla LFSR at maximal 32-bit period is 0.74.

k baseline x8 LFSR x8 LFSR
0 0,66 3,72 7,47 7,47
5 0,77 6,28 7,47 7,47
10 1,62 7,32 7,47 7,47
15 1,75 7,47 7,53 5,97
20 2,74 7,47 7,47 7,47
25 3,50 7,47 7,43 7,47
30 6,49 7,56 7,47 7,47

Source: By the author.



117

Table 12 – # failed SP 800-22 Rev. 1 NIST tests for the k-logistic map (base 2) and
r ∼ 4.0.

k baseline x8 LFSR x8 LFSR
k=0 12 11 6 7
k=5 11 10 6 8
k=10 10 7 6 7
k=15 5 2 4 2
k=20 0 0 0 0
k=25 0 0 0 1
k=30 0 0 0 0

Source: By the author.

“k = 0, ws = 30” “k = 0, ws = 60”

“k = 0, ws = 120” “k = 5, ws = 30”

“k = 5, ws = 60” “k = 5, ws = 120”

Figure 51 – Motif extraction with the matrix profile and different window sizes for the
k-logistic map with r ∼ 4.0 after diffusion.
Source: By the author.
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“r = 3.97”

“r ∼ 4.0”

Figure 52 – Means for 10×10 DTW dissimilarity matrix and different diffusion intensities
for the k-logistic map, diffusion time = 1.
Source: By the author.
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“r = 3.97, 100-pass”

“r ∼ 4.0, 100-pass”

Figure 53 – Means for 10×10 DTW dissimilarity matrix and different diffusion intensities
for the k-logistic map, diffusion time = 100.
Source: By the author.
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“r = 3.97”

“r ∼ 4.0”

Figure 54 – Standard deviations for 10× 10 DTW dissimilarity matrix and different dif-
fusion intensities for the k-logistic map, one pass diffusion.
Source: By the author.



121

“r = 3.97”

“r ∼ 4.0”

Figure 55 – Standard deviations for 10× 10 DTW dissimilarity matrix and different dif-
fusion intensities for the k-logistic map, one hundred passes diffusion.
Source: By the author.
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“baseline network, gap = 0”

“baseline network, gap = 10”

“< 2σ network”

Figure 56 – Network statistics for baseline and < 2σ networks.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 57 – PCA projection for structural features of k-logistic map networks, k ∈
{0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 58 – PCA projection for rule B135678/S03456 LLNA features of k-logistic map
networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 59 – PCA projection for rule B135678/S03456 LLNA-BP features of k-logistic map
networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 60 – PCA projection for rule B135678/S03456 LLNA-DTEP features of k-logistic
map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 61 – PCA projection for rule B0157/S457 LLNA features of k-logistic map net-
works, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 62 – PCA projection for rule B0157/S457 LLNA-BP features of k-logistic map
networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 63 – PCA projection for rule B0157/S457 LLNA-DTEP features of k-logistic map
networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 64 – PCA projection for structural features of k-logistic map networks, k ∈
{5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 65 – PCA projection for rule B135678/S03456 LLNA features of k-logistic map
networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 66 – PCA projection for rule B135678/S03456 LLNA-BP features of k-logistic map
networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 67 – PCA projection for rule B135678/S03456 LLNA-DTEP features of k-logistic
map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 68 – PCA projection for rule B0157/S457 LLNA features of k-logistic map net-
works, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 69 – PCA projection for rule B0157/S457 LLNA-BP features of k-logistic map
networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 70 – PCA projection for rule B0157/S457 LLNA-DTEP features of k-logistic map
networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 71 – Boxplot of principal component for structural features of k-logistic map net-
works, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 72 – Boxplot of principal component for rule B135678/S03456 LLNA features of
k-logistic map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 73 – Boxplot of principal component for rule B135678/S03456 LLNA-BP features
of k-logistic map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 74 – Boxplot of principal component for rule B135678/S03456 LLNA-DTEP fea-
tures of k-logistic map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 75 – Boxplot of principal component for rule B0157/S457 LLNA features of k-
logistic map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.



142

“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 76 – Boxplot of principal component for rule B0157/S457 LLNA-BP features of
k-logistic map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 77 – Boxplot of principal component for rule B0157/S457 LLNA-DTEP features
of k-logistic map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 78 – Boxplot of principal component for structural features of k-logistic map net-
works, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 79 – Boxplot of principal component for rule B135678/S03456 LLNA features of
k-logistic map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 80 – Boxplot of principal component for rule B135678/S03456 LLNA-BP features
of k-logistic map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 81 – Boxplot of principal component for rule B135678/S03456 LLNA-DTEP fea-
tures of k-logistic map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 82 – Boxplot of principal component for rule B0157/S457 LLNA features of k-
logistic map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.



149

“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 83 – Boxplot of principal component for rule B0157/S457 LLNA-BP features of
k-logistic map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 84 – Boxplot of principal component for rule B0157/S457 LLNA-DTEP features
of k-logistic map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 85 – PCA variance ratio for structural features of k-logistic map networks, k ∈
{0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.



152

“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 86 – PCA variance ratio for rule B135678/S03456 LLNA features of k-logistic map
networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 87 – PCA variance ratio for rule B135678/S03456 LLNA-BP features of k-logistic
map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 88 – PCA variance ratio for rule B135678/S03456 LLNA-DTEP features of k-
logistic map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 89 – PCA variance ratio for rule B0157/S457 LLNA features of k-logistic map
networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 90 – PCA variance ratio for rule B0157/S457 LLNA-BP features of k-logistic map
networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 91 – PCA variance ratio for rule B0157/S457 LLNA-DTEP features of k-logistic
map networks, k ∈ {0, 1, 2, 3, 4}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 92 – PCA variance ratio for structural features of k-logistic map networks, k ∈
{5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 93 – PCA variance ratio for rule B135678/S03456 LLNA features of k-logistic map
networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 94 – PCA variance ratio for rule B135678/S03456 LLNA-BP features of k-logistic
map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 95 – PCA variance ratio for rule B135678/S03456 LLNA-DTEP features of k-
logistic map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 96 – PCA variance ratio for rule B0157/S457 LLNA features of k-logistic map
networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 97 – PCA variance ratio for rule B0157/S457 LLNA-BP features of k-logistic map
networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“baseline, gap = 0” “baseline, gap = 10”

“> 1σ (500-node)” “> 2σ (500-node)”

“< −1σ (500-node)” “< −2σ”

Figure 98 – PCA variance ratio for rule B0157/S457 LLNA-DTEP features of k-logistic
map networks, k ∈ {5, 6, 7, 8, 9}, r = 3.9.
Source: By the author.
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“r = 3.7, baseline” “r = 3.8, baseline”

“r = 3.9, baseline” “r ∼ 4.0, baseline”

“r = 3.7, gap = 10” “r = 3.8, gap = 10”

“r = 3.9, gap = 10” “r ∼ 4.0, gap = 10”

Figure 99 – Degree distribution for the k-logistic map, baseline networks and with gap =
10.
Source: By the author.
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“r = 3.7, > 2σ” “r = 3.8, > 2σ”

“r = 3.9, > 2σ” “r ∼ 4.0, > 2σ”

“r = 3.7, < −2σ” “r = 3.8, < −2σ”

“r = 3.9, < −2σ” “r ∼ 4.0, < −2σ”

Figure 100 – Degree distribution for k-logistic map CNP.
Source: By the author.



167

“r = 3.7, baseline” “r = 3.8, baseline”

“r = 3.9, baseline” “r ∼ 4.0, baseline”

“r = 3.7, gap = 10” “r = 3.8, gap = 10”

“r = 3.9, gap = 10” “r ∼ 4.0, gap = 10”

Figure 101 – Violin plots for k-logistic map with k = 0, baseline networks and with gap
= 10.
Source: By the author.
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“r = 3.7, baseline” “r = 3.8, baseline”

“r = 3.9, baseline” “r ∼ 4.0, baseline”

“r = 3.7, gap = 10” “r = 3.8, gap = 10”

“r = 3.9, gap = 10” “r ∼ 4.0, gap = 10”

Figure 102 – Violin plots for k-logistic map with k = 5, baseline networks with gap = 0
and gap = 10.
Source: By the author.
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“r = 3.7, > 2σ” “r = 3.8, > 2σ”

“r = 3.9, > 2σ” “r ∼ 4.0, > 2σ”

“r = 3.7, < −2σ” “r = 3.8, < −2σ”

“r = 3.9, < −2σ” “r ∼ 4.0, < −2σ”

Figure 103 – Violin plots for k-logistic map CNP with k = 0.
Source: By the author.
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“r = 3.7, > 2σ” “r = 3.8, > 2σ”

“r = 3.9, > 2σ” “r ∼ 4.0, > 2σ”

“r = 3.7, < −2σ” “r = 3.8, < −2σ”

“r = 3.9, < −2σ” “r ∼ 4.0, < −2σ”

Figure 104 – Violin plots for k-logistic map CNP with k = 5.
Source: By the author.
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Table 13 – Results for network classification, k-logistic map CNP with k = {0, 1, 2, 3, 4}
and r = 3.7.

baseline gap = 10 < −2σ
Structural measurements 69.95±0.60 68.82±0.59 71.04±0.70
LLNA B135678/S03456 58.39±1.80 56.04±1.59 72.48±1.41

LLNA-BP B135678/S03456 37.72±1.53 28.94±3.85 68.66±0.91
LLNA-DTEP B135678/S03456 61.13±1.10 60.77±1.12 69.87±0.49

LLNA B0157/S457 53.01±1.38 52.28±1.67 73.11±1.18
LLNA-BP B0157/S457 42.13±1.32 40.66±1.48 70.04±1.23

LLNA-DTEP B0157/S457 58.06±1.14 61.09±1.05 70.39±0.53

Source: By the author.

Table 14 – Results for network classification, k-logistic map CNP with k ∈ {0, 1, 2, 3, 4}
and r = 3.8.

baseline gap = 10 < −2σ
Structural measurements 60.03±0.82 65.64±0.69 71.34±0.73
LLNA B135678/S03456 55.30±1.63 53.29±1.92 73.35±1.73

LLNA-BP B135678/S03456 31.89±1.20 33.32±2.57 71.84±1.08
LLNA-DTEP B135678/S03456 53.55±1.19 56.20±1.24 72.00±0.95

LLNA B0157/S457 54.85±1.61 55.75±1.64 72.52±1.50
LLNA-BP B0157/S457 31.99±1.19 35.25±1.24 72.22±0.81

LLNA-DTEP B0157/S457 53.41±0.87 55.78±1.19 63.84±0.71

Source: By the author.

Table 15 – Results for network classification, k-logistic map CNP with k ∈ {0, 1, 2, 3, 4}
and r = 3.9.

baseline gap = 10 < −2σ
Structural measurements 59.82±0.61 64.51±0.89 73.55±0.68
LLNA B135678/S03456 53.01±1.63 54.53±1.80 69.55±1.68

LLNA-BP B135678/S03456 31.75±1.60 39.87±1.64 68.37±0.76
LLNA-DTEP B135678/S03456 51.60±1.34 52.65±1.46 67.19±0.52

LLNA B0157/S457 43.21±1.68 49.02±1.57 72.19±1.44
LLNA-BP B0157/S457 30.33±1.16 37.21±1.59 68.65±0.55

LLNA-DTEP B0157/S457 53.67±1.22 54.39±1.04 66.36±0.37

Source: By the author.
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Table 16 – Results for network classification, k-logistic map CNP with k ∈ {0, 1, 2, 3, 4}
and r ∼ 4.0.

baseline gap = 10 < −2σ
Structural measurements 64.20±0.67 62.90±0.73 53.23±0.82
LLNA B135678/S03456 47.12±1.56 45.15±1.85 52.31±1.92

LLNA-BP B135678/S03456 28.29±3.05 23.49±1.36 50.12±1.04
LLNA-DTEP B135678/S03456 57.85±1.40 58.18±1.22 46.20±0.84

LLNA B0157/S457 47.90±1.88 47.84±1.90 51.01±1.47
LLNA-BP B0157/S457 33.41±2.72 34.67±1.71 46.57±1.04

LLNA-DTEP B0157/S457 59.88±1.28 58.89±1.04 46.02±0.88

Source: By the author.
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Table 17 – Results for network classification, k-logistic map CNP with k ∈ {5, 6, 7, 8, 9}
and r = 3.7.

baseline gap = 10 < −2σ
Structural measurements 23.89±1.14 19.52±0.86 19.79±1.00
LLNA B135678/S03456 20.76±1.75 19.17±1.73 19.26±1.88

LLNA-BP B135678/S03456 20.67±1.22 20.82±1.11 21.43±1.40
LLNA-DTEP B135678/S03456 20.63±1.46 20.51±1.28 19.44±1.04

LLNA B0157/S457 20.17±1.80 19.67±1.77 19.09±1.69
LLNA-BP B0157/S457 21.38±1.24 22.97±1.11 22.27±1.28

LLNA-DTEP B0157/S457 22.27±1.23 22.03±0.99 20.80±1.22

Source: By the author.

Table 18 – Results for network classification, k-logistic map CNP with k ∈ {5, 6, 7, 8, 9}
and r = 3.8.

baseline gap = 10 < −2σ
Structural measurements 16.81±1.17 17.58±1.14 22.73±1.00
LLNA B135678/S03456 19.49±2.04 20.81±1.86 20.69±1.94

LLNA-BP B135678/S03456 20.56±1.18 22.16±1.01 21.39±1.35
LLNA-DTEP B135678/S03456 21.80±1.42 18.40±1.49 22.78±0.91

LLNA B0157/S457 19.73±1.75 20.32±1.88 21.79±1.64
LLNA-BP B0157/S457 20.65±1.24 18.96±1.21 21.01±1.15

LLNA-DTEP B0157/S457 18.91±1.15 18.17±1.05 22.90±0.55

Source: By the author.

Table 19 – Results for network classification, k-logistic map CNP with k ∈ {5, 6, 7, 8, 9}
and r = 3.9.

baseline gap = 10 < −2σ
Structural measurements 21.12±1.12 21.31±1.14 21.93±1.13
LLNA B135678/S03456 20.58±1.79 20.37±1.94 20.24±2.05

LLNA-BP B135678/S03456 17.82±1.33 19.43±1.44 21.31±1.38
LLNA-DTEP B135678/S03456 20.39±1.33 18.56±1.34 19.60±1.09

LLNA B0157/S457 21.26±1.71 20.84±1.72 19.84±1.62
LLNA-BP B0157/S457 19.68±1.46 18.64±1.33 20.62±1.36

LLNA-DTEP B0157/S457 21.00±1.31 20.97±0.98 20.04±1.19

Source: By the author.
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Table 20 – Results for network classification, k-logistic map CNP with k ∈ {5, 6, 7, 8, 9}
and r ∼ 4.0.

baseline gap = 10 < −2σ
Structural measurements 17.81±1.24 17.68±1.22 20.88±1.02
LLNA B135678/S03456 19.82±1.86 19.14±1.57 19.73±1.74

LLNA-BP B135678/S03456 18.60±1.04 20.34±1.19 21.59±1.19
LLNA-DTEP B135678/S03456 18.11±1.40 18.44±1.52 21.72±1.13

LLNA B0157/S457 19.60±1.79 19.56±1.77 20.45±1.77
LLNA-BP B0157/S457 19.43±1.36 20.96±1.22 20.74±1.32

LLNA-DTEP B0157/S457 18.82±1.32 18.36±1.31 21.71±1.10

Source: By the author.
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“k-logistic map, k = 0” “k-logistic map, k = 1” “k-logistic map, k = 2”

“k-logistic map, k = 3” “k-logistic map, k = 4” “k-logistic map, k = 5”

“k-logistic map, k = 6” “k-logistic map, k = 7” “k-logistic map, k = 8”

“k-logistic map, k = 9” “ANU QRNG” “/dev/random RNG”

Figure 105 – Histograms displaying the Tracy-Widom-like distribution for the distribu-
tion of nonzero DTW values for the adjacency matrix. r = 3.9 for k-logistic
map values.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 106 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.7.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 107 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.99999.
Source: By the author.
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“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 108 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices. ANU Quantum and Linux /dev/random RNGs CNP.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 109 – Histograms for area distribution of Delaunay triangulations of baseline com-
plex networks for networks with 5,000 vertices, k-logistic map CNP with
k = 0 and k = 5, r = 3.7.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 110 – Histograms for area distribution of Delaunay triangulations of baseline com-
plex networks for networks with 5,000 vertices, k-logistic map CNP with
k = 0 and k = 5, r = 3.99999.
Source: By the author.

“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 111 – Histograms for area distribution of Delaunay triangulations of baseline com-
plex networks for networks with 5,000 vertices. ANU Quantum and Linux
/dev/random RNGs CNP.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 112 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.7.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 113 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.99999.
Source: By the author.
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“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 114 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs CNP.
Source: By the author.

“k-logistic map with k=0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 115 – Histograms for area distribution of Delaunay triangulations of > 1σ complex
networks for networks with 5,000 vertices, k-logistic map CNP with k = 0
and k = 5, r = 3.7.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 116 – Histograms for area distribution of Delaunay triangulations of > 1σ complex
networks for networks with 5,000 vertices, k-logistic map CNP with k = 0
and k = 5, r = 3.99999.
Source: By the author.

“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 117 – Histograms for area distribution of Delaunay triangulations of > 1σ com-
plex networks for networks with 5,000 vertices. ANU Quantum and Linux
/dev/random RNGs CNP.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 118 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.7.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 119 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices, k-logistic map CNP from k = 0 and k = 5, r = 3.99999.
Source: By the author.
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“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 120 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs CNP.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 121 – Histograms for area distribution of Delaunay triangulations of > 2σ complex
networks for networks with 5,000 vertices, k-logistic map CNP with k = 0
and k = 5, r = 3.7.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 122 – Histograms for area distribution of Delaunay triangulations of > 2σ complex
networks for networks with 5,000 vertices, k-logistic map CNP with k = 0
and k = 5, r = 3.99999.
Source: By the author.

“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 123 – Histograms for area distribution of Delaunay triangulations of > 2σ com-
plex networks for networks with 5,000 vertices. ANU Quantum and Linux
/dev/random RNGs CNP.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 124 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.7.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 125 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.99999.
Source: By the author.
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“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 126 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs CNP.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 127 – Histograms for area distribution of Delaunay triangulations of < −1σ com-
plex networks for networks with 5,000 vertices, k-logistic map CNP with
k = 0 and k = 5, r = 3.7.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 128 – Histograms for area distribution of Delaunay triangulations of < −1σ com-
plex networks for networks with 5,000 vertices, k-logistic map CNP with
k = 0 and k = 5, r = 3.99999.
Source: By the author.

“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 129 – Histograms for area distribution of Delaunay triangulations of < −1σ com-
plex networks for networks with 5,000 vertices. ANU Quantum and Linux
/dev/random RNGs CNP.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 130 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.7.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

Figure 131 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices, k-logistic map CNP with k = 0 and k = 5, r = 3.99999.
Source: By the author.
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“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 132 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs CNP.
Source: By the author.

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 133 – Histograms for area distribution of Delaunay triangulations of < −2σ com-
plex networks for networks with 5,000 vertices, k-logistic map CNP with
k = 0 and k = 4, r = 3.7.
Source: By the author.
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“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”

Figure 134 – Histograms for area distribution of Delaunay triangulations of < −2σ com-
plex networks for networks with 5,000 vertices, k-logistic map CNP with
k = 0 and k = 5, r = 3.99999.
Source: By the author.

“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 135 – Histograms for area distribution of Delaunay triangulations of < −2σ com-
plex networks for networks with 5,000 vertices. ANU Quantum and Linux
/dev/random RNGs CNP.
Source: By the author.
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“r = 3.7, baseline” “r = 3.8, baseline” “r = 3.9, baseline” “r ∼ 4.0, baseline”

“r = 3.7, gap = 10” “r = 3.8, gap = 10” “r = 3.9, gap = 10” “r ∼ 4.0, gap = 10”

“r = 3.7, > 1σ” “r = 3.8, > 1σ” “r = 3.9, > 1σ” “r ∼ 4.0, > 1σ”

“r = 3.7, > 2σ” “r = 3.8, > 1σ” “r = 3.9, > 2σ” “r ∼ 4.0, > 2σ”

“r = 3.7, < −1σ” “r = 3.8, < −1σ” “r = 3.9, < −1σ” “r ∼ 4.0, < −1σ”

“r = 3.7, < −2σ” “r = 3.8, < −2σ” “r = 3.9, < −2σ” “r ∼ 4.0, < −2σ”

Figure 136 – Network structure for the k-logistic map CNP with k = 0.
Source: By the author.
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“r = 3.7, baseline” “r = 3.8, baseline” “r = 3.9, baseline” “r ∼ 4.0, baseline”

“r = 3.7, gap = 10” “r = 3.8, gap = 10” “r = 3.9, gap = 10” “r ∼ 4.0, gap = 10”

“r = 3.7, > 1σ” “r = 3.8, > 1σ” “r = 3.9, > 1σ” “r ∼ 4.0, > 1σ”

“r = 3.7, > 2σ” “r = 3.8, > 1σ” “r = 3.9, > 2σ” “r ∼ 4.0, > 2σ”

“r = 3.7, < −1σ” “r = 3.8, < −1σ” “r = 3.9, < −1σ” “r ∼ 4.0, < −1σ”

“r = 3.7, < −2σ” “r = 3.8, < −2σ” “r = 3.9, < −2σ” “r ∼ 4.0, < −2σ”

Figure 137 – Network structure for the k-logistic map CNP with k = 5.
Source: By the author.
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4 DISCUSSION

Judging from the results shown on Tables 3 to 3, the LFSR, despite its celebrated

properties, does in fact show subpar entropy when compared to the k-logistic map. Even

the vanilla logistic map – k-logistic map with k set to zero – presents comparable results

under the test suite of our choice. On the other side, the composition of the k-logistic map

and the LFSR or of a non-linear funcion and a linear function harnessed the strengths of

both. From k = 0 to k = 30 (base 2), the entropy property and randomness are enhanced

as the value of k increases, and the combination of LFSR’s scrambling and nonlinearity

enhances it further. The minimum entropy and randomness tests assessed that the gains

from those modifications were consistent, just as the PractRand and SmallCrush tests.

Using multi source k-logistic maps increased entropy less markedly than the composition

of the k-logistic map and the LFSR. Both the ANU and /dev/random generators – not

shown – passed all tests with flying colors.

In the results shown on Figure 51, the human eye easily recognizes the newfound

motifs via the MP algorithm. For the results in Figures 54 to 55, under the value of r = 3.97

– that is not far off from r = 4! – the k-logistic map with k = 0 shows intriguing distinct

behavior compared to the other parametrizations. Figure 56 pinpoints the variations in

network measures according to the parametrization used.

Seen on Figures 57 to 70, the kind of correlation between the two largest-variance

PCA components changes dramatically according to the projection technique for generat-

ing networks, varying from the apparently uncorrelated to interesting spatial symmetries.

Boxplots on Figures 71 to 84 also show substantial variations between the networks. Fig-

ures 99 and 100 on degree distributions show striking difference between the baseline

network and the < −2σ network, pointing to power law or exponential distributions for

the CNP and normal-like distributions for the baseline networks. The degree distributions

of < −2σ CNP show that these networks possess also the scale-free property, beyond the

small-world property of complex networks. The violin plots on Figures 101 to 104 also

show substantial degree distribution differences.

On the results of representation networks for the k-logistic map in Tables 3 to 3,

the < −2σ CNP surpassed the baseline transformation of the k-logistic map into complex

networks, and accuracy is especially noteworthy when the CNP and LLNA are employed

together, when the classes k ∈ {0, 1, 2, 3, 4}. We stress that CNP has been designed to

privilege long-range correlations – which truly are signs of chaotic behavior of a system

– in detriment of the relatively uninformative short-range correlations. The best result

for the classification task with baseline networks occurs when r = 3.7 and from there on

their returns are diminished as r ∼ 4. We know from bifurcation theory that, as r ∼ 4,
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the system becomes more and more chaotic. We interpret from this result that when

short-range correlations in the object are privileged in the representation, it does have

the side effect of masking the long-range correlations associated with chaos. With the

classes k ∈ {5, 6, 7, 8, 9}, which are much closer to pure noise, the classifier meets a much

harder work and thus this specific set of results is a mixed bag.

On Figure 105 we witness the convergence of the distribution of the DTW dis-

tances d > 0 to the Tracy-Widom distribution. Remind that when building the CNP

we peek data at one tail of the distribution, and as the Tracy-Widom distribution is as-

symmetric, we end up with two distinct complex network structures. Data at the tails of

the distribution are associated with phase transition phenomena in the literature (157).

We did not perform further numerical experiments to check if the CNP indeed follows

the Tracy-Widom distribution at is tails or deviate from it, which might reveal more

interesting details on the k-logistic map dynamics.
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5 CONCLUSION

This work was crafted with the vision of improving the current state-of-the-art

and, to an extent, to also present new directions for investigations in the field of crypt-

analysis and academic research in dynamical systems. We have verified that the projection

or transformation of a chaotic orbit harnessing its topological aspects, and then to apply

trivial statistical tests, can give satisfactory results. We have also verified that principles

of thermodynamics formalism and random matrix theory both form a sound base that,

when combined with proven approaches in the field of computer science, algorithms and

data mining, provide a a refreshing and compelling view of the k-logistic map and also of a

handful of RNGs. The simple heat diffusion allows for previously inaccessible time series

concepts and methods. From those time series concepts and methods we then develop

our next solution that exploits in a new way the inherent characteristics of random vari-

ables. With the purpose of maximizing success in extracting meaning from chaotic orbits,

we propose a combination of heuristics, techniques and projections, combining thus the

strengths and expertise developed over the timespan of years of research on several fields

of knowledge.

A natural step is the concentration of efforts on experiments upon other dynamical

systems and competitor PRNGs, for the purpose of depthening our study of patterns and

our tests for numerical sequences with applications in cryptography. A desirable improve-

ment is to achieve hefty reductions in computation time, which would allow the proposed

CNP to extract even more information off the chaotic orbits. The topological matrix is

fruit of an algorithm and implementation that is able to deal with dense matrices of over

105 ×105 elements and it is a doable alternative in situations and under constraints where

the CNP cannot be applied at all. An obvious and very desirable improvement for the

usage of the CNP is to harness finer-grained deltas for the values of the σ (standard devi-

ation) and to have a peek at subtler details of the generated networks as the configuration

parameters are changed. The degree distributions for the CNP also deserve to be more

closely studied. The PCA for the feature vectors of networks manifest intriguing cate-

gories of correlations between the major principal components that deserve to be studied

in-depth.
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APPENDIX A – APÊNDICE(S)

A.0.0.1 Thermostatistics of multifractals

For physical systems, every of the regent probability distributions on every axis of

a system adequately described by a multifractal is often unknown or indetermined. For

the case of dynamical systems in a computer experiment, empirical data for probability

distributions is generally readily available. It is commonplace for one to possess local in-

formation on system behavior where it is desirable to gain global and general knowledge

but the converse might be true also, that is, one posseses relative frequencies for sev-

eral probability distributions and would like to know further about locally concentrated

tendencies on a certain scale and locally appliable formulae for the behavior of the sys-

tem. Interestingly, there is a concept, the canonical distributions, that effectively links

chaos theory and thermodynamics (213). These distributions assume the form of ther-

modynamic equilibrium distributions. When the system is off equilibrium, we tap into a

particular piece of information. An ensemble comprises several realizations of the system,

and help ascertain the true nature of the system.

In nonlinear dynamics, let events happen in a specific box contained in a grid of

or a ball contained in a space, and

pi = e−bi ,

be the observed relative frequencies of events or microstates i of a sample. Then

we define normalized powers (pi)
β and the probability distributions

Pi =
(pi)

β

∑r
j=1(pj)β

, β ∈ R, pj > 0.

Scaling β, the probabilities for the diverse events i are weighted accordingly, thus

depthening the analysis. For our purposes it will be assumed that every nonlinear sys-

tem under study always follows precisely every distribution Pi we assign as one of its

distributions.

As for the analogy with statistical mechanics, let us define again the canonical

distribution:

Pr =
e−βbr

Z(β)
.

Z(β) =
r
∑

i=1

e−βbi =
r
∑

i=1

(pi)
β
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Previoulsy, we refer to the Minkowski-Bouligand dimension. It happens that there

is a more general way to quantify fractals, the Rényi dimension.

The Rényi dimension is defined in the ε → 0 or V = − ln ε → ∞ limits.

D(β) = − lim
V →∞(Iβ/V )

As in physical and computer experiments ε > 0 ∀ε, that is, there is only finite

modes of precision, we define the Rényi information per volume V

Iβ

V
=

1

(β − 1)V

Besides the Rényi dimension, there is a Rényi analog also for entropy that gener-

alizes several notions.

Hα(X) =
1

1 − α
log

n
∑

i=1

pα
i

is the entropy of order α, 0 < α < ∞, α 6= 1 and the definition in the limit γ → α,

α = 0, 1,∞ is

Hα(X) = lim
γ→α

(Hγ(X))

where X is a discrete random variable that assumes one at a time the value of

the elements in the set A = {x1, x2, x3, . . . , xn} with corresponding probabilities pi
.
=

Pr(X = xi) for i = 1, . . . , n.

The utility in commenting briefly on fractal analysis resides in that we do not to

have restrict ourselves merely to the study of chaos using Lyapunov exponents. There

is, for example, the Kaplan-Yorke conjecture (214) that allows for the study of qualities

further than chaos using tools of fractal analysis.

A.0.0.2 Fundamental thermodynamical relations

From now on until the end of this part section, we closely follow the demonstrations

and presentation of results by Beck and Schogl (213). They are important to sediment

the theory of dynamical systems as it is applied in our work. A fundamental result known

as the Fundamental Thermodynamic Relation, can be formulated as

dU = TdS − ΠdV

if the change of the number of particles in time is significant, we may write
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dU = TdS − ΠdV + µdN

where U refers to internal energy, T to temperature, S to entropy, Π to pressure,

V to volume and N the conserved number of particles, see Figure A.0.0.2. This formula

derives from the First Law of Thermodynamics and its related concepts of heat, work, and

internal energy in a system. From this results we derive other significant formulations.

A tool of formalism that plays a distinguished role in the derivation of alternative

formulations in thermodynamics is the Legendre transform.

Let a strictly convex real function f(x). Then

p = df(x)

f ∗(p) = −f(x(p)) + px(p)

and the Legendre Transform on x and f is

(x, f(x)) → (p, f ∗(p))

Energy E is distinguished as the generator of time shift and the most impor-

tant constant of motion. Entropy S is highlighted as it is fully determined solely by the

probability distribution. The Legendre transform provides a bridge between both.

Following Beck and Schogl (213), we proceed to derive other important results.

Gibbs’ fundamental equation:

Consider the information gain from a generalized canonical distribution P, that is

Pi = eΨ−βσMσ
i

to a perturbed one P + δP , which is obtained by a perturbation δβσ of the inten-

sities βσ

K(P + δP, P ) =
∑

i

(Pi + δPi)[ln(Pi + δPi) − lnPi]

= −δS −
∑

i

δPi lnPi

= −δS + βσδM
σ
> 0

For infinitesimally small δPi → 0, we have
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(

∂S

∂Mσ
− βσ

)

δMσ +
1

2

∂2S

∂Mσ∂M τ
δMσδM τ

6 0

Taken that variations in δM are arbitrary in direction, we then have the relations

∂S

∂Mσ
= βσ

and that ∂S always assumes negative values.

∂2S

∂Mσ∂M τ
=

∂βσ

∂M τ
= δMσδβσ 6 0

The entropy

S(M) = −〈lnP 〉 = −Ψ + βσM
σ

is the Legendre transform of Ψ(β). And

∂Ψ/∂βσ = Mσ

Then we derive the Gibbs fundamental equation for the grand canonical ensemble

with fluctuating volume

dE = TdS − ΠdV + µdN

S, V and N are extensities that increase proportionally with the increase of the

amount of physical matter given the substantial composition and the external conditions

are the same. T, Π and µ are intensities, coefficients in the total differential of E that

remain constant given systems of different sizes. Π and µ differ from the coefficients βsigma

only by the factor 1/T . The equilibrium state of a system can be described alternatively

by the entire set of extensities or by the entire set of intensities, or by a mixed set of

variables (213). In the context taken thus far, βσ and Mσ are thermal conjugates of each

other.

The Helmholtz free energy

F = E − TS

is a Legendre transform from E(S, V,N) to F (T, V,N). Using F , the Gibbs fun-

damental equation can be assumed as
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dF = −ΠdV + µdN − SdT

.

Chosen as independent variables V, N, T that occur in this equation as differentials,

then

∂F/∂V = −Π, ∂F/∂N = µ, ∂F/∂T = −S.

Quantities V , N , T are called the natural variables of F and form a complete set

of variables for description of thermodynamics. By deriving F with respect to the natural

variables we obtain another set, akin to the mechanical connection between forces and

potentials. Therefore F , as a function of its natural variables, is a potential. Via Legendre

transformation we proceed to other thermodynamical potentials, such as the Gibbs free

energy

G = F + ΠV

that is connected with F by a Legendre transformation from the variable V to the

variable Π. The Gibbs fundamental equation assumes the following

dG = V dΠ + µdN − SdT

Therefore T , Π and N are the natural variables of G. For G(T,Π, N) this means

∂G/∂Π = V, ∂G/∂N = µ, ∂G/∂T = −S

Generally in the context of thermodynamics, by expression of the Gibbs fundamen-

tal equation as a total differential, the variables that occur as independent differentials are

the natural variables of the thermodynamic quantity. The thermodynamic quantity as a

function of the just corresponding natural variables is the corresponding thermodynamic

potential. The analogy to mechanics goes beyond relations between forces and potentials

and extends to the fact that a mechanical equilibrium is determined by a minimum of the

potential. Thermodynamic potentials possess an extremum as well (6.3). Factor T aside,

the different thermodynamic potentials are varied Legendre transforms of the entropy.

The entropy S(M) itself is a thermodynamic potential according to eq. (7.2.4).

The previous definitions can be simplified for homogenous systems, that is, if its

physical properties and dynamical laws are the same in all of its spatial parts. Entropy
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Figure 138 – Gibbs free energy diagram. Letters represent states of the reversible work
that goes back and forth as a system. For example, for a system at state R
to attain state D, it must pass first through states M (or A, and then B)
and D.
Source: By the author.

fulfills here an important role due to its linear relation with every derivation of the funda-

mental relation, given that the system in question is homogeneous. Another fact about the

entropy is that it is concave in the probability space as well, as a function of probabilities.

Beck and Schogl (213) explain the derivations for different types of homogeneous,

including multiparticle, systems.

For the purposes of this work we focus on the simplified Gibbs-Duhem equation

which has the form

G = µN

which has general form

S = βσM
σ

Thermodynamics exhibit susceptibilities and fluctuations that decrease as the size

of the system increases, which allows study of a system using statistical tools given the sys-

tem is large enough. Susceptibities and fluctuations lead to phase transitions, phenomena

that depend on a critical event. Examples of phase transitions are solid-liquid and liquid-

gas transitions, transitions between paramagnetic and ferromagnetic states, transitions

between different crystal structures, transitions between homogeneous and inhomogenous

states of liquid mixtures, transitions between the normal conducting and the supercon-



221

ducting statem and the transition between the normal fluid and the superfluid state of

He4 (213). Thereare also non-equilibrium phase transitions between diverse nonstationary

nonequilibrium states.

Phase transitions are classified following the analytical behavior of the correspond-

ing thermodynamical potential, and if the k-th derivative of the generalized free energy

with respect to the relevant thermal variable does not exist at the critical point, whereas

the k + 1-th derivative does indeed exist, the phase transition is said to be of k-th order.

Critical exponents either diverge or go to zero at second order phase transitions

under appropriate order parameters.

Scaling near the critical temperature Tc there is the specific heat for constant

volume

cV = −T

(

∂2F

∂T 2

)

V

or the compressibility

κT = −
1

V

(

∂2G

∂Π2

)

V

at the point where the coexistence of the two phases of liquid and vapor are no

more.

cV ∼ |τ |−α α = 0.11

κT ∼ |τ |−γ γ = 1.25

And

τ = (T − Tc)/Tc

a relative deviation of the temperature from the critical point, and it is dimension-

less. τ need not be a temperature difference but it is the relative deviation of a fit control

parameter from the critical value.

An order parameter f scales along critical exponent

γ = lim
τ→0

ln |f(τ)|

ln |τ |

as

|f(τ)| ∼ |τ |γ
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in the case of one-dimensional chaotic dynamics, this is the critical exponent. In

multidirectional chaotic dynamics, the largest critical exponent is associated with the

dominating directon of the dynamics.

A.0.0.3 Partition function and the Gibbs measure

For classical discrete systems, the canonical partition function is defined as

Z =
∑

i

e−βEi

where i is the index for the microstates of the system, β is the thermodynamic

beta, defined as
1

kBT
where kB is Boltzmann’s constant and Ei is the total energy of

the system in the respective microstate. The exponential factor e−βEi is the Boltzmann

factor.

The main purpose of a partition function is to bring a meaningful view of some

property of a given system – not just thermodynamical systems – in relation to other

properties and also as a function of other properties. This bridges the microscopic states

of a system and its whole equilibrium. If we realize that a certain state of the system

has very low probability of occurring, due to the interplay between its properties, these

low – otherwise high – probabilities serve as information about the system. The partition

function, in defining the actual strength of the relation between the diverse properties in a

manner that allows direct application of probability theory, effectively helps one to study

the system at hand. From there we go through the concept of ensembles of systems, as

frequentism states that the true probability of an event is calculated as the limit of its

relative frequency in an unbounded number of trials.

For the canonical ensemble, the energy is not known a priori but the total number

of particles. There is also the microcanonical ensemble, where both the energy of the

system and the number of particles are fixed to predetermined values, and the grand

canonical ensemble, where neither the energy nor the number of particles are known a

priori. The canonical ensemble is appealing for application in chaotic orbits as by fixing

the number of particles, the states of a dynamical system and its orbits with several points

can be taken as appropriately defined parameters. The energy for a dissipative system

like the logistic map it is indeed not known a priori and it is via numerical computations

that we get an estimate.

The rate of separation, measured by means of the Lyapunov exponent, helps per-

form the separation of ensembles (215), which in turn lets us locate patterns. While the

local variation for Lyapunov exponent on the logistic map does indeed provide valuable

information, the dissipative and multifractal nature of maps like the logistic map makes it

to an extent risky to rely on the evolution of the Lyapunov exponent within a single orbit
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only as a reliable gauge. It surfaces, thus, the need to use ensembles of logistic map orbits,

where each orbit correspond to a state. Moreover, when dealing with random processes

the Lyapunov exponent alone is a necessary but not sufficient parameter for addressing

the behavioral mixture of order and stochasticity.

Assume that if we test several such systems, with properly tuned parameters, then

we faithfully represent the whole entity. Of course, it is not doable to experiment with

every possible configuration of parameters. Nevertheless, for experimental purposes (216)

locality of the scope is enough to measure the functional faithfully enough. A significant

advantage of computer simulations over physical thermodynamical systems is that the

parameters can be finely tuned which adds to the practical robustness of the measure.

From the bifurcation diagram we see that for low values of r < 3.8, their orbits

show heterogenicity. As the value approaches r = 4, we witness that their behavior is

more homogeneous, like a single system where the macro conditions are largely similar

but the microstates are different to each other.

Restricting ourselves to one-dimensional maps and a test function

φ(x) = −β ln |f ′(x)|

for each β there is an invariant Gibbs measure µβ that minimizes the free energy.

The outstanding measure with β = 1 is called the Sinai-Ruelle-Bowen measure.

As we restrict ourselves to expanding systems, the natural invariant measure coin-

cides with the SRB measure. We may, however, also generalize our concept and consider

Rényi entropies for arbitrary Gibbs measures µq parametrized by a temperature 1/q.

These are denoted by K(β/q). Notice that K(1, q) = h([µq]) and K(β , 1) = K(β).

The Rényi entropies are defined by the asymptotic scaling relation

∑

j(P
(N)
j )β ∼ e[N(1−β)K(β,q)], N → ∞.

The probabilities Pj are related to the Gibbs measure µq by

P
(N)
j =

∫

JN
j

dµq(x)

They scale as

PN
j ∼ (1/Ztop

N )(l
(N)
j )q,

where with Ztop
N ≈ Z̃top

N



224

Ztop
N ∼

∑

j(l
N
j )q ∼ eNP(q), N → ∞

Hence

∑

j

(PN
j )β ∼ e−NβP(q)

∑

j

(lNj )qβ

∼ e−NβP(q)eNP(qβ)

∼ eN(1−β)K(β,q)

.

We obtain

K(β, q) =
1

1 − β
[P(βq) − βP(q)]

In particular for the case q − 1:

K(β) =
1

1 − β
[P(β) − βP(1)].

−P(1) is the escape rate κ and there follows a relation between Rényi entropy,

topological pressure, and escape rate

K(β) =
1

1 − β
[P(β) + κβ]

An important special case is K(0) = P(0), which relates the topological entropy

to the topological pressure. To obtain a relation for the KS entropy K(1) that is similar

to the Shannon entropy, we assume that P(β) is smooth, i.e., that there is the following

series expansion

P(β) = P(1) + (β − 1)P′(1) +O((β − 1)2).

Inserting this into

K(β) =
1

1 − β
[P − βP(1)]

and taking the limit β → 1, we obtain

K(1) = − P′(1)
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P(1) is the negative escape rate, but what is the "physical" meaning of P′(1)?

The topological pressure is given by

P(q) = lim
N→∞

1

N
ln
∑

j

e−qNEN (x
(j)
0 )

.

Differentiating we obtain

P′(q) = − lim
N→∞

∑

j

PN
j EN(x

(j)
0 ) = −〈E〉(q)

.

The quantity 〈E〉(q) is the mean expansion rate with respect to the Gibbs measure

µq. In the one-dimensional case 〈E〉(1) is simply the Lyapunov exponent λ. Hence,

K(1) = λ− κ

This equation relates the KS entropy, the Lyapunov exponent, and the escape

rate of a one-dimensional expanding map. Among physicists it became well-known from a

paper of Kantz and Grassberger (217), and it is also discussed in another work (218). We

recognize that the KS entropy and the Lyapunov exponent of a one-dimensional system

only coincide if there is no escape (κ = 0).

The measure leads to a Markov partition that holds representation both in ther-

modynamics and one-dimensional dynamical maps. From the Markov partition we draw

a symbolic representation of the dynamical system (M,ϕ) such that the map ϕ becomes

the shift map. However, we will not depthen our focus further on the symbolic dynamics,

which would let us to other subjects like N -cylinders and local measures. Back to the

significance of the Gibbs free energy, the mean expansion rate points to a phase transi-

tion, and bifurcations – which are the route to chaos – also point to a phase transition

in chaotic systems. Again, we are concerned with average variables of several realizations

within an ensemble for a system.



226

T
able

21
–

C
lassification

perform
ance

as
a

prelim
inary

test
of

D
T

W
capabilities,w

ith
accuracy

reported
in

percentages.1-N
N

D
T

W
is

the
classical

nearest
neighbor

classifier,
applied

on
a

L
L

N
A

m
atrix

as
a

m
atrix

of
tim

e
series

w
ith

the
tem

poral
evolution

for
every

node
taken

as
one

tim
e

series.
T

he
other

results
com

e
from

the
SV

M
classifier.

’S’
is

the
Shannon

entropy,
’w

l’
the

w
ord

length
and

’lzc’
the

L
em

pel-Z
iv

com
plexity.

dataset
1-N

N
D

T
W

structural
L

L
N

A
L

L
N

A
(S)

L
L

N
A

(w
l)

L
L

N
A

(lzc)
L

L
N

A
-B

P
L

L
N

A
-D

T
E

P
A

nim
als

80.34±
3.92

88.39±
1.18

82.41±
4.26

83.55±
4.47

81.06±
3.77

25.92±
6.54

44.14±
4.47

25.36±
3.85

Fungi
38.34±

5.36
42.53±

4.22
41.13±

5.25
41.59±

5.72
41.57±

6.00
26.44±

7.03
36.43±

4.69
47.78±

3.90
P

lant
71.45±

6.99
67.27±

4.24
73.79±

5.97
74.92±

8.16
74.03±

6.59
36.36±

6.92
50.82±

4.51
56.73±

4.09
A

ctinobacteria
86.59±

1.89
88.08±

0.59
91.95±

1.28
92.77±

1.06
92.04±

1.16
41.89±

0.71
41,92±

0.00
41.92±

0.00
K

ingdom
88.45±

2.02
88.24±

0.93
89.47±

1.79
93.83±

1.63
72.55±

2.58
28.01±

2.66
73.43±

1.49
69.01±

1.27
P

rotist
45.89±

9.62
69.39±

2.60
39.61±

10.40
46.25±

8.56
39.61±

8.91
29.00±

8.19
61.68±

6.21
64.18±

5.16
F

irm
icutes-B

acillis
78.15±

1.34
82.06±

0.66
74.96±

1.72
78.28±

1.36
76.45±

1.72
47.21±

0.99
31.50±

0.00
31.50±

0.00
Scale-Free

70.80±
0.86

55.17±
3.60

62.05±
2.93

70.26±
1.48

62.42±
2.53

71.78±
1.33

57.68±
6.13

72.43±
1.56

4-M
odels

54.55±
1.26

56.50±
1.40

83.63±
0.67

66.18±
0.64

80.74±
0.81

72.09±
0.33

81.35±
4.84

92.59±
0.17

S
ou

rce:
B

y
th

e
au

th
or.



227

Table 22 – Results for the SP800-22 Rev. 1 tests on the k-logistic map (base 2), k = 0,
r ∼ 4.

NIST test p-value result
monobit_test 2.3827519899843513e-62 FAIL

frequency_within_block_test 4.558896651993508e-44 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 5.390829886304116e-208 FAIL
binary_matrix_rank_test 0.0 FAIL

dft_test 0.0 FAIL
non_overlapping_template_matching_test 0.9735784873666354 PASS

overlapping_template_matching_test 0.0 FAIL
maurers_universal_test 0.0 FAIL
linear_complexity_test 0.13972712023032216 PASS

serial_test 0.0 FAIL
approximate_entropy_test 0.0 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 1.5580586817350368e-09 FAIL

random_excursion_variant_test 0.030030509583329566 PASS

Source: By the author.

Table 23 – Results for the SP800-22 Rev. 1 tests on the k-logistic map (base 2), k = 5,
r ∼ 4.

NIST test p-value result
monobit_test 9.176227605259399e-41 FAIL

frequency_within_block_test 1.6578377990919188e-20 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 4.182049324089779e-31 FAIL
binary_matrix_rank_test 0.0001710996768343542 FAIL

dft_test 4.972895358937442e-09 FAIL
non_overlapping_template_matching_test 0.99710647113403 PASS

overlapping_template_matching_test 6.847940135893526e-87 FAIL
maurers_universal_test 0.0 FAIL
linear_complexity_test 0.09150783433635766 PASS

serial_test 0.0 FAIL
approximate_entropy_test 0.0 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.06654930782449124 PASS

random_excursion_variant_test 0.043383782537769144 PASS

Source: By the author.
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Table 24 – Results for the SP800-22 Rev. 1 tests on the k-logistic map (base 2), k = 10,
r ∼ 4.

NIST test p-value result
monobit_test 3.302106437084046e-39 FAIL

frequency_within_block_test 1.5705675235174104e-18 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 6.016442359041556e-17 FAIL
binary_matrix_rank_test 0.6249432078831807 PASS

dft_test 0.3431274192315742 PASS
non_overlapping_template_matching_test 0.998351387710893 PASS

overlapping_template_matching_test 1.4967210165057915e-07 FAIL
maurers_universal_test 4.3354492321367287e-218 FAIL
linear_complexity_test 0.6409650680235172 PASS

serial_test 1.024091266631848e-266 FAIL
approximate_entropy_test 4.542233051057409e-264 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.000247681075586224 FAIL

random_excursion_variant_test 0.018117131435231654 PASS

Source: By the author.

Table 25 – Results for the SP800-22 Rev. 1 tests on the k-logistic map (base 2), k = 15,
r ∼ 4.

NIST test p-value result
monobit_test 0.0006416764336790679 FAIL

frequency_within_block_test 0.40503431927538897 PASS
runs_test 0.030342291562359576 PASS

longest_run_ones_in_a_block_test 0.6403128801292115 PASS
binary_matrix_rank_test 0.43867733360125044 PASS

dft_test 0.6144332929130587 PASS
non_overlapping_template_matching_test 1.0133848011662423 PASS

overlapping_template_matching_test 0.4773467764994301 PASS
maurers_universal_test 4.5791965993733364e-07 FAIL
linear_complexity_test 0.7421067354675733 PASS

serial_test 0.0010925226361813438 FAIL
approximate_entropy_test 0.001092169290521339 FAIL

cumulative_sums_test 0.0006047372242032889 FAIL
random_excursion_test 0.04424005463282892 PASS

random_excursion_variant_test 0.053015150095932696 PASS

Source: By the author.
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Table 26 – Results for the SP800-22 Rev. 1 tests on the k-logistic map (base 2), k = 20,
r ∼ 4.

NIST test p-value result
monobit_test 0.3420587587680123 PASS

frequency_within_block_test 0.9876712206261564 PASS
runs_test 0.4699413414650103 PASS

longest_run_ones_in_a_block_test 0.48086487308929565 PASS
binary_matrix_rank_test 0.6215989225728945 PASS

dft_test 0.4343347635639268 PASS
non_overlapping_template_matching_test 0.9295933666036253 PASS

overlapping_template_matching_test 0.8478998861474993 PASS
maurers_universal_test 0.8720733227307572 PASS
linear_complexity_test 0.6228006913968536 PASS

serial_test 0.7520820448253139 PASS
approximate_entropy_test 0.8699776998998009 PASS

cumulative_sums_test 0.23836391812798374 PASS
random_excursion_test 0.0477906869404608 PASS

random_excursion_variant_test 0.18620167167153337 PASS

Source: By the author.

Table 27 – Results for the SP800-22 Rev. 1 tests on the k-logistic map (base 2), k = 25,
r ∼ 4.

NIST test p-value result
monobit_test 0.5818094909803402 PASS

frequency_within_block_test 0.47663515051129085 PASS
runs_test 0.7530284155277838 PASS

longest_run_ones_in_a_block_test 0.7109509623095214 PASS
binary_matrix_rank_test 0.33002772626488786 PASS

dft_test 0.7786198431222331 PASS
non_overlapping_template_matching_test 1.003443692587977 PASS

overlapping_template_matching_test 0.5880256112005683 PASS
maurers_universal_test 0.1723861937396658 PASS
linear_complexity_test 0.6480947604926023 PASS

serial_test 0.4666428059552852 PASS
approximate_entropy_test 0.7944133524617399 PASS

cumulative_sums_test 0.631399425016614 PASS
random_excursion_test 0.1870209278743739 PASS

random_excursion_variant_test 0.14898297980928107 PASS

Source: By the author.
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Table 28 – Results for the SP800-22 Rev. 1 tests on the k-logistic map (base 2), k = 30,
r ∼ 4.

NIST test p-value result
monobit_test 0.44910437680772725 PASS

frequency_within_block_test 0.44881335466065825 PASS
runs_test 0.5745162829980621 PASS

longest_run_ones_in_a_block_test 0.1853092436890685 PASS
binary_matrix_rank_test 0.9848833193802344 PASS

dft_test 0.5887208644655226 PASS
non_overlapping_template_matching_test 0.9998043301032872 PASS

overlapping_template_matching_test 0.4485708511288196 PASS
maurers_universal_test 0.20167117003579957 PASS
linear_complexity_test 0.34064974482925486 PASS

serial_test 0.798798634779099 PASS
approximate_entropy_test 0.9020460248579646 PASS

cumulative_sums_test 0.7134393489475217 PASS
random_excursion_test 0.030857144395142543 PASS

random_excursion_variant_test 0.08448401495056913 PASS

Source: By the author.

Table 29 – Results for the SP800-22 Rev. 1 tests on eight k-logistic maps (base 2), k = 0,
r ∼ 4.

NIST test p-value result
monobit_test 1.9236879166074266e-44 FAIL

frequency_within_block_test 5.940154582683162e-32 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 2.322518376989553e-175 FAIL
binary_matrix_rank_test 0.22156453917451643 PASS

dft_test 0.0 FAIL
non_overlapping_template_matching_test 0.9999947131760454 PASS

overlapping_template_matching_test 0.0 FAIL
maurers_universal_test 0.0 FAIL
linear_complexity_test 0.5285615712167111 PASS

serial_test 0.0 FAIL
approximate_entropy_test 0.0 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 9.879169286439331e-20 FAIL

random_excursion_variant_test 0.35029775729363855 PASS

Source: By the author.
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Table 30 – Results for the SP800-22 Rev. 1 tests on eight k-logistic maps (base 2), k = 5,
r ∼ 4.

NIST test p-value result
monobit_test 5.224325179211946e-42 FAIL

frequency_within_block_test 1.7487934611460903e-22 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 4.311415888165863e-32 FAIL
binary_matrix_rank_test 0.8553789321995459 PASS

dft_test 9.140785945851863e-13 FAIL
non_overlapping_template_matching_test 1.0000004374452784 PASS

overlapping_template_matching_test 2.6180227290751655e-109 FAIL
maurers_universal_test 9.229295726733283e-143 FAIL
linear_complexity_test 0.6808626494811644 PASS

serial_test 0.0 FAIL
approximate_entropy_test 0.0 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.32497235698354915 PASS

random_excursion_variant_test 0.21251033577373268 PASS

Source: By the author.

Table 31 – Results for the SP800-22 Rev. 1 tests on eight k-logistic maps (base 2), k = 10,
r ∼ 4.

NIST test p-value result
monobit_test 2.9029133237398203e-22 FAIL

frequency_within_block_test 1.009721298709369e-10 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 0.5103356009303526 PASS
binary_matrix_rank_test 0.19014056367201881 PASS

dft_test 0.4253434920213056 PASS
non_overlapping_template_matching_test 1.0000094963731496 PASS

overlapping_template_matching_test 0.005047228744379414 FAIL
maurers_universal_test 0.13583866551989054 PASS
linear_complexity_test 0.06477016117298422 PASS

serial_test 0.0 FAIL
approximate_entropy_test 0.0 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.34117964932055617 PASS

random_excursion_variant_test 0.14330779839421232 PASS

Source: By the author.
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Table 32 – Results for the SP800-22 Rev. 1 tests on eight k-logistic maps (base 2), k = 15,
r ∼ 4.

NIST test p-value result
monobit_test 0.00034219929621498614 FAIL

frequency_within_block_test 0.17630701538280963 PASS
runs_test 0.6187260433463151 PASS

longest_run_ones_in_a_block_test 0.8051820618599712 PASS
binary_matrix_rank_test 0.46410830583671653 PASS

dft_test 0.9020141311151602 PASS
non_overlapping_template_matching_test 0.9997386988804778 PASS

overlapping_template_matching_test 0.49721500830586424 PASS
maurers_universal_test 0.48232908726770024 PASS
linear_complexity_test 0.24579211162515333 PASS

serial_test 0.011850877677044675 PASS
approximate_entropy_test 0.011834206712466036 PASS

cumulative_sums_test 0.0002780185579982497 FAIL
random_excursion_test 0.04741825997673954 PASS

random_excursion_variant_test 0.2155581682390581 PASS

Source: By the author.

Table 33 – Results for the SP800-22 Rev. 1 tests on eight k-logistic maps (base 2), k = 20,
r ∼ 4.

NIST test p-value result
monobit_test 0.5261295920589557 PASS

frequency_within_block_test 0.2676672787579463 PASS
runs_test 0.11112575706202862 PASS

longest_run_ones_in_a_block_test 0.4297670595931066 PASS
binary_matrix_rank_test 0.4254708787016212 PASS

dft_test 0.7668423540581595 PASS
non_overlapping_template_matching_test 1.035339370190724 PASS

overlapping_template_matching_test 0.5996612121299701 PASS
maurers_universal_test 0.607051019099476 PASS
linear_complexity_test 0.96817792289452 PASS

serial_test 0.23846171012026143 PASS
approximate_entropy_test 0.2385242705732872 PASS

cumulative_sums_test 0.6014750975045908 PASS
random_excursion_test 0.5020093765535916 PASS

random_excursion_variant_test 0.3211016358872025 PASS

Source: By the author.
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Table 34 – Results for the SP800-22 Rev. 1 tests on eight k-logistic maps (base 2), k = 25,
r ∼ 4.

NIST test p-value result
monobit_test 0.07612120740226914 PASS

frequency_within_block_test 0.2736156564277943 PASS
runs_test 0.25952225939092777 PASS

longest_run_ones_in_a_block_test 0.15056812485973037 PASS
binary_matrix_rank_test 0.25653848046671945 PASS

dft_test 0.6108326505633858 PASS
non_overlapping_template_matching_test 1.00897736023073 PASS

overlapping_template_matching_test 0.5140736326029121 PASS
maurers_universal_test 0.38303741797402857 PASS
linear_complexity_test 0.6034944410578652 PASS

serial_test 0.08014313050616924 PASS
approximate_entropy_test 0.0800569324917207 PASS

cumulative_sums_test 0.061090273170142595 PASS
random_excursion_test 0.3044760258466065 PASS

random_excursion_variant_test 0.26174124619035677 PASS

Source: By the author.

Table 35 – Results for the SP800-22 Rev. 1 tests on eight k-logistic maps (base 2), k = 30,
r ∼ 4.

NIST test p-value result
monobit_test 0.24230697139445445 PASS

frequency_within_block_test 0.5875893423724292 PASS
runs_test 0.09221453270074537 PASS

longest_run_ones_in_a_block_test 0.6741184439088131 PASS
binary_matrix_rank_test 0.38242319380582573 PASS

dft_test 0.20807532681356897 PASS
non_overlapping_template_matching_test 0.6419132735095406 PASS

overlapping_template_matching_test 0.17125607761878903 PASS
maurers_universal_test 0.3673235180195126 PASS
linear_complexity_test 0.5813789354767293 PASS

serial_test 0.499800100300948 PASS
approximate_entropy_test 0.4997572051159123 PASS

cumulative_sums_test 0.3284233871231679 PASS
random_excursion_test 0.1050771368059274 PASS

random_excursion_variant_test 0.301186031333336 PASS

Source: By the author.
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Table 36 – Results for the SP800-22 Rev. 1 tests on the composition of k-logistic map
(base 2) and LFSR, k = 0, r ∼ 4.

NIST test p-value result
monobit_test 3.619449494211668e-53 FAIL

frequency_within_block_test 1.9757890751008757e-28 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 0.6507455747501423 PASS
binary_matrix_rank_test 0.5676337464716236 PASS

dft_test 0.7011890238950875 PASS
non_overlapping_template_matching_test 1.0229292693353715 PASS

overlapping_template_matching_test 0.8343946583293789 PASS
maurers_universal_test 0.6523854126525218 PASS
linear_complexity_test 0.12065817304030364 PASS

serial_test 1.58321071474897e-229 FAIL
approximate_entropy_test 4.838500184604797e-232 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.10812006712273357 PASS

random_excursion_variant_test 0.04783853310152687 PASS

Source: By the author.

Table 37 – Results for the SP800-22 Rev. 1 tests on the composition of k-logistic map
(base 2) and LFSR, k = 5, r ∼ 4.

NIST test p-value result
monobit_test 1.9541560442563856e-44 FAIL

frequency_within_block_test 5.364501279657009e-19 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 0.16556042566593554 PASS
binary_matrix_rank_test 0.05111395869507869 PASS

dft_test 0.1756434208875754 PASS
non_overlapping_template_matching_test 1.016356427185101 PASS

overlapping_template_matching_test 0.04635706079361955 PASS
maurers_universal_test 0.8717520015748969 PASS
linear_complexity_test 0.20397695104523345 PASS

serial_test 2.4562304767176107e-157 FAIL
approximate_entropy_test 9.604642291816074e-159 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.09474597962620576 PASS

random_excursion_variant_test 0.07666538365048903 PASS

Source: By the author.
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Table 38 – Results for the SP800-22 Rev. 1 tests on the composition of k-logistic map
(base 2) and LFSR, k = 10, r ∼ 4.

NIST test p-value result
monobit_test 2.845368819923513e-23 FAIL

frequency_within_block_test 1.9530847050864257e-11 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 0.49835692405572674 PASS
binary_matrix_rank_test 0.6445333485175885 PASS

dft_test 0.8914615010116311 PASS
non_overlapping_template_matching_test 1.0005220132233799 PASS

overlapping_template_matching_test 0.6968462105804429 PASS
maurers_universal_test 0.09909306383184191 PASS
linear_complexity_test 0.017422208762384383 PASS

serial_test 6.7298909609988065e-43 FAIL
approximate_entropy_test 4.698923701928685e-43 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.12723108330461327 PASS

random_excursion_variant_test 0.018491814238434916 PASS

Source: By the author.

Table 39 – Results for the SP800-22 Rev. 1 tests on the composition of k-logistic map
(base 2) and LFSR, k = 15, r ∼ 4.

NIST test p-value result
monobit_test 0.018521370152336545 PASS

frequency_within_block_test 0.4274497400158695 PASS
runs_test 4.441339947774052e-05 FAIL

longest_run_ones_in_a_block_test 0.3409248070539498 PASS
binary_matrix_rank_test 0.6695332331542784 PASS

dft_test 0.1822786366693676 PASS
non_overlapping_template_matching_test 0.9914710158400607 PASS

overlapping_template_matching_test 0.969486934362284 PASS
maurers_universal_test 0.6468006215368085 PASS
linear_complexity_test 0.4615916314810023 PASS

serial_test 0.001266034499334617 FAIL
approximate_entropy_test 0.0012660687106366651 FAIL

cumulative_sums_test 0.010521671891545736 PASS
random_excursion_test 0.005270891666712246 FAIL

random_excursion_variant_test 0.08831004568676523 PASS

Source: By the author.
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Table 40 – Results for the SP800-22 Rev. 1 tests on the composition of k-logistic map
(base 2) and LFSR, k = 20, r ∼ 4.

NIST test p-value result
monobit_test 0.02364180549732688 PASS

frequency_within_block_test 0.4693010745871361 PASS
runs_test 0.2251418071347988 PASS

longest_run_ones_in_a_block_test 0.8130247241694208 PASS
binary_matrix_rank_test 0.33857984509320666 PASS

dft_test 0.7967769408641836 PASS
non_overlapping_template_matching_test 0.6499963329935932 PASS

overlapping_template_matching_test 0.4843471339345114 PASS
maurers_universal_test 0.8990869379854897 PASS
linear_complexity_test 0.5464084251813275 PASS

serial_test 0.1979086569485854 PASS
approximate_entropy_test 0.19791073372902082 PASS

cumulative_sums_test 0.03189228706970848 PASS
random_excursion_test 0.1968478849087879 PASS

random_excursion_variant_test 0.4047339749643348 PASS

Source: By the author.

Table 41 – Results for the SP800-22 Rev. 1 tests on the composition of k-logistic map
(base 2) and LFSR, k = 25, r ∼ 4.

NIST test p-value result
monobit_test 0.4282213996291674 PASS

frequency_within_block_test 0.769575730920922 PASS
runs_test 0.07953833050981193 PASS

longest_run_ones_in_a_block_test 0.39834964676691764 PASS
binary_matrix_rank_test 0.7719115918348235 PASS

dft_test 0.02497671317945234 PASS
non_overlapping_template_matching_test 0.9992486219371063 PASS

overlapping_template_matching_test 0.4206893220979453 PASS
maurers_universal_test 0.09879451849144369 PASS
linear_complexity_test 0.8797406512437945 PASS

serial_test 0.6801395384808412 PASS
approximate_entropy_test 0.6802238358982927 PASS

cumulative_sums_test 0.5185226092203554 PASS
random_excursion_test 0.2713374352040706 PASS

random_excursion_variant_test 0.29422233637909956 PASS

Source: By the author.
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Table 42 – Results for the SP800-22 Rev. 1 tests on the composition of k-logistic map
(base 2) and LFSR, k = 30, r ∼ 4.

NIST test p-value result
monobit_test 0.9069025639941026 PASS

frequency_within_block_test 0.4115441509004894 PASS
runs_test 0.5169758765519051 PASS

longest_run_ones_in_a_block_test 0.02391417264384779 PASS
binary_matrix_rank_test 0.04162072257297781 PASS

dft_test 0.37593051724786886 PASS
non_overlapping_template_matching_test 1.0043519542806818 PASS

overlapping_template_matching_test 0.5107804883258552 PASS
maurers_universal_test 0.6328983670430154 PASS
linear_complexity_test 0.3818133858711697 PASS

serial_test 0.622426308931932 PASS
approximate_entropy_test 0.7511341248386715 PASS

cumulative_sums_test 0.5727834526750604 PASS
random_excursion_test 0.12768400771070418 PASS

random_excursion_variant_test 0.30931501762191027 PASS

Source: By the author.

Table 43 – Results for the SP800-22 Rev. 1 tests on the composition of eight k-logistic
maps (base 2) and LFSR, k = 0, r ∼ 4.

NIST test p-value result
monobit_test 6.127618556527771e-43 FAIL

frequency_within_block_test 1.958839275937847e-21 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 0.3463059565448864 PASS
binary_matrix_rank_test 0.39774383829387666 PASS

dft_test 0.005360945360539859 FAIL
non_overlapping_template_matching_test 1.0013100345640316 PASS

overlapping_template_matching_test 0.416853795674755 PASS
maurers_universal_test 0.5642137003150811 PASS
linear_complexity_test 0.3897516414261191 PASS

serial_test 2.93342965523939e-37 FAIL
approximate_entropy_test 2.959710114894473e-37 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.2122984152399528 PASS

random_excursion_variant_test 0.02121134866552893 PASS

Source: By the author.
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Table 44 – Results for the SP800-22 Rev. 1 tests on the composition of eight k-logistic
maps (base 2) and LFSR, k = 5, r ∼ 4.

NIST test p-value result
monobit_test 8.915404928109522e-34 FAIL

frequency_within_block_test 8.332840305450766e-14 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 0.9253916840917283 PASS
binary_matrix_rank_test 0.5927944841054639 PASS

dft_test 0.029471162927216275 PASS
non_overlapping_template_matching_test 0.10341350012704421 PASS

overlapping_template_matching_test 0.9775534342456327 PASS
maurers_universal_test 0.9016229276934482 PASS
linear_complexity_test 0.4681574740206957 PASS

serial_test 1.9490950370091873e-29 FAIL
approximate_entropy_test 1.8690832960856065e-29 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.0002636085097975721 FAIL

random_excursion_variant_test 0.0034956728980962254 FAIL

Source: By the author.

Table 45 – Results for the SP800-22 Rev. 1 tests on the composition of eight k-logistic
maps (base 2) and LFSR, k = 10, r ∼ 4.

NIST test p-value result
monobit_test 8.844665040682314e-27 FAIL

frequency_within_block_test 2.179543243928932e-06 FAIL
runs_test 0.0 FAIL

longest_run_ones_in_a_block_test 0.1161460739142732 PASS
binary_matrix_rank_test 0.7237352490176504 PASS

dft_test 0.1058908265259405 PASS
non_overlapping_template_matching_test 1.00003312131871 PASS

overlapping_template_matching_test 0.2575436199059855 PASS
maurers_universal_test 0.6948343119911653 PASS
linear_complexity_test 0.270008843263696 PASS

serial_test 1.149683089334974e-21 FAIL
approximate_entropy_test 1.1512019089750539e-21 FAIL

cumulative_sums_test 0.0 FAIL
random_excursion_test 0.2955428889632254 PASS

random_excursion_variant_test 0.0029456735994761053 FAIL

Source: By the author.
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Table 46 – Results for the SP800-22 Rev. 1 tests on the composition of eight k-logistic
maps (base 2) and LFSR, k = 15, r ∼ 4.

NIST test p-value result
monobit_test 0.003959163662387468 FAIL

frequency_within_block_test 0.1558001532211176 PASS
runs_test 0.9431077493460726 PASS

longest_run_ones_in_a_block_test 0.6923701550798846 PASS
binary_matrix_rank_test 0.870030931199496 PASS

dft_test 0.0820289045012617 PASS
non_overlapping_template_matching_test 0.6338484587274295 PASS

overlapping_template_matching_test 0.9613766280526963 PASS
maurers_universal_test 0.330931470262244 PASS
linear_complexity_test 0.723015328732378 PASS

serial_test 0.1632635308880512 PASS
approximate_entropy_test 0.16325916029090892 PASS

cumulative_sums_test 0.007135597170982777 FAIL
random_excursion_test 0.0105451906096164 PASS

random_excursion_variant_test 0.03066516454427745 PASS

Source: By the author.

Table 47 – Results for the SP800-22 Rev. 1 tests on the composition of eight k-logistic
maps (base 2) and LFSR, k = 20, r ∼ 4.

NIST test p-value result
monobit_test 0.21082371788418128 PASS

frequency_within_block_test 0.9445647472828872 PASS
runs_test 0.7858290063100128 PASS

longest_run_ones_in_a_block_test 0.805820297326962 PASS
binary_matrix_rank_test 0.685661520684859 PASS

dft_test 0.07472894801620793 PASS
non_overlapping_template_matching_test 0.9031213586131517 PASS

overlapping_template_matching_test 0.5878937296323016 PASS
maurers_universal_test 0.3168395601298556 PASS
linear_complexity_test 0.7869443481381304 PASS

serial_test 0.1852515771335178 PASS
approximate_entropy_test 0.24819958607502093 PASS

cumulative_sums_test 0.266660269417472 PASS
random_excursion_test 0.25072168548831053 PASS

random_excursion_variant_test 0.051536252807687914 PASS

Source: By the author.
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Table 48 – Results for the SP800-22 Rev. 1 tests on the composition of eight k-logistic
maps (base 2) and LFSR, k = 25, r ∼ 4.

NIST test p-value result
monobit_test 0.7803693988038884 PASS

frequency_within_block_test 0.6644485056210444 PASS
runs_test 0.14591201393769954 PASS

longest_run_ones_in_a_block_test 0.743387771308943 PASS
binary_matrix_rank_test 0.5662080397822106 PASS

dft_test 0.5035351016627687 PASS
non_overlapping_template_matching_test 1.001156770796747 PASS

overlapping_template_matching_test 0.07008880711274676 PASS
maurers_universal_test 0.5580912986830577 PASS
linear_complexity_test 0.2903673989927815 PASS

serial_test 0.29462991024972146 PASS
approximate_entropy_test 0.29469898410341205 PASS

cumulative_sums_test 0.6976870863022167 PASS
random_excursion_test 0.009565069257363794 FAIL

random_excursion_variant_test 0.09178656884278973 PASS

Source: By the author.

Table 49 – Results for the SP800-22 Rev. 1 tests on the composition of eight k-logistic
maps (base 2) and LFSR, k = 30, r ∼ 4.

NIST test p-value result
monobit_test 0.47926083957297844 PASS

frequency_within_block_test 0.20684305332889918 PASS
runs_test 0.6213828384486311 PASS

longest_run_ones_in_a_block_test 0.1839086594409937 PASS
binary_matrix_rank_test 0.9548471032107839 PASS

dft_test 0.4135257994617516 PASS
non_overlapping_template_matching_test 1.0005246835042152 PASS

overlapping_template_matching_test 0.9549396563835839 PASS
maurers_universal_test 0.6338691419039044 PASS
linear_complexity_test 0.32528091991284636 PASS

serial_test 0.46510978522122787 PASS
approximate_entropy_test 0.46499289049322495 PASS

cumulative_sums_test 0.33373752708106097 PASS
random_excursion_test 0.039857802950306234 PASS

random_excursion_variant_test 0.28417865770324124 PASS

Source: By the author.
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“k-logistic map with k = 1, 1” “k-logistic map with k = 1, 2” “k-logistic map with k = 1, 3”

“k-logistic map with k = 2, 1” “k-logistic map with k = 2, 2” “k-logistic map with k = 2, 3”

“k-logistic map with k = 3, 1” “k-logistic map with k = 3, 2” “k-logistic map with k = 3, 3”

“k-logistic map with k = 4, 1” “k-logistic map with k = 4, 2” “k-logistic map with k = 4, 3”

Figure 139 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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“k-logistic map with k = 8, 1” “k-logistic map with k = 8, 2” “k-logistic map with k = 8, 3”

“k-logistic map with k = 9, 1” “k-logistic map with k = 9, 2” “k-logistic map with k = 9, 3”

Figure 140 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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“k-logistic map with k = 4, 1” “k-logistic map with k = 4, 2” “k-logistic map with k = 4, 3”

Figure 141 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.99999.
Source: By the author.
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Figure 142 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.99999.
Source: By the author.
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“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 143 – Delaunay triangulations of baseline complex networks for networks with
5,000 vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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Figure 144 – Histograms for Delaunay triangulations of baseline complex networks for
networks with 5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.



247

“k-logistic map with k = 5, 1” “k-logistic map with k = 5, 2” “k-logistic map with k = 5, 3”
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Figure 145 – Histograms for Delaunay triangulations of baseline complex networks for
networks with 5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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“k-logistic map with k = 4, 1” “k-logistic map with k = 4, 2” “k-logistic map with k = 4, 3”

Figure 146 – Histograms for Delaunay triangulations of baseline complex networks for
networks with 5,000 vertices, k-logistic map from k = 0 to k = 4, r =
3.99999.
Source: By the author.
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Figure 147 – Histograms for Delaunay triangulations of baseline complex networks for
networks with 5,000 vertices, k-logistic map from k = 5 to k = 9, r =
3.99999.
Source: By the author.
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Figure 148 – Histograms for Delaunay triangulations of baseline complex networks for net-
works with 5,000 vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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Figure 149 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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“k-logistic map with k = 6, 1” “k-logistic map with k = 6, 2” “k-logistic map with k = 6, 3”

“k-logistic map with k = 7, 1” “k-logistic map with k = 7, 2” “k-logistic map with k = 7, 3”

“k-logistic map with k = 8, 1” “k-logistic map with k = 8, 2” “k-logistic map with k = 8, 3”

“k-logistic map with k = 9, 1” “k-logistic map with k = 9, 2” “k-logistic map with k = 9, 3”

Figure 150 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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Figure 151 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.99999.
Source: By the author.
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Figure 152 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.99999.
Source: By the author.
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Figure 153 – Delaunay triangulations of > 1σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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Figure 154 – Histograms for Delaunay triangulations of > 1σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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Figure 155 – Histograms for Delaunay triangulations of > 1σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.



258

“k-logistic map with k = 0, 1” “k-logistic map with k = 0, 2” “k-logistic map with k = 0, 3”

“k-logistic map with k = 1, 1” “k-logistic map with k = 1, 2” “k-logistic map with k = 1, 3”

“k-logistic map with k = 2, 1” “k-logistic map with k = 2, 2” “k-logistic map with k = 2, 3”

“k-logistic map with k = 3, 1” “k-logistic map with k = 3, 2” “k-logistic map with k = 3, 3”

“k-logistic map with k = 4, 1” “k-logistic map with k = 4, 2” “k-logistic map with k = 4, 3”

Figure 156 – Histograms for Delaunay triangulations of > 1σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.99999.
Source: By the author.
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Figure 157 – Histograms for Delaunay triangulations of > 1σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.99999.
Source: By the author.
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Figure 158 – Histograms for Delaunay triangulations of > 1σ complex networks for net-
works with 5,000 vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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Figure 159 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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Figure 160 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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Figure 161 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.99999.
Source: By the author.
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Figure 162 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.99999.
Source: By the author.
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Figure 163 – Delaunay triangulations of > 2σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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Figure 164 – Histograms for Delaunay triangulations of > 2σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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Figure 165 – Histograms for Delaunay triangulations of > 2σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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Figure 166 – Histograms for Delaunay triangulations of > 2σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.99999.
Source: By the author.
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Figure 167 – Histograms for Delaunay triangulations of > 2σ complex networks for net-
works with 5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.99999.
Source: By the author.



270

“ANU QRNG, 1” “ANU QRNG, 2” “ANU QRNG, 3”

“/dev/random RNG, 1” “/dev/random RNG, 2” “/dev/random RNG, 3”

Figure 168 – Histograms for Delaunay triangulations of > 2σ complex networks for net-
works with 5,000 vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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“k-logistic map with k = 4, 1” “k-logistic map with k = 4, 2” “k-logistic map with k = 4, 3”

Figure 169 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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Figure 170 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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Figure 171 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.99999.
Source: By the author.
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Figure 172 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.99999.
Source: By the author.
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Figure 173 – Delaunay triangulations of < −1σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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Figure 174 – Histograms for Delaunay triangulations of < −1σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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Figure 175 – Histograms for Delaunay triangulations of < −1σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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Figure 176 – Histograms for Delaunay triangulations of < −1σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 0 to k = 4, r =
3.99999.
Source: By the author.
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“k-logistic map with k = 9, 1” “k-logistic map with k = 9, 2” “k-logistic map with k = 9, 3”

Figure 177 – Histograms for Delaunay triangulations of < −1σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 5 to k = 9, r =
3.99999.
Source: By the author.
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Figure 178 – Histograms for Delaunay triangulations of < −1σ complex networks for net-
works with 5,000 vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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“k-logistic map with k = 4, 1” “k-logistic map with k = 4, 2” “k-logistic map with k = 4, 3”

Figure 179 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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Figure 180 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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“k-logistic map with k = 4, 1” “k-logistic map with k = 4, 2” “k-logistic map with k = 4, 3”

Figure 181 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 0 to k = 4, r = 3.99999.
Source: By the author.
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Figure 182 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices, k-logistic map from k = 5 to k = 9, r = 3.99999.
Source: By the author.
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Figure 183 – Delaunay triangulations of < −2σ complex networks for networks with 5,000
vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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Figure 184 – Histograms for Delaunay triangulations of < −2σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 0 to k = 4, r = 3.7.
Source: By the author.
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Figure 185 – Histograms for Delaunay triangulations of < −2σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 5 to k = 9, r = 3.7.
Source: By the author.
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Figure 186 – Histograms for Delaunay triangulations of < −2σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 0 to k = 4, r =
3.99999.
Source: By the author.
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Figure 187 – Histograms for Delaunay triangulations of < −2σ complex networks for
networks with 5,000 vertices, k-logistic map from k = 5 to k = 9, r =
3.99999.
Source: By the author.
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Figure 188 – Histograms for Delaunay triangulations of < −2σ complex networks for net-
works with 5,000 vertices. ANU Quantum and Linux /dev/random RNGs.
Source: By the author.
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