
UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE FÍSICA DE SÃO CARLOS

Pedro de Carvalho Braga Ilídio Silva

On bipartite decision forests

São Carlos

2024

Pedro de Carvalho Braga Ilídio Silva

On bipartite decision forests

Dissertation presented to the Graduate Program
in Physics at the Instituto de Física de São
Carlos da Universidade de São Paulo, to obtain
the degree of Master in Science.

Concentration area: Biomolecular Physics

Advisor: Prof. Dr. Otavio Henrique Thiemann

Coadvisor: Prof. Dr. Ricardo Cerri

Original version

São Carlos

2024

I AUTHORIZE THE REPRODUCTION AND DISSEMINATION OF TOTAL OR
PARTIAL COPIES OF THIS DOCUMENT, BY CONVENTIONAL OR ELECTRONIC
MEDIA FOR STUDY OR RESEARCH PURPOSE, SINCE IT IS REFERENCED.

Silva, Pedro de Carvalho Braga Ilídio
 On bipartite decision forests / Pedro de Carvalho
Braga Ilídio Silva; advisor Otavio Henrique Thiemann; co-
advisor Ricardo Cerri -- São Carlos 2024.
 123 p.

 Dissertation (Master's degree - Graduate Program in
Biomolecular Physics) -- Instituto de Física de São
Carlos, Universidade de São Paulo - Brasil , 2024.

 1. Decision forests. 2. Interaction prediction. 3.
Bipartite learning. 4. Positive-unlabeled learning. I.
Thiemann, Otavio Henrique, advisor. II. Cerri, Ricardo,
co-advisor. III. Title.

FOLHA DE APROVAÇÃO

Pedro de Carvalho Braga Ilidio Silva

Dissertação apresentada ao Instituto de
Física de São Carlos da Universidade
de São Paulo para obtenção do título
de Mestre em Ciências. Área de
Concentração: Física Biomolecular.

Aprovado (a) em: 25/04/2024

Comissão Julgadora

Dr(a).: Ricardo Cerri

Instituição: (IFSC/USP)

Dr(a).: Gisele Lobo Pappa

Instituição: (UFMG/Belo Horizonte)

Dr(a).: Enrico Bertuzzo

Instituição: Diego Furtado Silva (ICMC/USP)

AGRADECIMENTOS

À Universidade de São Paulo e ao Instituto de Física de São Carlos (IFSC), por proverem
os meios e os ambientes pelos quais este estudo pôde se desenvolver.

À Neusa, do Serviço de Biblioteca e Informação do IFSC, pelo atencioso auxílio com a
normalização do presente documento.

Aos estimados orientadores Prof. Dr. Otavio Henrique Thiemann e Prof. Dr. Ricardo
Cerri, pelas numerosas ideias, inspiração e direcionamento. Pelo acolhimento frente às repenti-
nas readaptações acadêmicas que se fizeram necessárias. Pela confiança e compreensão com os
atrasos, com os afluentes e com os contratempos durante todo o processo.

Ao André Alves, pelas várias discussões e colaborações enriquecedoras das quais grande
parte desse trabalho teve origem.

Ao Prof. Dr. Ricardo de Marco, em memória, pelos muitos ensinamentos nos poucos
anos que pudemos conviver.

Aos irmãos acadêmicos João Paulo, Luíza e Renan, pelo amparo e companhia essenciais
durante os percalços do luto, da pandemia e das incertezas da vida.

Aos profissionais da saúde mental Marina e Pedro Paulo, pelo imprescindível apoio.

Aos prezados coabitantes Kauê e Roberto, pelo convívio agradável e encorajamento
diário. Por ouvirem sempre gentilmente os desabafos e aflições.

Às demais prezadas “Batatas”: Beatriz, Estevão, Gabriela e Nathan, pelas aconchegantes
memórias, pela paciência com as ausências e pelo carinho invariável.

Às famílias de Minas Gerais e de São Paulo, pela sempre amorosa e calorosa torcida.

Aos meus irmãos André e Caio, pela amizade perene e inabalável. Por compartilharem
comigo seu crescimento e serem parte fundamental do meu.

Aos inestimáveis pais Marisa e Sandro, por cultivarem despodados meus caminhos, me
permitindo errar, desviar, retornar, e descobrir quem eu sou a cada passo. Pelo amor incondi-
cional com que me recebem após cada dificuldade.

À querida Alê, por trazer a aurora mesmo às piores tempestades. τ .

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.

ABSTRACT

SILVA, P. C. B. I. On bipartite decision forests. 2024. 123p. Dissertation (Master in
Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2024.

The present study investigates decision forest algorithms for predicting interactions in bipartite
networks. We concentrate on examples of such problems in the biological domain, such as drug-
protein interactions, microRNA-gene interactions or long non-coding RNA-protein interactions.
Notwithstanding, the proposed methods encompass the broad range of tasks satisfying i) the
goal is to predict interactions between two entities; ii) the interacting pairs are composed of two
different types of entities; and iii) each type of entity has its own set of input features. We refer
to this paradigm as bipartite interaction learning or bipartite learning. Predicting interactions
in such networks has fundamental challenges. For instance, the number of possible interactions
is often very large in comparison to the number of known interactions. As a result, the data is
frequently sparse, and negative annotations are unreliable. We explore a class of decision forest
models specifically designed to address these challenges, that we broadly call bipartite forests.
First, we demonstrate how these trees can be adapted to yield a log n speedup in training time.
We also propose using weighted-neighbors approaches to determine each leaf’s output, which
resulted in improved generalization. Finally, we introduce semi-supervised impurity functions
to bipartite forests. These functions result in trees that also consider clusters of instances in the
feature space, rather than only their labels. This is shown to improve the forests’ resilience to
the missing annotations. Our models display highly-competitive performance across ten inter-
action prediction datasets. We believe the proposed methods can be a crucial step in developing
effective and scalable machine learning models for interaction prediction. Further adaptations
of these models could also impact other domains, such as recommendation systems, multilabel
learning and weak-label learning.

Keywords: Decision forests. Interaction prediction. Bipartite learning. Positive-unlabeled learn-
ing.

RESUMO

SILVA, P. C. B. I. Florestas de decisão bipartidas. 2024. 123p. Dissertação (Mestrado em
Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2024.

O presente estudo investiga algoritmos de floresta de decisão para prever interações em redes
bipartidas. Concentra-se em exemplos de tais problemas no domínio biológico, como interações
fármaco-proteína, interações microRNA-gene ou interações entre moléculas de RNA longo não
codificante e proteínas. No entanto, os métodos propostos abrangem uma ampla gama de tare-
fas de aprendizado, caracterizadas por i) o objetivo é prever interações entre duas entidades; ii)
os pares de interação são compostos por dois tipos diferentes de entidades; e iii) cada tipo de
entidade possui seu próprio conjunto de características de entrada. Refere-se a este paradigma
como aprendizado de interações bipartidas, ou aprendizado bipartido. Prever interações em tais
redes nos apresenta desafios fundamentais. Por exemplo, o número de interações possíveis é
frequentemente muito superior ao número de interações conhecidas. Como resultado, os dados
são muitas vezes esparsos, e as anotações negativas são incertas. Exploramos uma classe de
florestas de decisão especificamente projetadas para enfrentar esses desafios, que chamamos
de florestas bipartidas em geral. Primeiro, demonstramos como essas árvores podem ser adap-
tadas para obter uma melhora logarítmica no tempo de treinamento. Também propomos o uso
de abordagens de vizinhos ponderados para determinar a saída de cada folha, resultando em
melhora na capacidade de generalização dos modelos. Finalmente, introduzimos funções de
impureza semi-supervisionadas para florestas bipartidas. Essas funções resultam em árvores
cientes da densidade do espaço de características, em vez de apenas considerar os rótulos para
o crescimento. Mostra-se que isso melhora a resiliência das florestas às anotações faltantes.
Nossos modelos exibem desempenho altamente competitivo em dez conjuntos de dados de
previsão de interação. Acreditamos que os métodos propostos podem ser um passo crucial no
desenvolvimento de modelos de aprendizado de máquina eficazes e escaláveis para prever in-
terações. Adaptações adicionais desses modelos também podem impactar domínios vizinhos,
como sistemas de recomendação, aprendizado multi-rótulo e aprendizado de rótulos fracos.

Palavras-chave: Florestas de decisão. Predição de interações. Aprendizado bipartido. Apren-
dizado positivo-não rotulado.

LIST OF FIGURES

Figure 1 – Representation of a bipartite network and its corresponding dataset.
Source: By the author. 33

Figure 2 – The standard global single-output (SGSO) approach. The bipartite dataset
is represented as two matrices X1 and X2, and a matrix Y of shape |X1|i
by |X2|j . The SGSO approach concatenates the rows of X1 and X2 to form
a new feature matrix, in which each row represents a dyad. The interaction
matrix Y is then reshaped into a column vector, so that each element of Y
is associated with a row of the new feature matrix. The resulting dataset is
then used to train a conventional single-output estimator.
Source: By the author. 35

Figure 3 – The standard global single-output (SLMO) approach. The bipartite dataset
is represented as two matrices X1 and X2, and a matrix Y of shape |X1|i by
|X2|j . The SLMO approach trains two primary multi-output estimators, one
for each axis, and then trains two secondary multi-output estimators on the
predictions of the primary models. The secondary models are then used to
predict the interactions between new row samples and new column samples.
Source: By the author. 36

Figure 4 – A decision tree model. A new sample x traverses the tree structure from
the root node to a leaf, where a final decision is made. Each bifurcation
represents a decision rule in the format x[f] > t. The validity of the rule
determines if the sample should follow the left or right path. When a terminal
node is reached, the output value is generated by the prototype function.
Source: By the author. 38

Figure 5 – Different split configurations for validating models with bipartite datasets.
Source: By the author. 58

Figure 6 – Bipartite cross-validation. We represent the 9 train-test splits of a 3 by 3
bipartite cross-validation procedure.
Source: By the author. 59

Figure 7 – Diagonal bipartite cross-validation. We represent the 3 train-test splits of a
3 by 3 diagonal bipartite cross-validation procedure.
Source: By the author. 60

Figure 8 – Point biserial correlation between the binary labels at each percentile rank
and the AUROC and AUPR scores. The correlation was calculated between
the ranks and the scores for N = 105 random sets of R = 103 binary labels.
The results show that AUPR is very sensitive to a small group of highest
ranks, while AUROC has a more distributed weigthing profile. For AUROC,
both higher and lower ranks have a higher impact than ranks around 0.5,
contributing in opposite directions to the final metric. The results confirm
the theoretical analyses from Section 2.7.3.2.
Source: By the author. 74

Figure 9 – Empirical time complexity estimation of the proposed bipartite global single-
output (BGSO) and the global multi-output (GMO) (1) algorithms. Bipartite
versions of both extremely randomized trees (2) (BXT) and greedy deci-
sion trees (3) (BDT) were built under the BGSO and GMO scheme and
trained over artificial datasets of varying numbers of samples (as described
in Section 2.4.2). The training time versus the number of samples is pre-
sented on the left. On the right, we present the same plot on a logarithmic
scale. The slopes and respective standard deviations are obtained by apply-
ing least-squares linear regression. Independent two-sample t-tests compar-
ing the slope estimates reveal that the time complexity of bdt-bgso is
highly significantly lower than bdt-gmo (p < 10−64) and even bxt-gmo
(p < 10−20), and also that bxt-gso significantly exhibits lower complexity
than bxt-gmo (p < 10−22).
Source: By the author. 76

Figure 10 – Comparison of bipartite random forests for different prototype strategies. An
omnibus p-value is obtained through a Friedman test and indicated below the
title of each subfigure. We then perform pairwise Wilcoxon rank-sum tests as
a post-hoc analysis. Estimators that could not be significantly distinguished
from each other (p > 0.05) are connected by crossbars above their respective
boxes. The pairwise test results are corrected by the Benjamini-Hochberg
procedure (4, 5) in each subfigure. All pairwise comparisons are considered
for the correction, even if not visible in the plot. See Section 2.8 for further
description of the evaluation procedure.
Source: By the author. 90

Figure 11 – Comparison of bipartite Extra-Trees for different prototype strategies. An
omnibus p-value is obtained through a Friedman test and indicated below the
title of each subfigure. We then perform pairwise Wilcoxon rank-sum tests as
a post-hoc analysis. Estimators that could not be significantly distinguished
from each other (p > 0.05) are connected by crossbars above their respective
boxes. The pairwise test results are corrected by the Benjamini-Hochberg
procedure (4, 5) in each subfigure. All pairwise comparisons are considered
for the correction, even if not visible in the plot. See Section 2.8 for further
description of the evaluation procedure.
Source: By the author. 91

Figure 12 – Comparison of random forests under different adaptation strategies to bi-
partite interaction data. An omnibus p-value is obtained through a Friedman
test and indicated below the title of each subfigure. We then perform pair-
wise Wilcoxon rank-sum tests as a post-hoc analysis. Estimators that could
not be significantly distinguished from each other (p > 0.05) are connected
by crossbars above their respective boxes. The pairwise test results are cor-
rected by the Benjamini-Hochberg procedure (4, 5) in each subfigure. All
pairwise comparisons are considered for the correction, even if not visible
in the plot. See Section 2.8 for further description of the evaluation proce-
dure.
Source: By the author. 92

Figure 13 – Comparison of Extra-Trees under different adaptation strategies to bipartite
interaction data. An omnibus p-value is obtained through a Friedman test
and indicated below the title of each subfigure. We then perform pairwise
Wilcoxon rank-sum tests as a post-hoc analysis. Estimators that could not

be significantly distinguished from each other (p > 0.05) are connected
by crossbars above their respective boxes. The pairwise test results are cor-
rected by the Benjamini-Hochberg procedure (4, 5) in each subfigure. All
pairwise comparisons are considered for the correction, even if not visible
in the plot. See Section 2.8 for further description of the evaluation proce-
dure.
Source: By the author. 93

Figure 14 – Comparison of bipartite random forests with and without label imputation by
NRLMF. An omnibus p-value is obtained through a Friedman test and indi-
cated below the title of each subfigure. We then perform pairwise Wilcoxon
rank-sum tests as a post-hoc analysis. Estimators that could not be signifi-
cantly distinguished from each other (p > 0.05) are connected by crossbars
above their respective boxes. The pairwise test results are corrected by the
Benjamini-Hochberg procedure (4, 5) in each subfigure. All pairwise com-
parisons are considered for the correction, even if not visible in the plot. See
Section 2.8 for further description of the evaluation procedure.
Source: By the author. 94

Figure 15 – Comparison of bipartite Extra-Trees with and without label imputation by
neighborhood-regularized logistic matrix factorization. An omnibus p-value
is obtained through a Friedman test and indicated below the title of each
subfigure. We then perform pairwise Wilcoxon rank-sum tests as a post-
hoc analysis. Estimators that could not be significantly distinguished from
each other (p > 0.05) are connected by crossbars above their respective
boxes. The pairwise test results are corrected by the Benjamini-Hochberg
procedure (4, 5) in each subfigure. All pairwise comparisons are considered
for the correction, even if not visible in the plot. See Section 2.8 for further
description of the evaluation procedure.
Source: By the author. 95

Figure 16 – Comparison of semi-supervised BGSO BXT with different strategies for de-
termining the unsupervised impurity and the supervision balance. An om-
nibus p-value is obtained through a Friedman test and indicated below the
title of each subfigure. We then perform pairwise Wilcoxon rank-sum tests as
a post-hoc analysis. Estimators that could not be significantly distinguished
from each other (p > 0.05) are connected by crossbars above their respective
boxes. The pairwise test results are corrected by the Benjamini-Hochberg
procedure (4, 5) in each subfigure. All pairwise comparisons are considered
for the correction, even if not visible in the plot. See Section 2.8 for further
description of the evaluation procedure.
Source: By the author. 96

Figure 17 – Comparison of different bipartite forests. An omnibus p-value is obtained
through a Friedman test and indicated below the title of each subfigure. We
then perform pairwise Wilcoxon rank-sum tests as a post-hoc analysis. Es-
timators that could not be significantly distinguished from each other (p >

0.05) are connected by crossbars above their respective boxes. The pairwise
test results are corrected by the Benjamini-Hochberg procedure (4,5) in each
subfigure. All pairwise comparisons are considered for the correction, even
if not visible in the plot. See Section 2.8 for further description of the evalu-
ation procedure.
Source: By the author. 97

Figure 18 – Comparison of two proposed bipartite forests (bxt-sq-yr and bxt-bgso-yr)
with several prominent models from the literature. An omnibus p-value is
obtained through a Friedman test and indicated below the title of each sub-
figure. We then perform pairwise Wilcoxon rank-sum tests as a post-hoc
analysis. Estimators that could not be significantly distinguished from each
other (p > 0.05) are connected by crossbars above their respective boxes.
The pairwise test results are corrected by the Benjamini-Hochberg proce-
dure (4, 5) in each subfigure. All pairwise comparisons are considered for
the correction, even if not visible in the plot. See Section 2.8 for further de-
scription of the evaluation procedure.
Source: By the author. 98

CONTENTS

1 INTRODUCTION . 21
1.1 What is bipartite learning? . 21
1.2 Challenges of bipartite learning problems 23
1.3 How can bipartite models be built? . 24
1.4 Why decision trees? . 26
1.5 Related work . 27
1.6 Research questions . 28

2 DEVELOPMENT . 31
2.1 Definitions . 31
2.1.1 Mathematical notation . 31

2.1.2 Problem statement . 32

2.2 Data-centric adaptations of learning algorithms 33
2.2.1 The standard global single-output adaptation 34

2.2.2 The standard local multi-output adaptation 35
2.3 Decision trees . 36
2.3.1 Searching for the best split . 39
2.3.2 Measuring the quality of a split . 42

2.4 Bipartite decision trees . 43
2.4.1 Bipartite global single-output trees . 43
2.4.2 Asymptotic complexity analysis . 45

2.4.3 Prototype functions for bipartite trees . 47
2.5 Decision forests . 48
2.6 Incorporating semi-supervision into decision trees 51
2.6.1 Semi-supervised learning . 52

2.6.2 Semi-supervised decision trees . 53

2.6.3 Unsupervised impurities . 54
2.6.4 Heuristics for balancing the supervised and unsupervised objectives 55

2.7 Assessing the performance of bipartite models 56
2.7.1 There are multiple ways to measure model generality 57

2.7.2 Cross-validating in two dimensions . 59
2.7.3 Prediction scoring metrics . 60

2.7.3.1 Ideal descriptions of AUROC and AUPRC 64

2.7.3.2 AUPR and AUROC in terms of ranked decision values 65
2.7.3.3 AUROC is the normalized mean percentile ranks 68

2.8 Experimental settings . 69

2.8.1 Datasets . 69

2.8.2 Evaluation procedure . 71

2.9 Experiments . 72
2.9.1 What are the differences between AUROC and AUPR? 72

2.9.1.1 Setup . 73

2.9.1.2 Discussion . 73

2.9.2 Are BGSO models faster than GMO models? 74

2.9.2.1 Setup . 75

2.9.2.2 Discussion . 75

2.9.3 Which prototype should a GMO forest use? 75

2.9.3.1 Setup . 77

2.9.3.2 Discussion . 77

2.9.4 Which adaptation strategy is the best for decision forests? 78

2.9.4.1 Setup . 79

2.9.4.2 Discussion . 79

2.9.5 Can label imputation assist bipartite forests? 80

2.9.5.1 Setup . 81

2.9.5.2 Discussion . 82

2.9.6 What is the best way of building semi-supervised forests? 83

2.9.6.1 Setup . 83

2.9.6.2 Discussion . 84

2.9.7 Which strategies are the most promising? 85

2.9.7.1 Setup . 85

2.9.7.2 Discussion . 85

2.9.8 Can bipartite forests compete with other proposals? 86

2.9.8.1 Setup . 87

2.9.8.2 Discussion . 88

3 CONCLUSION . 99
3.1 Main findings . 99
3.2 Future work . 100

REFERENCES . 103

APPENDIX 111

APPENDIX A – OTHER ESTIMATOR-CENTRIC STRATEGIES . . 113
A.1 Linear models . 113
A.2 Neighborhood-Regularized Matrix Factorization 115

A.2.1 Traditional matrix factorization . 116
A.2.2 Neighborhood regularization . 118

21

1 INTRODUCTION

As the starting point, we provide a brief overview of the concepts explored along this
thesis. We begin by describing the learning paradigm of interest (Section 1.1), and proceed
by outlining its main challenges and current approaches (Section 1.2 and Section 1.3). A brief
discussion on the advantages of decision trees is then presented (Section 1.4), followed by a
summary of previous literature on bipartite forests (Section 1.5). We conclude this introduction
by presenting the guiding research questions of our work (Section 1.6).

1.1 What is bipartite learning?

The effect a drug molecule has on our organism is tightly associated with the specific
microscopic structures it physically and chemically interacts with (6, 7). The regulatory roles
of microRNAs are often mediated by their binding to a defined set of messenger RNAs. The
activity of a transcription factor is determined by which genes it is capable of regulating (8).
The success of a recommendation system depends on its ability to predict a user’s preference
for a set of items in a catalog (9). All those scenarios share the same underlying structure: there
are two distinct domains of objects that interact with one another, forming a heterogeneous
bipartite network (10).

Frequently, great importance lies in computationally describing such relationships. For
instance, developing new drug molecules is a costly and time-consuming process, requiring
years of complex computer simulations, large screening assays, and extensive trials (6, 7). Be-
ing able to predict beforehand the interactions in a large dataset of drugs and protein targets
holds a remarkable potential to accelerate drug development and reduce its costs, enabling the
concentration of financial resources and human expertise to a set of most promising candidates.
Furthermore, being able to characterize on a large scale the relationships between microR-
NAs and genes or other biomolecular entities can greatly assist the understanding of regulatory
mechanisms of gene expression, a valuable step towards the discovery and development of new
therapies.

Therefore, it is natural that numerous machine learning algorithms have been proposed
to predict interactions in bipartite networks (6, 7, 11). The role of a learning algorithm in this
setting is to receive a feature vector describing the heterogeneous pair, and characterize their
interaction through a binary label or affinity score. We focus on cases where the input vector can
be split into two: one vector representing each interacting entity. More specifically, our setting
is characterized by:

1. Interaction prediction: The goal is to infer interactions that occur each between two
objects (called a dyad).

22 Chapter 1 Introduction

2. Heterogeneus dyads: Each dyad is composed of objects of different types.

3. Bipartite network: There are two types of objects.

4. Available side-features: Each object has its own feature vector that is not derived from
its set of known outputs.

Several similar concepts have emerged when referring to learning tasks that aim to de-
scribe relationships. Link prediction (12,13) refers to the task of predicting the existence of con-
nections between two nodes in a network. Usually, is assumes that node attributes are unavail-
able, being concerned with recovering attributes from the network structure (12). Furthermore,
the output is usually binary (or probabilistic), indicating the presence or absence of a link (12).
Dyadic prediction (14–16) is a broader category of tasks involving predicting relationships be-
tween two objects. The availability of side-features is considered, but not required (14), and
possible outputs encompass both classification and regression (14). The presence of two sep-
arate domains is sometimes assumed (14, 15), but there are also cases in which the network
is homogeneous (16). Interaction prediction is a term often used in the context of biological
networks (6,7,17,18). As such, it usually assumes the presence of side-features. The output can
be either a binary indicator or real values such as drug-target affinities (19).

None of these terms are specific to bipartite networks. They include cases in which
a single type of entity composes the network, and thus a single feature matrix is sufficient to
describe all the nodes. Furthermore, it is common for these contexts to assume transductive (20)
approaches. In such cases, the attributes of all nodes are available for training, and only the set
of links is split between training and validation sets (12, 13). As a result, the models are not
guaranteed to be able to predict interactions between unseen instances.

In this study, we are mostly concerned with the bipartite scenario, where two distinct
sets of entities interact with each other and each set has its own feature matrix. We are also
interested in inductive (20) techniques, in which the main goal is to model a function from the
node feature space to the output space. This property allows us to predict interactions between
new instances that were not present in the training set, while also enabling transparent models
to provide new insights about the underlying phenomena.

If feature vectors are not available for both interacting entities, the problem becomes
essentially a multi-output supervised task or a transductive dyadic prediction problem. For that
reason, we require side-features to be available for both axes.

Possible denominations for the current setting include inductive heterogeneous dyadic

prediction and inductive bipartite interaction learning. For simplicity, we refer to this paradigm
as bipartite learning.

1.2 Challenges of bipartite learning problems 23

1.2 Challenges of bipartite learning problems

Despite their importance, bipartite interaction prediction problems pose unique chal-
lenges to machine learning approaches, that we enumerate below.

1. Heterogeneous data: The input data is often composed of two very dissimilar types of
objects, each with its own set of features. As a result, estimators may be required to
simultaneously deal with descriptors of very different natures (6).

2. Large datasets: Due to the intrinsic combinatory nature of this type of problem, the
interactions to be processed are usually very numerous, even if the number of training
instances in each domain is not that expressive. Specifically, for each new object intro-
duced to the training set, a new interaction could be considered for each training sample
in the other domain, rendering the number of interactions to grow quadratically with the
number of entities of each type.

3. Knowledge sparsity: As a consequence of the previous point, no amount of research
efforts in characterizing new interactions can keep up with the rate at which possible
relationships appear, resulting in a fundamental sparsity of confidently verified interac-
tions (6).

4. Lack of validated negative annotations: In many cases, the absence of a relationship
between two objects is much harder to validate than its presence. For instance, negative
results in biochemical essays asserting molecular interactions can often be caused by a
plethora of external experimental factors other than the actual lack of interaction under
optimal conditions, unlike positive results that usually imply a successful assay (6, 7,
19). These factors result in a general lack of high-quality negative data in interaction
datasets, requiring special considerations from machine learning pipelines that are often
overlooked in the literature.

5. Impact on model evaluation: Two rank-based metrics are mainly used to evaluate the
performance of interaction prediction models (7, 12, 13, 19): the area under the receiver
operating characteristic curve (AUROC) (21, 22) and the area under the precision-recall
curve (AUPR) (21,23,24). These metrics are known to assess the performance of a model
in different ways, and are often used in conjunction to provide a more comprehensive
view. However, these differences are not fully clear, and neither is how they are affected
by the missing annotations. This makes it difficult to interpret why different models are
sometimes chosen, and to decide which metric to prioritize in each experiment. For in-
stance, AUPR is often recommended for imbalanced scenarios (11,21,22,25), but metrics
similar to AUROC are also suggested in interaction prediction contexts (11, 19, 26–28).

6. Lack of inductive algorithms: Many of the algorithms proposed for interaction predic-
tion assume a transductive (20) setting, where attributes of the test instances are available

24 Chapter 1 Introduction

at training time (11,19). This setting hinders the interpretability of those models and their
application to completely new entities.

Most of these issues are an integral part of interaction prediction problems, that arise
from how they are fundamentally defined around combinations of objects. However, these dif-
ferences are often overlooked when developing machine learning algorithms (19). For instance,
it is common to represent each dyad with the concatenated feature vectors of its components.
Nevertheless, it can be challenging to collect representations for all dyads in this format, which
would result in a very large matrix to be processed by the algorithm. Instead, the training set
for a bipartite problem is more naturally represented as two separate design matrices rather than
the usual single one. Ideally, we would want to avoid the combination of feature vectors as a
data preprocessing step, leaving the conjoint treatment of both design matrices as a matter of
estimator design. This view defines a different machine learning paradigm, in which what we
call "instances" or "samples" are not the dyads themselves, but rather each individual interact-
ing object. The estimator receives both feature matrices and it is up to the algorithm to decide
how to use them in conjunction to predict new interactions.

In conclusion, acknowledging such defining aspects and incorporating the bipartite na-
ture of the problem are crucial steps in developing successful and scalable machine learning
models for interaction prediction.

1.3 How can bipartite models be built?

There are two general strategies for developing machine learning algorithms for bi-
partite interaction prediction. We call them data-centric and estimator-centric approaches. The
majority of methods proposed for bipartite learning is based on organizing the data to enable the
use of traditional learning algorithms. These data-centric adaptations can be broadly classified
into two categories (1, 17, 29), which we describe below.

• Global single output: The most common approach observed in the literature. The dataset
is formatted so that each dyad is an instance. Each dyad has a single label associated
with it, and the feature vector describing the dyad is the concatenation of the two feature
vectors describing the interacting entities. Usual single-output learning algorithms can
then be applied to the problem.

– Main advantage: Enables the estimator to consider features from both instance
domains simultaneously.

– Main disadvantage: It can be computationally infeasible to build the feature vec-
tors and train the estimator for all possible interactions.

• Local multi-output: This strategy separates the bipartite learning problem into two multi-
output tasks. We first select one of the domains as input and the other as output. We train

1.3 How can bipartite models be built? 25

a multi-output estimator to receive the features of the input domain and predict its interac-
tions with the output domain. Each instance in the output domain is considered an output
to me modeled, so that the features of the output domain are completely disregarded in
this step. The same procedure is then repeated with the roles of the domains reversed. Pre-
dicted interactions of these two models are fed into a new round of training that occurs
in a similar fashion. A total of four models is necessary to predict interactions between
instances that were both not present in the training set.

– Main advantage: A much smaller number of input samples is considered, in com-
parison to the global single output approach. As a consequence, the models are
usually faster to train.

– Main disadvantage: It requires training new models for each new batch of interac-
tions to be predicted. This severely limits the application on online learning settings.

Other methods adapt the learning algorithm itself to take full advantage of the bipar-
tite format. These strategies tend to be more computationally efficient than the global single
output approach, since they consider the dataset in a more compact format. Notwithstanding,
they are still able to consider both domains simultaneously, unlike the local multi-output proce-
dure. There is, however, a limited number of learning algorithms that can be adapted in a more
fundamental level. Notable examples of estimator-centered adaptations are listed below.

• Linear regression: Instance-instance similarities among each domain could be used to
build a dyad-dyad similarity matrix. This matrix could then be used as a kernel matrix
for training a linear regression model in a global single output fashion. The main problem
with this idea is that a dyad-dyad kernel matrix would be often prohibitively large. Kron-
RLS (30) solves this issue, building the hypothetical linear model we described without
explicitly obtaining the dyad-dyad kernel matrix.

– Main advantage: It is a remarkably efficient method.

– Main disadvantage: Linear relationships frequently are too simplistic to capture
the complexity of the underlying interactions.

• Matrix factorization: The adjacency matrix of the bipartite network is decomposed into
two latent feature matrices, one for each domain. The product of these matrices approxi-
mates the original adjacency matrix, and can be used to predict new interactions between
known instances. 31 introduces a method to extend this idea to predict interactions with
new instances, by encouraging instance-instance vicinities to be transfered from the orig-
inal to the latent feature space.

– Main advantage: It is a naturally scalable technique, being designed from the
ground up for interaction prediction tasks.

26 Chapter 1 Introduction

– Main disadvantage: Interpretability is limited and a large number of hyperparam-
eters is necessary.

• Decision trees: 1 proposes an adaptation to the split search procedure occurring at each
decision tree node. The search is performed locally for each domain, similarly to the local
multi-output approach, but the resulting model is a single decision tree.

– Main advantage: Better scores are achieved in comparison to decision trees adapted
with data-centric approaches (1).

– Main disadvantage: No improvement in training complexity is observed relative to
decision trees under the global single output adaptation (1).

This work will focus on decision trees. We explore how tree-based algorithms can be
adapted to the bipartite learning paradigm, and how they can be tailored to address the chal-
lenges imposed by our learning setup.

1.4 Why decision trees?

Decision trees are a very interesting option to explore. They show remarkable inter-
pretability, flexibility to different tasks, and straightforward usage, besides demonstrating re-
markable predictive power when combined into ensembles (32–35). We list below some of the
main advantages of learning algorithms based on decision trees.

1. Interpretability: Decision trees and forests are well-known transparent models, with sev-
eral methods being available to interpret their predictions (3,36,37). For instance, the fre-
quency with which a feature is used by the tree can reflect its importance in the prediction
process (3).

2. No need for preprocessing: In most cases, very little preprocessing is necessary to use
decision trees. They can directly handle continuous or categorical features, and natively
deal with missing feature values (3). They are also not sensible to feature scaling, so
normalization is most often not necessary.

3. Flexibility: Decision trees can be used for both classification and regression tasks, and
can handle either single or multi-output problems. They were successfully adapted to a
wide range of scenarios (35).

4. Small number of hyperparameters: They have a small number of hyperparameters in
comparison to other algorithms such as deep neural networks, which makes them easy to
use and tune (34).

5. Predictive power: They can uncover complex non-linear relationships between features
and labels, while being notably resistant to overfitting when combined into ensembles.

1.5 Related work 27

They are widely recognized for their predictive performance especially on structured
data (35).

6. Fast inference: Once trained, they can make predictions in logarithmic time complex-
ity (3).

We thus investigate how the potential of decision forests can be applied to bipartite
learning. We introduce three main methodology refinements, aimed at the high dimensionality,
sparsity, and lack of information imposed by our learning settings.

1. More scalable trees: We experiment with different metrics to guide the tree growing
procedure. Optimizing the algorithm for these metrics can offer improvements in training
complexity, making bipartite trees more scalable.

2. Weighted neighbors prototypes: We explore using similarity scores between instances
to calculate the output value of each leaf node. This enables shallower trees to be built
while increasing their ability to generalize.

3. Semi-supervised impurities: We build trees that consider how the instances are grouped
in the feature space, and not only their labels. This improves the model’s resilience to
missing annotations.

1.5 Related work

This section provides a brief overview of previous investigations related to bipartite
forests, pointing out limitations to be addressed in this work.

17 stablishes the idea of the global single output, local single output, and local multi-
output adaptations of traditional machine learning algorithms. In their study, they analyse the
performance of random forests (RF) (32) and ensembles of randomized trees (ERT) (2) adapted
in both ways and applied to biological interaction prediction. They consider not only bipar-
tite but also homogeneous networks, such as protein-protein interactions or gene-gene interac-
tions (17).

In 2018, Pliakos, Geurts and Vens(1) present a global multi-output decision tree for
interaction prediction, named the predictive bi-clustering tree (PBCT) algorithm. The method
adapts decision trees on a more fundamental level to interaction scenarios, resulting in improved
results over the previous adaptations (1). However, the training complexity of the proposed trees
is still the same as that of the previous adaptations (1), and the authors do not explore the use of
semi-supervised techniques.

The authors, in 2019, extend the PBCT algorithm to ensembles, building bipartite ver-
sions of RF and ERT (18). They demonstrate superior performance against the other models
in the comparison. Later, in 2020, they explore the use of neighborhood-regularized logistic

28 Chapter 1 Introduction

matrix factorization (NRLMF) (31) as a pre-training step to the bipartite ERT (29). NRLMF
is used to generate continuous pseudo-labels for negative interactions, that are imputed in the
interaction matrix before training the forest estimator. They demonstrate significant improve-
ments in prediction scores resulting from this procedure (29), sugesting that label imputation
and other semi-supervised techniques could be beneficial.

38 extends the application of PBCTs to hierarchical multi-label classification problems.
In ths context, the bipartite trees are able to split apart not only samples but also labels, resulting
in competitive predictive performance.

39 and 40 independently propose a way to consider semi-supervised assumptions when
building decision trees. They do so by penalizing the selection of split points that separate
close training instances. As a result, instances within the same tree node, that tend to yield
the same output, also will tend to have similar feature vectors. The method is based on the
assumption that neighboring instances are more likely to have similar labels (the smoothness

assumption (20, 41)). The impact of missing or incorrect labels on the split selection is then
reduced, since we delegate part of their influence to the feature space directly. While 39 uses
variances of features as the impurity function, 40 uses the structure of random trees to determine
similarity values (42). Neither of these works, however, is centered in interaction prediction.

In 2023, 43 employed semi-supervised impurities with bipartite trees. To enhance per-
formance, the authors do not use the semi-supervised impurity to evaluate every possible split.
Instead, they first determine the best split of each of each feature domain in a supervised man-
ner, and then use the semi-supervised impurity to choose between the two best supervised
splits. This procedure is performed at each tree node. The algorithm results in better predic-
tions than the fully supervised approach, while being faster than the original semi-supervised
proposal (43). The authors also propose a different way to balance the influences of the super-
vised and unsupervised objectives. They dynamically determine new weights for each objective
in each tree node, based on the amount of labeled data available (43). Nonetheless, the authors
do not explore ensembles of bipartite trees, or the more expensive semi-supervised evaluation
of every candidate split. They also do not explore other heuristics for dynamic supervision.

1.6 Research questions

The present work will explore current open questions regarding bipartite forests. We ex-
plore how these algorithms can be improved both in terms of training complexity and predictive
performance, and how they compare with other prominent techniques for interaction prediction.
We enumerate our main research questions below.

1. Can bipartite trees be faster?

Investigate how can we exploit the bipartite nature of the problem to achieve a speedup
in the training of decision trees.

1.6 Research questions 29

2. Are semi-supervised techniques beneficial for bipartite forests?

Test the hypothesis that semi-supervised techniques can improve the resilience of bipartite
trees to missing annotations.

3. How do AUROC and AUPR differ in their assessment of model performance?

Evaluate in detail the differences between the two most common threshold-agnostic met-
rics for binary classification tasks: the Area Under the Receiver Operating Characteristic
Curve (AUROC) and the Area Under the Precision-Recall Curve (AUPR).

4. How do bipartite forests compare with proficient models in the field?

Compare the performance of bipartite forests with other state-of-the-art models for bipar-
tite learning.

31

2 DEVELOPMENT

This chapter presents a detailed description of the proposed methods and experimental
results of this work. To facilitate future reference, we dispose all the experiments in a single
section. However, the reader is encouraged to proceed in a more modular fashion when reading
this thesis in its entirety. We provide boxes at the end of several sections listing the experiments
that relate to what was discussed. The reader might opt for skipping to the relevant experi-
ments before proceding. If necessary, more details on the evaluation procedure can be found in
Section 2.7 and Section 2.8.

The sections in this chapter are organized as follows. We begin by formally defining the
notation we utilize and the learning problem at hand (Section 2.1). Section 2.2 will then present
the most common strategies for building machine learning models for bipartite interaction pre-
diction. Further, we provide a general description of decision tree algorithms (Section 2.3),
as the theoretical foundation for the subsequent formal definition of bipartite decision trees
(Section 2.4). Section 2.5 will then present how decision trees can be combined into power-
ful ensembles. Section 2.6 discusses strategies for acknowledging the label uncertainty of our
problems, leveraging assumptions from semi-supervised learning to fundamentally influence
how decision trees are grown. We then present and discuss the model evaluation process in the
bipartite setting (Section 2.7), pointing out its specificities and discussing implications for two
common scoring metrics. Finally, our experimental results are gathered by Section 2.9.

2.1 Definitions

This section defines the notation used throughout this work (Section 2.1.1) and formal-
izes the learning tasks we approach (Section 2.1.2), defining how our datasets will be repre-
sented.

2.1.1 Mathematical notation

We use lowercase letters for scalars, bold lowercase letters for vectors and uppercase
letters for bidimensional matrices. For any given matrix M , we denote by M [ij] its element on
the i-th row and j-th column (i, j ∈ N∗). The vector representing the i-th row of M is denoted
M [i]. We represent by M [·j] the vector (M⊺)[j] referring to the j-th column of M . Defining the
index notations as superscripts enables the subscripts to be used only as indentifiers, naming
the matrix or vector as a whole and not each element. Indices are also always represented by a
single letter, to avoid the need for separators between them.

Vector concatenation or horizontal concatenation of matrices is expressed as
[
A B

]
.

32 Chapter 2 Development

Vertical concatenation is expressed as

[
A

B

]
.

We write the total number of rows in M as |M |i and its number of columns as |M |j .
The total number of elements in M is written |M | = |M |j|M |i, not to be confused with the
determinant of M .

We display filtered matrices or vectors by writing the condition as the index, optionally
enclosed by parentheses when necessary or improving readability:

M [(i < 3)j] = {M [kj] | k < 3}

When summing over all indices in a given dimension, we take the liberty of omitting the start
and end positions: ∑

i

M [ij] =

|M |i∑
i=1

M [ij]

We also represent averages in a more concise way:

M ⟨i⟩[j] =

∑
i M

[ij]

|M |i

M [i]⟨j⟩ =

∑
j M

[ij]

|M |j

M ⟨ij⟩ =

∑
j

∑
i M

[ij]

|M |

(2.1)

Scalar exponents represent element-wise exponentiation of matrices or vectors. We also
omit parentheses in some situations, as exemplified by Equation 2.2.

M [ij]2 = (M [ij])2

M ⟨ij⟩2 = (M ⟨ij⟩)2

M2⟨ij⟩ = (M2)⟨ij⟩

M ⟨i⟩2⟨j⟩ = ((M ⟨i⟩)2)⟨j⟩

(2.2)

2.1.2 Problem statement

Consider two object spaces X1 and X2 of different natures, and an output space Y .
Bipartite interaction prediction is the task of modeling a function f : X1 ×X2 → Y .

Naturally, f is not directly available. To build the model, we only have access to a
dataset D containing n1 instances x1 ∈ X1, n2 instances x2 ∈ X2, and all their corresponding
outputs y = f(x1,x2). That is, D = {(x1,i, x2,j, yi,j) | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}.
Unfortunately, the output y is seldom fully available, as discussed in Section 1.1, but we keep
the same formulation by letting y assume identifiers for missing entries. The available objects
represented by the vectors x1 and x2 are called samples or instances, so that X1 and X2 are also

2.2 Data-centric adaptations of learning algorithms 33

X1

X2

Y

Figure 1 – Representation of a bipartite network and its corresponding dataset.
Source: By the author.

called sample or instance domains. The vector representations themselves, x1 and x2, are called
feature vectors or attribute vectors. Any heterogeneous pair of instances (x1, x2) is called a
dyad. Each element of the output y ∈ Y is called a label or a target. The procedure that takes
D and generates the model for f is called the learner, the learning algorithm or the estimator.

In our specific case, X1 = Rm1 , X2 = Rm2 , and Y = {0, 1}, so that f is a binary single-
output classifier. D can then be represented by a set of matrices: D = (X1, X2, Y), where
X

[ij]
1 = x

[j]
1,i, X

[ij]
2 = x

[j]
2,i, and Y [ij] = yi,j (see Figure 1). We call X1 and X2 feature matrices,

attribute matrices or design matrices. Y is called the label matrix, the interaction matrix, or
the adjacency matrix. Since each sample in X1 refers to a row of Y and each sample in X2

corresponds to a column of Y , we sometimes refer to the samples of X1 and X2 as the row

samples and the column samples, respectively. Analogously, we say that our datasets have m1

row features and m2 column features.

Another important characteristic of our learning problems is that only the positive labels
(y = 1) are reliable. This means that an interaction between two instances may occur in reality
even if annotated as negative (y = 0) in the dataset. The datasets are thus termed positive-
unlabeled (PU) (44).

2.2 Data-centric adaptations of learning algorithms

As discussed in Section 1.3, bipartite interaction problems fundamentally differ from the
usual machine learning paradigm, in which input data represents a single entity to be labeled.
Interaction tasks are instead concerned with labeling a relationship between two entities, and as
such, each prediction is made upon a pair of feature vectors, each vector being specific to each
of the two sample domains.

Such subtlety is often bypassed by reformulating a bipartite dataset into the traditional
machine learning setting (17, 19, 45). These strategies can be encompassed under two general
approaches, termed global and local (1,12,15,29,45). For the sake of clarity and generality, we
further specify these categories by defining global and local as general properties of estimators,
rather than specific training procedures:

• Global estimators are those aware of both instance domains during the training procedure

34 Chapter 2 Development

(X1 and X2).

• Local estimators are those which only have access to feature information from one of the
two instance domains during training (either X1 or X2). As such, they are often employed
in compositions, combining the predictions of several local models to produce the final
output.

Furthermore, to be consistent with (1, 17, 18, 29), we assume the following definitions in our
current context of bipartite interactions:

• Single-output estimators are those which consider all labels, i.e. all Y [ij] elements, irre-
spectively of the column j or row i they are in. They are all regarded as a single type of

output.

• Multi-output estimators, on the other hand, are those which consider each instance, each
row or column of Y , as a separate task, for example by defining a composite loss function
formed by the combination of losses over each row or column.

Notice that the label matrix Y can still be represented in two dimensions even if the model is
single-output in this sense, contrary to the usual case where bidimensionality of Y is a defining
characteristic of a multi-output problem.

Finally, the two most common ways of adapting traditional estimators to bipartite data
are then named global single-output and local multi-output, as proposed by 17. We further
denote them standard, to clearly distinguish them from new adaptation proposals that could
be described as LMO or GSO, but work in an entirely different way. Specific definitions and
shortcomings of the SGSO and SLMO procedures are now presented.

2.2.1 The standard global single-output adaptation

Arguably the most straightforward way to provide bipartite data into a conventional
learning algorithm is by presenting concatenated pairs of row-column samples, labeled by each
element of Y . The interacting dyad is now what we consider a sample, and each feature vector
is the combination of the feature vectors of the two interacting instances. This is usually done
by converting the two X matrices and the interaction matrix Y to a single design matrix we call
XSGSO and a column-vector of labels we refer to as YSGSO.

One way of doing so is by choosing indices as described by Equation 2.3, where all
combinations of i1 with i2 are explored (see Figure 2).

ig = (i1 − 1)|X2|i + i2 − 1

X
[ig]
SGSO =

[
X

[i1]
1 X

[i2]
2

]
Y

[ig1]
SGSO = Y [i1i2]

(2.3)

2.2 Data-centric adaptations of learning algorithms 35

Concat.
feature
vectors

X1

X2

XSGSO YSGSO

Y

Figure 2 – The standard global single-output (SGSO) approach. The bipartite dataset is represented as
two matrices X1 and X2, and a matrix Y of shape |X1|i by |X2|j . The SGSO approach con-
catenates the rows of X1 and X2 to form a new feature matrix, in which each row represents
a dyad. The interaction matrix Y is then reshaped into a column vector, so that each element
of Y is associated with a row of the new feature matrix. The resulting dataset is then used to
train a conventional single-output estimator.
Source: By the author.

To consider all possible dyads, XSGSO would have |X1|i|X2|i rows and |X1|j + |X2|j
columns. Thus, XSGSO as defined by Equation 2.3 is highly redundant. As a result, dealing with
such a large XSGSO matrix is impeditive in many cases, both in terms of memory usage and
computation time. Therefore, a commonly used workaround is to undersample the negative an-
notations, yielding a dataset with equal amounts of positive and negative interactions (46, 47).
This strategy is justified by the negative-annotated dyads being usually far more numerous than
positives and much more likely to be truly negative interactions than false negatives. Nonethe-
less, we demonstrate in Section 2.9.4 that undersampling negatives is significantly detrimental
if the main goal is to indicate wich interactions are most likely to be true.

2.2.2 The standard local multi-output adaptation

The local approaches, in contrast to global methods, propose training different mod-
els on X1 and X2, so that each estimator only has access to information regarding either row
samples or column samples.

As such, multiple non-bipartite models need to be used in conjunction to predict inter-
actions between new row samples and new column samples. The standard local multi-output
(SLMO) approach uses two traditional estimators for each axis (four in total), that we here refer
to as primary and secondary estimators. In general, they must be multi-output estimators, each
being able to output a bidimensional Y matrix.

The procedure for training the estimators in an SLMO setting consists of simply train-
ing the primary estimators. The primary rows estimator is trained on X1 and Y , and the primary
columns estimator on X2 and Y ⊺ (Function TrainLocalModel). The prediction step is how-
ever more complicated, involving the training of the secondary estimators on predictions of the
primary models. The procedure is described in details by Function PredictLocalModel and illus-
trated by Figure 3. The combine function used in line line 15 of the Function PredictLocalModel

36 Chapter 2 Development

Primary columns estimator

Secondary
rows
estimator

Training
set

(optional)

(discarded)

New
cols

Training
set

New
cols

Final
pred.

1. First step 2. Second step

3. Repeat in the other direction and average results.

Figure 3 – The standard global single-output (SLMO) approach. The bipartite dataset is represented as
two matrices X1 and X2, and a matrix Y of shape |X1|i by |X2|j . The SLMO approach trains
two primary multi-output estimators, one for each axis, and then trains two secondary multi-
output estimators on the predictions of the primary models. The secondary models are then
used to predict the interactions between new row samples and new column samples.
Source: By the author.

Function TrainLocalModel(X , Y)
Input: The bipartite training dataset.
Output: A bipartite local model.

1 train(primaryRowsEstimator, X1, Y);
2 train(primaryColumnsEstimator, X2, Y ⊺);

3 return primaryRowsEstimator, primaryColumnsEstimator

procedure can be arbitrarily chosen, and is usually defined as the simple element-wise average
of both matrices (combine(Y1, Y2) = 1

2
(Y1 + Y2)).

An unusual behaviour occurs if the secondary estimators are able to exploit inter-output
dependencies. In this case, the outputs of the SLMO composition would depend on the amount
of test data and specific combinations of test instances provided. This is usually not the case in
traditional learning problems, and complicates the evaluation procedure. The behaviour forces
us to consider the size and sampling method of the batches of test data. For online aplications,
the ideal strategy would be to retrain the secondary models for each batch of new instances, us-
ing the predictions from the primary models over all the previously received instances (labeled
and unlabeled). As a result, the application of SLMO models is effectivelly restricted to offline
learning contexts.

2.3 Decision trees

A general description of top-down decision trees is now presented, as a theoretical foun-
dation for the upcoming formal definition of bipartite decision trees (Section 2.4).

Let’s consider the scenario where a single protein of interest is selected, and we receive
the task of determining which drug molecules will likely affect its physical structure or catalytic

2.3 Decision trees 37

Function PredictLocalModel(primary models, Xnew)
Input: The trained primary models and the unseen sample matrices Xnew for both

axes.
Output: Ypred predictions for each interaction provided.

1 Ynew rows ← predict(primaryRowsEstimator, X1, new)

2 Ynew cols ← predict(primaryColumnsEstimator, X2, new)

3 if Secondary estimators consider label dependencies then
// Concatenate known rows and columns labels to the

primary predictions

4 Ynew cols ←
[

Y ⊺

Ynew cols

]
;

5 Ynew rows ←
[

Y
Ynew rows

]
;

// Otherwise, if label columns are considered
independently, this step is not necessary

6 end

7 train(secondaryRowsEstimator, X1, Y
⊺

new cols);
8 train(secondaryColumnsEstimator, X2, Y ⊺

new rows);

9 Ypred rows ← predict(secondaryRowsEstimator, X1, new);
10 Ypred cols ← predict(secondaryColumnsEstimator, X2, new);

11 if Secondary estimators consider label dependencies then
// Skip predictions not referring to X1, new and X2, new

12 Ypred rows ← Y
[· (j > n1)]

pred rows ;
13 Ypred cols ← Y

[· (j > n2)]
pred cols ;

14 end

15 return combine(Ypred rows, Y
⊺

pred cols)

function. We wish to find a systematic procedure to decide whether a given drug molecule xi

will interact with our protein or not. To develop such a procedure, consider we have at our
disposal a set of m known drug molecules, whose degree of interaction with our protein of
interest was previously experimentally determined. We can then describe a drug molecule xi in
general by how similar it is to each of our m known molecules, organizing this information as a
vector xi =

[
x
[1]
i x

[2]
i x

[3]
i · · · x

[m]
i

]
so that x[j]

i represents the similarity score between the
drug xi and the j-th of our m known drugs.

The hypothetical decision procedure we intend to determine could then be structured
as a path with consecutive bifurcations. We always start at the same place, and, at each bifur-
cation, a question is asked about the drug xi in hands. The questions are in a standard format,
exemplified by "Is xi more than 60% similar to the 3rd known drug?", or x[j]

i > t, for a general
known drug j and similarity threshold t. The answer to the question in each bifurcation deter-

38 Chapter 2 Development

x

 x[2]> 0.7

 x[3]> 0.2 x[4]> 0.2

 x[1]> 0.7 x[3]> 0.1 x[1]> 0.9 x[2]> 0.1

Figure 4 – A decision tree model. A new sample x traverses the tree structure from the root node to a
leaf, where a final decision is made. Each bifurcation represents a decision rule in the format
x[f] > t. The validity of the rule determines if the sample should follow the left or right path.
When a terminal node is reached, the output value is generated by the prototype function.
Source: By the author.

mines which of the two possible paths we should follow. No cycles are allowed in the path, and
eventually, all routes reach final locations instead of bifurcations. Each final location contains a
fixed value that will be returned as the final decision about the drug xi’s effect on our protein of
interest.

Such a decision procedure, structured as a binary tree path, is what is commonly referred
to as a decision tree (DT) model (3), illustrated by Figure 4. In this context, each bifurcation
then represents a tree node, and the final locations are called leaves. The value outputted by
each leaf is termed the leaf’s prototype.

The main challenge, however, lies in the building process of such models: in how to
determine the rules that define each fork and how we define the stopping criteria for a final
decision to be yielded.

To build the decision tree, we are given a training set composed of the two bidimen-
sional matrices X and Y . The dataset represents |X|i = |Y |i instances, each described by |X|j
numeric features and labeled by |Y |j labels. In the previous example, |X|i would be the number
of drug molecules in the dataset |X|j would be the number of reference drugs (used to obtain
the similarities), and |Y |j would be the number of proteins of interest.

Consider now executing the prediction process of a decision tree for each training in-
stance, going through the branched path. Each bifurcation would divide the training instances
between those who answer the question affirmatively and those who answer negatively. Even-
tually, each leaf will contain a partition of the training instances. From the resulting partitions,
we can evaluate the decision tree: a "good" decision tree would be one in which the prototype
value of each leaf is a good estimate of the labels in the leaf’s partition. The training algorithm

2.3 Decision trees 39

uses such evaluation to search for an effective tree. A greedy top-down procedure is usually
followed, that we introduce bellow.

Formally, each rule is encoded by an index f representing a feature column and a thresh-
old value t. Each rule then represents a split of the training dataset in two partitions, named left

and right, as defined by Equation 2.4.

Yleft = Y [(X[if] ≤ t)]

Yright = Y [(X[if] > t)]

Xleft = X [(X[if] ≤ t)]

Xright = X [(X[if] > t)]

(2.4)

To build a decision tree, we start with the whole training set (the root node). A proce-
dure FindSplit is executed to yield a good splitting rule. The training data is then partitioned
according to this rule, as defined in Equation 2.4. Two descendant nodes are created, each re-
ceiving one of the partitions. For each new node, we have two options: i) apply FindSplit to its
data partition and continue recursively; or ii) set the node as a leaf, taking record of the partition
it received.

The tree-building algorithms can thus be described by four key components:

1. The FindSplit procedure, which determines a set of candidate splitting rules and selects
the best one according to a quality metric.

2. The split quality metric used by FindSplit to evaluate the candidate rules.

3. The stopping criteria, that determine when a node should be set as a leaf.

4. The prototype function, that determines the output value of a leaf.

Function BuildTree describes in detail how these components come together to build a decision
tree. Function Predict then formally details how predictions are made given a model built by
Function BuildTree and a new data instance. These procedures emcompass a wide range of
decision tree algorithms, including the popular CART (3), ID3 (48), and C4.5 (49), as well as
the bipartite trees we explore in the present work (1).

The following sections provide further considerations on specific components.

2.3.1 Searching for the best split

We explore two main strategies for the FindSplit procedure: the exhaustive search and
the randomized search. The exhaustive search is the most common. The randomized search
is a faster but less accurate alternative, intended to be used in the context of tree ensembles
(Section 2.5). We describe each procedure in the present section.

40 Chapter 2 Development

Function Predict(RootNode, xnew): Compute a Decision Tree’s prediction.
Input: A new interaction sample to be evaluated and the root node of a Decision

Tree.
Output: The Decision Tree’s predicted value for the given sample attributes.

1 Node← RootNode;

2 while Node is not a leaf do
3 if x[Node.feature]

new > Node.threshold then
4 Node← Node.childRight
5 else
6 Node← Node.childLeft
7 end
8 end

9 return prototype(Node.X, Node.Y)

Function BuildTree(X , Y): Recursively build a Decision Tree
Input: The training data for the current node.
Output: Current node, with all information of subsequent splits.

1 ∆I∗, f ∗, t∗ ← FindSplit (X , Y , m̃);

// Many stopping criteria are possible
2 if DecideToStop(∆I∗, f ∗, t∗, X , Y) then
3 return NodeObject {
4 isLeaf← True
5 Xleaf ← X
6 Yleaf ← Y

7 };
8 else
9 Get Xl, Yl, Xr, Yr from f ∗ and t∗ (Eq. 2.4);

10 return NodeObject {
11 isLeaf← False
12 childLeft← BuildTree(Xl, Yl)
13 childRight← BuildTree(Xr, Yr)
14 feature← f ∗

15 threshold← t∗

16 };
17 end

The most common approach to the FindSplit procedure is to consider all possible parti-
tions of the given input data. For a feature column X [·f], this exhaustive evaluation of partitions
can be done by sorting X [·f] and considering a threshold t between each two consecutive values
in it. Notice that any threshold value between the same two consecutive X

[·f]
sorted elements will

result in the exact same partitioning of the training set (Equation 2.4). The common practice is
thus to take the averages between each two neighboring feature values. The same procedure is
then repeated for each feature column, and the overall best t∗ and corresponding feature index

2.3 Decision trees 41

Function FindSplitBest(X , Y)
Input: A partition of the training data in a given node.
Output: The highest quality score ∆I∗ found among all splits evaluated, with its

corresponding feature column f ∗ and threshold value t∗.

1 Initialize Sr and Sl as a |Y |j-sized vectors;

2 ∆I∗, f ∗, t∗ ← 0;

3 Draw m̃ columns (features) of X without replacement;

4 foreach feature index f of the m̃ drawn features do
5 nl ← 0; // Holds |Yl|i
6 Sr ←

∑
i Y

[iȷ̂]; // Holds
∑

i Y
[iȷ̂]
r

7 Sl ← 0; // Holds
∑

i Y
[iȷ̂]
l

8 Get the permutation P that sorts X [·f];

9 Apply P to Y ’s and X [·f]’s rows:
10 YP , XP ← P (Y), P (X [·f]);

11 foreach row index ı̂ of YP do
12 nl ← nl + 1;
13 foreach column index ȷ̂ of YP do
14 S

[ȷ̂]
r ← S

[ȷ̂]
r − Y

[̂ıȷ̂]
P ;

15 S
[ȷ̂]
l ← S

[ȷ̂]
l + Y

[̂ıȷ̂]
P ;

16 end

17 Use Sl, Sr and nl to calculate ∆I (Equation 2.5). Notice that other
node-specific constants might be needed;

18 if ∆I > ∆I∗ then
19 ∆I∗ ← ∆I;
20 f ∗ ← f ;
21 t∗ ← 1

2
(X

[̂ı]
P +X

[̂ı+1]
P);

22 end
23 end
24 end

25 return ∆I∗, f ∗, t∗;

f ∗ are selected. The exhaustive split search procedure is detailed by the Function FindSplitBest.

The randomized search is an alternative that avoids considering all partitioning options
and greatly reduces the amount of operations performed. It consists of drawing a random thresh-
old t between the minimum and maximum value of each feature, thus evaluating only |X|j splits
when choosing the best (line 13). Although degrading the performance of a single tree, this pro-
cedure is an interesting option when building tree ensembles (Section 2.5), being the core idea
behind the extremely randomized trees algorithm (2). Ensembles of decision trees will be dis-
cussed in Section 2.5.

42 Chapter 2 Development

Function FindSplitRandom(X , Y)
Input: A partition of the training data in a given node.
Output: The highest quality score ∆I∗ found among all splits evaluated, with its

corresponding feature column f ∗ and threshold value t∗.

1 ∆I∗, f ∗, t∗ ← 0;

2 Draw m̃ columns (features) of X without replacement;

3 foreach feature index f of the m̃ drawn features do
4 Find min(X [·f]) and max(X [·f]);
5 Draw a random threshold value t ∈ R so that min(X [·f])< t <max(X [·f]);

6 Calculate ∆I for the drawn t (Equation 2.5) ; // O(|Y |)
7 if ∆I > ∆I∗ then
8 ∆I∗ ← ∆I;
9 f ∗ ← f ;

10 t∗ ← 1
2
(X

[̂ı]
P +X

[̂ı+1]
P);

11 end
12 end

13 return ∆I∗, f ∗, t∗

2.3.2 Measuring the quality of a split

A split quality criterion must be defined so we can compare and select the best splitting
rules at each node. The quality ∆I of a split is commonly framed as the decrease of an impurity
metric calculated over the partitions of training labels (Equation 2.5). This decrease is taken
for the combined impurities of the generated children nodes (Equation 2.4). All impurities are
multiplied by the size of each partition relative to the total number of training samples (|Yroot|),
restricting the effect of nodes with less data that could introduce spurious variations of impurity.
Notice that |Ynode| = |Yleft|+ |Yright|.

∆I(Y, t, f) =
|Ynode|
|Yroot|

I(Ynode)−
|Yleft|
|Yroot|

I(Yleft)−
|Yright|
|Yroot|

I(Yright) (2.5)

Several metrics can be chosen as the impurity function I(·), such as the Gini impurity,
the Shannon entropy or the Poisson loss (3). In this study we utilize the variance of each output
column, averaged over all outputs (Equation 2.6).

IMSE(Y) = (Y [ij] − Y ⟨i⟩[j])2⟨ij⟩ = Y 2⟨ij⟩ − Y ⟨i⟩2⟨j⟩ (2.6)

Most commonly, the prototype function returns the column averages of a leaf’s partition of the
training labels: Y ⟨i⟩[j]

leaf . In this case, the column variances correspond to the mean squared error

(MSE) for the training data in the node, as if the node holding Ypartition were to become a leaf.

Also notice that IMSE is equivalent to the Gini impurity if Y contains only binary values.
That can be shown by noticing that Y [ij]2

bin = Y
[ij]

bin for binary labels, so we define p as p[j] =

2.4 Bipartite decision trees 43

Y
2⟨i⟩[j]

bin = Y
⟨i⟩[j]

bin , which yields Equation 2.7.

IMSE(Ybin) = Y
2⟨ij⟩

bin − Y
⟨i⟩2⟨j⟩

bin = (p[j] − p⟨j⟩2)⟨j⟩ = [p[j](1− p[j])]⟨j⟩ = IGini(Y) (2.7)

2.4 Bipartite decision trees

Some learning algorithms can be adapted in a deeper level to the bipartite context. These
algorithms are able to directly receive the two X matrices as input, without needing to combine
them as a preprocessing step for training. We term them estimator-centric adaptations, in con-
trast with the data-centric strategies discussed in Section 2.2. This section explores the main
focus of this work: estimator-centric adaptations of decision tree models. Appendix A presents
two other estimator-centric strategies, based on linear models and matrix factorization.

Essentially, the adaptation process consists of defining bipartite versions of each of the
four key components of the decision tree algorithm (Section 2.3): the FindSplit procedure, the
split quality metric, the stopping criteria, and the prototype function. From these, the most
central is the FindSplit procedure adaptation.

For bipartite trees, as proposed by 1, we perform the split search locally in each domain,
in a similar fashion to the SLMO adaptation (Section 2.2.2). Specifically, let FindSplit trad

be a procedure for finding a split threshold in a traditional multioutput decision tree (see Sec-
tion 2.3.1). A bipartite tree applies FindSplit trad twice at each node: once over X1 and Y

and once over X2 and Y ⊺. This results in one split being chosen for each axis. Finally, the best
overall split is selected between the vertical and horizontal splits. In essence, a bipartite decision
tree algorithm uses a FindSplit procedure that composes two traditional FindSplit trad

procedures, as detailed by Function FindBipartiteSplit.

2.4.1 Bipartite global single-output trees

This section shows how we can grow bipartite trees more efficiently, making tree esti-
mators more scalable to large bipartite datasets.

The original bipartite tree proposed by 1 uses the impurity metric IMSE (Equation 2.6) to
evaluate splits, so that the authors classify their technique as a Global MultiOutput (GMO) es-
timator. Multi-output because the impurity evaluates the average variance of each label column
(or row), as if each column (or row) were a different output. Global because each tree utilizes
features from both feature domains for training (see Section 2.2). Their GMO trees, however,
are shown to have the same algorithmic complexity as traditional decision trees trained with
the SGSO adaptation. We demonstrate that faster training algorithms can be developed if we
assume a single-output format under the context of bipartite trees.

The split rules as defined by Equation 2.4 are agnostic to the specific arrangement of the
bipartite data. They can be seamlessly applicable to either the (XSGSO, YSGSO) format employed
by the SGSO adaptation (Equation 2.3) or directly to the X1, X2 and Y matrices. Furthermore,

44 Chapter 2 Development

Function FindBipartiteSplit(X , Y)
Input: A partition of the bipartite training data in a given node. X encodes one

design matrix for each axis, X1 and X2.
Output: The highest quality score ∆I∗ found among all splits evaluated in both

row and column directions, with its corresponding feature column f ∗ and
threshold value t∗.

1 if adapterStrategy is BGSO (Section 2.4.1) then
// Build Y proxies Ỹ1 and Ỹ2 (Equation 2.10)

2 Ỹ1 ← Y [·]⟨j⟩;
3 Ỹ2 ← Y ⟨i⟩[·];
4 else

// Using GMO strategy, no proxies are used

5 Ỹ1 ← Y ;
6 Ỹ2 ← Y ⊺;
7 end

// Generate a split in each axis. Get each split’s
position, feature and quality score

8 ∆I∗r , f
∗
r , t

∗
r ← FindSplit(X1, Ỹ1);

9 ∆I∗c , f
∗
c , t

∗
c ← FindSplit(X2, Ỹ2);

10 if ∆I∗r > ∆I∗c then
11 return ∆I∗r , f ∗

r , t∗r
12 else

// f ∗
c value lets clear its X2 ownership

13 return ∆I∗c , f ∗
c , t∗c

14 end

the impurity at each node of an SGSO tree, in many cases can be translated to the bipartite for-
mat. Equation 2.8 describes such a translation of the MSE impurity presented by Equation 2.6.

IMSE(YSGSO) = Y
2⟨ij⟩

SGSO − Y
⟨i⟩2⟨j⟩

SGSO = Y 2⟨ij⟩ − Y ⟨ij⟩2 (2.8)

If we then define

IGMSE(Y) = IMSE(YSGSO) = Y 2⟨ij⟩ − Y ⟨ij⟩2 (2.9)

the exact same SGSO-adapted decision tree, with its node structure and split rules, can be
grown by applying the bipartite procedure (Function FindBipartiteSplit) with the IGMSE impurity
instead of the original IMSE. This again follows from the generality of the split rules defined in
Equation 2.4, invariant under the SGSO data rearrangement (Equation 2.3). Notice how the
squared divergences in 2.6 are computed relative to the average of each Y column, while in 2.9
the inner average is computed over the whole Y matrix.

We can explore this property of the GSO impurity to iterate more efficiently over can-
didate splits. This is done by pre-computing averages of each row and column of Ynode. We can
then iterate over one-dimensional Ỹnode proxies (Equation 2.10) instead of the bidimensional

2.4 Bipartite decision trees 45

matrix when evaluating splits (Function FindSplitBest).

Ỹ
[i]
1 = Y [i]⟨j⟩

Ỹ
[j]
2 = Y ⟨i⟩[j]

(2.10)

The same is not possible for the GMO trees, as Equation 2.6 requires storing averages for each Y

column, to be squared individually. Function FindBipartiteSplit describes the adapted procedure
in each case. The complexity improvements are demonstrated theoretically in Section 2.4.2 and
later empirically in Section 2.9.2.

2.4.2 Asymptotic complexity analysis

In this section, we derive the asymptotic complexity of the proposed algorithms for
growing bipartite trees.

We consider that the number of horizontal instances has the same magnitude as the
number of vertical instances, so that we define n ∼ |X1|i ∼ |X2|i. Similarly, we assume
m ∼ |X1|j ∼ |X2|j and define m̃(m) as the effective number of features. That is, the split
search procedure samples m̃(m) features to consider in each node. The sampling is most often
done without replacement, so that m̃(m) ∈ O(m). Common choices are m̃(m) = ⌈

√
m⌉ or

m̃(m) = ⌈log2(m)⌉.

From the algorithm description, we can infer that the complexity of both Function FindSplitBest
and line 13 will be given by

FindSplit(n, m̃) ∈ Θ(m̃S(|Y |i) + m̃|Y |)

= Θ(m̃S(n) + m̃n2)

= Θ(m̃n2) (2.11)

where S(n) is the complexity of the chosen sorting algorithm used by FindSplit when
operating on n values. When features are real-valued, the current most effective algorithms are
Θ(n log n), as, for example, Quick Sort or Merge Sort (50). For integer features, the complexity
is Θ(n), as in Counting Sort or Radix Sort (50).

When applied on XSGSO and YSGSO, we still have that |Y | = n2 and m̃(m) ∈ O(m).

FindSplitSGSO(n, m̃) ∈ Θ(m̃S(|YSGSO|i) + m̃|YSGSO|)

= Θ(m̃S(n2) + m̃n2)

= Θ(m̃S(n2)) (2.12)

For BGSO, the complexity is given by

FindSplitBGSO(n, m̃) ∈ Θ(n2 + m̃S(|Ỹ1|i) + m̃|Ỹ1|)

= Θ(n2 + m̃S(n) + m̃n)

= Θ(n2 + m̃S(n)) (2.13)

46 Chapter 2 Development

The complexity of FindBipartiteSplit will be the same as the non-bipartite FindSplit
that it wraps, since it simply applies the wrapped function twice at each node.

To estimate the complexity of the whole tree-building process, let’s consider the ideal
scenario of a balanced decision tree. We also consider that the axis of a split alternates at each
level, so that a matrix Y is separated in four equal sized pieces after two levels. This results in
the following recurrence relationship:

T (n) = 4T
(n
2

)
+ FindSplit(n, m̃) (2.14)

T (n) is the time to build the tree from an n by n interaction matrix, and FindSplit(n, m̃) in
this case is the time taken to select a split. The algorithm complexity of such recursive functions
then follows the master theorem (50). The theorem gives the time complexity of a function T

obeying the recurrence relation T (n) = aT (n/b) + F (n) and c = logb a:

T (n) ∈

Θ(nc) if F (n) ∈ O(nc−ϵ).

Θ(nc logk+1 n) if F (n) ∈ Θ(nc logk n).

Θ(f(n)) if F (n) ∈ Ω(nc+ϵ) and F (n) is regular.

(2.15)

In Equation 2.15, ϵ is a positive infinitesimal constant and k is any non-negative integer. For the
third case, we say a function F (n) is regular if it satisfies the regularity condition: aF (n/b) ≤
qF (n), for some constant q < 1 and all sufficiently large n (50).

For our tree algorithms, Equation 2.14 shows that c = 2 and F (n) represents FindSplit(n, m̃).
The resulting complexities are presented by Table 1. We see that the choice of the sorting func-
tion only affects the SGSO-adapted trees. In the worst case, where S(n) = n log n, the SGSO
trees are log n times slower than the GMO trees. If S(n) = n instead, both have the same
complexity.

Table 1 also shows that BGSO trees are faster than GMO trees when considering a high
number of features. Specifically, if m̃(n) ∈ O(log n), BGSO will be m̃ times faster than GMO.
If m̃(n) ∈ Ω(log n), BGSO will be log n times faster than GMO. The only case in which both
are equivalent is when m̃ ∈ O(1).

Related experiments

• Section 2.9.2 – Are BGSO models faster than GMO models?

Presents empirical evidence of the efficiency gains of the proposed algorithm, com-
paring BGSO against GMO decision trees.

2.4 Bipartite decision trees 47

Table 1 – Comparison between asymptotic time complexities of decision tree-building procedures. We
assume n ∼ |X1|i ∼ |X2|i. Similarly, m̃ represents the number of features to be considered
for the split search in each node. S(n) denotes the complexity of the sorting procedure, usually
n for integral features or n log n for decimal values. The last column refers to the case where
m̃ ∼ n. This scenario could arise, for instance, when Xa are pairwise similarities or kernel
matrices.

Strategy Split search Tree building m̃ ∝ n

SGSO Θ(m̃nS(n)) Θ(m̃nS(n) log n) Θ(n2S(n) log n)
GMO Θ(m̃n2) Θ(m̃n2 log n) Θ(n3 log n)
BGSO Θ(n2 + m̃S(n)) Θ(n2(log n+ m̃)) Θ(n3)

Source: By the author.

Function BipartiteTreePredict(RootNode, x1, new, x2, new)
Input: A new dyad and the root node of a Bipartite Decision Tree.
Output: The tree’s predicted value for the given feature vectors.

1 Node← RootNode;

2 while Node is not a leaf do
3 if Node.axis = 1 then xnew ← x1, new;
4 else xnew ← x2, new;

5 if x[Node.feature]
new > Node.threshold then Node← Node.childRight ;

6 else Node← Node.childLeft;
7 end

8 return prototype(x1, new, x2, new, Node.Y)

2.4.3 Prototype functions for bipartite trees

In this work we propose a different prototyping strategy to determine the output value
of each leaf in a global multi-output (GMO) decision tree, taking the similarity matrices of our
use cases into consideration.

When a leaf is reached during the prediction step of a decision tree, the prototype
function is called to determine the output value to be returned (line 8 of Function BipartiteTreePredict).
With traditional datasets, the prototype function most often returns the average label of the
leaf’s partition (Equation 2.16) (3).

prototype(Yleaf)
[j] = Y

⟨i⟩[j]
leaf (2.16)

As an extension, the most natural approach to use on single-output bipartite trees is the
analogous average of the whole partition of the interaction matrix (Equation 2.17).

prototypeGMOsa(x1, new,x2, new, Y leaf) = Y
⟨i⟩[1]

SGSO, leaf = Y
⟨ij⟩

leaf (2.17)

X1, leaf, X2, leaf and Yleaf represent the partition of the training set that reaches the leaf. Neverthe-
less, some considerations are possible when dealing with bipartite data, since there are cases in

48 Chapter 2 Development

which one of the entities of the interaction being predicted is already known from the training
set. As introduced by (1), if a row instance is in the training set, we have the option of averaging
only the column of Yleaf corresponding to its known outputs (the analogous being performed for
a known column instance). Specifically, when predicting the interaction between a sample pair
x1, new and x2, new, we can set prototype as in Equation 2.18 (the arguments are omitted).

prototypeuniform(·) =

Y

[k]⟨j⟩
leaf if ∃ k | x1, new = X

[k]
1, leaf

Y
⟨i⟩[k]

leaf if ∃ k | x2, new = X
[k]
2, leaf

Y
⟨ij⟩

leaf otherwise.

(2.18)

A drawback of this approach is a possibly greater susceptibility to random fluctuations, since the
label averages in the prediction step are taken over a much smaller sample size (a single row or
column of Yleaf instead of the whole Yleaf). Given we are working with similarity scores, we pro-
pose an intermediate approach. We weight the rows and columns of Yleaf by similarity values in
the form s

[i]
a = similarity(xa, new, X

[i]
a) between xnew and the training samples (Equation 2.19).

prototypeweighted(·) =
∑

i∈leaf s
[i]
1 Y

[i]⟨j⟩
leaf

2
∑

i∈leaf s
[i]
1

+

∑
j∈leaf s

[j]
2 Y

⟨i⟩[j]
leaf

2
∑

j∈leaf s
[j]
2

(2.19)

Furthermore, the similarities we are dealing with are precomputed: X1 and X2 are
square matrices in which X

[i1i2]
a = similarity(X [i1]

a , X
[i2]
a). Therefore, xa, new already represents

a similarity vector sa. We explore this property in three different ways, termed precomputed,
square, and softmax:

sa,precomputed = xa, new s[i]a,square = (x[i]
a, new)

2 s
[i]
a,softmax = exp(x[i]

a, new) (2.20)

The first case uses the similarity scores directly. The second case employs the square of the
similarity scores to emphasize the importance of the most similar samples. The third case am-
plifies even further this effect by using the exponential of the similarity scores. Experimental
comparisons between these three prototype functions are presented in Section 2.9.3.

Related experiments

• Section 2.9.3 – Which prototype should a GMO forest use?

Compares the performance of the three prototype functions in the context of bipartite
GMO decision forests.

2.5 Decision forests

While single decision trees are valuable tools for comprehending the learning problem
at hand, they often fall short in effectively modeling intricate relationships within the data, dis-
playing limited generalization capabilities and high susceptibility to overfitting (32, 33). Their

2.5 Decision forests 49

most significant impact on machine learning applications is observed when committees of such
models are utilized, in which the final output values are, for example, the average predictions of
all trees. These compositions of estimators are usually referred to as ensembles (32,51,52). Be-
ing studied in the context of machine learning since the 1970s (51,52), they reflect the intuitive
idea that combining multiple opinions from a diverse set of experts frequently results in better
decision taking.

In fact, it has been extensively demonstrated both empirically and theoretically that the
predictive perfomance a group of learners always surpasses that of its individual components
if and only if the individual estimators are sufficiently accurate and diverse (32, 34, 51, 52).
Importantly, requiring diversity means that the individual estimators must ideally commit errors
on different instances for the composition to succeed (52). 51, 52 describe three ways in which
combining diverse estimators could benefit the ensemble’s performance:

1. Statistical: Building each estimator can be seen as finding a hypothesis that explains
the prediction problem as well as possible. If multiple different hypotheses are found,
the likelihood that at least one of them is close to the true underlying function is in-
creased. Furthermore, averaging multiple hypotheses can contribute to alleviate the in-
fluence of each hypothesis’ variance, resulting in a more accurate approximation and
reduced propensity to overfitting.

2. Computational: Finding the globally optimal decision tree is known to be an NP-complete
problem (53). Thus, finding and combining multiple approximate hypotheses, that may
represent local maxima of the objetive function, is often much cheaper than expending
time on the search for a global solution.

3. Representational: Sometimes, a single estimator is not complex enough to represent the
intricacies of the probem at hand. However, combination of models can be utilized to
enhance the representational power of the ensemble, building a more general decision
function as a combination of the simpler decision boundaries of each estimator.

Being diversity a key factor, mechanisms of introducing model heterogeneity are as
important to consider as strategies for enhancing the base algorithm. In fact, many diversity-
inducing techniques even degrade the performance of individual estimators, but still result in
improvements for the ensemble as a whole (2,32). For example, one of the most straighforward
ways to promote heterogeneity is to build each estimator on randomized subsets of the training
data. In this and in many other cases, designing ensemble models is thus a matter of balancing
diversity and individual strength (32).

This is the core idea of decision forests (the ensembles of decision trees). Even simple
estimators such as decision trees, traditionally prone to overfitting, can be leveraged to com-

50 Chapter 2 Development

pose powerful learning algorithms. We briefly describe some popular strategies for introducing
heterogeneity in the decision tree growing procedure:

1. Instance sampling: A new version of the training set is built by randomly drawing in-
stances from it, with or without replacement (selecting rows of X). If drawing with re-
placement, one can optionally draw the same number of instances as the original set, a
procedure known as bootstrapping.

2. Feature sampling: A random subset of features is selected to be used (selecting columns
of X). The number of features m̃ selected in each node is commonly defined as a function
of the total number of features |X|j . Usual choices are m̃ = ⌈

√
|X|j⌉ or m̃ = ⌈log |X|j⌉.

3. Split threshold randomization: Instead of searching for the best split threshold for each
feature as in Function FindSplitBest, a random threshold value is drawn between the
minimum and maximum values of each feature column. This procedure is described in
line 13.

Both instance and feature undersampling can be performed node-wise, occurring before the
split search procedure of each node, or tree-wise, occurring once for each tree in the ensemble.
Both can also be performed with or without replacement, but notice that sampling features with
replacement only makes sense if randomization of split threshold is also employed. In such a
case, a random candidate split threshold is selected for each repetition of a feature, whereas
the same split threshold would be selected for all duplicates if the greedy approach was used,
spending more time with no different result than if omitting the repeated features.

The concept of sampling instances with replacement to create a different training set
for each estimator in the ensemble was first proposed by 54 under the name of bootstrap ag-
gregation or bagging. The idea of selecting a subset of features was introduced independently
by 55 and 56. 55 explored feature sampling as a remedy for a shape recognition problem with
impeditively large sample sets, whereas 56 was mainly focused on overfitting-prevention for de-
cision forests. It was 32 who first combined the two ideas, proposing and greatly popularizing
the Random Forest algorithm, with over 120 thousand citations according to Google Scholar
as of March 2024. 2 later introduced the randomized split threshold concept, presenting the
Extremely Randomized Trees algorithm (Extra-Trees). The algorithm shows competitive pre-
diction scores and clear superiority in terms of training speed compared to bagging and Random
Forests (2, 17).

The two main ensemble-building strategies we explore in the current work can now be
defined as follows:

• Random Forests (RF) (32): Tree-wise instance sampling with replacement and node-
wise feature undersampling without replacement are employed.

2.6 Incorporating semi-supervision into decision trees 51

• Extremely Randomized Trees (ERT) (2): Split threshold randomization and node-wise
feature undersampling without replacement are employed. No resampling of instances is
performed in the original proposal.

We refer the reader to 57 and 58 for a more in-depth description of prominent deci-
sion forest strategies and previous work in the field. 59 provides an experimental comparison
of the most popular ensemble methods. Regarding interaction problems, 17 explores the use
of decision forests under the standard global multi-output and local single-output adaptations
presented by Section 2.2.

The same tree-diversification and forest building techniques discussed in this section
can also be applied to bipartite decision trees, with very small modifications regarding the data
sampling procedures: instance sampling and feature sampling must now occurr on both do-
mains of the interaction dataset. 18 explores these ideas, using bipartite global multi-output
decision trees to build both Random Forests and Extra-Trees ensembles. We hereafter refer
to these forests as Bipartite Random Forests (BRF) and Bipartite Extra-Trees (BXT), respec-
tively. Their study suggests superior performance of BXT in comparison to SLMO- and SGSO-
adapted forests, as well as in comparison to previously proposed algorithms (18). The authors
later extend their work to include a label imputation step for predicting drug-target interac-
tions (29). In that study, their model is built on a reconstructed version of the interaction matrix
obtained through Neighborhood-Regularized Logistic Matrix Factorization (NRLMF) (31). The
NRLMF algorithm is described in detail in Section A.2.

Related experiments

• Section 2.9.4 – Which adaptation strategy is the best for decision forests?

Compares the performance of different bipartite decision forests. Both data-centric
(Section 2.2) and estimator-centric (Section 2.4) adaptations are explored.

• Section 2.9.5 – Can label imputation assist bipartite forests?

Investigates the impact of NRLMF as a method to impute positive annotations. All
bipartite adaptations are tested on the reconstructed matrix.

2.6 Incorporating semi-supervision into decision trees

The tree algorithms presented up until this point do not consider the positive-unlabeled
(PU) property of interaction data. They work under the assumption of a supervised scenario,
in which all annotations are reliable. In this section, we discuss adaptations to decision trees
specifically designed to the challenges of PU data.

52 Chapter 2 Development

As several previous authors (19, 60, 61), we argue that accounting for the partial avail-
ability of information could improve prediction performance of bipartite models. The strategies
to deal with missing labels are the main concern of the semi-supervised learning paradigm (20,
41, 62), which we briefly introduce.

2.6.1 Semi-supervised learning

Supervised problems are those we have been exploring, in which the goal is to build
a model that can predict the label of a new instance based on its features (63, p. 9). We have
a matrix Y of target values and feature matrices X , and the model’s objective is to learn the
relationship between X and Y .

When the learning problem at hand does not involve predefined labels, the task is termed
unsupervised (63, p. 486). The most common example is clustering problems, where the goal is
to group similar instances together based solely on their numerical attributes. In these problems,
there is not a preconceived target to model, such as desired output values or classes to which
each instance should belong. Only the X matrix is utilized, there is not an associated label
matrix Y .

In summary, while supervised learning problems are concerned with the relationship
between X and Y , unsupervised learning problems target the relationships between instances
themselves. While supervised learning focuses on the graph of a function f : x→ y, unsuper-
vised learning focuses on the structure of the feature space.

Some problems, however, lie in the intersection of the supervised-unsupervised spec-
trum. They usually arise when the available annotations are incomplete or unreliable, so that
both supervised and unsupervised objectives are of interest. Take for instance the case of an
image gallery application capable of grouping all photos of a person into a folder with their
name. While the names must be asked once to the user, all photos of each different person are
already grouped beforehand. The algorithm is both concerned with labeling each photo with
the correct name and with grouping similar photos together. Another example can occur when
building a medical diagnosis database. Such a database could be a result of merging multiple
datasets and considering a large collection of patients. Some amount of missing information
is very common in these cases, and the algorithms must be able to deal with these vacancies.
One possible strategy is to infer missing labels from the labels of similar instances, bringing the
concept of clustering again into play.

In the examples, both label inference (that characterizes supervised problems) and clus-
tering (that characterizes unsupervised problems) are intertwined as the model’s objective. The
goal is to simultaneously learn to correctly classify the instances with known labels while also
considering similarities to infer the missing or uncertain annotations. The class of such hybrid
learning tasks is called semi-supervised learning (20, 62).

2.6 Incorporating semi-supervision into decision trees 53

Since missing labels are a defining characteristic of interaction prediction tasks, it is
commonly suggested (31,43,61) that applying semi-supervised concepts to our problems could
significantly improve the performance of bipartite models. We then explore this hypothesis in
the context of bipartite decision trees.

2.6.2 Semi-supervised decision trees

This section describes our strategies to incorporate semi-supervision assumptions into
bipartite decision trees.

To develop semi-supervised algorithms, assumptions must be made about the data. The
main assumption governing our approach is that similar instances are likely to have similar
labels. This is known as the smoothness assumption (20, 41), and can be incorporated into
decision trees by redefining the impurity function guiding the split search (39, 40, 43).

Notice that the growing of decision trees unavoidably induces groupings of samples in
the training set. Specifically, the structure of each tree represents a hierarchical clustering of the
training samples, in which each tree node represents a partition of the training set composed
by the training instances that reach that node. However, this clustering procedure is usually
preformed under the objective of grouping instances with similar labels, which not necessarily
means that instances in the same group will have similar features. This results from the defini-
tion of the impurity function I governing the split search procedure: I is usually chosen as to
minimize the divergence of labels within each partition (see Section 2.3). As such, I commonly
depends on Ynode alone. With that in mind, decision trees can be naturally adapted to unsuper-
vised or semi-supervised tasks by redefining the impurity function to consider the feature matrix
Xnode instead of only the label matrix Ynode.

In a purely unsupervised context, an example would be to utilize the average of column
variances in Xnode as the impurity function (Equation 2.21). This would result in a tree that
groups instances with similar features together, regardless of their labels.

Iu, MSE(X) =
(
X [ij] −X⟨i⟩[j])⟨i⟩2⟨j⟩ (2.21)

To address semi-supervised scenarios, we can consider both supervised and unsuper-
vised objectives simultaneously. This can be done by using a linear combination of unsupervised
and supervised impurities to guide the split selection, taking into account both the similarities
between features and between labels to build a semi-supervised decision tree (39,40,43). Equa-
tion 2.22 defines such a hybrid impurity function.

Iss(Xnode, Ynode) = (1− σ)
Iu(Xnode)

Iu(Xroot)
+ σ

Is(Ynode)

Is(Yroot)
(2.22)

We divide each term by the corresponding impurities on the root node, thus calculated over the
entire training set. The reason is to avoid the influence of possible differences in scale between

54 Chapter 2 Development

the values in X and in Y . It also compensates relative scale differences that could arise when
choosing different functions for Iu and Is. The parameter σ ∈ [0, 1], that we call supervision
balance, weights the relative importance given to each objective, with σ = 0 corresponding to
a fully unsupervised tree and σ = 1 to a fully supervised tree. Strategies for adjusting σ are
discussed in Section 2.6.4.

For semi-supervised tasks in general, we usually have confirmed positive and confirmed
negative annotations alongside missing entries. In this case, notice how Is can only be cal-
culated over the non-missing annotations, while Iu can always utilize both labeled and unla-
beled instances. Nevertheless, all confirmed annotations are positive in our present scenario of
positive-unlabeled learning. Thus, we must still consider the missing labels as zero entries for
the calculation of Is. Even so, we argue that decreasing the relative importance of the super-
vised objective can compensate the label uncertainty and improve generalization. The idea is to
encourage the tree to appreciate the structures in the feature space. For example, it should select
splits that delineate very compact groups of instances, even if the labels in a given group are not
satisfactorily homogeneous.

A caveat of using a semi-supervised impurity as in Equation 2.22 is that trees could
continue to find splits even if all instances in a given node have the same label. This is because
we could keep reducing the unsupervised impurity by further splitting even if the supervised
impurity is already zero. However, the output value of each node is still calculated over Ynode

alone, so all nodes descending from a homogeneous node would yield the same output. We
avoid such redundant splits by forcefully stopping the split search for a node when Is(Ynode) =

0.

Another important notice is that features must be normalized before training the tree: the
impurity function Iu (Equation 2.21) is most often sensitive to the relative scale of the different
columns of X . This is normally not a requirement for decision trees, since the split search
procedure is performed separately for each feature and usually only depends on the order of the
values, not on their specific magnitude.

2.6.3 Unsupervised impurities

We explore two different unsupervised impurity functions for the semi-supervised deci-
sion trees: the mean feature variance (Equation 2.21) and the mean pairwise distance between
the samples (Equation 2.23). We describe and motivate them in this section.

Initial proposals of a semi-supervised impurity function (39) employed the mean vari-
ance of the feature matrix X as the unsupervised term (Equation 2.21), being concerned with
traditional decision trees. The strategy, however, does not scale well with the number of fea-
tures. This results from each node having to always consider the same number of features,
even though the number of instances decrease. The scalability is especially a concern in the
scenarios under study, in which the feature matrices are square similarity matrices. Because

2.6 Incorporating semi-supervision into decision trees 55

X already represents similarities between samples, an additional metric such as the variance
of each feature is not necessary to capture how close the samples are to each other. Exploring
this property, we propose a more efficient unsupervised impurity function based on the average
similarity between the samples in the tree node (equation 2.23).

IMeanDistance(X) =
1

|snode|
∑

j∈snode

∑
i∈snode

(1−X [ij]) (2.23)

snode denotes the set of indices representing the samples in the node. Notice that the number
of features to consider equals the number of samples in the node: we always consider a square
partition of X . As such, the number of operations required by Iu drops more steeply with
respect to the node size in comparison to IMSE GMO or similar impurities, which is especially
beneficial in our case of large X matrices. We can reduce even further the number of operations
by considering only the upper or lower triangle of X , exploiting X’s symmetry.

We note that the subset of features is only used to calculate the impurity function, and
not to select split points. The split search procedure is still performed considering all features
as usual.

2.6.4 Heuristics for balancing the supervised and unsupervised objectives

Determining the ideal value of σ is not a trivial task. In fact, it is not even clear whether
a single constant σ for the whole tree is enough or it should be adjusted for each node. We
explore four different strategies for setting σ, that we present in this section.

43 argues that the unsupervised impurity should be more important for nodes with a
larger number of unlabeled instances, since the supervised information would be more likely
to be unreliable. Thus, they propose updating σ according to the label density of each node, as
defined by Equation 2.24.

σdensity = 0.1 + 0.9 · Y ⟨ij⟩
node (2.24)

However, we must recall that the prototype value of each node is only dependent on its partition
of the label matrix. Therefore, if Ynode is close to being homogeneous, a new split is unable
to cause a big overall change in the outputs for the instances involved. Specifically, the most
drastic prototype change possible occurs if we perfectly separate the instances with positive
labels from the instances with negative labels. When the node partition is very imbalanced,
even this ideal separation will only greatly affect the very few instances with the minority label.
Thus, using the heuristic of Equation 2.24 prioritizes the unsupervised objective only in cases
where no significant change in the output values is expected. Additionally, few new splits are
possible in near-homogeneuous nodes, and we are more likely to achieve label homogeneity
(and thus stop the split search) right after we achieve the cases in which Iu is highly prioritized.
In summary, the heuristic of Equation 2.24 is likely to undermine the effect of the unsupervised
objective.

56 Chapter 2 Development

To test this hypothesis, we propose another heuristic for σ that prioritizes the unsuper-
vised objective in the earliest stages of the tree growing process and the supervised objective in
nodes closer to the leaves (Equation 2.25).

σsize = 1− |Ynode|
|Yroot|

(2.25)

This way, we take advantage of the unsupervised impurity prior to when the label partitions are
already homogeneous. Essentially, we start by performing clustering in the feature space, and
then gradually move towards separating instances based on their labels. This process should be
similar to a two step procedure: we first identify large structures in the feature space (when a
large number of instances is still available) and then apply the label clustering separately to each
of these structures. The difference is that each of our semi-supervised trees represents a gradual
transition between the two steps.

We also speculate that the observed benefit of a dynamic σ could emerge from the
diversity it promotes in tree learners. As discussed in Section 2.5, the diversity of the individual
estimators is a key factor for the success of ensemble models. In this sense, ensuring variety
of the σ parameter could even be more important than estimating its "correct" value for each
partition. Therefore, we also evaluate the strategy of selecting a random σ at each node, drawn
from a uniform distribution in the interval [0, 1] (Equation 2.26).

σrandom ∼ U(0, 1) (2.26)

The effectiveness of each strategy for determining σ is tested in Section 2.9.6.

Related experiments

• Section 2.9.6 – What is the best way of building semi-supervised forests?

Presents a comparison between semi-supervised BGSO BRT with different σ heuris-
tics and unsupervised impurities.

• Section 2.9.7 – Which strategies are the most promising?

Provides a comparison between the most prominent bipartite forests investigated,
including semi-supervised forests, supervised forests and forests using NRLMF for
label imputation.

2.7 Assessing the performance of bipartite models

In this section, we discuss the evaluation procedure of estimators in bipartite learning
settings. The positive-unlabeled (44) property of such datasets and the presence of two instance
domains pose special considerations on how we assess the performance of our models. We

2.7 Assessing the performance of bipartite models 57

thus present the different ways in which bipartite datasets can be split between training and
test sets (Section 2.7.1), followed by a description on how cross-validation can be adapted to
our settings (Section 2.7.2). Finally, we present and theoretically compare the two evaluation
metrics utilized (Section 2.7.3).

2.7.1 There are multiple ways to measure model generality

To evaluate machine learning models, the standard procedure consists of separating a
subset of data samples not to be used in the training process. These samples are subsequently
inputted to the trained model and its known labels are compared to the model’s predictions in
order to estimate the algorithm performance. The held-out samples are collectively called the
test set while the ones used for model building are called the training set.

Having two distinct sample groups in bipartite learning settings makes the concept of
a held-out set more nuanced. We list five reasonable test configurations we encounter in the
literature. Given two samples x1 and x2 from each respective domain, a "test set" could refer
to:

1. Test x1, test x2 (TT): both x1 and x2 are not present in the training set, the model has
never seen either of them before;

2. Learned x1, test x2 (LT): x1 is part of the training feature matrix X1, train, but x2 was
never seen before;

3. Test x1, learned x2 (TL): x2 is part of the training feature matrix X2, train, but x1 was
never seen before;

4. Learned x1, learned x2, masked label (LL-M): Some of the positive annotations in the
training set are randomly masked (replacing 1 by 0). The model is trained on the masked
dataset and evaluated based on the predictions for the masked positives and the negative
annotations.

5. Learned x1, learned x2, unknown label (LL-U): Models trained with the SGSO adap-
tation (Section 2.2) can exclude specific labels from the training set. All instances are still
used for training, but some combinations of them are not presented to the model. This
corresponds to applying standard validation procedures directly on the XSGSO and YSGSO

matrices (Equation 2.3).

Accordingly, we sometimes call the training set the LL set. LL, TL, LT, and TT were already
presented with similar names in previous work (1, 17, 29). The authors call them Lr × Lc,
Tr×Lc, and so on. (11,19,31) denotes LL-U, LT, TL and TT as S1, S2, S3 and S4, respectively.
(31) uses a similar notation, but uses S1 to designate LL-M instead of LL-U. The LL-U test set
is most frequently used when building SGSO models (19). Using LL-M is more common for
matrix factorization methods (31, 64, 65).

58 Chapter 2 Development

LL

TT

LT

TL

Learned
rows

Learned
columns

Test
columns

Test
rows

Figure 5 – Different split configurations

for validating models with bi-

partite datasets.

Source: By the author.

Note that a model that performs well on TT
is likely to also perform reasonably well on the other
test sets, but the opposite is not necessarily true. For
instance, performing well on the TL or LT sets does
not mean a model has learned information about both
domains. As an example, consider a drug-protein sce-
nario where the model is tested with new drugs and
known proteins. Given a specific known protein, a
model might correctly infer interactions based on its
knowledge that similar drugs have interacted with that
protein, or that a specific drug trait correlates well with
the protein’s interactome. No knowledge about the pro-
tein’s features is required for the model to make such
predictions. Therefore, there is no guarantee that the
model will also perform well for new proteins.

Similarly, an effective model according to the LL-U or LL-M settings will not neces-
sarily perform well on any of TT, LT or TL sets. The reason is: an estimator would still be able
to perform significantly well on LL-U or LL-M using only the information from the interaction
matrix (as matrix factorization algorithms do). There is no guarantee that the model will be a
representation of the underlying function: (x1,x2) 7→ y. As such, there is no guarantee that new
instances will be correctly classified, since the only information available about them would be
their feature vectors.

On the other hand, the TT test sets are the most informative in terms of generalization.
They require the model to fully rely on both input vectors to predict labels, providing a more
reliable representation of how attributes from both objects come together to determine the in-
teraction. TT is therefore especially useful when one is interested in gaining insight about the
underlying process that generates the interactions. However, they are also the most challenging
to predict, and the model’s performance on them is expected to be lower than on the other test
sets.

In summary, TT should be preferred when the main interest is modeling how input
features determine the interaction (called inductive learning (20)). TL and LT are useful if gen-
eralization is only interesting for one of the domains. LL-U and LL-M are useful when the main
goal is to obtain predictions for a defined set of instances, regardless of modeling the function
(x1,x2) 7→ y or not. This is called transductive learning (20).

For the learning problems under study, explainability is an important factor to be ex-
plored in the future. We thus report our results in terms of TT, LT and TL test sets. Additionally,
the learning tasks that we approach represent very diverse phenomena (Section 2.8.1), which
makes the specific LT or TL sets not comparable between datasets. We thus average both LT

2.7 Assessing the performance of bipartite models 59

LL LT

TTTL

LLLT

TT TL

LLLL LT

TTTL TL

LLLT

TT TL

LL LT

TTTL

LLLL LT

TTTL TL

LL

LLLL

LL

LT

LT

TT LTLT

LL

LL LT

LT

TTTL

LL

LLLT

LT

TT TL

Figure 6 – Bipartite cross-validation. We represent the 9 train-test splits of a 3 by 3 bipartite cross-
validation procedure.
Source: By the author.

and TL results together to report a single LT+TL score for each dataset.

2.7.2 Cross-validating in two dimensions

In traditional learning tasks, k-fold cross-validation consists in equally and randomly
dividing both X and Y together in k non-overlapping partitions (or folds). The model is then
evaluated k times, in each round selecting a fold as the test set and the remaining ones together
as the training set.

In the bipartite interaction setting, fold division can be done in each of the two axis of
the interaction matrix, corresponding to each of the two Xa sample domains (19, 45). Each of
the k1 folds of X1 can be combined with one of the k2 folds of X2, resulting in a correspond-
ing partition of Y . Each bidimensional fold can be used as the TT set in a CV round, which
yields the corresponding four LL, LT, TL and TT sets for each round (Figure 7). A k1 by k2

bidimensional CV then has a total of k1k2 folds.

We can optionally enforce independent test sets, so that each dyad composes only one

60 Chapter 2 Development

LL LT

TTTL
LLLT

TT TL LL

LLLL

LL

LT

LT

TT LTLT

Figure 7 – Diagonal bipartite cross-validation. We represent the 3 train-test splits of a 3 by 3 diagonal
bipartite cross-validation procedure.
Source: By the author.

bidimensional fold. This can be done by selecting k = k1 = k2 and pairing each X1 partition
with a single X2 partition, yielding a total of k folds, not k2 as before. We refer to this procedure
as diagonal cross-validation (Figure 7).

In our settings, we average the results of all folds of each dataset before computing
test statistics. Therefore, the number of folds and the independence between test folds will not
affect the final significance estimates. We thus use all k2 folds in our experiments. Diagonal
cross-validation is still used, but for the nested validation used for parameter tuning in some
experiments.

An important note is that the similarity matrices must be thoughtfully handled when
splitting the datasets: we must not include similarities with the test samples in the training set.

2.7.3 Prediction scoring metrics

This section is concerned with defining the two metrics used throughout this work to
evaluate and compare the predictive performance of estimators. The metrics are the area under

the receiver operating characteristic curve (AUROC) and the area under the precision-recall

curve (AUPR).

Consider a test set of N interaction labels to be inferred by a classifier (we are not
concerned with the shape of Y in this section, and N = |Y |). Let the classifier’s predictions
then be represented by a matrix Ŷ of the same shape as Y , with Ŷ [ij] being the predicted value
for the ground-truth label Y [ij]. Since Y and Ŷ are both binary matrices, there are four possible
outcomes when a prediction is made, traditionally quantified (66) as follows:

• True Positives (TP): the number of positive labels correctly predicted, where both the
predicted and actual labels are 1.

TP =
∑
i,j

I(Y [ij] = 1 and Ŷ [ij] = 1) (2.27)

• True Negatives (TN): the number of negative labels correctly predicted, where both the

2.7 Assessing the performance of bipartite models 61

predicted and actual labels are 0.

TN =
∑
i,j

I(Y [ij] = 0 and Ŷ [ij] = 0) (2.28)

• False Positives (FP): the number of instances where the predicted label is positive (1),
but the actual label is negative (0).

FP =
∑
i,j

I(Y [ij] = 0 and Ŷ [ij] = 1) (2.29)

• False Negatives (FN): the number of instances where the predicted label is negative (0),
but the actual label is positive (1).

FN =
∑
i,j

I(Y [ij] = 1 and Ŷ [ij] = 0) (2.30)

where I(A) is the indicator function that equals 1 if statement A is true and 0 otherwise:

I =

1 if A

0 otherwise
(2.31)

Notice that the sum of TP, TN, FP and FN is equal to the total number of instances T , and we
also define P = TP + FN , the total number of a priori positive labels in the test set, and N =

TN +FP , the total number of a priori negative labels. The total number of predicted positives
is termed PP = TP + FP and the remaining predicted negatives are called PN = TN + FN .
Naturally, one wants their estimator to maximize TP and TN while minimizing FP and FN.

Most commonly, we do not use these metrics directly, but instead normalize them to the
interval [0, 1] in numerous ways. This enables score comparisons across datasets with different
numbers of samples and different densities of positive annotations. Below we list the most
common normalized scoring metrics for binary classification problems, from which the metrics
used in this work are derived (66):

• True positive rate (TPR) or recall: the ratio of correctly predicted positive labels to the
total number of positive labels.

TPR =
TP

P
=

TP

TP + FN
(2.32)

• True negative rate (TNR): the ratio of correctly predicted negative labels to the total
number of negative labels.

TNR =
TN

N
=

TN

TN + FP
(2.33)

62 Chapter 2 Development

• False positive rate (FPR): the ratio of incorrectly predicted positive labels to the total
number of negative labels.

FPR =
FP

N
=

FP

FP + TN
= 1− TNR (2.34)

• False negative rate (FNR): the ratio of incorrectly predicted negative labels to the total
number of positive labels.

FNR =
FN

P
=

FN

FN + TP
= 1− TPR (2.35)

• Precision: the ratio of correctly predicted positive labels to the total number of predicted
positive labels.

Pr =
TP

PP
=

TP

TP + FP
(2.36)

An optimal binary classifier will thus present high TPR, TNR and precision while min-
imizing FPR and FNR.

Notice that each of these metrics still allows trivial solutions: if a classifier outputs posi-
tive labels for all instances irrespectively of the input features, it will achieve perfect TPR, FNR
and Pr, but its TNR and FNR will be null. On the other hand, if a negative label is outputted
every time, the opposite will happen. Thus, we will consider pairs of these metrics simultane-
ously, such as TPR and TNR. The selected pair must include at least three of TP, TN, FP, or FN
to ensure the whole confusion matrix is taken into account.

Minimizing all the four components of the confusion matrix is not always possible. Most
often, the learning algorithms are subject to a tradeoff between the ability to correctly infer pos-
itive annotations and the ability to correctly infer negative annotations, that we express as a
balance between TPR and TNR. When evaluating models, we must be aware of the relative im-
portances being assigned to each of these tendencies. This choice is highly application-specific.
For instance, in the process of diagnosing medical conditions, TPR is likely to be prioritized,
favoring the identification of all true cases at the expense of some misleading positive results. In
this case, the cost of missing a positive result is usually far greater than that of a false positive.
In other scenarios such as spam email filtering, TNR might be favored, minimizing the number
of legitimate emails marked as spam even if some spam emails go undetected.

Considering this balance across a variety of learning tasks is a challenging factor to be
taken into account, especially in cases where the estimators can be easily adjusted to favor each
class. Many estimators, such as those employed in the present study, do not directly output a
binary label but instead provide us with a continuous decision value (such as a probability of
interaction) that additionally depends on a threshold parameter to establish the final predicted
classes. Formally, the predicted labels Ŷ are obtained from a threshold t applied to the decision
values Ỹ :

Ŷ [ij] = I(Ỹ [ij] > t) (2.37)

2.7 Assessing the performance of bipartite models 63

The selection of t directly affects the propensity to positive or negative outputs, so that a single
model can yield multiple different results with varying levels of TPR and TNR depending on
the chosen thresholds. A common practice is then to consider TPR and TNR for all t, avoiding
the influence of threshold selection on the estimator comparisons.

Notice that, since a finite set of outputs is considered for evaluation (the test set), a
finite set of thresholds will cover all possible classification results of a model. These results can
be easily displayed in a two-dimensional plot, using a point for each considered threshold so
that its corresponding TPR and TNR are each indicated by an axis. Conventionally, the TPR
is plotted in the y axis while the FPR values (representing the TNR, FPR = 1 − TNR) are
presented as x coordinates, which results in the traditional receiver operating characteristic

(ROC) curve (11, 21, 22, 25). An ideal threshold of an ideal estimator would then be close to
the top-left corner of the plot, where TPR and TNR are both 1. On the other hand, consider
a completely random classifier outputting uniformly random values Ŷ

[ij]
proba in the 0-1 interval.

We would have Ŷ [ij] = I(Ŷ [ij]
proba > t) for a given threshold t. This implies that the number of

correctly guessed positive labels is 1 − t (the probability of yielding 1) times the total number
of positive labels: TP = (1− t)(TP +FN), which results in TPR = 1− t from the definition.
Similarly, FPR = TPR = 1 − t, so that the ROC curve of a random classifier is a diagonal
line from the bottom-left to the top-right corners.

To summarize a classifier’s performance across all thresholds, the area under the ROC
curve (AUROC) is often employed, with values ranging from 0.5 to 1, where 1 represents a
perfect classifier and 0.5 represents a random classifier. Although theoretically possible, values
below 0.5 would signify the opposite label is being consistently predicted, most likely indicating
misconfiguration of the estimator. If AUROC < 0.5, the result can be easily converted to a value
greater than 0.5 by simply inverting the predicted labels (turning 0s into 1s and vice-versa).

Despite considerably common, the use of ROC curves requires additional considerations
when dealing with heavily imbalanced classification datasets (where some classes are greatly
overrepresented) (25, 67, 68). For instance,consider the case where NEG ≫ POS. Since the
denominator of TNR is far greater than the denominator of TPR, a change in TN (for example,
missing one more negative label) will have a much smaller impact on TNR than a change in TP
(missing a positive label) will have on TPR. Specifically, an increase of k in TN will cause an
increase in TNR NEG

POS
times greater than the increase in TPR caused by the same k increase in

TP.

Given that ROC equally considers both metrics, classifiers that are more sensitive to
positive labels will arguably be favored over those prioritizing negative outputs. By the same
logic, ROC will also be more lenient towards false positives (that decrease TNR) rather than
false negatives (that decrease TPR) (23).

To address this issue, it is commonly suggested the usage of precision-recall (PR) curves
instead (11,19,23,25,27,28), where the precision is plotted as the vertical coordinate while the

64 Chapter 2 Development

recall (another name for TPR) is represented horizontally. The FP term represents the true
negatives for a fixed test set (FP = N - TN). Notice that FP in the definition of precision (Equa-
tion 2.36) is not divided by the total number of negative labels, as TN is in TNR. Thus, it is
argued that AUPR is less likely than AUROC to prioritize the minority class in imbalanced
scenarios (23, 25).

We explore these claims in further detail in the following section, formally defining the
ROC and PR curves in terms of ideal label probability distributions.

2.7.3.1 Ideal descriptions of AUROC and AUPRC

Consider a general estimator outputting a decision value s ∈ R for each input instance.
The final predicted class ŷ is still to be defined by a threshold s∗ so that ŷ = I(s > s∗). For
the ideal case of an infinite number of test samples, the possible scoring results of the estimator
would be fully determined by the two theoretical distributions of s given the true label y, i.e.
the probability density functions P (s | y = 1) and P (s | y = 0). Similar to 22, we thus define
the probability density functions fk and their corresponding cumulative distribution functions
Fk for each of the two classes k ∈ {0, 1}:

f0(s) = P (s | y = 0) (2.38)

f1(s) = P (s | y = 1) (2.39)

F0(s) =

∫ s

−∞
f0(u) du (2.40)

F1(s) =

∫ s

−∞
f1(u) du (2.41)

We further define p = P
T
= P (ytest = 1) and n = N

T
= P (ytest = 0), the fractions of positive

and negative labels in the test set, respectively. We can then express the expected values of the
confusion matrix as functions of a given threshold s∗ for the decision value s:

TP(s∗) = p(1− F1(s
∗)) (2.42)

TN(s∗) = nF0(s
∗) (2.43)

FP(s∗) = n(1− F0(s
∗)) (2.44)

FN(s∗) = pF1(s
∗) (2.45)

which, in turn, yields

TPR(s∗) = 1− F1(s
∗) (2.46)

TNR(s∗) = F0(s
∗) (2.47)

FPR(s∗) = 1− F0(s
∗) (2.48)

FNR(s∗) = F1(s
∗) (2.49)

Pr(s∗) =
p(1− F1(s

∗))

p(1− F1(s∗)) + n(1− F0(s∗))
(2.50)

2.7 Assessing the performance of bipartite models 65

The AUROC can now be expressed as

AUROC =

∫ 1

0

TPR(FPR) dFPR =

∫ −∞

∞
TPR(s)

dFPR(s)
ds

ds =

=

∫ ∞

−∞
(1− F1(s))f0(s) ds (2.51)

The integration limits arise from the fact that FPR is maximal when all instances are classified
as positives and minimal when all instances are classified as negatives, which respective cor-
responds to s∗ → −∞ and s∗ → ∞. This formulation of AUROC by Equation 2.51 leads to
the most common intuition behind the metric. The first factor (1 − F (s∗)), represents the frac-
tion of positive instances that are ranked higher than the threshold s∗, alternatively expressed as∫∞
s∗

f1(s) ds. f0, as defined by Equation 2.41, represents the probability of finding a negative
instance within s∗ and s∗ + ds. Hence, the product of both factors represents the joint probabil-
ity of having a negative instance between s∗ and s∗ + ds while also finding a positive instance
with s > s∗. After integration over all possible thresholds, we conclude that the AUROC score
represents the overall probability of randomly selecting a positive instance ranked higher than
a randomly selected negative instance.

The baseline score 0.5 can be derived as follows. A random classifier is defined as an
estimator incapable of distinguishing between the true label distributions of each class. That is,
a classifier is a random classifier if and only if f0(s) = f1(s)∀s. As a consequence,

AUROC =

∫ ∞

−∞
(1−F0(s))f0(s) ds = −

∫ ∞

−∞
(1−F0) d(F0) =

[
(1− F0)

2

2

]∞
−∞

=
1

2
(2.52)

Equation 2.51 also shows a characteristic of AUROC discussed in the previous section:
the AUROC score is independent of the relative prevalence of each class in the test set. There is
no influence of p or n and only the dependency on the learned decision value distributions.

The AUPR is defined as

AUPR =

∫ 1

0

Pr(TPR) dTPR =

∫ −∞

∞
Pr(s)

dTPR(s)
ds

ds =

=

∫ ∞

−∞
Pr(s)f1(s) ds =

∫ ∞

−∞

p(1− F1(s))f1(s) ds

p(1− F1(s)) + n(1− F0(s))
(2.53)

From Equation 2.53, AUPRC can be interpreted as the average precision weighted by the dis-
tribution of positive instances. Analogously, it corresponds to collecting the decision values
attributed to each positive instance, and then calculating the average precision considering only
these values as classification thresholds. Furthermore, unlike AUROC, the true label cumulative
distributions (F0 and F1) appear each weighted by their respective class prevalences (p and n).

2.7.3.2 AUPR and AUROC in terms of ranked decision values

When computing AUROC or AUPR for a given estimator on a test set, the values of the
decision function s are usually not directly considered. Instead, the decision values outputted

66 Chapter 2 Development

for each test instance are used to rank them from lowest to highest, and from these ranked test
labels the curves and respective areas are obtained. The specific values of s are thus indifferent
to the scoring process, as long as the ranking is preserved. If the percentile rank of each test
instance is denoted by r ∈ [0, 1] and each test instance is associated with a decision value, there
is a one-to-one monotonic correspondence between r and s in the limit of an infinite number of
test samples. Formally, we have

r(s) = pF1(s) + nF0(s) (2.54)

dr = [pf1(s) + nf0(s)] ds (2.55)

We also take the liberty to represent g(r) = g(s(r)), so that

F1(r) =

∫ r

0

f1(r)

pf1(r) + nf0(r)
dr (2.56)

dF1(r)

dr
=

f1(r)

pf1(r) + nf0(r)
(2.57)

AUPR as defined in Equation 2.53 can now be written as

AUPR = p

∫ 1

0

1− F1(r)

(p+ n)− [pF1(r) + nF0(r)]

f1(r)

[pf1(s) + nf0(s)]
dr =

= p

∫ 1

0

[1− F1(r)]

[1− r]

dF1(r)

dr
dr = −p

2

∫ 1

0

1

1− r

d[1− F1(r)]
2

dr
dr =

= −p

2

∣∣∣∣ [1− F1(r)]
2

1− r

∣∣∣∣1
0

+
p

2

∫ 1

0

[
1− F1(r)

1− r

]2
dr =

=
p

2

{
1 +

∫ 1

0

[
1− F1(r)

1− r

]2
dr

}
=

=
p

2

{
1 +

∫ 1

0

[Pr(r)]2dr
}

(2.58)

in which the upper boundary term is determined by using L’Hôpital’s rule and noticing that
F1(r = 1) = 1 and dF1(r)

dr
≤ 1

p
.

lim
r→1

[1− F1(r)]
2

1− r
= 2 · lim

r→1
[1− F1(r)]

dF1(r)

dr
= 0

Equation 2.58 reveals that AUPR is closely related to the average squared precision across all
ranks.

2.7 Assessing the performance of bipartite models 67

We can also express the AUROC in terms of the percentile ranks:

AUROC =
1

n

∫ 1

0

(1− F1(r))

(
nf0(r)

nf0(r) + pf1(r)

)
dr =

=
p

n

∫ 1

0

(1− F1(r))

(
1− pf1(r)

nf0(r) + pf1(r)

)
dr =

=
1

n

∫ 1

0

(1− F1(r))

(
1− p

dF1(r)

dr

)
dr =

=
1

n

∫ 1

0

(1− F1(r)) dr −
p

n

∫ 1

0

(1− F1(r)) d(F1(r)) =

=
1

n

∫ 1

0

(1− F1(r)) dr +
p

n

[
(1− F1(r))

2

2

]1
0

=

=
1

n

{∫ 1

0

(1− F1(r)) dr −
p

2

}
(2.59)

Equations 2.58 and 2.59 put AUPR and AUROC in a similar format, better delineating
the differences between the two metrics. Consider expressing both now in terms of the precision.

AUROC =
1

n

{
1

p

∫ 1

0

(1− r)Pr(r) dr − p

2

}
(2.60)

AUPR =
1

2

{
p+

1

p

∫ 1

0

Pr(r)2dr
}

(2.61)

Ignoring constant terms and factors, both metrics are centered on integrating the pre-
cision over all possible ranks, each rank representing a classification threshold. The crucial
difference is that AUPR equally considers all precision values, while AUROC weights each
Pr(r) value by the the reversed ranks.

The precision metric is normalized by the number of instances it considers, so precision
values in different r have comparable magnitude. With this in mind, notice that the precision
values calculated for r ≈ 1 are obtained from a very small number of labeled instances. As a
result, each label considered when r ≈ 1 has a large influence on the Pr(r) value, and precisions
will tend to have larger variances when r ≈ 1. Therefore, the AUPR metric is more influenced
by the label value of the highest ranked instances, since it equally considers all precision values.

Additionally, the quadratic exponent of AUPR’s integrand emphasizes higher precision
values overall, independently of the number of samples on which they were calculated (1− r).
This would amplify the effect of high Pr(r) values for r ≈ 1 resulting from stochastic label
variations. Hence, we suggest that the AUPR metric is more prone to noise in the labels of higly
ranked samples, prioritizing models that strictly maintain high precision for a smaller selection
of highest ranks.

On the other side, AUROC compensates this effect by weighting each Pr(r) value by
1−r, so that precision values calculated for lower ranks are prioritized. The prioritized precision
values (r ≈ 0) are calculated from a larger number of labels, having lower variances and being

68 Chapter 2 Development

more robust to label noise. Each label considered when r ≈ 0 has a smaller influence on the
Pr(r) value relative to the other labels being considered. However, AUROC assigns a larger
weight to these precision values, so the influence of smaller ranks also tend to increase.

This characteristic of AUROC might be more suitable for model comparison under the
ositive-unlabeled assumption, even though AUPR is usually reccomended for imbalanced sce-
narios (25, 67, 68). In PU datasets, it is common for negative-labeled instances to rank highly
due to the possibility of them being unannotated positives. These highly-ranked negatives would
have a larger influence on the AUPR score in comparison to the AUROC score. In fact, we show
in the next section that AUROC is closely related to the Mean Percentile Rank metric, which
has been suggested for PU learning contexts of interaction prediction and recommendation sys-
tems (19, 26–28). Section 2.9.1 presents further discussion on the specific usecases of AUPR
and AUROC, besides a numerical analysis of their dependence on the percentile ranks.

2.7.3.3 AUROC is the normalized mean percentile ranks

From Equation 2.59, we can express AUROC as

AUROC =
1

n

{∫ 1

0

(1− F1(r)) dr −
p

2

}
=

=
1

n

{
1−

∫ 1

0

F1(r) dr −
p

2

}
=

1

n

{
1−

∫ 1

0

d(r)

dr
F1(r) dr −

p

2

}
=

=
1

n

{
1− [rF1(r)]

1
0 +

∫ 1

0

r
dF1(r)

dr
dr − p

2

}
=

=
1

n

[∫ 1

0

r dF1 −
p

2

]
(2.62)

Equation 2.62 offers another perspective on AUROC. The term
∫ 1

0
r dF1(r) represents the ex-

pected percentile rank of the positive samples:∫ 1

0

r dF1(r) = E[r | y = 1] = MPR (2.63)

This quantity is sometimes referred to as the mean percentile ranking (MPR) in the previous
literature (26), being proposed in contexts of recommendation systems (26, 69) and bipartite
interaction prediction (11, 27, 28).

Consider now the maximum and minimum values of MPR, achieved, respectively, for
the ideal f1(r) distributions:

f1,max(r) =
1

p
I(r > n) f0,max(r) =

1

n
I(r < n) (2.64)

f1,min(r) =
1

p
I(r < p) f0,min(r) =

1

n
I(r > p) (2.65)

2.8 Experimental settings 69

Applying these definitions to determine dF1(r)
dr

and using the results in Equation 2.63, we obtain

MPRmax =
1

p

∫ 1

n

r dr =
1− n2

2p
=

1 + n

2
(2.66)

MPRmin =
1

p

∫ p

0

r dr =
p

2
(2.67)

from which is straightforward to show that

AUROC =
MPR−MPRmin

MPRmax −MPRmin
(2.68)

Therefore, the AUROC can also be interpreted as the normalized MPR. To the best of our
knowledge, this relationship is not clearly shown in previous explorations.

This result corroborates the argument that the AUROC could be preferable for PU learn-
ing scenarios, since the closely-related MPR is a known metric specifically recommended for
this context (19, 26, 28, 64). Furthermore, the normalization enables the comparison across dif-
ferent tasks, ensuring that the scores on each dataset are always in the same range. Hence, the
AUROC should be preferred over the MPR for the majority of cases.

Related experiments

• Section 2.9.1 – What are the differences between AUROC and AUPR?

Empirically assesses the relative dependence on different ranks of AUPR and AU-
ROC, and discusses the specific usecases of each metric.

2.8 Experimental settings

This section describes the datasets and the evaluation settings used in this study. Exper-
imental results will be presented in Section 2.9.

2.8.1 Datasets

We gathered ten publicly available interaction datasets to evaluate the performance of
the proposed models. Quantitative information about each of them is presented by Table 2, and
more detailed descriptions are provided in this section.

• DPI-E, DPI-G, DPI-I, DPI-N (70)

These datasets comprise drug-protein interactions for four distinct classes of proteins: en-
zymes, GPCRs, ion channels, and nuclear receptors, respectively. Drug similarities were
computed using the SIMCOMP metric, while protein similarities were computed as nor-
malized scores of Smith-Waterman pairwise alignments (70).

70 Chapter 2 Development

Table 2 – Summary of the datasets used in this study. The similarity scores for mirTarBase and NPInter
were obtained from the raw sequences as their normalized Smith-Waterman alignment scores.
See Section 2.8.1 for more information.

Dataset Type of interaction Y shape Density References

DPI-E Drug-enzyme 664× 445 0.9902% (70)
DPI-G Drug-GPCR 95× 223 2.997% (70)
DPI-G Drug-GPCR 95× 223 2.997% (70)
DPI-I Drug-ion channel 204× 210 3.445% (70)
DPI-N Drug-nuclear receptor 26× 54 6.410% (70)
ERN Gene-transcription factor 1164× 154 1.837% (8)
SRN Gene-transcription factor 1821× 113 1.780% (17, 71–74)
DAVIS Inhibitor-kinase 68× 442 5.011% (61, 75, 76)
KIBA Inhibitor-kinase 2111× 229 19.74% (61, 76, 77)
NPInter lncRNA-protein 586× 446 18.12% (78, 79)
mirTarBase miRNA-mRNA 1873× 415 7.065% (80, 81)

Source: By the author.

• ERN (8) and SRN (17, 71–74)

The datasets represent interactions between genes and transcription factors in E. coli

and S. cerevisiae, respectively. Features for genes and trasncription factors are initially
composed of experimentally measured expression levels and, in SRN, gene motif fea-
tures (17, 82). We compute the RBF kernel of such values to obtain the final similarity
matrices.

• DAVIS (19, 75)

The DAVIS dataset contains experimentally measured drug-kinase dissociation constants (75).
The dataset was binarized by considering interactions with dissociation constants≤ 30nM

as the positive ones, as suggested by (19). Drug similarities were computed using the Ex-
tended Connectivity Fingerprints (ECFP4) (19, 83) while protein similarities were taken
as the normalized Smith-Waterman score (19, 70).

• KIBA (61, 76, 77)

The KIBA dataset was initially built by 77 and contains experimentally verified affinity
scores between kinase and kinase inhibitors.

61 further processed the dataset by removing all drugs and targets with less than 10 ob-
servations. In alignment with 61,77, we consider positive interactions as those with log10

KIBA-scores ≤ 3.0 to reframe the task as binary classification.

The utilized version of the dataset with corresponding amino acid sequences and SMILES
representations were provided by 76. From them, we generated the protein similarity
matrix using the same procedure employed in the preprocessing of NPInter proteins. The
drug similarities were computed similarly to how 19 processed the DAVIS dataset, using

2.8 Experimental settings 71

the Tanimoto distances of ECFP4 fingerprints (19, 83). The Python library rdkit (84)
was used to this calculation.

• mirTarBase (80, 81)

The mirTarBase dataset contains experimentally validated microRNA-messengerRNA in-
teractions. MicroRNA sequences were obtained from miRBase (85) while transcript se-
quences were obtained from GENCODE (86). The longest transcript for each gene was
selected and the 3’ UTR exonic sequences were recovered from the genome and anno-
tation files provided by GENCODE. The similarity matrices were then built from the
normalized Smith-Waterman (70) alignment scores among microRNAs and among the
genes’ 3’ UTRs. The alignments were performed using the BLASTN substitution matrix
and no gap penalty, with the help of the Biopython package (87).

Each miRNA was required to have at least 10 interactions in the dataset, and each gene
was required to have at least 100 interactions.

• NPInter (78, 79)

Interactions between long non-coding RNAs (lncRNA) and proteins were recovered from
NPInter (78,79). The lncRNA sequences were obtained from NONCODE (88,89) and the
protein sequences were obtained from UniProt (90). The similarity matrices were built
from the normalized Smith-Waterman (70) alignment scores among lncRNAs and among
the proteins. Similarly to the preprocessing of mirTarBase, we utilized the Biopython
package (87) to perform the alignments. using the BLASTN and BLOSUM62 substitution
matrices for the lncRNA and protein alignments, respectively, and no gap penalty in both
cases.

Each lncRNA was required to interact with 50 proteins or more to be incorporated in the
dataset, and each protein was required to have at least 2 interactions.

2.8.2 Evaluation procedure

Unless otherwise specified, the comparison experiments in the following sections were
performed using a 4 by 4 cross-validation scheme (Section 2.7.2). The 10 datasets described in
Section 2.8.1 had their rows and columns randomly permuted before being partitioned into the
16 bidimensional folds. The same permutation was used for all the estimators.

Each fold was selected once as the TT set, yielding 16 partitionings of the data into
TT, LT, TL and LL sets (see Section 2.7.1). The models were trained on each LL partition and
evaluated on the three remaining ones. Results for LT and TL were averaged to produce the
LT+TL scores (Section 2.7.1).

The metrics AUROC and AUPR were utilized for evaluating predictions, as defined in
Section 2.7.3. Each model then produces 16 scores for each dataset, totalling 160 values per

72 Chapter 2 Development

model for each of the four test setting: TT AUROC, TT AUPR, LT+TL AUROC and LT+TL
AUPR.

From the metrics definitions (Equation 2.59 and Equation 2.58), we see that they depend
on the class prevalences of the test set, therefore being not directly comparable across datasets.
To obtain comparable scores, we use percentile ranks for each fold, and employ rank-based test
statistics.

Specifically, a scenario with m models. For each fold in each dataset, we sort the m

scores and substitute their original value with the percentile ranks. Now for each estimator
and each dataset, the percentile ranks of the 16 folds are averaged, resulting in a single rank
for each estimator and dataset. Each estimator then has 10 average ranks, one value for each
dataset. Each average rank represents the number of victories against the other estimators. These
distributions of 10 values per estimator are what we utilize for the statistical tests, so that the
number of folds does not influence the significance estimates.

We obtain omnibus p-values through a Friedman test (91, 92), followed by pairwise
Wilcoxon rank-sum tests (92) with Benjamini-Hochberg correction (4, 5).

In Sections 2.9.6, 2.9.7 and 2.9.8, we also investigate the impact of missing positive
annotations. To do so we randomly mask a fraction of the positive labels from the training set
before training the model on each fold. All models receive the same mask for each fold, and
only the LL set is altered (not the test sets used for evaluation). Four settings are explored: we
select 0%, 50%, 70% and 90% of the positive annotations to randomly turn into zeros. Folowing
93, we call the dropout fractions the incomplete label ratio (IRL), and include the percentage
at the end of the metric name to indicate the setting (for example, TT AUPR 50% or LT+TL
AUROC 70%).

2.9 Experiments

This section describes the experiments performed in this work, designed to explore the
proposed research questions (Section 1.6), assess the effectiveness of the developed methods,
and to validate predictions made in the theoretical analyses.

2.9.1 What are the differences between AUROC and AUPR?

This experiment was designed to evaluate the hypotheses raised in Section 2.7.3.2, com-
paring the AUROC and AUPR metrics in terms of their dependence on the percentile ranks of
the predictions. We aim to elucidate the differences between the two metrics and to provide
insights on when to use each of them.

2.9 Experiments 73

Key findings

• AUPR prioritizes a smaller number of highest-ranked interactions, while AUROC
considers a larger number of both highest and lowest ranks.

• AUPR should be used when the goal is to select a small number of most-likely in-
teractions. AUROC should be used i) when both likely-positive and likely-negative
interactions are important; or ii) when interested in a large fraction of the predictions.

• AUROC could be also preferable for PU learning.

2.9.1.1 Setup

Our main objective is to elucidate how much importance each metric assigns to each
percentile rank. To do so, we perform a Monte Carlo simulation. First, we select R equally
spaced rank values between 0 and 1 (excluding 0 and 1). For each rank, we generate N ran-
dom binary values to be used as labels. Therefore, each of the N iterations of the simulation
will produce a random set of R binary labels, corresponding to each percentile rank. In each
iteration, we use the R labels and R percentile ranks to calculate AUROC and AUPR, resulting
in N values for each metric. Finally, for each of the R ranks, we calculate the point biserial
correlation (94) between the N random labels and the N AUROC and AUPR values.

2.9.1.2 Discussion

The results are displayed in Figure 8. The plot shows that AUPR is highly sensitive to
a small set of highest ranks, while ranks closer to 0 have little influence on the metric. On the
other hand, the correlations with the AUROC score are more distributed across ranks. Also, for
AUROC, both higher and lower ranks have a higher impact, but in opposite directions. This
behaviour in agreement with the theoretical analyses from Section 2.7.3.2. The correlation with
AUROC is also symmetrical around the median (r = 0.5), linearly increasing from arround
−0.05 at r = 0 to around 0.05 in r = 1. This demonstrates the class symmetry of the AUROC
metric described in Section 2.7.3.2, meaning that negative and positive labels could be swapped
without affecting the final results.

Overall, these results demonstrate that using AUPR is more suited when one is interested
in selecting a restricted number of top-ranked instances from a pool of predictions, such as
in recommendation systems or drug discovery tasks. Conversely, AUROC should be favored
when the goal is to rank a large batch of interactions. Examples would be modeling genetic
interactions in a genome-wide fashion or building interaction databases.

If one intends to select a small number of negative instances instead, a possible strategy
would be to swap the binary labels and use AUPR. However, one should prioritize AUROC over
AUPR if the goal is to select both negative and positive predictions with the highest confidences.

74 Chapter 2 Development

0.0 0.2 0.4 0.6 0.8 1.0
Rank

0.05

0.00

0.05

0.10

0.15

Co
rre

la
tio

n

AUROC
AUPR
Ideal threshold (1 - density)

Figure 8 – Point biserial correlation between the binary labels at each percentile rank and the AUROC
and AUPR scores. The correlation was calculated between the ranks and the scores for N =
105 random sets of R = 103 binary labels. The results show that AUPR is very sensitive to
a small group of highest ranks, while AUROC has a more distributed weigthing profile. For
AUROC, both higher and lower ranks have a higher impact than ranks around 0.5, contributing
in opposite directions to the final metric. The results confirm the theoretical analyses from
Section 2.7.3.2.
Source: By the author.

This conclusion results from AUPR disregarding ranks close to 0, so models selected with
AUPR are not guaranteed to yield the most confident true negatives.

We also argue that AUROC could be preferable for comparing models under the PU
assumption, at least in purely theoretical settings. For PU datasets, we naturally expect some
negative-labeled instances to be very highly ranked since they could be, in fact, unannotated
positives. AUPR would more strictly penalize such predictions, favoring models that consider
the labeling mechanism itself rather than only the underlying interaction mechanism. AUPR
could thus undermine the model’s potential to discover new interactions, possibly failing to
gauge the generalization capabilities of algorithms in a PU context. The results from Sec-
tion 2.9.8 seem to corroborate this hypothesis, with AUROC ranking estimators more consis-
tently than AUPR across different levels of label noise.

2.9.2 Are BGSO models faster than GMO models?

This experiment empirically measures the training time complexity of the tree mod-
els under study. Our main goal is to validate the theoretical complexity analysis presented in
Section 2.4.2 and to compare the training times of the proposed BGSO models with the GMO
models.

2.9 Experiments 75

Key findings

• The GMO complexity is measured to be O(n3 log n), while the BGSO complexity is
measured to be O(n3).

• The empirical results match the theoretical expectations from Section 2.4.2.

• The difference in complexity between GMO and BGSO is less pronounced for the
Extra-Trees, but the BGSO models still present significantly lower complexity than
the GMO models.

2.9.2.1 Setup

We artificially generate a series of bipartite datasets by filling three n by n matrices with
pseudo-random values, representing the two X matrices and the Y matrix on each interaction.
Values were taken uniformly from the interval [0, 1] for the feature matrices and from the in-
terval [0, 100] for the target matrix. We then train the GMO and the BGSO versions of a single
bipartite decision tree (BDT) and a single bipartite Extra-Tree (BXT) on each of the generated
datasets, measuring their training duration in seconds.

2.9.2.2 Discussion

The results are shown in Figure 9. From the least squares linear regression on the log-log
plot, we see that the estimated training time complexities closely follow the theoretical expec-
tations developed under Section 2.4.2, with slopes referring to the BGSO models (predicted to
be O(n3)) approaching 3 while the GMO models (predicted to be O(n3 log(n))) produce slope
between 3 and 4.

Statistical testing further shows that the empirical time complexity of the proposed
BGSO algorithms are indeed significantly lower than that of their GMO counterparts (Fig-
ure 9). We also notice slightly lower slopes for the Extra-Trees in comparison with the BDTs.
In fact, they seem to be closer to the theoretical expectations for the BGSO models. This is
expected, since the randomized split search performs far less operations than the exhaustive
search (Section 2.3.1). Notwithstanding, both algorithms have the same order of complexity.
We then suggest that much larger datasets would be required to observe the asymptotic behav-
ior of the Extra-Trees. In spite of that, the empirical complexity of bdt-bgso is still observed
to be highly significantly lower than that of bxt-sq, validating once more the prediction that
bdt-bgso should present faster training times than bxt-sq on sufficiently large datasets.

2.9.3 Which prototype should a GMO forest use?

In this work we propose a different prototyping strategy to determine the output value
of each leaf in a GMO decision tree, taking the similarity matrices of our use cases into consid-

76 Chapter 2 Development

0 1000 2000 3000 4000
n

0

20000

40000

60000

80000

100000

120000

tim
e

estimator
bxt_gso
bdt_gso
bxt_gmo
bdt_gmo

2.00 2.25 2.50 2.75 3.00 3.25 3.50
log_n_samples

1

0

1

2

3

4

5

lo
g_

tim
e

bdt_gmo (slope = 3.2558 ± 0.0042)
bdt_gso (slope = 2.9904 ± 0.0017)
bxt_gmo (slope = 3.0919 ± 0.0077)
bxt_gso (slope = 2.9779 ± 0.0027)

Figure 9 – Empirical time complexity estimation of the proposed bipartite global single-output (BGSO)
and the global multi-output (GMO) (1) algorithms. Bipartite versions of both extremely ran-
domized trees (2) (BXT) and greedy decision trees (3) (BDT) were built under the BGSO and
GMO scheme and trained over artificial datasets of varying numbers of samples (as described
in Section 2.4.2). The training time versus the number of samples is presented on the left. On
the right, we present the same plot on a logarithmic scale. The slopes and respective standard
deviations are obtained by applying least-squares linear regression. Independent two-sample
t-tests comparing the slope estimates reveal that the time complexity of bdt-bgso is highly
significantly lower than bdt-gmo (p < 10−64) and even bxt-gmo (p < 10−20), and also
that bxt-gso significantly exhibits lower complexity than bxt-gmo (p < 10−22).
Source: By the author.

eration (Section 2.4.3). In this experiment we compare their predictive performances, building
BXT and BRF models for every option.

Key findings

• The square strategy is the best for both BXT and BRF models, except for the
LT+TL AUPR score, for which the fully-grown trees are the best.

2.9 Experiments 77

• The weighted-neighbors strategies seem to improve generalization.

2.9.3.1 Setup

The minimum rows per leaf and minimum columns per leaf were both set to 5, ensuring
that at least 5 samples of each domain are considered when calculating the prototype values.
To observe the effect of this early-stopping criterion by itself, we also include forests of fully-
grown trees in the comparison. The compared models are described below.

• GMOsa: proposed by 1, the output of each leaf is the average of the labels of the learned
samples that reach that leaf (Equation 2.16). Their proposal had not been extended yet to
ensembles of bipartite trees or to BXT.

• uniform: also proposed by 1, but in the context of a single tree. It works as GMOsa for
TT, but for TL and LT the average is taken only among the labels of the known instance
(Equation 2.18).

• precomputed: the labels in each leaf are weighted by the similarities between the
learned samples and the test instances (Equation 2.19).

• square: similar to precomputed, but the squared similarities are used instead (Equa-
tion 2.19).

• softmax: also a weighting approach, but using the exponential of the similarities (Equa-
tion 2.19).

• full: the trees are grown until a single interaction remains in each leaf.

2.9.3.2 Discussion

The results for BRF (Figure 10) and BXT (Figure 11) were similar. In all cases except
LT+TL AUPR, using the square of the similarities to weight the labels in each leaf resulted in
in the best scores. For the LT+TL AUPR score, growing the decision tree to its maximal size
was the best strategy, followed by uniform, the original proposal by 1 of averaging only the
outputs of the learned samples (known from the training set) in each leaf. With the exception
of the LT+TL AUROC metric for BXT, the mentioned winning models were statistically dis-
tinguished from all the remaining estimators. For LT+TL AUROC, the superiority of square
could not be attested when compared to the uniform strategy.

The fully-grown versions of both forest algorithms are shown to be especially advanta-
geous when considering the LT+TL AUPR. This suggests that building trees to their maximum
depth is the best strategy for learning tasks in which

78 Chapter 2 Development

1. one of the domains is fixed, with the final goal being to model how new instances will
bind to this known set of entities;

2. the goal is to select a small number of top-ranked interactions (see Section 2.9.1).

On the other hand, weighted averages seem to improve the forest’s generalization ability, as
they seem to perform best under the AUROC metric and TT contexts.

We propose that this distinction results from the ability of a fully-grown tree to indepen-
dently consider the labels of each learned instance when calculating the prototype. However, the
methods using weighted averages ivariably mix the labels of a pool of neighbors in each leaf.
This hypothesis is supported by the fact that the second-best model regarding LT+TL AUPR is
the uniform strategy, which also uses the labels of individual learned samples to generate the
predictions. The hypothesis alone, however, do not explain the superiority of the deeper trees
over the uniform weights. In this case, the larger tree depth is likely beneficial through i) an
increase in the predictive power of each individual tree, and/or ii) an increase in tree diversity,
both of which would improve the ensemble’s performance as discussed in Section 2.5. We let
to future work the more specific investigation of these effects.

On the other hand, full and uniform show notable inferior performance in the TT
evaluation settings, suggesting that these strategies have inferior ability to consider completely
new interacting pairs.

We select the squared weighting strategy and the fully grown trees to be further investi-
gated in the downstream analyses.

2.9.4 Which adaptation strategy is the best for decision forests?

We now compare each of the described approaches for adapting decision forests to
bipartite data, including data-centric adaptations (Section 2.2) and the natively bipartite forests
(Section 2.4 and Section 2.4.1).

Key findings

• SLMO is the best strategy for BRF models on LT+TL sets.

• GMO is the best strategy for completely new dyads.

• Undersampling of negative annotations is beneficial for a GSO BXT in terms of
AUROC, but should be avoided if the goal is to select the highest ranked interactions.

2.9 Experiments 79

2.9.4.1 Setup

We briefly describe below the suffixes in the model names of this section, indicating the
employed bipartite adaptations.

• slmo: implements the standard local multi-output approach (SLMO; Section 2.2.2) by
training four separate multioutput models, two for each domain. First explored by 17.

• slso: also implements the SLMO approach (Section 2.2.2), but each multioutput model
is instead a composition of several local single-output (SLSO) models, i.e. one model is
trained for each row or column of the interaction matrix. This setting is similar to the
early proposal by 95, but employing decision forests as the base algorithm.

• gmo: a fully-grown global multi-output forest, as explored by 18 under the name eBICT.

• sq: a global multi-output forest with minimum leaf dimensions of 5 by 5, implementing
our proposed squared-similarities weighting for the prototype function (Section 2.4.3).

• bgso: a bipartite global single-output forest, implementing our proposed algorithm with
improved computational complexity over SGSO and GMO (Section 2.4.1).

• sgso-us: implements the standard global single-output adaptation (17), additionally
employing undersampling of the negative annotations to yield a balanced training set (see
Section 2.2.1).

All the global models were built with 100 trees. For SLMO, each of the four forests used
50 trees, while for SLSO 50 trees were used for each row or column of the interaction matrix.

2.9.4.2 Discussion

In the LT+TL AUPR evaluation setting, the pattern observed in Section 2.9.3 again
emerges: the label averaging strategy employed by SQ performs considerably worse in com-
parison to forests that separately consider each known instance. In particular, the SLMO and
SLSO adaptations yield the clear best BRF models in terms of LT+TL AUPR, and these adapta-
tions interpret each instance as a separate output to be predicted. Among the local adaptations,
SLMO significantly ouperforms SLSO. SLSO treats each training instance as a completely in-
dependent task, building a separate forest for each row and column of the interaction matrix. As
such, the previous result shows that this complete independence is not desirable for the learning
problems under study, and exploring label correlations between instances of the same domain
is beneficial (as demonstrated by SLMO). This result could partially be a consequence of the
very sparse nature of our problems: if the interaction information of each instance is limited,
it becomes advantageus to aggregate information from other instances with correlated interac-
tomes. We then speculate that the advantage of SLMO over SLSO could become less prominent

80 Chapter 2 Development

once the number of known interactions per instance increases and more data are available for
training.

Still considering LT+TL AUPR but focusing on BXT models instead, we notice that
SLMO loses the advantage to the fully-grown bipartite trees SQ and BGSO. A possible expla-
nation comes from the fact that local approaches yield shallower trees, and much more extra-
trees could be required to achieve comparable performance. In more detail, first notice that the
individual performance of each tree in a BXT forest is lower than that of a tree in a BRF. Thus,
a BXT ensemble requires a larger number of trees to reach satisfactory performance. Addition-
ally, if the trees are shallow, they tend to be less representative of the training data (each tree
node brings a little more information on the dataset). Even more trees then should be required
to compensate the randomness of each individual. Finally, building a forest locally as in SLMO
or SLSO results that each tree is trained on a much smaller number of samples in comparison
to considering each dyad as a separate instance. Therefore, local approaches generate smaller
and less representative trees. We then suggest that the advantage of SLMO could also manifest
for BXT estimators if the number of trees in the ensemble were to be increased.

For both BXT and BRF in all the TT settings, the SQ model significantly outperforms
the other estimators. SQ is also the best model in the LT+TL AUROC setting when comparing
BXTs and the second best for BRFs. This reinforces the findings of Section 2.9.3 suggesting
that larger leaves and label weighting seems to improve generalization to unseen instances. We
also highlight SLMO as a prominent strategy for BRFs under TT AUROC and TT AUPR, being
the second best model in both cases.

The SGSO US strategy performed consistently worse than the others under the AUPR
metric. Conversely, it was significantly the second best BXT model in both LT+TL and TT
AUROC settings, while surpassing BRF gmo also under both AUROC test sets. This shows that
unsersampling is a viable technique when when considering the overall ranking of interactions.
However, it is detrimental when the goal is to select the most likely interactions. That is, SGSO
US allows a larger number of false positives in the highest ranked positions.

This behaviour is expected. Notice that SGSO US models are trained in a balanced
dataset, while the other models are trained in the original dataset where negative annotations are
much more frequent. With more training examples, the other models tend to be considerably
better in correctly classifying negative annotations. This suggests that AUPR tends to favor
models of high specificity, that are strictly avoid predicting false positives.

2.9.5 Can label imputation assist bipartite forests?

In this section, we compare bipartite forests with and without label imputation by matrix
factorization, to investigate its impact as a countermeasure to the high label sparsity in the
datasets.

2.9 Experiments 81

Key findings

• Imputing positive annotations with NRLMF improves the performance of bipartite
forests in the majority of cases.

• For LT+TL AUPR, the best BRF is brf-slmo and the best BXT is bxt-gmo-yr.

• SQ-NRLMF is the overall best model for TT.

2.9.5.1 Setup

We employ the adaptations SLMO, BGSO, GMO and SQ (which is GMO our squared
similarities prototype). See Section 2.9.4 for a more detailed description of each model.

It was previously suggested that creating a dense representation of the interaction matrix
improves the performance of BXT in drug-target interaction tasks (29). To test this result on our
datasets, we compare the bipartite forests scores with and without the interaction matrix recon-
struction step. As (29), the reconstruction step was performed using neighborhood-regularized
logistic matrix factorization (NRLMF) (31).

We performed a randomized search to select hyperparameters for the NRLMF algo-
rithm. 100 different combinations of hyperparameters were evaluated in terms of their resulting
mean squared error in a nested bipartite 5-fold diagnonal cross-validation. The best combina-
tion of parameters according to the inner CV loop was then used to reconstruct the interaction
matrix of each outer CV fold. Only then the resulting matrices were used as the training data for
the bipartite forests. Note that a single forest was built per outer CV fold, so that the NRLMF
hyperparameter search was performed independently from the downstream forest performance.
The hyperparameters λ1, λ2, β1, β2, and η were all independently sampled from a log-uniform
distribution bounded by 1

4
and 2 (Function TrainNRLMF). The number of latent vector com-

ponents was set to be equal for both axes, and chosen between 50 and 100. The number of
neighbors was randomly selected as 3, 5 or 10 in each iteration, and the maximum number of
optimization steps was always set to 100. The parameter α (Function TrainNRLMF), as in the
original paper (31), was set to 5. This parameter specifies the emphasis on positive annotations,
so each positive annotation contributes 5 times more to the loss function in our settings, as if 5
copies of each positive interaction were present in the training set.

The results for BRF and BXT are shown by figures 14 and 15, respectively. The yr
suffix to a model indicates that it was trained after Y reconstruction, that is, on the output of
NRLMF.

82 Chapter 2 Development

2.9.5.2 Discussion

The interaction matrix reconstruction step is shown to be especially beneficial in terms
of AUROC scores, improving this score for almost all forest algorithms investigated. The only
exceptions were bxt-sq and brf-sq in LT+TL ROC AUC, where the improvement is still
observed but not statistically significant.

Even without assistance from NRLMF, the bxt-sq and brf-sq models employing
our squared similarities output weighting (Section 2.4.3 and Section 2.9.3) are placed sec-
ond in their corresponding TT AUROC results, both significantly outperforming all NRLMF-
combined models except for their own versions, bxt-sq-yr and brf-sq-yr. brf-sq was
also the top performing BRF model in terms of TT AUPR, significantly surpassing all but
brf-sq-yr and brf-slmo-yr. Similarly, bxt-sqwas the top performing BXT model un-
der the same metric, significantly surpassing all estimators but bxt-sq-yr, bxt-slmo-yr
and bxt-gmo-yr.

Regarding TT AUPR, NRLMF still provides a significant improvement for all models
except brf-sq, bxt-sq and bxt-slmo. While both brf-sq and bxt-sq resulted in the
highest average ranks for TT AUPR, the top position could not be statistically resolved between
the BRFs using SQ, SQ-NRLMF, and SLMO-NRLMF, nor between the BXTs using SQ, SQ-
NRLMF, SLMO-NRLMF, and GMO-NRLMF.

In the LT+TL AUPR setting for BXT ensembles, NRLMF is shown to significantly
degrade the performance of bxt-sq. Therefore, the combination of the squared neighbors
prototype and NRLMF likely results in more high-rank false positives under LT+TL, especially
since such degradation is not observed under LT+TL AUROC.

For BRF models under LT+TL AUPR, the advantage of employing NRLMF is not clear.
BGSO was the only adaptation to significantly benefit from NRLMF in this setting, while sq and
SLMO were significantly impaired by it. In fact, the brf-slmo model without label matrix
reconstruction significantly outperformed all the other random forests for this evaluation setting.

In summary, interaction matrix reconstruction by NRLMF seems to consistently im-
prove BRF and BXT results in terms of AUROC and also the results of BXT regarding LT+TL
AUPR. On TT AUPR, while less evidence is found, the results still seem to point in the same di-
rection of a beneficial NRLMF transformation step. On the other hand, the comparisons of BRF
under LT+TL AUPR evaluation indicate the opposite conclusion, disfavoring usage of NRLMF
especially for brf-slmo and brf-sq. We thus discourage the application of NRLMF with
BRF in scenarios where i) one of the entities of the dyad is always known to the model, such as
in drug repositioning; and ii) the main interest is to select a small set of most-likely interactions.

2.9 Experiments 83

2.9.6 What is the best way of building semi-supervised forests?

In this experiment, we compare the performances of semi-supervised bipartite forests,
as presented by Section 2.6.

Key findings

• The MD unsupervised impurity is the best option for LT+TL.

• AD is the most promising strategy for TT.

• The best strategy for determining the supervision balance seems to be either size or
fixed, but further investigation is needed.

2.9.6.1 Setup

All forests in this section are based on the BXT BGSO, as presented by Section 2.4 and
used in Section 2.9.4. We evaluate all combinations of the three strategies for calculating the
unsupervised impurity and the four strategies for determining the supervision balance at each
node.

Strategies for determining the unsupervised impurity:

• mse: it refers to forests using the mean squared error as the unsupervised impurity (Equa-
tion 2.21).

• md: corresponds forests employing the mean distance unsupervised impurity (Equation 2.23).

• ad: also uses the mean squared error (Equation 2.21), however, the semi-supervised im-
purity is only calulated twice on each tree node. The search for the best feature and
split point in each instance domain uses the supervised impurity only. Then, the semi-
supervised impurity is only used to evaluate the best split in each domain. Finally, the
two resulting values for the semi-supervised impurity are used to select between the hor-
izontal and vertical split.

Strategies for determining the supervision balance (σ):

• fixed: the supervision balance (σ) is fixed at 0.5 for mse and md and at 0 for ad.

• density: σ is determined by the density of positive annotations in each tree node (Equa-
tion 2.24).

84 Chapter 2 Development

• size: σ is determined by the total number of interactions current in the tree node (Equa-
tion 2.25).

• random: σ is set to a random value between 0 and 1 drawn at each tree node (Equa-
tion 2.26).

2.9.6.2 Discussion

The comparison results are displayed by Figure 16. Regarding LT+TL AUROC, the 0%
ILR and 50% ILR do not result in statistically significant differences in performance. For ILR
= 70%, md random and md size significantly outperform the remaining models, while under
IRL=90%, md random, md size, and md density are shown to surpass the others. These results
indicate that the MD unsupervised impurity is the most suited to the LT+TL AUROC evaluation
setting. Furthermore, we see that the random strategy to select the supervision balance is among
the best in both ILR = 70% and ILR = 90%, suggesting that increasing diversity among the
trees could be the main mechanism behind the improvement of the semi-supervised models,
rather than necessarily guessing the best σ at each tree node. Since md size is also among the
best, it is not clear if the advantage of md size over the other models is due to a better choice
of σ or to a more stochastic nature of the σs it selects. As a future investigation, we suggest
using completely random values for the unsupervised impurity, to assess the possibility of tree-
diversity being the main factor behind the observed improvements.

As for TT AUROC, only ILR = 90% yielded significant comparisons. In this case, the
mse unsupervised impurity with size, random, and density σ selection were the best strategies,
surpassing the remaining. MSE thus seems the better option in terms of AUROC for scenarios
with very scarse information and completely unknown instances.

Under LT+TL AUPR, md fixed significantly outperformed the other models for ILR =
50% and ILR = 70%. For ILR = 0%, md fixed is also the first place, but could not be statistically
resolved from the second place ad size. AD size was also the second best model for ILR = 0%,
50%, 70%, statistically outperforming all but md fixed in ILR = 70%.

With respect to TT AUPR, the AD strategies prevail, being the best four models for ILR
= 50% and ILR = 70%, and being among the five best models for ILR = 0%. The presence
of AD random among the best models again suggests that tree-diversity is an important factor
for performance improvement. It seems that AD models perform overall better according to
AUPR in comparison to AUROC. This is consistent with the discussion in Section 2.9.1: AUPR
tends to prioritize models more tighly related to the observed labels, assuming less risk of false
positives. AD is the strategy that is less influenced by the unsupervised impurity function.

In conclusion, the best unsupervised impurity under LT+TL seems to be the mean dis-
tance, and AD seems to be the best for AUPR TT. The best strategy for determining σ seems to
be either size or fixed, but more experiments are needed to confirm this finding.

2.9 Experiments 85

2.9.7 Which strategies are the most promising?

In this experiment, we compare the performances of various forests from the previous
sections, including BXT and BRF, forests using semi-supervised impurities, and forests using
label imputation by NRLMF.

Key findings

• Semi-supervised impurities are beneficial in terms of AUROC, especially when more
annotations are missing.

• Label imputation with NRLMF is better than semi-supervised impurities.

• BXT are superior to BRF in all settings.

2.9.7.1 Setup

For more information on each model see the corresponding section in the list bellow.

• bxt-bgso, brf-slmo: Bipartite forests without label imputation. See Section 2.9.4
for more information.

• md-size, md-fixed, ad-size, ad-fixed: Bipartite forests employing semi-supervised
impurities. See Section 2.9.6.

• Models with the yr suffix: Bipartite forests using NRLMF to impute positive annota-
tions. See Section 2.9.5.

2.9.7.2 Discussion

The comparisons are presented by Figure 17. The results reveal a clear superiority of
forests employing the NRLMF as a label imputation strategy, in comparison to those using
semi-supervised impurities. The four models employing NRLMF were the four highest ranked
estimators in almost all evaluation settings, the two exceptions being LT+TL AUPR with ILR =
0% and ILR = 50%. In the first exception (LT+TL AUPR 0%), brf-sq-yr and bxt-sq-yr
are the two worst-performing models, whereas bxt-gmo-yr and bxt-bgso-yr are the first
and second best, respectively. In the second exception (LT+TL AUPR 50%), the two best models
are the same, and brf-sq-yr is still one the worst performers. However, bxt-sq-yr jumps
to the third best position.

Furthermore, under the other metrics (LT+TL AUROC, TT AUROC, and TT AUPR),
bxt-sq-yr was the highest ranked estimator in almost all cases, the only exception being TT
AUPR IRL=0%, where it was only behind bxt-gmo-yr. Notwithstanding, the comparison

86 Chapter 2 Development

between bxt-sq-yr and bxt-gmo-yr was still not statistically significant in this setting.
Similarly, no statistical difference is found between these models in the LT+TL AUROC 0%
setting, where they also occupy the first positions. The leadership of bxt-sq-yr is also not
significant in comparison to bxt-bgso-yr under TT AUPR 50% and TT AUPR 70%. For all
remaining cases where bxt-sq-yr was the best model, it was statistically significantly better
than all other estimators (TT AUPR 90%, LT+TL AUROC 50%, LT+TL AUROC 70%, LT+TL
AUROC 90%, and all TT AUROC).

Another observation is that some semi-supervised impurities significantly improve pre-
dictive performance relative to the original BXT BGSO, especially when more annotations are
missing. This conclusion is based on the fact that, in all settings with ILR ̸= 0 except LT+TL
AUPR, the original BXT BGSO is among the three worst performers. For all AUROC settings
with ILR ̸= 0, it was the lowest ranked model. On the other hand, md fixed is noted to signif-
icantly surpass BXT BGSO in 10 of the 16 evaluation settings, the exceptions being LT+TL
AUROC 0%, TT AUROC 0%, TT AUROC 90%, TT AUPR 0%, TT AUPR 70% and TT AUPR
90%. Therefore, although not as effective as the NRLMF reconstruction technique, using semi-
supervised trees seems indeed beneficial when label information is scarce.

When comapring the BXT against the BRF models, we notice that bxt-sq-yr signif-
icantly outperformed brf-sq-yr in all settings. The other random forest, brf-slmo, was
also significantly outperformed by bxt-sq-yr in all cases but LT+TL AUPR 0%, where the
opposite was observed. Similar results hold for the other BXT models as well: they significantly
surpassed brf-slmo in the vast majority of test configurations, with the only exception being
TT AUROC 0%, in which the comparison between bxt-gmo-yr and brf-slmo was not
significant. These results suggest that BXT models could offer significant advantages over BRF
models in the context of interaction prediction. This conclusion is especially relevant given that
the BXT training algorithm is considerably faster than the procedure for building BRFs, as
discussed in Section 2.4.2.

2.9.8 Can bipartite forests compete with other proposals?

In this section we compare the two most promising methods we developed (bxt-sq-yr
and bxt-bgso-yr) with several prominent models from the literature.

Key findings

• Forests with NRLMF surpass NRLMF alone.

• bxt-sq-yr is the best overall performer, with the exception of LT+TL AUPR.

• For LT+TL AUPR, bxt-bgso-yr and bxt-gmo-yr are the best models overall.

2.9 Experiments 87

2.9.8.1 Setup

The algorithms being considered in this section are listed below, and their scoring results
are shown by Figure 18.

• bxt-bgso-yr, bxt-gmo-yr, bxt-sq-yr: Bipartite Extra-Trees using the NRLMF
model to impute missing annotations. The BGSO model implements our optimized method
for growing the trees. GMO uses the global multi output strategy developed by 1. Both
BGSO and GMO grows the trees to their maximum depth. SQ uses the weighted-neighbors
prototype we developed in Section 2.4.3, and enforces at least 5 samples of each domain
in each leaf. See Section 2.9.3 and Section 2.9.5 for more information.

• NRLMF: Neighborhood-Regularized Logistic Matrix Factorization, as proposed by 31
and described in Section A.2.2. See Section 2.9.5 for the hyperparameters we utilized.

• RLS-Kron: Kronecker Regularized Least Squares, as proposed by 30 and described in
Section A.1. Each of the two input kernel matrices was taken as a linear combination of
the similarity matrix and the gaussian interaction profiles (30). The weight of the simi-
larity kernel in this combination (the α parameter (30)), was selected between the values
{0.0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0}. The selection was performed in each fold by an inter-
nal 5 by 5 bipartite diagonal CV procedure (Section 2.7.2).

• SLMO-RLS: SLMO adaptation (Section 2.2.2) of Regularized Least Squares, as pro-
posed by 30 as RLS-avg. Both the primary and secondary models were multi-output
kernel Ridge regressors (96, p. 492-493). As RLS-Kron, the input features were linear
combinations of similarity matrices and gaussian interactions profiles. The α parameter
was selected in the same way as in RLS-Kron.

• BLMNII-RLS: Bipartite local models (70,95) with neighbor-based interaction-profile in-
ferring (97). They use the SLMO strategy (Section 2.2.2), employing a weighted-neighbors
technique for the primary estimators and kernel Ridge regression (96, p. 492-493) mod-
els as secondary estimators. As RLS-Kron, the input features were linear combinations of
similarity matrices and gaussian interactions profiles (30). The α parameter was selected
in the same way as in RLS-Kron.

• BLMNII SVM: The same as BLMNII RLS, but using support vector machines (98) as
secondary estimators instead of regularized least squares.

• DT-Hybrid: Method proposed by 99 that combines the similarity kernels with network
features of each domain calculated from the interaction matrix. A weighted-neighbors
approach is then used to predict new interactions.

• MLP: Multi-layer perceptron (63) model adapted with the SGSO strategy (Section 2.2.1).
We performed random undersampling of negative annotations so that the model was

88 Chapter 2 Development

trained on equal number of negative and positive labels. The architecture was selected
at each fold between four options: 5 hidden layers of 100 neurons; 10 hidden layers of
50 neurons; 5 hidden layers with [200, 100, 100, 100, 50] neurons; and 6 hidden layers
of [1024, 512, 256, 128, 64, 32] neurons. The architecture selection in each fold was
performed by an internal 5 by 5 bipartite diagonal CV procedure (Section 2.7.2). The
activation function was always the rectified linear unit, and ADAM (100) was the chosen
optimizer. Other parameters were kept as the defaults from the Scikit-learn library (101).

2.9.8.2 Discussion

bxt-sq-yr was the best ranked model in 11 out of the 16 test settings analysed. The
exceptions were the four LT+TL AUPR configurations and TT AUPR 0%. In TT AUPR 0%,
bxt-sq-yr was only behind SLMO rls, and among the three models that could not be statisti-
cally distinguished from SLMO rls (the others being RLS-Kron and bxt-gmo-yr). In LT+TL
AUROC 0%, the comparison between bxt-sq-yr and the second best model, bxt-gmo-yr,
was also not statistically significant. In the remaining 10 cases where bxt-sq-yr prevails, it
was significantly better than all other learning algorithms analysed.

Regarding LT+TL AUPR, in ILR = 50 and ILR = 70 bxt-bgso-yr and bxt-gmo-yr
significantly outperform the other models. In ILR = 0, bxt-gmo-yr was the best model and
bxt-bgso-yr was the second best, but neither could be statistically distinguished from the
third best model, rls-kron. In ILR = 90, bxt-bgso-yrwas the best model and bxt-gmo-yr
was the second best, but neither could be statistically distinguished from the third best model,
RLS-Kron. Under ILR = 90, bxt-bgso-yr and bxt-sq-yr are shown to significantly out-
perform the others.

We notice that the highest ranked bipartite forests in each evaluation setting are always
able to significantly surpass NRLMF alone. This demonstrates that the forests are able to capture
different patterns than the NRLMF model, even though they are trained on NRLMF’s outputs.
If this result were to not hold, one could argue that the forests might be merely approximating
the predictive function learned by NRLMF, rather than expanding on the information extracted
in the matrix factorization step.

We also note that the competitiveness of the rls-kron model for TT AUPR 0% and
LT+TL AUPR 0% is remarkable, since rls-kron has notably low training times in compar-
ison to the other models. However, the algorithm seems to not perform as well when a larger
number of positive annotations is missing. This can be seen when comparing those same test
metrics under higher ILR: TT AUPR 70%, TT AUPR 90%, LT+TL AUPR 70% LT+TL AUPR
90%. Furthermore, rls-kron seems to be prioritized by AUPR in comparison to AUROC.
This is especially suggested when observing the four TT AUROC, in which rls-kron per-
forms poorly in comparison to the other cases. According to the discussion in Section 2.9.1,
this could mean that rls-kron is mostly effective when considering a restricted number of

2.9 Experiments 89

top predictions.

Conversely, the performance of bxt-sq-yr for the LT+TL AUPR setting seems to
improve relative to the other models as the number of missing annotations increases. A possible
explanation comes from BXT SQ having higher generalization capabilities, as demonstrated in
the TT AUROC setting. Notice that the LT+TL setting could possibly still benefit from some
form of overfitting, since it considers instances that are present in the training set (Section 2.7.2).
However, being able to generalize becomes more important as the number of missing annota-
tions increases, since the model has to rely on less information to make predictions. And that
could be why we see the bxt-sq-yr model being more valued in the LT+TL AUPR setting
for higher ILR. Additionally, we argue that the AUPR metric is less sensitive than AUROC to
this ability of discovering missing positives Section 2.9.1, which explains why AUROC does
not show the same pattern as AUPR in the LT+TL setting.

90 Chapter 2 Development

brf
 - G

MOsa

brf
 - s

oft
max

brf
 - f

ull

brf
 - p

rec
om

pu
ted

brf
 - u

nif
orm

brf
 - s

qu
are

20

40

60

80

100

30

45
50

65

77
83

LT+TL AUROC (ranks)
p = 5.93e-05

brf
 - G

MOsa

brf
 - s

oft
max

brf
 - p

rec
om

pu
ted

brf
 - s

qu
are

brf
 - u

nif
orm

brf
 - f

ull

20

40

60

80

100

21

35

48

70

82

94

LT+TL AUPR (ranks)
p = 3.66e-08

brf
 - f

ull

brf
 - u

nif
orm

brf
 - G

MOsa

brf
 - s

oft
max

brf
 - p

rec
om

pu
ted

brf
 - s

qu
are

20

40

60

80

100

34

47
54

60

73

81

TT AUROC (ranks)
p = 1.54e-06

brf
 - f

ull

brf
 - u

nif
orm

brf
 - G

MOsa

brf
 - s

oft
max

brf
 - p

rec
om

pu
ted

brf
 - s

qu
are

20

40

60

80

100

44 48 51
59

69

79

TT AUPR (ranks)
p = 3.85e-05

Figure 10 – Comparison of bipartite random forests for different prototype strategies. An omnibus p-
value is obtained through a Friedman test and indicated below the title of each subfigure.
We then perform pairwise Wilcoxon rank-sum tests as a post-hoc analysis. Estimators that
could not be significantly distinguished from each other (p > 0.05) are connected by cross-
bars above their respective boxes. The pairwise test results are corrected by the Benjamini-
Hochberg procedure (4, 5) in each subfigure. All pairwise comparisons are considered for
the correction, even if not visible in the plot. See Section 2.8 for further description of the
evaluation procedure.
Source: By the author.

2.9 Experiments 91

bx
t -

GMOsa

bx
t -

sof
tm

ax

bx
t -

pre
co

mpu
ted

bx
t -

ful
l

bx
t -

un
ifo

rm

bx
t -

squ
are

20

40

60

80

100

27

41

59
67

77 80

LT+TL AUROC (ranks)
p = 2.60e-05

bx
t -

GMOsa

bx
t -

sof
tm

ax

bx
t -

pre
co

mpu
ted

bx
t -

squ
are

bx
t -

un
ifo

rm

bx
t -

ful
l

20

40

60

80

100

20

35

48

70

79

98

LT+TL AUPR (ranks)
p = 8.83e-09

bx
t -

ful
l

bx
t -

un
ifo

rm

bx
t -

GMOsa

bx
t -

sof
tm

ax

bx
t -

pre
co

mpu
ted

bx
t -

squ
are

20

40

60

80

100

38
47

54
58

71

82

TT AUROC (ranks)
p = 1.24e-04

bx
t -

un
ifo

rm

bx
t -

GMOsa

bx
t -

sof
tm

ax

bx
t -

ful
l

bx
t -

pre
co

mpu
ted

bx
t -

squ
are

20

40

60

80

100

45
52 54

59
66

75

TT AUPR (ranks)
p = 6.68e-03

Figure 11 – Comparison of bipartite Extra-Trees for different prototype strategies. An omnibus p-value
is obtained through a Friedman test and indicated below the title of each subfigure. We then
perform pairwise Wilcoxon rank-sum tests as a post-hoc analysis. Estimators that could not
be significantly distinguished from each other (p > 0.05) are connected by crossbars above
their respective boxes. The pairwise test results are corrected by the Benjamini-Hochberg
procedure (4, 5) in each subfigure. All pairwise comparisons are considered for the correc-
tion, even if not visible in the plot. See Section 2.8 for further description of the evaluation
procedure.
Source: By the author.

92 Chapter 2 Development

brf
 - g

mo

brf
 - s

lso

brf
 - s

gso
 - u

s

brf
 - b

gso

brf
 - s

q

brf
 - s

lm
o

20

40

60

80

100

120

45
51 53 56

69
75

LT+TL AUROC (ranks)
p = 2.29e-02

brf
 - s

gso
 - u

s

brf
 - s

q

brf
 - b

gso

brf
 - g

mo

brf
 - s

lso

brf
 - s

lm
o

20

40

60

80

100

22

36

66
70

76
81

LT+TL AUPR (ranks)
p = 2.74e-07

brf
 - g

mo

brf
 - b

gso

brf
 - s

lso

brf
 - s

gso
 - u

s

brf
 - s

lm
o

brf
 - s

q

20

40

60

80

100

120

46 48
56 58

64

78

TT AUROC (ranks)
p = 2.95e-02

brf
 - s

gso
 - u

s

brf
 - b

gso

brf
 - g

mo

brf
 - s

lso

brf
 - s

lm
o

brf
 - s

q

20

40

60

80

100

41

49 52

64 67

76

TT AUPR (ranks)
p = 3.98e-03

Figure 12 – Comparison of random forests under different adaptation strategies to bipartite interaction
data. An omnibus p-value is obtained through a Friedman test and indicated below the title of
each subfigure. We then perform pairwise Wilcoxon rank-sum tests as a post-hoc analysis.
Estimators that could not be significantly distinguished from each other (p > 0.05) are
connected by crossbars above their respective boxes. The pairwise test results are corrected
by the Benjamini-Hochberg procedure (4, 5) in each subfigure. All pairwise comparisons
are considered for the correction, even if not visible in the plot. See Section 2.8 for further
description of the evaluation procedure.
Source: By the author.

2.9 Experiments 93

bx
t -

sls
o

bx
t -

slm
o

bx
t -

gm
o

bx
t -

bg
so

bx
t -

sgs
o -

 us

bx
t -

sq

20

40

60

80

100

120

29

50 53
57

71

90

LT+TL AUROC (ranks)
p = 1.37e-06

bx
t -

sgs
o -

 us

bx
t -

sq

bx
t -

sls
o

bx
t -

slm
o

bx
t -

bg
so

bx
t -

gm
o

20

40

60

80

100

20

49
57

63

77
84

LT+TL AUPR (ranks)
p = 3.48e-07

bx
t -

gm
o

bx
t -

bg
so

bx
t -

sls
o

bx
t -

slm
o

bx
t -

sgs
o -

 us

bx
t -

sq
20

40

60

80

100

40 42

54

63
68

83

TT AUROC (ranks)
p = 5.87e-06

bx
t -

sgs
o -

 us

bx
t -

bg
so

bx
t -

gm
o

bx
t -

slm
o

bx
t -

sls
o

bx
t -

sq

20

40

60

80

100

47 50 52

64 65
72

TT AUPR (ranks)
p = 6.75e-02

Figure 13 – Comparison of Extra-Trees under different adaptation strategies to bipartite interaction data.
An omnibus p-value is obtained through a Friedman test and indicated below the title of
each subfigure. We then perform pairwise Wilcoxon rank-sum tests as a post-hoc analysis.
Estimators that could not be significantly distinguished from each other (p > 0.05) are
connected by crossbars above their respective boxes. The pairwise test results are corrected
by the Benjamini-Hochberg procedure (4, 5) in each subfigure. All pairwise comparisons
are considered for the correction, even if not visible in the plot. See Section 2.8 for further
description of the evaluation procedure.
Source: By the author.

94 Chapter 2 Development

brf
 - g

mo

brf
 - b

gso

brf
 - s

q

brf
 - s

q -
 yr

brf
 - s

lm
o

brf
 - g

mo -
 yr

brf
 - b

gso
 - y

r

brf
 - s

lm
o -

 yr

20

40

60

80

100

120

31
39

54
59 61 65

69 72

LT+TL AUROC (ranks)
p = 1.57e-04

brf
 - s

q -
 yr

brf
 - s

q

brf
 - b

gso

brf
 - g

mo

brf
 - b

gso
 - y

r

brf
 - g

mo -
 yr

brf
 - s

lm
o -

 yr

brf
 - s

lm
o

20

40

60

80

100

18

32

59
65 65 66 66

79

LT+TL AUPR (ranks)
p = 3.22e-07

brf
 - g

mo

brf
 - b

gso

brf
 - s

lm
o

brf
 - g

mo -
 yr

brf
 - b

gso
 - y

r

brf
 - s

lm
o -

 yr

brf
 - s

q

brf
 - s

q -
 yr

20

40

60

80

100

120

35 38

52
56

60
64

70
76

TT AUROC (ranks)
p = 2.09e-04

brf
 - b

gso

brf
 - g

mo

brf
 - g

mo -
 yr

brf
 - b

gso
 - y

r

brf
 - s

lm
o

brf
 - s

lm
o -

 yr

brf
 - s

q -
 yr

brf
 - s

q

20

40

60

80

100

37
42

57 58 58
64 66 67

TT AUPR (ranks)
p = 1.12e-03

Figure 14 – Comparison of bipartite random forests with and without label imputation by NRLMF. An
omnibus p-value is obtained through a Friedman test and indicated below the title of each
subfigure. We then perform pairwise Wilcoxon rank-sum tests as a post-hoc analysis. Es-
timators that could not be significantly distinguished from each other (p > 0.05) are con-
nected by crossbars above their respective boxes. The pairwise test results are corrected by
the Benjamini-Hochberg procedure (4, 5) in each subfigure. All pairwise comparisons are
considered for the correction, even if not visible in the plot. See Section 2.8 for further de-
scription of the evaluation procedure.
Source: By the author.

2.9 Experiments 95

bx
t -

slm
o

bx
t -

gm
o

bx
t -

bg
so

bx
t -

slm
o -

 yr

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

bx
t -

sq

bx
t -

sq
- y

r

20

40

60

80

100

120

29 32 35

66
71 72 72 73

LT+TL AUROC (ranks)
p = 3.89e-07

bx
t -

sq
- y

r

bx
t -

sq

bx
t -

slm
o

bx
t -

bg
so

bx
t -

gm
o

bx
t -

slm
o -

 yr

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

20

40

60

80

100

19

39
45

58
64

70
74

81

LT+TL AUPR (ranks)
p = 4.52e-08

bx
t -

gm
o

bx
t -

bg
so

bx
t -

slm
o

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

bx
t -

slm
o -

 yr

bx
t -

sq

bx
t -

sq
- y

r

20

40

60

80

100

32 35

54 54 57
62

75
81

TT AUROC (ranks)
p = 3.89e-08

bx
t -

bg
so

bx
t -

gm
o

bx
t -

bg
so

- y
r

bx
t -

slm
o

bx
t -

gm
o -

 yr

bx
t -

sq
- y

r

bx
t -

slm
o -

 yr

bx
t -

sq

20

40

60

80

100

120

41 44

56 58 61 62 63 63

TT AUPR (ranks)
p = 5.85e-03

Figure 15 – Comparison of bipartite Extra-Trees with and without label imputation by neighborhood-
regularized logistic matrix factorization. An omnibus p-value is obtained through a Friedman
test and indicated below the title of each subfigure. We then perform pairwise Wilcoxon rank-
sum tests as a post-hoc analysis. Estimators that could not be significantly distinguished from
each other (p > 0.05) are connected by crossbars above their respective boxes. The pairwise
test results are corrected by the Benjamini-Hochberg procedure (4, 5) in each subfigure. All
pairwise comparisons are considered for the correction, even if not visible in the plot. See
Section 2.8 for further description of the evaluation procedure.
Source: By the author.

96 Chapter 2 Development

mse
- d

en
sit

y

md -
 de

nsi
ty

mse
- ra

nd
om

mse
- s

ize

ad
 - r

an
do

m

md -
 ra

nd
om

mse
- fi

xe
d

ad
 - f

ixe
d

ad
 - d

en
sit

y

ad
 - s

ize

md -
 siz

e

md -
 fix

ed

20

40

60

80

100

120

140

44 44
50 52 54 54 56 57 58 59 59 63

LT+TL AUROC (ranks)
p = 3.94e-01

mse
- d

en
sit

y

ad
 - f

ixe
d

mse
- ra

nd
om

ad
 - r

an
do

m

ad
 - d

en
sit

y

md -
 de

nsi
ty

mse
- s

ize

mse
- fi

xe
d

ad
 - s

ize

md -
 ra

nd
om

md -
 fix

ed

md -
 siz

e

20

40

60

80

100

120

140

45 48 49 49 49 49 53 53 57
63 66 69

LT+TL AUROC (ranks)
p = 4.10e-01 | ILR = 50%

ad
 - d

en
sit

y

ad
 - r

an
do

m

ad
 - f

ixe
d

mse
- d

en
sit

y

mse
- fi

xe
d

mse
- ra

nd
om

ad
 - s

ize

mse
- s

ize

md -
 de

nsi
ty

md -
 fix

ed

md -
 ra

nd
om

md -
 siz

e

20

40

60

80

100

120

40 43 44 46 47 50
54 57 60 61

73 77

LT+TL AUROC (ranks)
p = 1.08e-02 | ILR = 70%

ad
 - d

en
sit

y

mse
- fi

xe
d

ad
 - f

ixe
d

ad
 - r

an
do

m

ad
 - s

ize

md -
 fix

ed

mse
- d

en
sit

y

mse
- ra

nd
om

mse
- s

ize

md -
 de

nsi
ty

md -
 ra

nd
om

md -
 siz

e

20

40

60

80

100

120

36 37 37 38
42

50 51
57 58

80 81 83

LT+TL AUROC (ranks)
p = 1.85e-05 | ILR = 90%

md -
 de

nsi
ty

mse
- d

en
sit

y

md -
 ra

nd
om

mse
- ra

nd
om

md -
 siz

e

mse
- s

ize

mse
- fi

xe
d

ad
 - f

ixe
d

ad
 - r

an
do

m

ad
 - d

en
sit

y

ad
 - s

ize

md -
 fix

ed

20

40

60

80

100

120

30 33 37
42 45 49

64 67 69 69 70 74

LT+TL AUPR (ranks)
p = 1.50e-07

mse
- d

en
sit

y

md -
 de

nsi
ty

mse
- ra

nd
om

md -
 ra

nd
om

mse
- s

ize

md -
 siz

e

ad
 - f

ixe
d

ad
 - d

en
sit

y

mse
- fi

xe
d

ad
 - r

an
do

m

ad
 - s

ize

md -
 fix

ed

20

40

60

80

100

120

30 31
38

44 46
55

64 64 64 64
70

80

LT+TL AUPR (ranks)
p = 5.91e-07 | ILR = 50%

mse
- d

en
sit

y

md -
 de

nsi
ty

mse
- ra

nd
om

mse
- s

ize

md -
 ra

nd
om

ad
 - d

en
sit

y

ad
 - f

ixe
d

mse
- fi

xe
d

ad
 - r

an
do

m

md -
 siz

e

ad
 - s

ize

md -
 fix

ed

20

40

60

80

100

120

34 38
44 47 50

55 56 57 58
62

69

79

LT+TL AUPR (ranks)
p = 3.85e-03 | ILR = 70%

mse
- fi

xe
d

ad
 - d

en
sit

y

ad
 - f

ixe
d

ad
 - r

an
do

m

mse
- d

en
sit

y

ad
 - s

ize

md -
 de

nsi
ty

mse
- ra

nd
om

mse
- s

ize

md -
 fix

ed

md -
 ra

nd
om

md -
 siz

e

20

40

60

80

100

120

140

45 45 46 47 50 51 55 55 56
63 65

73

LT+TL AUPR (ranks)
p = 7.33e-02 | ILR = 90%

md -
 de

nsi
ty

md -
 ra

nd
om

mse
- s

ize

mse
- d

en
sit

y

ad
 - s

ize

md -
 siz

e

ad
 - d

en
sit

y

mse
- ra

nd
om

mse
- fi

xe
d

ad
 - r

an
do

m

ad
 - f

ixe
d

md -
 fix

ed

20

40

60

80

100

120

41

52 52 52 54 55 56 56 56 57 59 60

TT AUROC (ranks)
p = 8.87e-01

md -
 de

nsi
ty

md -
 ra

nd
om

ad
 - f

ixe
d

mse
- fi

xe
d

ad
 - r

an
do

m

ad
 - d

en
sit

y

mse
- d

en
sit

y

md -
 siz

e

ad
 - s

ize

mse
- ra

nd
om

mse
- s

ize

md -
 fix

ed

20

40

60

80

100

120

140

37

52 54 54 55 55 55 57 58 58 58 58

TT AUROC (ranks)
p = 4.88e-01 | ILR = 50%

md -
 de

nsi
ty

mse
- fi

xe
d

md -
 ra

nd
om

ad
 - d

en
sit

y

ad
 - f

ixe
d

ad
 - s

ize

ad
 - r

an
do

m

md -
 fix

ed

md -
 siz

e

mse
- d

en
sit

y

mse
- ra

nd
om

mse
- s

ize

20

40

60

80

100

120

140

39
51 52 53 53 54 54 55 58 58 59 63

TT AUROC (ranks)
p = 3.72e-01 | ILR = 70%

md -
 de

nsi
ty

mse
- fi

xe
d

ad
 - d

en
sit

y

ad
 - f

ixe
d

md -
 fix

ed

ad
 - r

an
do

m

md -
 ra

nd
om

ad
 - s

ize

md -
 siz

e

mse
- s

ize

mse
- ra

nd
om

mse
- d

en
sit

y

20

40

60

80

100

120

43 46 47 48 49 50
55 56 58

64 66 68

TT AUROC (ranks)
p = 1.91e-02 | ILR = 90%

md -
 de

nsi
ty

mse
- d

en
sit

y

md -
 ra

nd
om

mse
- ra

nd
om

mse
- s

ize

md -
 siz

e

mse
- fi

xe
d

ad
 - s

ize

ad
 - r

an
do

m

md -
 fix

ed

ad
 - d

en
sit

y

ad
 - f

ixe
d

20

40

60

80

100

36
40 43 46 47 49

62 62 65 67 67 67

TT AUPR (ranks)
p = 8.38e-04

md -
 de

nsi
ty

mse
- d

en
sit

y

md -
 ra

nd
om

mse
- ra

nd
om

md -
 siz

e

mse
- s

ize

mse
- fi

xe
d

ad
 - d

en
sit

y

md -
 fix

ed

ad
 - r

an
do

m

ad
 - f

ixe
d

ad
 - s

ize

20

40

60

80

100

33
41 44

49 50 52
58

62 64 65 65 66

TT AUPR (ranks)
p = 2.33e-02 | ILR = 50%

md -
 de

nsi
ty

mse
- d

en
sit

y

md -
 ra

nd
om

mse
- ra

nd
om

md -
 siz

e

mse
- s

ize

mse
- fi

xe
d

md -
 fix

ed

ad
 - r

an
do

m

ad
 - f

ixe
d

ad
 - d

en
sit

y

ad
 - s

ize

20

40

60

80

100

34

44 44 47
51 54

59 61 62 64 65 66

TT AUPR (ranks)
p = 2.59e-03 | ILR = 70%

md -
 de

nsi
ty

md -
 ra

nd
om

mse
- fi

xe
d

md -
 siz

e

ad
 - d

en
sit

y

md -
 fix

ed

mse
- d

en
sit

y

mse
- ra

nd
om

ad
 - f

ixe
d

ad
 - r

an
do

m

mse
- s

ize

ad
 - s

ize

20

40

60

80

100

39
46

52 54 55 55 56 57 57 57 58
65

TT AUPR (ranks)
p = 2.71e-01 | ILR = 90%

Figure 16 – Comparison of semi-supervised BGSO BXT with different strategies for determining the
unsupervised impurity and the supervision balance. An omnibus p-value is obtained through
a Friedman test and indicated below the title of each subfigure. We then perform pairwise
Wilcoxon rank-sum tests as a post-hoc analysis. Estimators that could not be significantly
distinguished from each other (p > 0.05) are connected by crossbars above their respective
boxes. The pairwise test results are corrected by the Benjamini-Hochberg procedure (4, 5)
in each subfigure. All pairwise comparisons are considered for the correction, even if not
visible in the plot. See Section 2.8 for further description of the evaluation procedure.
Source: By the author.

2.9 Experiments 97

mse
- d

en
sit

y

bx
t -

bg
so

ad
 - f

ixe
d

ad
 - s

ize

md -
 siz

e

md -
 fix

ed

brf
 - s

q -
 yr

brf
 - s

lm
o

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

bx
t -

sq
- y

r

20

40

60

80

100

120

140

35
40 43 43 43 46

58 59

75 76
81

LT+TL AUROC (ranks)
p = 1.69e-06

bx
t -

bg
so

ad
 - f

ixe
d

mse
- d

en
sit

y

ad
 - s

ize

md -
 fix

ed

md -
 siz

e

brf
 - s

lm
o

brf
 - s

q -
 yr

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

31 31 31
35

42 43

57

74
81 85

90

LT+TL AUROC (ranks)
p = 6.81e-11 | ILR = 50%

bx
t -

bg
so

ad
 - f

ixe
d

mse
- d

en
sit

y

ad
 - s

ize

md -
 fix

ed

md -
 siz

e

brf
 - s

lm
o

bx
t -

gm
o -

 yr

brf
 - s

q -
 yr

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

27 30 31
35 39

46
55

81 81 84
91

LT+TL AUROC (ranks)
p = 6.77e-12 | ILR = 70%

bx
t -

bg
so

ad
 - f

ixe
d

ad
 - s

ize

mse
- d

en
sit

y

md -
 fix

ed

md -
 siz

e

brf
 - s

lm
o

bx
t -

gm
o -

 yr

brf
 - s

q -
 yr

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

20
28

32
36 37

53 56

79 83 84
91

LT+TL AUROC (ranks)
p = 3.24e-14 | ILR = 90%

brf
 - s

q -
 yr

bx
t -

sq
- y

r

mse
- d

en
sit

y

md -
 siz

e

brf
 - s

lm
o

ad
 - f

ixe
d

bx
t -

bg
so

ad
 - s

ize

md -
 fix

ed

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

20

40

60

80

100

120

14

29
40

45 49

64 64 67 69
79 83

LT+TL AUPR (ranks)
p = 3.30e-12

mse
- d

en
sit

y

brf
 - s

q -
 yr

md -
 siz

e

ad
 - f

ixe
d

bx
t -

bg
so

ad
 - s

ize

md -
 fix

ed

brf
 - s

lm
o

bx
t -

sq
- y

r

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

20

40

60

80

100

120

26
37 37

43 46 49
57 58

65

91 92

LT+TL AUPR (ranks)
p = 1.04e-10 | ILR = 50%

mse
- d

en
sit

y

bx
t -

bg
so

ad
 - f

ixe
d

md -
 siz

e

ad
 - s

ize

md -
 fix

ed

brf
 - s

lm
o

brf
 - s

q -
 yr

bx
t -

sq
- y

r

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

20

40

60

80

100

120

25
36 36 38

44
52 53

58

78

89 91

LT+TL AUPR (ranks)
p = 2.42e-11 | ILR = 70%

bx
t -

bg
so

ad
 - f

ixe
d

ad
 - s

ize

mse
- d

en
sit

y

md -
 fix

ed

md -
 siz

e

brf
 - s

lm
o

brf
 - s

q -
 yr

bx
t -

gm
o -

 yr

bx
t -

sq
- y

r

bx
t -

bg
so

- y
r

20

40

60

80

100

120

30 32 35 35
42

46 49

71

85 86 89

LT+TL AUPR (ranks)
p = 2.10e-10 | ILR = 90%

md -
 siz

e

ad
 - s

ize

mse
- d

en
sit

y

bx
t -

bg
so

ad
 - f

ixe
d

md -
 fix

ed

brf
 - s

lm
o

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

brf
 - s

q -
 yr

bx
t -

sq
- y

r

20

40

60

80

100

120

41 41 43 43 45 45

56
63 66

70

86

TT AUROC (ranks)
p = 8.00e-07

bx
t -

bg
so

ad
 - f

ixe
d

md -
 siz

e

ad
 - s

ize

mse
- d

en
sit

y

md -
 fix

ed

brf
 - s

lm
o

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

brf
 - s

q -
 yr

bx
t -

sq
- y

r

20

40

60

80

100

120

36 38 40 41 42 44
53

68
74 76

88

TT AUROC (ranks)
p = 3.92e-10 | ILR = 50%

bx
t -

bg
so

ad
 - s

ize

ad
 - f

ixe
d

md -
 fix

ed

md -
 siz

e

mse
- d

en
sit

y

brf
 - s

lm
o

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

brf
 - s

q -
 yr

bx
t -

sq
- y

r

20

40

60

80

100

120

34
39 40 41 42 45

50

68
74

79

89

TT AUROC (ranks)
p = 5.99e-09 | ILR = 70%

bx
t -

bg
so

ad
 - f

ixe
d

md -
 fix

ed

ad
 - s

ize

md -
 siz

e

mse
- d

en
sit

y

brf
 - s

lm
o

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

brf
 - s

q -
 yr

bx
t -

sq
- y

r

20

40

60

80

100

30
35 37

41 42
49

54

68
76

82
87

TT AUROC (ranks)
p = 1.89e-08 | ILR = 90%

mse
- d

en
sit

y

md -
 siz

e

ad
 - s

ize

brf
 - s

lm
o

bx
t -

bg
so

md -
 fix

ed

ad
 - f

ixe
d

brf
 - s

q -
 yr

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

bx
t -

gm
o -

 yr

20

40

60

80

100

32
38

49 51 53 53 54
59

69 71 72

TT AUPR (ranks)
p = 1.71e-05

mse
- d

en
sit

y

md -
 siz

e

bx
t -

bg
so

ad
 - f

ixe
d

md -
 fix

ed

ad
 - s

ize

brf
 - s

lm
o

brf
 - s

q -
 yr

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

bx
t -

sq
- y

r

20

40

60

80

100

120

31 34
42 45 46 47

52

68
76 77

82

TT AUPR (ranks)
p = 6.15e-11 | ILR = 50%

mse
- d

en
sit

y

md -
 siz

e

bx
t -

bg
so

md -
 fix

ed

ad
 - f

ixe
d

ad
 - s

ize

brf
 - s

lm
o

bx
t -

gm
o -

 yr

brf
 - s

q -
 yr

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

32 35
40 42 45 46 49

74 74 78
83

TT AUPR (ranks)
p = 3.70e-09 | ILR = 70%

bx
t -

bg
so

md -
 siz

e

mse
- d

en
sit

y

md -
 fix

ed

ad
 - f

ixe
d

ad
 - s

ize

brf
 - s

lm
o

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

brf
 - s

q -
 yr

bx
t -

sq
- y

r

20

40

60

80

100

120

36 37 38 38 40
45

50

73
77 81

86

TT AUPR (ranks)
p = 6.24e-09 | ILR = 90%

Figure 17 – Comparison of different bipartite forests. An omnibus p-value is obtained through a Fried-
man test and indicated below the title of each subfigure. We then perform pairwise Wilcoxon
rank-sum tests as a post-hoc analysis. Estimators that could not be significantly distinguished
from each other (p > 0.05) are connected by crossbars above their respective boxes. The
pairwise test results are corrected by the Benjamini-Hochberg procedure (4, 5) in each sub-
figure. All pairwise comparisons are considered for the correction, even if not visible in the
plot. See Section 2.8 for further description of the evaluation procedure.
Source: By the author.

98 Chapter 2 Development

BLM-N
II-

SVM

DT-H
yb

rid
MLP

BLM-N
II-

RLS

RLS-av
g

RLS-K
ron

NRLMF

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

bx
t -

sq
- y

r

20

40

60

80

100

120

14

34
39

45

57
63

69
74 75

81

LT+TL AUROC (ranks)
p = 9.79e-09

BLM-N
II-

SVM
MLP

DT-H
yb

rid

RLS-av
g

BLM-N
II-

RLS

RLS-K
ron

bx
t -

gm
o -

 yr

NRLMF

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

13

38 39

50 51 54

72 73 76
85

LT+TL AUROC (ranks)
p = 1.98e-08 | ILR = 50%

BLM-N
II-

SVM
MLP

RLS-av
g

DT-H
yb

rid

RLS-K
ron

BLM-N
II-

RLS

bx
t -

gm
o -

 yr

NRLMF

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

12

41
47 47 49

58
67

73 73

84

LT+TL AUROC (ranks)
p = 2.39e-07 | ILR = 70%

BLM-N
II-

SVM

RLS-av
g

RLS-K
ronMLP

DT-H
yb

rid

bx
t -

gm
o -

 yr

NRLMF

BLM-N
II-

RLS

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

18

41 43 46

59 63 64 67 70
81

LT+TL AUROC (ranks)
p = 6.93e-08 | ILR = 90%

BLM-N
II-

SVM

DT-H
yb

rid
MLP

BLM-N
II-

RLS

bx
t -

sq
- y

r

RLS-av
g

NRLMF

RLS-K
ron

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

20

40

60

80

100

120

140

15

29 30
40

58 61

75 79 81 84

LT+TL AUPR (ranks)
p = 2.70e-11

BLM-N
II-

SVM

DT-H
yb

rid
MLP

BLM-N
II-

RLS

RLS-av
g

bx
t -

sq
- y

r

RLS-K
ron

NRLMF

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

20

40

60

80

100

120

14

29 30

42

58
66

73 75
81 83

LT+TL AUPR (ranks)
p = 1.50e-11 | ILR = 50%

BLM-N
II-

SVM
MLP

DT-H
yb

rid

BLM-N
II-

RLS

RLS-av
g

RLS-K
ron

bx
t -

sq
- y

r

NRLMF

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

20

40

60

80

100

12

29
33

48
55

66
72 73

80 82

LT+TL AUPR (ranks)
p = 3.61e-10 | ILR = 70%

BLM-N
II-

SVM
MLP

DT-H
yb

rid

RLS-av
g

BLM-N
II-

RLS

RLS-K
ron

NRLMF

bx
t -

gm
o -

 yr

bx
t -

sq
- y

r

bx
t -

bg
so

- y
r

20

40

60

80

100

120

14

29

45 49
55 55

70
75 79 79

LT+TL AUPR (ranks)
p = 6.94e-10 | ILR = 90%

BLM-N
II-

SVM
MLP

DT-H
yb

rid

RLS-K
ron

BLM-N
II-

RLS

NRLMF

RLS-av
g

bx
t -

gm
o -

 yr

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

25

42
46

52 55
59 61 63 64

83

TT AUROC (ranks)
p = 8.36e-06

BLM-N
II-

SVM

RLS-K
ronMLP

DT-H
yb

rid

RLS-av
g

BLM-N
II-

RLS

bx
t -

gm
o -

 yr

NRLMF

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

23

47 48 48
57 61 61 61 63

81

TT AUROC (ranks)
p = 5.07e-06 | ILR = 50%

BLM-N
II-

SVM

RLS-K
ronMLP

DT-H
yb

rid

bx
t -

gm
o -

 yr

RLS-av
g

bx
t -

bg
so

- y
r

NRLMF

BLM-N
II-

RLS

bx
t -

sq
- y

r

20

40

60

80

100

120

20

46 49
55 56 56

61 63 65

79

TT AUROC (ranks)
p = 1.21e-05 | ILR = 70%

BLM-N
II-

SVM

RLS-K
ron

RLS-av
g

bx
t -

gm
o -

 yr
MLP

bx
t -

bg
so

- y
r

NRLMF

DT-H
yb

rid

BLM-N
II-

RLS

bx
t -

sq
- y

r

20

40

60

80

100

26

43
50 50

57 57 59
65 68

75

TT AUROC (ranks)
p = 4.00e-05 | ILR = 90%

BLM-N
II-

SVM
MLP

DT-H
yb

rid

BLM-N
II-

RLS

NRLMF

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

RLS-K
ron

bx
t -

sq
- y

r

RLS-av
g

20

40

60

80

100

120

140

29
38 42

49
58 62 66 66 68 71

TT AUPR (ranks)
p = 7.16e-05

BLM-N
II-

SVM
MLP

DT-H
yb

rid

BLM-N
II-

RLS

NRLMF

RLS-K
ron

bx
t -

bg
so

- y
r

bx
t -

gm
o -

 yr

RLS-av
g

bx
t -

sq
- y

r

20

40

60

80

100

120

28

39
45

52
60 60 64 65 65

73

TT AUPR (ranks)
p = 4.37e-04 | ILR = 50%

BLM-N
II-

SVM
MLP

DT-H
yb

rid

RLS-K
ron

BLM-N
II-

RLS

NRLMF

bx
t -

gm
o -

 yr

RLS-av
g

bx
t -

bg
so

- y
r

bx
t -

sq
- y

r

20

40

60

80

100

120

19

41

51
57 58 60 62 64 64

75

TT AUPR (ranks)
p = 2.03e-05 | ILR = 70%

BLM-N
II-

SVM
MLP

RLS-K
ron

RLS-av
g

bx
t -

gm
o -

 yr

NRLMF

DT-H
yb

rid

bx
t -

bg
so

- y
r

BLM-N
II-

RLS

bx
t -

sq
- y

r

20

40

60

80

100

120

23

45
51

58 58 59 60 60 64
74

TT AUPR (ranks)
p = 2.23e-04 | ILR = 90%

Figure 18 – Comparison of two proposed bipartite forests (bxt-sq-yr and bxt-bgso-yr) with sev-
eral prominent models from the literature. An omnibus p-value is obtained through a Fried-
man test and indicated below the title of each subfigure. We then perform pairwise Wilcoxon
rank-sum tests as a post-hoc analysis. Estimators that could not be significantly distinguished
from each other (p > 0.05) are connected by crossbars above their respective boxes. The
pairwise test results are corrected by the Benjamini-Hochberg procedure (4, 5) in each sub-
figure. All pairwise comparisons are considered for the correction, even if not visible in the
plot. See Section 2.8 for further description of the evaluation procedure.
Source: By the author.

99

3 CONCLUSION

In this chapter, we summarize the main findings of this work and discuss future research
directions.

3.1 Main findings

We now list our final answers to the research questions proposed in Section 1.6.

1. Can bipartite trees be faster?

Yes, we developed significantly faster-growing bipartite trees by exploiting the bipartite
nature of the problem.

We demonstrate both theoretically (Section 2.4.2) and empirically (Section 2.9.2) that our
proposed bipartite tree algorithm achieves a log n improvement in training time complex-
ity relative to its predecessors, with comparable predictive performance (Section 2.9.8).

2. Are semi-supervised techniques beneficial for bipartite forests?

Yes. Overall, we show that both semi-supervised impurities and label imputation by ma-
trix factorization improve the predictions of bipartite forests.

For most scenarios, using our proposed semi-supervised impurity improves the predictive
performance relative to the corresponding supervised model (Section 2.9.7). However,
further investigation is needed to evaluate the benefits of other impurity functions. Addi-
tional experiments would also be interesting to investigate the effect of the methods that
define the supervision balance parameter.

In any case, the most significant improvements were achieved by reconstructing the inter-
action matrix. As proposed by (29), we employ neighborhood-regularized matrix factor-
ization (31) (NRLMF) to impute positive annotations prior to training the forests, and
show that this approach consistently improves the scores in almost all settings (Sec-
tion 2.9.5 and Section 2.9.7).

3. How do AUROC and AUPR differ in their assessment of model performance?

AUPR prioritizes a smaller number of highest-ranked interactions, while AUROC con-
siders a larger number of both highest and lowest ranks.

We show that AUPR is very sensitive to which interactions from the test set the estimator
selects as the most likely to occur. Also, AUPR mostly disregards the interactions se-
lected as unlikely by the estimator. On the other hand, AUROC equally considers both
the highest and lowest ranked interactions, and is less influenced by the extremal ranks in
comparison to AUPR (Section 2.9.1).

100 Chapter 3 Conclusion

Therefore, we argue that AUROC should be generally favored for model comparison
under positive-unlabeled settings. One should favor AUPR instead when the main goal is
to select a small number of most likely interactions.

4. How do bipartite forests compare with proficient models in the field?

The bipartite forests showed the best results in our experimental comparisons.

Notably, the BXT GMO NRLMF model stood out in most test settings analysed, es-
pecially when predicting interactions between unknown instances (Section 2.9.8). This
model employs NRLMF label imputation and our proposed prototype function, demon-
strating the effectiveness of these techniques in improving generalization.

3.2 Future work

The present study opens several paths for future research. We enumerate some of them
below.

1. Adding noise to the impurity

It is possible that using completely random values for the unsupervised impurity could
still result in improved performance for the semi-supervised forests. This is because the
diversity introduced by the noisy impurity to the individual trees could be enough, in
theory, to improve the performance of the ensemble.

Hence, we propose adding noise to the supervised impurity and compare the results with
supervised and semisupervised trees. The experiment could bring insights into the impor-
tance of different impurities in comparison with adding diversity to the trees.

2. There is a lot of unsupervised impurities to be explored

The present work explored two options of unsupervised impurity functions, that are uti-
lized for training semi-supervised decision trees. However, unsupervised decision trees
are a vast topic to explore. Many other approaches could be brought to the bipartite set-
ting, with potential benefits for the predictive performance and scalability of the forests.

For instance, several works use a single feature column to determine an unsupervised
impurity (102). Their reasoning is that the most significant change in impurity will result
from the feature being used to select the split points. This feature is previously ordered
by the algorithm. Therefore, other feature columns can be disregarded.

Other unsupervised impurities (102) leverage not only the smoothness assumption but
also the cluster assumption, which tells us to stablish decision borders preferably in low-
density regions of the feature space (20, 41). These impurities then prioritize split points
separating groups that are far from each other in the feature space, and not only compact
(low variance) (102).

3.2 Future work 101

Other approaches (40) also use the structure of random trees to determine similarity val-
ues (42), obtaining a similarity matrix to various types of data.

3. Semi-supervised impurities for all forest models

Only the bipartite global single-output ExtraTrees were trained with semi-supervised im-
purities. However, other models could benefit from the same approach, maybe even to
a greater extent. Future investigations could explore the use of semi-supervised impu-
rities with Random Forests and global multi-output forests. Another promising strategy
would be to combine such impurities with label imputation by matrix factorization, since
imputation by itself proved to be effective.

4. Other label imputation approaches

As previous studies, we used neighborhood-regularized matrix factorization (NRLMF) to
impute positive annotations before training bipartite forests. The results were promising,
but many other methods for label imputation could be explored.

The neighborhood regularization terms in Equation A.30 are not strictly necessary if the
labels are used to train a second model. Their main importance is in inferring labels for
new instances, which could be done solely be the downstream model in this case. More
generally speaking, the step of label imputation can be purely transductive (20, 41), as
no induction of a function f : x 7→ y is necessary. Therefore, it is possible that simpler
methods achieve similar results in less time. Examples of promising options to try would
be logistic matrix factorization (26) and graph-based learning methods in general (20,41).

Additionally, there have been further developments of NRLMF that could be explored.
NRLMF-β (103) adds beta-distribution-rescoring to the outputs of NRLMF. Dual net-
work integrated logistic matrix factorization (64, 65) uses a concept similar to NRLMF,
but merging the similarity matrices with the interaction matrix before factorization.

Even the same forest algorithms could be used both for label imputation and the final
inference step. This would be a form of self-learning, where the model is trained with the
labels it has predicted itself (41). In a similar fashion, co-training could be used, where
models are trained in separate folds and then used to infer labels for the other models (41).
Self-learning can also be taken one step further, building a cascade of sequential forests
that progressively impute missing annotations (93).

5. Other forest algorithms

There is a variety of tree-based algorithms that could be adapted to the bipartite setting but
were not explored in this work. Some of them are: Gradient Boosting Machines (33,104),
Rotation Forests (105), Fuzzy Random Forests (106), Oblique Random Forests (32) and
Deep Forests (34).

6. Other fields

102 Chapter 3 Conclusion

The present study concentrated on scenarios in which both instance domains have re-
spective feature matrices. However, bipartite forests could also be extended to contexts
where only one of the domains has side-features (dyadic prediction, multi-label learning,
weak-label learning) or even to scenarios where both domains are featureless (collabo-
rative filtering, recommendation systems). In these cases, features can be extracted from
the interaction matrix itself, for instance, as gaussian interaction profiles (30).

For multi-output scenarios, bipartite forests can learn to partition the label matrix both
horizontally and vertically, learning patterns that are specific for certain groups of out-
puts. This property is explored by (38) for single trees and hierarchical multi-label clas-
sification.

Weak-label learning (93, 107) could also be approached in a similar way. The difference
from traditional multi-label learning is that negative annotations are not validated, sim-
ilarly to the PU learning (44) setting of the present work. As such, the semi-supervised
techniques we developed could be especially advantageous for weak-label learning.

7. Explainable artificial intelligence

Decision Forests have remarkable interpretability properties that were not explored in the
present work. Future studies could exploit explanation techniques (32, 36, 37) to provide
new insights into the nature of each learning task. For instance, in mircroRNA-gene inter-
action prediction, it would be interesting to pinpoint specific positions or sequence motifs
that are relevant for the interaction.

103

REFERENCES

1 PLIAKOS, K.; GEURTS, P.; VENS, C. Global multi-output decision trees for interaction
prediction. Machine Learning, v. 107, p. 1257–1281, 2018.

2 GEURTS, P.; ERNST, D.; WEHENKEL, L. Extremely randomized trees. Machine
Learning, v. 63, p. 3–42, 2006.

3 BREIMAN, L. et al. Classification and regression trees. New York: Routledge, 1984.
ISBN 978-1-315-13947-0.

4 BENJAMINI, Y.; HOCHBERG, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society Series B
(Methodological), v. 57, n. 1, p. 289–300, 1995.

5 HAYNES, W. Benjamini–Hochberg method. In: DUBITZKY, W. et al. (ed.). Encyclopedia
of systems biology. New York: Springer, 2013. p. 78–78. ISBN 978-1-4419-9863-7.

6 BAGHERIAN, M. et al. Machine learning approaches and databases for prediction of
drug–target interaction: a survey paper. Briefings in Bioinformatics, v. 22, n. 1, p. 247–269,
Jan. 2020.

7 CHEN, R. et al. Machine learning for drug-target interaction prediction. Molecules, v. 23,
n. 9, p. 2208, Aug. 2018.

8 FAITH, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional
regulation from a compendium of expression profiles. PLoS Biology, v. 5, n. 1, p. e8, 2007.

9 LÜ, L. et al. Recommender systems. Physics Reports, v. 519, n. 1, p. 1–49, Oct. 2012.

10 ASRATIAN, A. S.; DENLEY, T. M.; HÄGGKVIST, R. Bipartite graphs and
their applications. Cambridge: Cambridge University Press, 1998. (Cambridge tracts in
mathematics, v. 131).

11 EZZAT, A. et al. Computational prediction of drug–target interactions using
chemogenomic approaches: an empirical survey. Briefings in Bioinformatics, v. 20, n. 4, p.
1337–1357, Jul. 2019.

12 LÜ, L.; ZHOU, T. Link prediction in complex networks: a survey. Physica A: statistical
mechanics and its applications, v. 390, n. 6, p. 1150–1170, Mar. 2011.

13 ZHOU, T. Progresses and challenges in link prediction. Iscience, v. 24, n. 11, 2021.

14 MENON, A. K.; ELKAN, C. A log-linear model with latent leatures for dyadic prediction.
In: INTERNATIONAL CONFERENCE ON DATA MINING, 10, 2010, Washington.
Proceedings [...]. Washington: IEEE Press, 2010. p. 364–373.

15 PAHIKKALA, T. et al. A two-step learning approach for solving full and almost
full cold start problems in dyadic prediction. In: CALDERS, T. et al. (ed.). Machine
learning and knowledge discovery in databases. Berlin: Springer, 2014. p. 517–532. ISBN
978-3-662-44851-9.

104 References

16 JIN, B. et al. Multitask dyadic prediction and its application in prediction of adverse
drug-drug interaction. In: AAAI CONFERENCE ON ARTIFICIAL INTELIGENCE, 31,
2017, Vancouver. Proceedings [...]. Vancouver: AAAI Press, 2017.

17 SCHRYNEMACKERS, M. et al. Classifying pairs with trees for supervised biological
network inference. Molecular BioSystems, v. 11, n. 8, p. 2116–2125, 2015.

18 PLIAKOS, K.; VENS, C. Network inference with ensembles of bi-clustering trees. BMC
Bioinformatics, v. 20, p. 1–12, 2019.

19 PAHIKKALA, T. et al. Toward more realistic drug-target interaction predictions. Briefings
in Bioinformatics, v. 16, n. 2, p. 325–337, 2015.

20 CHAPELLE, O.; SCHÖLKOPF, B.; ZIEN, A. (ed.). Semi-supervised learning.
Cambridge: MIT Press, 2006. (Adaptive computation and machine learning). ISBN
978-0-262-03358-9.

21 DAVIS, J.; GOADRICH, M. The relationship between precision-recall and ROC curves.
In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 23, 2006, New York.
Proceedings [...]. New York: ACM, 2006. p. 233–240. ISBN 978-1-59593-383-6.

22 HAND, D. J. Measuring classifier performance: a coherent alternative to the area under
the ROC curve. Machine Learning, v. 77, n. 1, p. 103–123, Oct. 2009.

23 OZENNE, B.; SUBTIL, F.; Maucort-Boulch, D. The precision–recall curve overcame the
optimism of the receiver operating characteristic curve in rare diseases. Journal of Clinical
Epidemiology, v. 68, n. 8, p. 855–859, Aug. 2015.

24 FLACH, P.; KULL, M. Precision-recall-gain curves: PR analysis done right. In:
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, 28, 2015, Montreal.
Proceedings [...]. Montreal: Curran Associates, Inc., 2015.

25 HE, H.; GARCIA, E. A. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, v. 21, n. 9, p. 1263–1284, Sept. 2009.

26 JOHNSON, C. C. Logistic matrix factorization for implicit feedback data. Advances in
Neural Information Processing Systems, v. 27, n. 78, p. 1–9, 2014.

27 HAO, M.; BRYANT, S. H.; WANG, Y. Open-source chemogenomic data-driven
algorithms for predicting drug–target interactions. Briefings in Bioinformatics, v. 20, n. 4, p.
1465–1474, Jul. 2019.

28 YU, D. et al. FPSC-DTI: drug–target interaction prediction based on feature projection
fuzzy classification and super cluster fusion. Molecular Omics, v. 16, n. 6, p. 583–591, Dec.
2020.

29 PLIAKOS, K.; VENS, C. Drug-target interaction prediction with tree-ensemble learning
and output space reconstruction. BMC Bioinformatics, v. 21, p. 1–11, 2020.

30 LAARHOVEN, T. V.; NABUURS, S. B.; MARCHIORI, E. Gaussian interaction profile
kernels for predicting drug–target interaction. Bioinformatics, v. 27, n. 21, p. 3036–3043,
2011.

References 105

31 LIU, Y. et al. Neighborhood regularized logistic matrix factorization for drug-target
interaction prediction. PLoS Computational Biology, v. 12, n. 2, p. e1004760, Feb. 2016.

32 BREIMAN, L. Random forests. Machine Learning, v. 45, p. 5–32, 2001.

33 CHEN, T.; GUESTRIN, C. XGBoost: a scalable tree boosting system. In: INTERNA-
TIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 22,
2016, New York. Proceedings [...]. New York: ACM/SIGKDD, 2016. p. 785–794. ISBN
978-1-4503-4232-2.

34 ZHOU, Z.-H.; FENG, J. Deep forest. National Science Review, v. 6, n. 1, p. 74–86, Jan.
2019.

35 GRINSZTAJN, L.; OYALLON, E.; VAROQUAUX, G. Why do tree-based models
still outperform deep learning on typical tabular data? Advances in Neural Information
Processing Systems, v. 35, p. 507–520, Dec. 2022.

36 LUNDBERG, S. M. et al. Explainable AI for trees: from local explanations to global
understanding. 2019. Available at: http://arxiv.org/abs/1905.04610. Accessible at: 15 Mar.
2024.

37 AGARWAL, A. et al. MDI+: a flexible random forest-based feature importance
framework. 2023. Available at: http://arxiv.org/abs/2307.01932. Accessible at: 13 Jan. 2024.

38 SANTOS, B. Z. et al. Predictive bi-clustering trees for hierarchical multi-label
classification. In: HUTTER, F. et al. (ed.). Machine learning and knowledge discovery in
databases. Cham: Springer International Publishing, 2021. p. 701–718. ISBN 978-3-030-
67664-3.

39 LEVATIĆ, J. et al. Semi-supervised classification trees. Journal of Intelligent
Information Systems, v. 49, p. 461–486, 2017.

40 ADIYEKE, E.; BAYDOĞAN, M. G. Semi-supervised extensions of multi-task tree
ensembles. Pattern Recognition, v. 123, p. 108393, Mar. 2022.

41 ENGELEN, J. E. V.; HOOS, H. H. A survey on semi-supervised learning. Machine
Learning, v. 109, n. 2, p. 373–440, Feb. 2020.

42 LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation forest. In: INTERNATIONAL
CONFERENCE ON DATA MINING, 8, 2008, Washington. Proceedings [...]. Washington,
2008. p. 413–422.

43 ALVES, A.; ILIDIO, P.; CERRI, R. Semi-supervised hybrid predictive bi-clustering trees
for drug-target interaction prediction. In: SYMPOSIUM ON APPLIED COMPUTING, 38,
2023, Tallinn. Proceedings [...]. Tallinn: ACM/SIGAPP, 2023. p. 1163–1170.

44 BEKKER, J.; DAVIS, J. Learning from positive and unlabeled data: a survey. Machine
Learning, v. 109, n. 4, p. 719–760, Apr. 2020.

45 VERT, J. P. Reconstruction of biological networks by supervised machine learning
approaches. 2008. Available at: http://arxiv.org/abs/0806.0215. Accessible at: 29 Aug. 2023.

46 ÖZTÜRK, H.; ÖZGÜR, A.; OZKIRIMLI, E. DeepDTA: deep drug–target binding affinity
prediction. Bioinformatics, v. 34, n. 17, p. i821–i829, 2018.

http://arxiv.org/abs/1905.04610
http://arxiv.org/abs/2307.01932
http://arxiv.org/abs/0806.0215

106 References

47 HUANG, K. et al. MolTrans: molecular interaction transformer for drug–target interaction
prediction. Bioinformatics, v. 37, n. 6, p. 830–836, Oct. 2020.

48 QUINLAN, J. R. Induction of decision trees. Machine Learning, v. 1, n. 1, p. 81–106,
Mar. 1986.

49 QUINLAN, J. R. C4. 5: programs for machine learning. Elsevier, 2014.

50 CORMEN, T. H. et al. Introduction to algorithms. 4th ed. Cambridge: MIT Press, 2022.
ISBN 978-0-262-04630-5.

51 DIETTERICH, T. G. Ensemble methods in machine learning. In: GOOS, G.;
HARTMANIS, J.; LEEUWEN, J. V. (ed.). Multiple classifier systems. Heidelberg: Springer,
2000, (Lecture notes in computer science, v. 1857). p. 1–15. ISBN 978-3-540-67704-8
978-3-540-45014-6.

52 POLIKAR, R. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, v. 6, n. 3, p. 21–45, 2006.

53 HYAFIL, L.; RIVEST, R. L. Constructing optimal binary decision trees is NP-complete.
Information Processing Letters, v. 5, n. 1, p. 15–17, May 1976.

54 BREIMAN, L. Bagging predictors. Machine Learning, v. 24, n. 2, p. 123–140, Aug.
1996.

55 AMIT, Y.; GEMAN, D. Shape quantization and recognition with randomized trees.
Neural Computation, v. 9, n. 7, p. 1545–1588, Oct. 1997.

56 HO, T. K. The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 20, n. 8, p. 832–844,
Aug./1998.

57 SAGI, O.; ROKACH, L. Ensemble learning: a survey. WIREs Data Mining and
Knowledge Discovery, v. 8, n. 4, p. e1249, Jul. 2018.

58 FAWAGREH, K.; GABER, M. M.; ELYAN, E. Random forests: from early developments
to recent advancements. Systems Science & Control Engineering, v. 2, n. 1, p. 602–609, Dec.
2014.

59 AMASYALI, M. F.; ERSOY, O. K. Comparison of single and ensemble classifiers in terms
of accuracy and execution time. In: INTERNATIONAL SYMPOSIUM ON INNOVATIONS
IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2011, Istanbul. Proceedings
[...]. Istanbul: IEEE, 2011. p. 470–474. ISBN 978-1-61284-919-5.

60 LIU, H. et al. LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood
regularized logistic matrix factorization. Oncotarget, v. 8, n. 61, p. 103975, 2017.

61 HE, T. et al. SimBoost: a read-across approach for predicting drug–target binding affinities
using gradient boosting machines. Journal of Cheminformatics, v. 9, n. 1, p. 1–14, 2017.

62 ZHU, X.; GOLDBERG, A. B. Introduction to semi-supervised learning. Switzerland:
Springer Nature, 2022.

References 107

63 HASTIE, T.; FRIEDMAN, J.; TIBSHIRANI, R. The elements of statistical learning.
New York: Springer, 2001. (Springer series in statistics). ISBN 978-1-4899-0519-2
978-0-387-21606-5.

64 HAO, M.; BRYANT, S. H.; WANG, Y. Predicting drug-target interactions by dual-network
integrated logistic matrix factorization. Scientific Reports, v. 7, n. 1, p. 40376, 2017.

65 LI, Y.; LI, J.; BIAN, N. DNILMF-LDA: prediction of lncRNA-disease associations by
dual-network integrated logistic matrix factorization and Bayesian optimization. Genes, v. 10,
n. 8, p. 608, 2019.

66 POWERS, D. M. W. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. 2020. Available at: http://arxiv.org/abs/2010.16061.
Accessible at: 15 Mar. 2024.

67 SAITO, T.; REHMSMEIER, M. The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, v. 10, n. 3,
p. e0118432, Mar. 2015.

68 FERNÁNDEZ, A. et al. Learning from imbalanced data sets. Cham: Springer
International Publishing, 2018. ISBN 978-3-319-98073-7 978-3-319-98074-4.

69 HU, Y.; KOREN, Y.; VOLINSKY, C. Collaborative filtering for implicit feedback datasets.
In: INTERNATIONAL CONFERENCE ON DATA MINING, 8, 2008, Pisa. Proceedings [...].
Pisa: IEEE, 2008. p. 263–272.

70 YAMANISHI, Y. et al. Prediction of drug–target interaction networks from the integration
of chemical and genomic spaces. Bioinformatics, v. 24, n. 13, p. i232–i240, 2008.

71 MACISAAC, K. D. et al. An improved map of conserved regulatory sites for
Saccharomyces cerevisiae. BMC Bioinformatics, v. 7, n. 1, p. 1–14, 2006.

72 HUGHES, T. R. et al. Functional discovery via a compendium of expression profiles. Cell,
v. 102, n. 1, p. 109–126, 2000.

73 HU, Z.; KILLION, P. J.; IYER, V. R. Genetic reconstruction of a functional transcriptional
regulatory network. Nature Genetics, v. 39, n. 5, p. 683–687, 2007.

74 CHUA, G. et al. Identifying transcription factor functions and targets by phenotypic
activation. Proceedings of the National Academy of Sciences, v. 103, n. 32, p. 12045–12050,
2006.

75 DAVIS, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nature
Biotechnology, v. 29, n. 11, p. 1046–1051, 2011.

76 HUANG, K. et al. DeepPurpose: a deep learning library for drug–target interaction
prediction. Bioinformatics, v. 36, n. 22-23, p. 5545–5547, 2020.

77 TANG, J. et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a
comparative and integrative analysis. Journal of Chemical Information and Modeling, v. 54,
n. 3, p. 735–743, 2014.

78 WU, T. et al. NPInter: the noncoding RNAs and protein related biomacromolecules
interaction database. Nucleic Acids Research, v. 34, n. suppl_1, p. D150–D152, 2006.

http://arxiv.org/abs/2010.16061

108 References

79 TENG, X. et al. NPInter v4. 0: an integrated database of ncRNA interactions. Nucleic
Acids Research, v. 48, n. D1, p. D160–D165, 2020.

80 HSU, S.-D. et al. miRTarBase: a database curates experimentally validated microRNA–
target interactions. Nucleic Acids Research, v. 39, n. suppl_1, p. D163–D169, 2011.

81 HUANG, H.-Y. et al. miRTarBase update 2022: an informative resource for experimentally
validated miRNA–target interactions. Nucleic Acids Research, v. 50, n. D1, p. D222–D230,
2022.

82 BROHÉE, S. et al. Unraveling networks of co-regulated genes on the sole basis of genome
sequences. Nucleic Acids Research, v. 39, n. 15, p. 6340–6358, 2011.

83 ROGERS, D.; BROWN, R. D.; HAHN, M. Using extended-connectivity fingerprints with
Laplacian-modified Bayesian analysis in high-throughput screening follow-up. Journal of
Biomolecular Screening, v. 10, n. 7, p. 682–686, 2005.

84 LANDRUM, G. et al. Rdkit/rdkit: 2023_03_2 (Q1 2023) Release. 2023. Zenodo.
Available at: https://doi.org/10.5281/zenodo.8053810.

85 GRIFFITHS-JONES,, S. et al. miRBase: microRNA sequences, targets and gene
nomenclature. Nucleic Acids Research, v. 34, n. suppl_1, p. D140–D144, 2006.

86 FRANKISH, A. et al. GENCODE 2021. Nucleic Acids Research, v. 49, n. D1, p.
D916–D923, 2021.

87 COCK, P. J. et al. Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics, v. 25, n. 11, p. 1422, 2009.

88 LIU, C. et al. NONCODE: an integrated knowledge database of non-coding RNAs.
Nucleic Acids Research, v. 33, n. suppl_1, p. D112–D115, 2005.

89 ZHAO, Y. et al. NONCODE 2016: an informative and valuable data source of long
non-coding RNAs. Nucleic Acids Research, v. 44, n. D1, p. D203–D208, 2016.

90 CONSORTIUM, U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids
Research, v. 47, n. D1, p. D506–D515, 2019.

91 DEMŠAR, J. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, v. 7, p. 1–30, 2006.

92 BENAVOLI, A.; CORANI, G.; MANGILI, F. Should we really use post-hoc tests based
on mean-ranks? Journal of Machine Learning Research, v. 17, n. 5, p. 1–10, 2016.

93 WANG, Q.-W.; YANG, L.; LI, Y.-F. Learning from weak-label data: a deep forest
expedition. In: AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 34, 2020, New
York. Proceedings [...]. New York, 2020. p. 6251–6258.

94 KORNBROT, D. Point biserial correlation. In: Wiley StatsRef: statistics reference online.
Hatfield: John Wiley & Sons, Ltd, 2014. ISBN 978-1-118-44511-2.

95 BLEAKLEY, K.; YAMANISHI, Y. Supervised prediction of drug–target interactions
using bipartite local models. Bioinformatics, v. 25, n. 18, p. 2397–2403, Jul. 2009.

https://doi.org/10.5281/zenodo.8053810

References 109

96 MURPHY, K. P. Machine learning: a probabilistic perspective. Cambridge: MIT Press,
2012. (Adaptive computation and machine learning series). ISBN 978-0-262-01802-9.

97 MEI, J.-P. et al. Drug–target interaction prediction by learning from local information and
neighbors. Bioinformatics, v. 29, n. 2, p. 238–245, 2013.

98 CRAMMER, K.; SINGER, Y. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, v. 2, n. Dec, p.
265–292, 2001.

99 ALAIMO, S. et al. Drug–target interaction prediction through domain-tuned network-
based inference. Bioinformatics, v. 29, n. 16, p. 2004–2008, 2013.

100 KINGMA, D. P.; BA, J. Adam: a method for stochastic optimization. 2017. Available at:
http://arxiv.org/abs/1412.6980. Accessible at: 16 Mar. 2024.

101 PEDREGOSA, F. et al. Scikit-learn: machine learning in Python. Journal of Machine
Learning Research, v. 12, n. 85, p. 2825–2830, 2011.

102 Loyola-Gonzalez, O. et al. An explainable artificial intelligence model for clustering
numerical databases. IEEE Access, v. 8, p. 52370–52384, 2020.

103 BAN, T.; OHUE, M.; AKIYAMA, Y. NRLMF\upbeta: beta-distribution-rescored
neighborhood regularized logistic matrix factorization for improving the performance of
drug–target interaction prediction. Biochemistry and Biophysics Reports, v. 18, p. 100615,
Jul. 2019.

104 NATEKIN, A.; KNOLL, A. Gradient boosting machines, a tutorial. Frontiers in
Neurorobotics, v. 7, Dec. 2013.

105 RODRIGUEZ, J. J.; KUNCHEVA, L. I.; ALONSO, C. J. Rotation forest: a new classifier
ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 28,
n. 10, p. 1619–1630, 2006.

106 BONISSONE, P. et al. A fuzzy random forest. International Journal of Approximate
Reasoning, v. 51, n. 7, p. 729–747, Sept. 2010.

107 ZHOU, Z.-H. A brief introduction to weakly supervised learning. National Science
Review, v. 5, n. 1, p. 44–53, 2018.

108 SCHAFER, R. D. An introduction to nonassociative algebras. New York: Academic
Press, 1966.

109 LIU, H. et al. Predicting lncRNA–miRNA interactions based on logistic matrix
factorization with neighborhood regularized. Knowledge-Based Systems, v. 191, p. 105261,
2020.

110 RAFAILIDIS, D.; NANOPOULOS, A. Modeling users preference dynamics and
side information in recommender systems. IEEE Transactions on Systems, Man, and
Cybernetics: systems, v. 46, n. 6, p. 782–792, Jun. 2016.

111 DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, v. 12, n. 61, p.
2121–2159, 2011.

http://arxiv.org/abs/1412.6980

APPENDIX

113

APPENDIX A – OTHER ESTIMATOR-CENTRIC STRATEGIES

This section presents two other methods for optimizing estimators for interaction pre-
diction tasks. Like bipartite trees (Section 2.4), these methods focus on adapting the learning
algorithm in a more fundamental level than data-centric approaches (Section 2.2). The first
method is an adaptation of linear models to the bipartite setting, named RLS-Kron (30). It ex-
plores properties of the Kronecker product to build an estimator on a large global kernel matrix,
without in fact having to calculate such matrix. The second method adapts matrix factorization
approaches to take similarity side-features into account. Named Neighborhood-Regularized Lo-
gistic Matrix Factorization (NRLMF), this technique allows obtaining latent features for unseen
instances, which is commonly not possible with traditional matrix factorization.

A.1 Linear models

One of the simplest approaches to learning problems in general is to assume a linear
relationship between the input features and output labels. Formally, for the non-bipartite case,
one assumes that the training output matrix Y can be approximated as follows:

Ŷ = XW (A.1)

in which W is a matrix representing the set of parameters to be learned. To determine W , the
mean squared error (MSE) is usually defined as the loss function to be minimized, to which we
add an extra regularization term controlled by the hyperparameter α:

J =
1

2
∥Y − Ŷ ∥2 + α

2
∥W∥2 = 1

2
∥Y −XW∥2 + α

2
∥W∥2 (A.2)

An analytical solution for W can be obtained by taking the derivative of J with respect to W

and setting it to zero:

∂J
∂W

= 0 = X⊺(XW − Y) + αW =⇒ W = (X⊺X + αI)−1X⊺Y (A.3)

There are scenarios, however, where the specific values of X are less interesting than
the pairwise similarities between them. In those settings, while X may not be directly available,
we do have access to similarity matrices S (also called kernel matrices) in which S[ij] designates
a similarity score between X [i] and X [j]. Rather than simply considering S in the same way we
would treat X in linear regression, we could instead employ the kernel trick (96): replacing the
XX⊺ terms in the above equations by S. In this case, we are assuming that similarities S[ij]

represent the internal product of the vectors X [i] and X [j] in some feature space, which is based
on the intuition that the internal product by itself can be regarded as a similarity metric. We also
define W slightly differently, ommiting the X⊺ factor as W = (S + αI)−1Y , so that the final
prediction is given by

Ŷ = SW = (S + αI)−1S (A.4)

114 Chapter A Other estimator-centric strategies

For the bipartite interaction prediction case, besides standard adaptations as described in
Section 2.2, a unique formulation is presented by 30. Similar in concept to the standard global
single output procedure (Section 2.2), the authors consider each interaction pair as a unitary
instance. The authors then propose building a kernel matrix relating each pair of instances to
another pair, and not each interacting entity to another of the same domain. If S1 ∈ Rn1×n1 and
S2 ∈ Rn2×n2 are the intra-domain similarity matrices, the global kernel matrix S is defined as

S[(i1n2+i2)(j1n2+j2)] = S
[i1j1]
1 S

[i2j2]
2 (A.5)

or, more succinctly, as the Kronecker product of S1 and S2:

S = S1 ⊗ S2 (A.6)

Each entry on S thus represents the similarity between the pair X
[i1]
1 -X [j1]

2 and another pair
X

[i2]
1 -X [j2]

2 by the product of the similarities between X
[i1]
1 and X

[j1]
1 and between X

[i2]
2 and

X
[j2]
2 .

The bipartite linear regression is then framed on the vectorized Y , denoted vec(Y), built
by concatenating the columns of Y into a single |Y | by 1 column vector. Purely for notation
purposes, we organize the weight parameters as the vectorized version of a matrix W with the
same dimensions of Y .

vec(Ŷ) = S vec(W) ≈ vec(Y) (A.7)

vec(W) = (S + αI)−1vec(Y) (A.8)

As the reader may imagine, S gets prohibitively large for big datasets (it’s a n1n2-
sized square matrix!), both in terms of memory usage and the time needed to perform the
matrix inversion. The authors, however, provide a clever way of circumventing this issue by
decomposing each of the S1 and S2 kernel matrices separately and exploiting the properties of
the Kronecker product.

Given that S1 and S2 are symmetric square matrices, it follows from the spectral theorem
that they can be decomposed as follows:

S1 = U1Λ1U
⊺
1

S2 = U2Λ2U
⊺
2

where, if λ1 represents the vector of eigenvalues of S1, Λ1 is the diagonal matrix of those
eigenvalues (Λ1 = diag(λ1)), with U1 columns representing their corresponding eigenvectors
U⊺[i] for each λ

[i]
1 . The symmetry of the similarity matrices also implies that U1 and U2 are

orthogonal, i.e. U⊺
1U1 = U1U

⊺
1 = I and U⊺

2U2 = U2U
⊺
2 = I, or, equivalently, U−1

1 = U⊺
1 and

U−1
2 = U⊺

2 . Utilizing the fact that (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) (108), the Kronecker
product of S1 and S2 can be written as

S = S1 ⊗ S2 = (U1Λ1U
⊺
1)⊗ (U2Λ2U

⊺
2) = (U1 ⊗ U2)(Λ1 ⊗ Λ2)(U1 ⊗ U2)

⊺ = UΛU⊺ (A.9)

A.2 Neighborhood-Regularized Matrix Factorization 115

in which we denote U = U1 ⊗ U2 and Λ = Λ1 ⊗ Λ2. W now becomes

vec(W) = (UΛU⊺ + αI)−1vec(Y)

Further exploring the orthogonality of U , UU⊺ = UIU⊺ = I, so that

vec(W) = U(Λ + αI)−1U⊺vec(Y)

The most crucial property of the Kronecker product for our application is its relationship with
the vectorization operator (108): (A⊗B)vec(C) = vec(BCA⊺), which allows us to write

vec(W) = U(Λ + αI)−1(U⊺
1 ⊗ U⊺

2)vec(Y) = U(Λ + αI)−1vec(U⊺
2Y U1)

Since (Λ+αI)−1 is diagonal, its multiplication by the vector vec(U⊺
2Y U1)

⊺ can be expressed as
a Hadamard product (element-wise multiplication, denoted by ⊙) between two vectors. Acting
element-wise, the Hadamard product is unaffected by vectorization, so that we can simplify the
above expression by employing the matrix

(α + λ1 ⊗ λ⊺
2)

◦−1[ij] =
1

α + λ
[i]
1 λ

[j]
2

(A.10)

In this context, λ1 ⊗ λ⊺
2 represents the n1 by n2 matrix resulting from the outer product of the

vectors containing the eigenvalues of S1 and S2, respectively, while A◦−1 denotes the Hadamard
inverse, corresponding to the matrix formed by taking the reciprocal of each element in A. Thus,

vec(W) = Udiag(Λ + α−1I)⊙ vec(U⊺
2Y U1) =

= (U1 ⊗ U2)vec((α + λ1 ⊗ λ⊺
2)

◦−1 ⊙ (U⊺
2Y U1)) =

= vec(U2[(α + λ1 ⊗ λ⊺
2)

◦−1 ⊙ (U⊺
2Y U1)]U

⊺
1)

Which yields
W = U2[(α + λ1 ⊗ λ⊺

2)
◦−1 ⊙ (U⊺

2Y U1)]U
⊺
1 (A.11)

Finally, predictions for a new group of instances in the test set are obtained as follows
from the similarities with the train instances (S[ij]

1, test specifies the similarity between X
[i]
1, test and

X
[j]
1, train).

vec(Ŷtest) = (S1, test ⊗ S2, test)vec(W) = vec(S2, testWS⊺
1, test) (A.12)

which summarizes to

Ŷtest = S2, testU2[(α + λ1 ⊗ λ⊺
2)

◦−1 ⊙ (U⊺
2Y U1)]U

⊺
1S

⊺
1, test (A.13)

A.2 Neighborhood-Regularized Matrix Factorization

This section describes the NRLMF (31) algorithm, which is a matrix factorization tech-
nique that incorporates similarity information between samples in the learning process. It en-
ables latent features of new instances to be inferred from the features of their neighbors. The

116 Chapter A Other estimator-centric strategies

method is an extension of the Logistic Matrix Factorization (LMF) algorithm, which is de-
signed for recommendation tasks (26). NRLMF was successfully applied to diverse bipartite
interaction prediction problems, such as drug-target (31), long non-coding RNA-protein (60),
and lncRNA-microRNA (109).

A.2.1 Traditional matrix factorization

The idea behind matrix factorization is to find an approximation of the interaction matrix
Y by decomposing it into two matrices U and V of lower dimensions, such that

Ŷ = UV T ≈ Y (A.14)

The rows of U and V can be seen as learned representations in a new vector space (usually called
latent space) of each sample in the row and column domains, so that U [i] represents X

[i]
1 and

V [j] represents X [j]
2 . Notice that the number of latent features is constrained by Equation A.14

to be the same for both instance domains: |U |j = |V |j , being an arbitrary hyperparameter to
be defined by the user. Usually, the number of latent features is set to be much smaller than
the number of original features (|U |j ≪ |X1|j and |V |j ≪ |X2|j), requiring less computational
labor and generating models less susceptible to overfitting.

The learning procedure of matrix factorization algorithms thus consists of obtaining
such latent feature matrices U and V so to approximate Y as best as possible. The most common
approach is to define a loss function that penalizes the difference between the predicted and the
true values of Y and to employ gradient descent techniques to gradually change U and V in the
direction that minimizes such loss.

As can be deduced from Equation A.14, the dot product of each row of U and V ap-
proximates the corresponding element of Y :

Ŷ [ij] = U [i] · V [j] (A.15)

Logistic matrix factorization (LMF) slightly redefines the problem by introducing one more
step to obtain Ŷ from U and V (26): it assumes that the interaction matrix Y is the result of the
logistic function applied to UV ⊺ and not only UV ⊺ anymore.

Ŷ [ij] = logistic(U [i] · V [j]) =
exp(U [i] · V [j])

1 + exp(U [i] · V [j])
(A.16)

where a · b represents the dot product between the vectors a and b. When applied to a matrix,
we assume that log and exp functions operate element-wise:

(logM)[ij] = logM [ij]

If Ŷ is interpreted as the probability of being positive as predicted by the model (Ŷ [ij] =

P (Y [ij] = 1) and 1 − Ŷ [ij] = P (Y [ij] = 0)), the optimization objective is usually based on

A.2 Neighborhood-Regularized Matrix Factorization 117

maximizing the joint probability of correctly guessing all interactions in Y :

P (Ŷ = Y) =
∏
ij

|Ŷ [ij] + Y [ij] − 1| (A.17)

in which |a| represents the absolute value of a. A few modifications are then further made:

1. The logarithm of the objective function is taken to simplify the expression without affect-
ing the optimization problem, since log is a monotonic function;

2. Since positive interactions are usually less numerous but more important in matrix com-
pletion problems, a factor α is introduced to prioritize them, multiplying the terms cor-
responding to Y [ij] = 1 in the objective function. It results as if alpha copies of each
positive interaction are present in the training set;

3. To discourage overfitting and avoid U and V being arbitrarily large, quadratic regulariza-
tion terms are added, penalizing the magnitude of the elements of U and V .

4. Similarity information between samples is incorporated by NRLMF,

To simplify notation, we define matrices J whose combined sum of all elements corresponds to
the objective function J :

J =
∑

Jlabels +
∑

J1, reg. +
∑

J2, reg. +
∑

J1, neigh. +
∑

J2, neigh. (A.18)

where by
∑

J we denote
∑|J |i

i

∑|J |j
j J . The sums must be performed individually due to the J

matrices having different dimensions.

Applying the logarithm to Equation A.17 we have our first term of J :

Jlabels = log |Ŷ + Y − 1| = Y ⊙ log Ŷ + (1− Y)⊙ log(1− Ŷ)

where we separate the cases in which Y [ij] = 1 and Y [ij] = 0. ⊙ represents the Hadamard
product (element-wise multiplication) between matrices:

(A⊙B)[ij] = A[ij]B[ij]

Adding the aforementioned positive importance factor α and expanding Ŷ according to Equa-
tion A.16 we have

Jlabels = αY ⊙ {UV ⊺ − log [1 + exp(UV ⊺)]} − (1− Y)⊙ log [1 + exp(UV ⊺)] =

= αY ⊙ UV ⊺ + [(1− α)Y − 1]⊙ log [1 + exp(UV ⊺)] (A.19)

To discourage large values in U and V , we consider quadratic regularization terms
weighted by hyperparameters λ1 and λ2:

J1, reg. = −
λ1

2
U ⊙ U = −λ1

2
I⊙ (UU⊺) (A.20)

J2, reg. = −
λ2

2
V ⊙ V = −λ2

2
I⊙ (V V ⊺) (A.21)

118 Chapter A Other estimator-centric strategies

If the initial objective proposal can be interpreted as maximizing the probability of guessing all
labels correctly given specific U and V (

∑
Jlabels = logP (Ŷ = Y | U, V)), adding the regu-

larization terms is equivalent to introduce prior assumptions about U and V distributions and
define a slightly different objective: maximizing the posterior probability to obtain the current
U and V given that Ŷ = Y . Applying Bayes’ theorem and assuming P (Y) = 1 we have

P (U, V | λ1, λ2, Y) = P (Y | U, V) P (U | λ1) P (V | λ2) (A.22)

Under the assumption that the values in U and V follow zero-centered spherical gaussian dis-
tributions with variances given by 1

λ
, that is, U [ij] ∼ N (0, λ−1

1 I) and V [ij] ∼ N (0, λ−1
2 I), we

recover the regularized objective function of Equation A.21 (26).

logP (U, V | λ1, λ2, Y) =

= logP (Y | U, V) +
∑

log(exp(−λ1

2
U ⊙ U)) +

∑
log(exp(−λ2

2
V ⊙ V)) =

=
∑

Jlabels −
∑ λ1

2
U ⊙ U −

∑ λ2

2
V ⊙ V (A.23)

Therefore, if multiple values of U and V possibly generate the same Ŷ = Y , applying the
regularization can be understood as not only finding one of such combinations but, between
those U and V that satisfy Ŷ = Y , finding the U and V that are most likely to be randomly
sampled. If P (U, V | λ1, λ2, Y) continuously varies as a function of U and V , pooling U and
V from a region of maximal P (U, V | λ1, λ2, Y) should improve generality, arguably ensuring
that stochastic deviations of U and V would still result in high P (Ŷ = Y) and justifying the
use of regularization as a way to avoid overfitting.

One may have noticed that the original feature matrices X1 and X2 were not consid-
ered in any regard when describing matrix factorization and detailing the objective functions.
Born in the context of recommendation systems where the relationship labels are usually the
only information available, matrix factorization algorithms in general encounter a significant
issue when brought to our current scenario of bipartite interaction prediction: in its canonic
formulation, they do not take sample-level features into account, often called side information

or side features in the recommendation field (110), possibly overlooking valuable data. As a
consequence, they are unable to provide predictions for new samples that were not present in
the training set, since no information about them is available to be inputted to the model. This is
commonly regarded as the cold-start problem (9). As such, matrix factorization usage is usually
restricted to the task of matrix completion, in which the goal is to predict the missing values of
a matrix given the values of the remaining elements, without receiving completely new rows or
columns during model evaluation (9).

A.2.2 Neighborhood regularization

Targeting these issues, 31 proposes a modification to LMF that incorporates side infor-
mation into the model, enabling predicting interactions for new samples. The core idea of their

A.2 Neighborhood-Regularized Matrix Factorization 119

technique lies in adding one more term to the objective function, penalizing instances regarded
as close when considering the original features but were separated by U and V , placed far from
each other in the latent space. As such, the algorithm is called Neighborhood-Regularized Lo-

gistic Matrix Factorization (NRLMF). To precisely define it, let’s consider similarity-weighted
adjacency matrices A1 and A2 referring to each sample domain that specifies neighborhood re-
lationships between samples. If S[ij]

1 denotes a similarity score between X
[i]
1 and X

[j]
1 , A[ij]

1 is
set to this similarity value if X [j]

1 belongs to the neighborhood of X [i]
1 , denoted N(X

[i]
1), and 0

otherwise:

A
[ij]
1 =

S
[ij]
1 if X [j]

1 ∈ N(X
[i]
1)

0 otherwise
(A.24)

Multiple options are available for the definition of neighborhoods, such as considering all sam-
ples within a certain radius of each other or only the k nearest neighbors of each sample. In this
work, following the original proposal of NRLMF (31), we will consider the latter, defining A1

and A2 as the adjacency matrices of the k-nearest neighbors graphs of X1 and X2, respectively.
In other words, N(X

[i]
1) is the set formed by the k rows X [j]

1 with the k highest sij. In the in-
teraction prediction problems we analyze, similarities are precalculated so that the X matrices
directly provide the distance metric over which the nearest neighbors are selected. That is, X1

and X2 themselves already constitute pairwise similarity matrices: S[ij]
1 = X

[ij]
1 . In general,

however, one may need to define a kernel matrix S as a preprocessing step, choosing a distance
metric over the original features to be used in the nearest neighbors search such as the Euclidean
distance or a radial basis function (30). In any case, notice that A is a function of X alone for
NRLMF. While Y may also be considered in similar scenarios (as will be discussed ahead), A
does not depend on U or V and can be built as a single pre-training step.

The loss term proposed by NRLMF is then given by the sum of the Euclidean distances
in the latent space between samples in the same neighborhood, weighted by their similarities:

J1, neigh. = −
∑
ij

A
[ij]
1 ∥U [i] − U [j]∥2 (A.25)

J2, neigh. = −
∑
ij

A
[ij]
2 ∥V [i] − V [j]∥2 (A.26)

in which ∥v∥ represents the Euclidean norm of a vector v. Concentrating on the row instances
and expanding the last definition we have∑

ij

A
[ij]
1 ∥U [i] − U [j]∥2 =

∑
ij

A[ij]
(
U [i] · U [i] + U [j] · U [j] − 2U [i] · U [j]

)
=

=
∑
i

(∑
j

A
[ij]
1

)
U [i] · U [i] +

∑
j

(∑
i

A
[ij]
1

)
U [j] · U [i]

The terms in which U appears with the same index (U [i] · U [i] and U [j] · U [j]) can be rewritten
to include both by multiplying them by the identity matrix I. Essentially, we consider

∑
i U

[i] ·

120 Chapter A Other estimator-centric strategies

U [i] = trace(UU⊺) =
∑

ij(I⊙ UU⊺)[ij].

∑
i

(∑
j

A
[ij]
1

)
U [i] ·U [i] =

∑
i

(∑
j

A
[ij]
1

)∑
k

I[ik]U [i] ·U [k] =
∑
ij

(∑
k

A
[ik]
1

)
I[ij]U [i] ·U [j]

This allows us to write

∑
ij

A
[ij]
1 ∥U [i] − U [j]∥2 =

=
∑
ij

[(∑
k

A
[ik]
1 +

∑
l

A
[lj]
1

)
I[ij] − 2A

[ij]
1

]
U [i] · U [j] =

=
∑

L1 ⊙ (UU⊺)

in which we define

L
[ij]
1 =

(∑
k

A
[ik]
1 +

∑
l

A
[lj]
1

)
I[ij] − 2A

[ij]
1 =

(∑
k

A
[ik]
1 + A

[kj]
1

)
I[ij] − 2A

[ij]
1 (A.27)

Notice that taking A⊺
1 instead of A1 has no effect on the final result, since

∑
A1UU⊺ =∑

A⊺
1UU⊺. We could then work with a symmetrized version of A1 from the start:

Ã1 = A1 + A⊺
1

yielding

L1 =

(∑
k

Ã
[ik]
1

)
I[ij] − Ã

[ij]
1

We can see that the first term of L1 acts in a similar way to the quadratic regularization terms
presented by Equation A.21, multiplying the main diagonal of UU⊺ and thus penalizing the
model for latent vectors with large Euclidean norms (the diagonal of UU⊺ holds the squared
norms U [i] ·U [i]). The amount of regularization is however pondered by the weighted number of
neighbors of each sample in this case:

∑
k A

[ik]
1 represents the sum of similarities of X [i]

1 with
all its neighbors, also called the degree of a sample. This results in samples with larger and
more compact neighborhoods being more heavily penalized for having large norms in the latent
space. The second term of Equation A.27, on the other hand, rewards the model for placing
close neighbors colinear to each other in the latent space, summing over S[ij]U [i] · U [j] terms
between each sample and its neighbors (A[ij]

1 is 0 if U [i] and U [j] are not neighbors).

Finally, the neighborhood regularization terms are written as

J1, neigh. = −
β1

2
L1 ⊙ (UU⊺) (A.28)

J2, neigh. = −
β2

2
L2 ⊙ (V V ⊺) (A.29)

A.2 Neighborhood-Regularized Matrix Factorization 121

Combining the matrix terms as in Equation A.18, NRLMF’s objective function is given
by

J =
∑

αY ⊙ UV ⊺ + [(1− α)Y − 1]⊙ log [1 + exp(UV ⊺)]

−
∑ 1

2
(λ1I+ β1L1)⊙ (UU⊺)

−
∑ 1

2
(λ2I+ β2L2)⊙ (V V ⊺)

(A.30)

and the derivatives of the objective function with respect to U and V to be used in the gradient
descent procedure are given by

GU =
∂J
∂U

= {[(1− α)Y − 1]⊙ Ŷ + αY }V − (λ1I+ β1L1)U (A.31)

GV =
∂J
∂V

= {[(1− α)Y − 1]⊙ Ŷ + αY }⊺U − (λ2I+ β2L2)V (A.32)

The training procedure of NRLMF is presented by Function TrainNRLMF, and consists of
alternated updates on U and V in the gradient’s direction until certain stop criteria are satisfied.
Common choices for stopping conditions are a maximum number of iterations or a minimum
change in the objective function between iterations.

Since faster convergence is reported by the original authors (26), we follow previous
work (26, 31, 64, 65) by implementing the AdaGrad procedure (111), in which the length of
each gradient step is divided by the square-root sum of squared previous steps:

Ut+1 = Ut +
ηGU,t√∑t
t′=0 G

2
U,t′

(A.33)

where GU,t is the partial derivative ∂J
∂U

of the objective function with respect to U at step t, and
η is the user-defined learning rate. The same is done for V .

The main importance of NRLMF however lies in the inference phase. As mentioned,
matrix factorization methods are not designed to deal with new input samples, that are not
present in the training set. Specifically, traditional matrix factorization is incapable of generating
latent vectors for the unseen samples to be used for label prediction. An idea that may seem
natural at first glance is to delay training to the arrival of new instances, including them in the
training set with zero-only labels before performing the optimization. But even then, using an
objective function based only on Y as is traditionally done, no new information is brought by
the new instances and adding new zeroed rows or columns to Y will mainly introduce noise to
the training data and likely degrade the model’s predictive performance.

NRLMF, however, leverages proximity information encoded by X to remarkably enable
determining latent feature vectors for completely new instances. The neighborhood regulariza-
tion terms in the objective function now reveal their full importance: they support proximity as a
transferable property between the original and the latent spaces. By encouraging that neighbors

122 Chapter A Other estimator-centric strategies

Function TrainNRLMF(Y , S1, S2, α, λ1, λ2, β1, β2, η): Train an NRLMF
model.

Input: Y , the training labels matrix to be approximated.
Input: S1, S2, Similarity matrices among instances of each axis.
Input: α, the positive importance factor.
Input: λ1, λ2, quadratic regularization factors.
Input: β1, β2, neighborhood regularization factors.
Input: η, the learning rate.
Output: U , V , the resulting latent feature matrices.

1 Optionally precompute constant factors of the gradient (Equations A.31 and A.32),
such as (λ2I+ β2L2), [(1− α)Y − 1] or αY ;

2 Initialize U and V with normally-distributed random values;

3 TU , TV ← 0; // Initialize gradient accumulators

4 while Stop conditions are not met do
// Update U

5 Obtain GU through Equation A.31;
6 TU ← TU +G2

U ;
7 U ← U + η GU√

TU
;

// Update V
8 Obtain GV through Equation A.32;
9 TV ← TV +G2

V ;
10 V ← V + η GV√

TV
;

11 end

12 return U , V

in X1 and X2 remain close in U and V , we can infer latent features of new instances based on
their neighborhood.

Consider the test similarity matrices S1, test and S2, test respectively derived from X1, test

and X2, test, relating the new instances to the known training samples. For instance, S[ij]
1, test repre-

sents the similarity between X
[i]
1, test and X

[j]
1, train. If A1, test, like before in Equation A.24, accord-

ingly restricts the similarity matrix to the neighborhood of each sample,

A
[ij]
1, test =

S
[ij]
1, test if X [j]

1, train ∈ N(X
[i]
1, test)

0 otherwise
(A.34)

the latent feature vector of a new instance is simply estimated as the weighted average of its
neighbors’ latent representations:

U
[i]
test =

A
[i]
1, testUtrain∑
A

[i]
1, test

(A.35)

the analogous being held for V , so that new predictions are made as usual with Equation A.16,
where Utest, Utrain, Vtest and Vtrain can be used in accordance with the prediction task under study

A.2 Neighborhood-Regularized Matrix Factorization 123

(see Section 2.7.2 for details on the different prediction scenarios):

ŶTT =
exp(UtestV

⊺
test)

1 + exp(UtestV
⊺

test)
ŶTL =

exp(UtestV
⊺

train)

1 + exp(UtestV
⊺

train)
ŶLT =

exp(UtrainV
⊺

test)

1 + exp(UtrainV
⊺

test)
(A.36)

	Title page
	Agradecimentos
	Abstract
	Resumo
	List of Figures
	Contents
	Introduction
	What is bipartite learning?
	Challenges of bipartite learning problems
	How can bipartite models be built?
	Why decision trees?
	Related work
	Research questions

	Development
	Definitions
	Mathematical notation
	Problem statement

	Data-centric adaptations of learning algorithms
	The standard global single-output adaptation
	The standard local multi-output adaptation

	Decision trees
	Searching for the best split
	Measuring the quality of a split

	Bipartite decision trees
	Bipartite global single-output trees
	Asymptotic complexity analysis
	Prototype functions for bipartite trees

	Decision forests
	Incorporating semi-supervision into decision trees
	Semi-supervised learning
	Semi-supervised decision trees
	Unsupervised impurities
	Heuristics for balancing the supervised and unsupervised objectives

	Assessing the performance of bipartite models
	There are multiple ways to measure model generality
	Cross-validating in two dimensions
	Prediction scoring metrics
	Ideal descriptions of AUROC and AUPRC
	AUPR and AUROC in terms of ranked decision values
	AUROC is the normalized mean percentile ranks

	Experimental settings
	Datasets
	Evaluation procedure

	Experiments
	What are the differences between AUROC and AUPR?
	Setup
	Discussion

	Are BGSO models faster than GMO models?
	Setup
	Discussion

	Which prototype should a GMO forest use?
	Setup
	Discussion

	Which adaptation strategy is the best for decision forests?
	Setup
	Discussion

	Can label imputation assist bipartite forests?
	Setup
	Discussion

	What is the best way of building semi-supervised forests?
	Setup
	Discussion

	Which strategies are the most promising?
	Setup
	Discussion

	Can bipartite forests compete with other proposals?
	Setup
	Discussion

	Conclusion
	Main findings
	Future work

	References
	APPENDIX
	Other estimator-centric strategies
	Linear models
	Neighborhood-Regularized Matrix Factorization
	Traditional matrix factorization
	Neighborhood regularization

