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ABSTRACT

BERGAMASCHI, T. T. On the nature of the black hole information problem.
2024. 201p. Dissertation (Master’s degree in Science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2024.

The aim of this work is to present the black hole information problem and discuss the as-
sumptions and hypotheses necessary for its formulation. As the problem arises in the
framework of semiclassical gravity, we first review the necessary notions to describe
Lorentzian manifolds equipped with physical properties, as well as the physical concepts
of the theory that describes the gravitational interaction as the curvature of spacetime,
general relativity. From its classical perspective, we develop the formalism to study the
dynamical aspects of black holes in spacetimes obeying suitable causality conditions.
Equipped with conjectures that nature censors naked singularities and that black holes
reach a stationary configuration after they form, the black hole uniqueness theorems allow
us to review several relations for the geometrical quantities associated with them. Follow-
ing considerations of the other fundamental interactions, which are described by quantum
field theory, we review the arguments in the formalism of quantum field theory in curved
spacetime that give rise to the effective particle creation effect, its approximately ther-
mal character, and the concept of black hole evaporation. With a precise quantification of
information in quantum mechanics and assuming that the condition for physically accept-
able states is given by the Hadamard condition, we review the result that entanglement
between causally complementary regions is an intrinsic feature of quantum field theory.
As a consequence, we discuss how the formation and complete evaporation of black holes
leads to information loss. Conscious that such a prediction follows if no deviations from
the semiclassical picture occur at the Planck scale, we discuss alternatives to this non-
unitary dynamical evolution and formulate the black hole information problem. Lastly,
we analyze the assumptions and hypotheses that lead to the problem.

Keywords: General relativity. Quantum field theory in curved spacetime. Black hole
thermodynamics. Black hole information problem.





RESUMO

BERGAMASCHI, T. T. Sobre a natureza do problema da informação em
buracos negros. 2024. 201p. Dissertação (Mestrado em Ciências) - Instituto de Física
de São Carlos, Universidade de São Paulo, São Carlos, 2024.

O objetivo desse trabalho é apresentar o problema da informação em buracos negros e dis-
cutir as suposições e hipóteses necessárias para sua formulação. Como o problema surge
com considerações de gravitação semiclássica, nós primeiramente revisamos as noções
necessárias para descrever variedades Lorentzianas equipadas com propriedades físicas,
assim como os conceitos físicos da teoria que descreve a interação gravitacional como a
curvatura do espaço-tempo, relatividade geral. A partir da sua visão clássica, nós desen-
volvemos o formalismo para estudar aspectos dinâmicos de buracos negros em espaço-
tempos que obedecem a condições de causalidade adequadas. Equipados com conjecturas
de que a natureza censura singularidades nuas e que buracos negros atingem config-
urações estacionárias após sua formação, os teoremas de unicidade de buracos negros
nos permitem revisar várias relações para as quantidades geométricas associadas a eles.
Seguindo considerações das outras interações fundamentais, descritas por teoria quântica
de campos, nós revisamos os argumentos no formalismo de teoria quântica de campos
em espaço-tempo curvo que dão origem ao efeito de criação de partículas, seu caráter
aproximadamente térmico, e o conceito de evaporação de buracos negros. Com uma quan-
tificação precisa de informação em mecânica quântica e assumindo que a condição para
estados fisicamente aceitáveis é dada pela condição de Hadamard, nós revisamos o resul-
tado que emaranhamento entre regiões causalmente complementares é uma característica
intrínseca de teoria quântica de campos. Como uma consequência, nós discutimos como
a formação e evaporação completa de buracos negros resulta em perda de informação.
Cientes de que tal previsão só é válida se não houver desvios das previsões semiclássicas
na escala de Planck, nós discutimos alternativas para essa evolução dinâmica não-unitária
e formulamos o problema da informação em buracos negros. Por último, nós analisamos
as suposições e hipóteses que levam ao problema.

Palavras-chave: Relatividade geral. Teoria quântica de campos em espaço-tempo curvo.
Termodinâmica de buracos negros. Problema da informação em buracos negros.
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1 INTRODUCTION

The purpose of this work is to present the black hole information problem, which
arises due to predictions from two highly successful theories that describe the fundamental
interactions of nature known to date. In essence, black holes are regions of spacetime pre-
dicted by the theory that describes the gravitational interaction, and when one considers
the description of the electromagnetic and nuclear interactions, one is led to the conclu-
sion that the evolution of these regions can result in information loss. There is, however,
a question regarding the physical plausibility of this conclusion, mainly following from
the expected limitations of the theories involved, which characterizes the black hole in-
formation problem. Building the path from the basis of each pertinent theory, we review
the description of black holes and discuss the assumptions and hypotheses that lead to
this question concerning its evolution. It should be noted that this work is self-contained
in the sense that knowledge of undergraduate physics courses is sufficient to be able to
follow the developments and arguments presented.

Consider, first, the gravitational interaction, which is the weakest of the known
fundamental interactions. Its universal character, also known as the equivalence principle,
was first quantified by Newtonian gravity, which translated to the idea that the gravita-
tional “charge” equaled the inertial mass of bodies (an hypothesis currently referred to as
the weak equivalence principle). Newtonian gravity gave a successful description of why
objects fall as well as an explanation of the movement of astronomical bodies, i.e., Kepler’s
laws. As a matter of fact, these explanations were so accurate that they strengthened the
fact that, at least in some limit, gravitational interaction must be reduced to the equations
of motion predicted by the universal law of Newtonian gravity. Additionally, this theory
gives an interesting result when one considers a body with a high mass concentrated in a
small region, so that its escape velocity equals that of the speed of light. From a viewpoint
in which light is a massive particle, Newtonian gravity then predicts that this body would
be perceived as black by observers infinitely distant from it. Bodies with such an extreme
gravitational field became known as dark stars.

With the unification of electric and magnetic interactions, the lack of experimental
evidence of a medium for the propagation of electromagnetic waves gave rise to the neces-
sity of correcting coordinate transformation laws between inertial frames. Following the
interpretation of this correction, the theory of special relativity was then proposed, which
carried drastic consequences for the concepts of time and space (see, e.g., (1) for an objec-
tive review) and was quickly found to be a successful explanation for several phenomena.
In fact, the limit of speed of signals postulated by special relativity, given by the speed of
light, c, was one of the main reasons as to why Newtonian gravity was deemed to not be
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the best possible explanation of the gravitational interaction, since in such a framework,
the interaction is instantaneous. Seeking to unify the concepts of special relativity with
the gravitational interaction (2), general relativity (3) was proposed, a classical theory
describing gravity as the curvature of spacetime generated by an energy distribution. By
classical, it is meant that the characterization of the gravitational interaction described
by it, given by the spacetime metric, assumes definite values in any order of length, not
only those much larger than atomic ones (i.e., distances of order 10−9 m). In contrast,
a quantum theory takes into account, for instance, the intrinsic probabilistic nature of
measurements in a system, wave-particle duality, and the discretization of possible values
of energy and momentum, characteristics that become relevant in scales of order of atomic
ones.

In a very brief summary, the content of general relativity follows from the Einstein
equivalence principle (4), which states that the weak equivalence principle holds and that
the outcome of any local1 non-gravitational2 experiment is independent of its position in
space and time (i.e., local position invariance), as well as the speed of the frame of reference
in free fall (i.e., local Lorentz invariance). Stated in this manner, the Einstein equivalence
principle can be interpreted as the physical equivalence of gravitational acceleration and
inertial acceleration. As a consequence, a theory that obeys the Einstein equivalence
principle has to be a metric theory of gravity (5), which means that a symmetric metric
is defined on spacetime, freely falling bodies follow “locally straight” curves, and that
for local freely falling frames of reference, non-gravitational physics must reduce to that
predicted by special relativity. The main point of these principles and ideas is that the
effects of gravitation must be described by a curved spacetime, in which a free energy
distribution that “bends” it follows the “straightest possible” trajectories.

Although still a classical theory, general relativity provides more accurate results
than Newtonian gravity. Indeed, the measurement of light deflection due to gravity (6) was
the first experiment that consolidated general relativity as a superior theory to describe
the gravitational interaction. Nevertheless, it should come as no surprise to the reader
that, even to this day, one describes the launch of a rocket or even the entire solar system
to an excellent order of approximation, using only Newtonian gravity. This is because in
these descriptions one is dealing with a low curvature regime (i.e., the curved spacetime is
very similar to Minkowski spacetime), small time variations of the metric when compared
to spatial ones, and a low speed regime (i.e., v ≪ c), so that the predictions of general
relativity reduce to those of Newtonian gravity (1). Still, there are critical philosophical

1 In the sense that inhomogeneities in the gravitational field can be neglected throughout the
region where the experiment is carried out.

2 The measurement of the electromagnetic interaction between two distributions of electric
charge would constitute such an experiment. In contrast, measurement of the gravitational
interaction between such distributions would not.



15

differences concerning why the movement of observers is described by the same equations
of motion in such a regime, as a consequence of the curved spacetime. Perhaps the best
example of the disparity that arises in the movement of observers in the framework of
general relativity is the necessity to correct the passage of time for a satellite, not only
because of its relative speed to the Earth’s surface (as per special relativity), but also
because of the difference in intensity of gravity. In this manner, the success of general
relativity is undeniable (2), being in agreement with every experimental test made to
date (see, e.g., (7) for one of the most notable and recent agreements, and (4) for an
extensive review). Consequently, it is then natural to expect the predictions of general
relativity to be of interest to further our knowledge of the gravitational interaction.

One of the most intriguing of these predictions (8–10) is of gravitational collapse
resulting in regions of spacetime where gravity acts in such a manner that nothing can
escape from it (11), and that can also be related to pathologies in the structure of space-
time (12,13). Although these regions, known as black holes, may seem similar to the dark
stars that can exist in Newtonian gravity, they are fundamentally different. For instance,
in the Newtonian theory, the body would be perceived as black only by observers suffi-
ciently distant from it. Hence, it would be possible for observers inside or on the dark
star to send signals to some observers outside of it. However, because of the nature of the
gravitational interaction in the framework of general relativity and the postulate that an
energy distribution can travel, at most, at the speed of light, observers inside the black
hole would not be able to communicate with those outside of it, regardless of physical
distance.

An extensive investigation of black holes in the purely classical framework of gen-
eral relativity brought to light several important properties (e.g., (14–19)). Some of the
most interesting of them are those summed up in the black hole uniqueness theorems (20),
which are a series of results that state that under suitable conditions, any black hole that
does not change over time must be completely characterized by three parameters: its mass,
angular momentum, and electric charge. Any other physical property, such as the area of
its surface or the gravitational acceleration on it as measured by distant observers, are
all dependent only on these three parameters. Consequently, the lack of indistinguishable
external features for time independent black holes with the same parameters also merits
the nomenclature for these results as the no-hair theorems.

In light of this, one can then identify the peculiar character of black holes when
it comes to the accessibility of information concerning the energy distribution that gave
rise to them. For instance, in the case of a dark star in Newtonian gravity, it would
be possible for an observer to get closer to the matter distribution that gave rise to it,
make measurements, and then share that data with any other observer. However, the
same is not possible for a black hole, since if an observer enters it, it will never be able
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to communicate with observers outside of it. The significance of this line of reasoning
is evident when one considers the conjecture that black holes must reduce to a time
invariant configuration after they form. In particular, such an assumption is justified by
the expectation that physical quantities not associated with conservation laws should be
radiated away. Indeed, in the framework of general relativity, details about a gravitational
collapse are expected to be radiated away in the form of gravitational radiation, in a very
similar fashion as an electric charge distribution radiates away its higher order multipole
moments. Consequently, if a gravitational collapse produces a black hole that reduces
to a time invariant configuration, the black hole uniqueness theorems state that such a
black hole should be characterized only by three parameters. In this sense, details about
the energy distribution that gave rise to it (e.g., its degrees of freedom or details about
elementary particle composition) will forever be concealed from any observer that remains
outside of it. Evidently, this does not mean that information is lost, but simply that a
class of observers cannot have access to it, in contrast with a dark star in the Newtonian
case.

These arguments also lead one to a question concerning the thermodynamic prop-
erties of black holes. In particular, since nothing can get out of a black hole, its physical
temperature (i.e., the one associated with the emission of radiation in accordance with a
black body spectrum form) should be null, which in turn would mean that black holes
could act as a way to reduce the entropy of the universe. Considering the fact that thermo-
dynamics is also a highly successful theory to describe macroscopic properties of systems
in equilibrium, an ad-hoc proposal for black hole entropy (21,22) surfaced. Although such
a proposal was a way to make it so that black holes obey some “generalized second law
of thermodynamics”, there was no microscopic justification for it. This state of affairs
developed further when several classical properties of black holes (19) pointed to a math-
ematical analogy with the laws of thermodynamics. However, because a black hole should
have a vanishing physical temperature, the proposed correspondence between the clas-
sical characterization of black holes and the laws of thermodynamics would not merit a
physical status.

Further analysis of black holes then required consideration of the other fundamen-
tal interactions, which are currently described by quantum field theory (see, e.g., (23,24)).
In essence, this theory can be understood as the union of quantum mechanics and spe-
cial relativity, which takes into account not only relativistic effects but also systems with
varying particle content. Additionally, quantum field theory possesses the very attractive
feature of being a description of fundamental interactions in terms of fields, which, for ex-
ample, is the fundamental quantity of the electromagnetic interaction. As a matter of fact,
it has provided a unified description of the electromagnetic and weak interactions, known
as the electroweak interaction. So far, this theory has proven to be in excellent agreement
with experiments to describe the electroweak and strong nuclear interactions, and indeed,



17

it is the basis of the Standard Model (see, e.g., (25, 26)). Perhaps the best example of
its success is the extremely accurate agreement with the experimental value of the ratio
of the electron’s magnetic and angular momentum (27). Being highly successful in this
sense, quantum field theory also provides an interesting feature of the interpretation of
particles as excitations of a field. Very much so, one of its most fascinating predictions
is the Fulling-Davies-Unruh effect (28–30), which states that a uniformly accelerated ob-
server measures a thermal bath of particles, demonstrating the dramatic feature that the
particle content of a quantum state is observer dependent. Nevertheless, the predictions of
quantum field theory are made by studying fields in Minkowski spacetime, i.e., not taking
into account gravitation.

The consideration of gravity and the other fundamental interactions simultane-
ously is currently best made by the framework of quantum field theory in curved spacetime
(31–36). This formalism, also referred to as semiclassical gravity, considers the propaga-
tion of quantized fields on a curved spacetime background. More precisely, gravitation is
still treated classically, being described by a spacetime metric that has definite values in
any order of length, while the quantum fields propagate on it. Consequently, semiclassical
gravity is expected to provide a good description of quantum effects in gravitation for
scales in which general relativity is an adequate description of gravity (1). Dimensional
arguments (2) suggest that this will not be the case when the scales of the spacetime
structure reach the Planck length,

ℓp =
(
Gℏ
c3

)1/2

≈ 1.62 10−35 m, (1.1)

where G is the Newtonian constant of gravitation and ℏ is the reduced Planck constant. For
instance, when studying gravitation in a high curvature regime, such that the curvature of
spacetime is of order ℓ−2

p , one justifiably expects that the classical description of gravity
will no longer be adequate, in the sense that details about the quantum structure of
the gravitational interaction should become relevant. It is in this manner that general
relativity is expected to be only an approximation on scales much larger than the Planck
length, the Planck time,

tp =
(
Gℏ
c5

)1/2

≈ 5.39 10−44 s, (1.2)

and the Planck mass,

mp =
(
ℏc
G

)1/2

≈ 2.18 10−8 kg. (1.3)

Hence, the development of a theory that takes into account a quantum descrip-
tion of gravity should provide a much better picture of phenomena in regimes of extreme
gravity, such as black holes. In fact, even though phenomena at the Planck scale may be
out of experimental reach for the foreseeable future, the scales of interest for a possible
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unification of the electroweak and strong interactions suggest that quantum gravitational
effects should be of importance. However, the construction of this more fundamental,
quantum gravity theory, is an open problem. Nonetheless, the predictions of semiclassical
gravity have been promising and extensive in many ways, and it may very well be inter-
preted as an intermediate step in the development of the quantum theory of gravity. More
specifically, following the particle interpretation of semiclassical gravity, some of the main
results concern the creation of particles due to the expansion of the universe and in space-
times containing a black hole. The former provided a justification for the anisotropies of
the Cosmic Background radiation (33), while the latter was responsible for giving rise
to the concept of black hole evaporation, as a consequence of the effective emission of
radiation with an approximately thermal character (in the sense that it approximately
obeys a black body spectrum). This effective particle creation effect is also referred to as
the Hawking effect (37,38).

When one considers the effective particle creation by a black hole predicted by
semiclassical gravity, the almost full picture of formation and evaporation of most black
holes can be analyzed with certainty. In essence, suppose one starts with a time indepen-
dent configuration, which is described by its mass, angular momentum, electric charge,
degrees of freedom, baryon and lepton number, and any other physical property. From
the perspective of quantum mechanics, complete knowledge of the quantum state of this
energy distribution would correspond to a pure state. An example of this would be a star
at the early stages of its life, composed mainly of hydrogen and helium in which one has
all the possible information about the energy distribution. Of course, such a configuration
would not be exactly time independent due to nuclear fusion processes, but in regions far
away from the star at the very early stages of its life, it would be a good approximation
to describe it by a time independent spacetime. Now, as this energy distribution evolves
in time, if it is massive enough, the gravitational effects will not be sustained, and a
black hole will form as a consequence of gravitational collapse. Even though the black
hole formation process is expected to be highly dependent on the details of the energy
distribution and how it collapses, the asymmetries of the distribution are expected to be
radiated away in the form of gravitational radiation. Following the conjecture that black
holes must eventually reach a time independent state, the initial energy distribution will
then give rise to a black hole described only by three parameters: its mass, M , angular
momentum, L, and electric charge, q. At the same time, the time independent black hole
should behave as a gray body1, effectively emitting an approximately thermal spectrum
of radiation. This radiation carries away the mass, angular momentum and electric charge
of the black hole, and after some finite time, the black hole should evaporate completely,
leaving only radiation. From the perspective of quantum mechanics, this condition of the
energy distribution would correspond to a mixed state, which arises in a context in which
1 Gray in the sense that its black body spectrum has a factor due to transmission probabilities.
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one does not have all the possible information about a state. Therefore, one would then
have a configuration in which information about the details of the energy distribution
that gave rise to the black hole is completely lost (39, 40). Fig. 1 illustrates the process
of black hole formation and complete evaporation, as well as how it can lead to loss of
information.
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Figure 1 – Process of black hole formation and complete evaporation.

Source: By the author.

Evidently, such a prediction of information loss follows from the expectation that
the evaporation process occurs completely, and lacking a complete theory of quantum
gravity, it is still unclear how the evolution of a black hole precisely occurs when it
reaches the Planck scale. In summary, the black hole information problem can be stated
as a question regarding the final state of a black hole in light of its evaporation process. In
addition, the classical properties of black holes and the character of the effective particle
creation effect point to a possible connection between gravitation, quantum theory and
thermodynamics. Arguably, this question and state of affairs surrounding the semiclassical
description of black holes are the best clues available for the development of a satisfying
theory of quantum gravity. The purpose of this work is to present a review of the classical
and semiclassical properties of black holes, a description of the process of evaporation
and formulation of the black hole information problem, as well as an analysis of the
assumptions and hypotheses that each of the pertinent theories bring to the evaporation
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process. The organization is as follows.

Chapter 2 concerns the properties of spacetimes and some physical aspects of gen-
eral relativity necessary for the description and analysis of black holes. We discuss how
symmetries can be defined in curved spacetimes and how to evaluate the conserved quan-
tities associated with them. The causal structure of general spacetimes is also analyzed,
in which the condition for a spacetime to be considered deterministically and causally
“well behaved” is presented. Further concepts of interest, such as restrictions on the
energy-momentum tensor of a suitable energy distribution, the dynamics of null curves,
a definition of a singularity, and a satisfying notion of what it means for a distribution to
be isolated, are also discussed in detail.

Chapter 3 presents a definition of the black hole region of a spacetime and the
derivation of several properties that follow from chapter 2. These purely classical results
provide relations to the three parameters that describe a time invariant black hole and re-
strictions on the evolution of general black holes for spacetimes obeying suitable causality
conditions. Namely, we will show that these results are rigorous derivations that follow
from differential geometry and discuss two conjectures that concern the existence and
evolution of black holes.

Chapter 4 provides an introduction to the elements of quantum field theory in
curved spacetime that are necessary for the derivation of the effective particle creation
effect by black holes. We will see that these results follow from the interpretation of par-
ticles as excitations of a field, the conjecture that black holes reduce to time independent
configurations, and the classical properties discussed in chapter 3. We also mention the
interpretation of classical properties in light of a thermodynamic perspective, which con-
cerns the possible physical entropy of a black hole and the translation of the effective
particle creation process as a consequence of its physical temperature. Additionally, using
the formalism of density operators and the assumption that physically acceptable states
are those for which some notion of “energy-momentum expectation value” can be well
defined, we show that entanglement between states inside and outside a black hole is an
intrinsic feature of quantum field theory in curved spacetime.

Chapter 5 introduces the black hole information problem. Following the dynamical
evolution of a black hole in light of the effective particle creation effect, we show that
information will be lost if the evaporation process occurs completely, in the sense that an
initial pure state will inevitably evolve into a mixed state. We briefly discuss alternatives
to this result and conclude the chapter by discussing the assumptions and hypotheses
that lead to the black hole information problem.

Chapter 6 concludes this work with the final remarks and mention of perspectives
with regard to further developments on the black hole information problem.
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In appendix A, we present a precise definition of spacetime and an objective review
of the tools necessary to describe it: the geometrical quantities associated with it and the
objects that are used to evaluate how they change over events. In particular, readers not
familiar with differential geometry and topology are advised to read appendix A before
chapter 2. No prior knowledge of general relativity is necessary to start from chapter 2 if
one has a solid basis in differential geometry and topology.

In appendix B, we present pertinent results concerning the most general spacetime
that describes time independent black holes. These results will mainly be of use in some
developments of chapters 3 and 4, and the reader will be advised to consult it when
necessary.

In appendix C, we present an objective review of the characterization of infor-
mation in quantum mechanics. Namely, the formalism of density operators, the Von-
Neumann entropy, and the concept of entanglement. The concepts presented there will
be of use for arguments and developments in chs. 4 and 5, and the reader will be advised
to consult it when necessary.

Regarding notation, the signature of the spacetime metric is adopted to be given
by −+ . . .+. The notation used for tensors is known as the abstract index notation (1). In
particular, greek letters represent abstract indices, while latin letters represent concrete
indices (see appendix A.2 for details on tensors and this notation). Other notation is
introduced as needed. Lastly, most of the calculations will be developed in SI units, in
which the pertinent constants will be inserted with the physical parameters. For example,
we will refer to the mass, M , of a region of spacetime by its Schwarzschild radius,

rs = 2GM
c2 ≈ 2.94 103

(
M

M⊙

)
m, (1.4)

where M⊙ is the Sun’s mass. However, with a few exceptions of lengthy developments,
geometrical (i.e., G = c = 1) or natural (i.e., G = c = ℏ = kB = 1, where kB is
Boltzmann’s constant) units will be adopted.
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2 SPACETIME AND GENERAL RELATIVITY

General relativity is a theory that describes gravitation as the curvature of space
and time due to the presence of an energy distribution. It postulates that the universe is
a four-dimensional spacetime (see appendix A.2 for the definition of a spacetime) whose
Lorentzian metric, gµν , is related to the energy-momentum tensor, Tµν , by Einstein’s
equation (1, 41),

Rµν −
1
2Rgµν = 8πG

c4 Tµν , (2.1)

where Rµν is the Ricci tensor and R is the Ricci scalar (see appendix A.4). Of course,
in order for the theory to be consistent with special relativity, it also postulates that
the speed of light is a universal constant (which follows from a Lorentzian metric) and
that the laws of physics are the same in all inertial frames of reference (i.e., the principle
of relativity). Following the Einstein principle of equivalence, the effect of gravity is not
to accelerate test bodies, but rather, to shape the paths that they follow on the curved
spacetime. Indeed, the physical content of Einstein’s equation can perhaps be best summed
in Wheeler’s words (42):

“Spacetime tells matter how to move; matter tells spacetime how to curve.”

Evidently, solving eq. 2.1 in general is not a trivial task, as it reduces to a sys-
tem of non-linear coupled differential equations. Nonetheless, much can be said about
the structure of a physical spacetime (i.e., one whose metric obeys Einstein’s equation)
given the form of eq. 2.1 and by analyzing the physical content of a Lorentzian metric. In
other words, in this chapter we will not be interested in particular solutions of Einstein’s
equation, but rather, in how its form can lead to results concerning physics under the
lens of general relativity. Hence, most of the results that we will review in this chapter
are highly geometrical, in the sense that they are intrinsic properties of spacetimes. Re-
gardless, one may dive deeper into their meaning by considering Einstein’s equation and
physical concepts, such as restrictions on the energy-momentum tensor and how gravita-
tional interaction is expected to behave far from sources.

Although the developments that follow are detailed enough for a complete descrip-
tion of black holes, some aspects of general relativity which are also minimally relevant
for our discussion will not be given the same level of attention and detail. For instance,
in light of Einstein’s equation, a perturbed Minkowski spacetime metric leads one to the
conclusion that undulations of curvature can propagate in spacetime. A detailed analysis
of this gravitational radiation, known as gravitational waves, can be found in, e.g., (1).
Moreover, a treatment of cosmological models, i.e., solutions of Einstein’s equation which
are in agreement with large-scale experimental data (such as homogeneous and isotropic
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distribution of galaxies), can be found in, e.g., (1).

This chapter is organized as follows. We first use the notion of diffeomorphisms
to give a precise definition of the symmetries of a spacetime, which in turn gives us a
prescription for conserved quantities. Second, we discuss the causal structure of arbitrary
spacetimes, while analyzing constraints and global properties on those deemed physically
reliable. We then turn our attention to the possible restrictions on the energy-momentum
tensor, considering how one expects physical, classical matter to behave. Next, we discuss
the dynamics of null geodesics, and how one can use geodesics in general to give a satisfying
notion of “singularities” in the structure of a spacetime. We conclude this chapter by
presenting the concept of asymptotic flatness, which gives a precise definition of what it
means for a distribution of energy to be isolated in the framework of general relativity.
These developments rely heavily on several notions of differential geometry and topology,
and we refer the reader to appendix A for an objective review of them.

2.1 Symmetries

A symmetry in a physical system is defined by a continuous or discrete coordinate
transformation that preserves the system. They are of interest because they not only
facilitate the analysis of systems, but also give rise to conserved quantities. In the context
of general relativity, a symmetry can be associated with a coordinate transformation for
which the structure of the spacetime, i.e., the metric, is invariant. In this manner, a
precise definition of a symmetry can be given by considering that diffeomorphisms can be
interpreted as coordinate transformations.

More specifically, let (M, gµν) be a spacetime and ψs : R ×M → M be a one-
parameter group of diffeomorphisms (see appendix A.3). For a fixed s, if the action of ψs
leaves gµν unchanged, i.e., ψ∗

sgµν = gµν for all a ∈ M , then ψs is said to be a symmetry
transformation for gµν . In particular, each map is then known as an isometry, and ψs

is said to be a one-parameter group of isometries. Thus, the necessary and sufficient
condition for a vector, χµ, to be the generator of a one-parameter group of isometries is
that the Lie derivative of the metric with respect to it vanishes. From eq. A.3.29, this
condition reads

Lχgµν = χα∇αgµν + gνα∇µχ
α + gµα∇νχ

α = 0, (2.1.1)

but since ∇µ is the Levi-Civita connection, eq. 2.1.1 reduces to

∇(µχν) = 0, (2.1.2)

where the parentheses enclosing the indices are representative of a symmetric permutation
of them (see eq. A.2.12). Eq. 2.1.2 is known as Killing’s equation, and any vector that
satisfies it is called a Killing vector. Consequently, if χµ is the generator of the one-
parameter group of isometries, ψs, then the orbit of ψs “follows” the path for which the
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metric is invariant in a spacetime, and χµ “points” in that direction. In this sense, Killing
vectors precisely capture the notion of a continuous symmetry. On the other hand, discrete
symmetries are not generated by Killing vectors. Nonetheless, these discrete coordinate
transformations (e.g., reflections) are relevant to a spacetime, and should be regarded as
elements of its full group of isometries (see § 3.1 for an example).

An immediate result of Killing’s equation is the conservation of a quantity along
geodesics. Let χµ be a Killing vector and γ be a geodesic parametrized by an affine
parameter, t, with tangent vector sµ. Then

d(sµχµ)
dt

= sν∇ν(sµχµ) = sνsµ∇νχµ + χµs
ν∇νs

µ = 0, (2.1.3)

as the first term vanishes by being the contraction of a symmetric and an antisymmetric
tensor, while the second term vanishes as a consequence of the geodesic equation (see eq.
A.4.14). Eq. 2.1.3 can be interpreted as stating that sµχµ is constant along γ, i.e., as t
varies. The physical significance of such a conserved quantity can be analyzed straight-
forwardly when one is given the explicit form of the Killing vector, as will be discussed
in detail when we study a specific metric in ch. 3. Although this conserved quantity
along geodesics is an interesting result, this is not the conserved quantity associated with
the conservation law that rises due to the continuous symmetry generated by χµ, as per
Noether’s theorem (43).

In order to derive this law, one needs to consider the failure of multiple applications
of the Levi-Civita connection on χµ to commute (44). From eq. A.4.2, this failure is given
by

(∇µ∇ν −∇ν∇µ)χα = Rµνα
βχβ, (2.1.4)

which due to Killing’s equation, eq. 2.1.2, can be rewritten as

∇µ∇νχα +∇ν∇αχµ = Rµνα
βχβ. (2.1.5)

Relabeling the indices in eq. 2.1.5 allows one to write

∇ν∇αχµ +∇α∇µχν = Rναµ
βχβ, (2.1.6)

∇α∇µχν +∇µ∇νχα = Rαµν
βχβ, (2.1.7)

which by summing eq. 2.1.5 with eq. 2.1.6 and subtracting eq. 2.1.7, as well as using eq.
A.4.7, yields

∇ν∇αχµ = −Rαµν
βχβ. (2.1.8)

By taking the trace over the first and third indices of the Riemann tensor, one finds a
relation between the Ricci tensor and the Killing vector,

∇ν∇νχµ = −Rµνχν . (2.1.9)

The significance of eq. 2.1.9 is given by the following proposition and line of reasoning.
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Proposition 2.1.1. Let Aµν be a two-form and ℓν = ∇µA
µν. Then ∇µℓ

µ = 0.

Proof. Contracting the Levi-Civita connection with the relation between Aµν and ℓµ gives

∇ν∇µA
µν︸ ︷︷ ︸

(I)

= ∇νℓ
ν . (2.1.10)

By rewriting (I) using the antisymmetry of Aµν and relabeling the indices, one obtains

∇ν∇µA
µν = −∇µ∇νA

µν =⇒ 2∇ν∇µA
µν = (∇ν∇µ −∇µ∇ν)Aµν . (2.1.11)

Using eq. A.4.3, eq. 2.1.11 then results in

(∇ν∇µ −∇µ∇ν)Aµν = −Rνµα
µAαν −Rνµα

νAµα = −2RναA
αν = 0, (2.1.12)

as RναA
αν is the contraction of a symmetric tensor with an antisymmetric one. Thus, by

eq. 2.1.10, ∇µℓ
µ = 0.

A vector that satisfies the relation ∇µℓ
µ = 0 is said to represent a conserved “cur-

rent”, as it respects the covariant form of the continuity equation. The conserved “charge”
associated with this current can be evaluated by analyzing a compact and bounded re-
gion, V , of spacetime such that all sources of this current are inside its spacelike segments.
Consider a region such that ∂V = {(t, t′)× ∂Σ} ∪ Σt ∪ Σt′ , where each Σ is a region of a
spacelike hypersurface and {(t, t′)× ∂Σ} is the hypersurface connecting Σt to Σt′ , closing
the region V , as illustrated in fig. 2. Since all sources are inside its spacelike segments, one

∂Σt′

∂Σt

V

∂Σ(t,t′)
Σt

Σt′

Figure 2 – Bounded and compact region, V , for the analysis of the conserved charge.

Source: By the author.

clearly has that ℓµ = 0 on {(t, t′) × ∂Σ}. Now, by integrating ∇µℓ
µ on V (see appendix

A.5), one obtains ∫
V
ϵµναβ∇λℓ

λ = 0, (2.1.13)
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but from Stokes’ theorem (see eqs. A.5.23 and A.5.26) and the relation in prop. 2.1.1, one
also has ∫

V
ϵµναβ∇λℓ

λ =
∫
∂V
ϵµναβℓ

β

=
∫

Σt′
ϵµναβℓ

β −
∫

Σt

ϵµναβℓ
β +

∫
∂Σ(t,t′)

ϵµναβℓ
β

=
∫

Σt′
ϵµναβ∇λA

λβ −
∫

Σt

ϵµναβ∇λA
λβ

=
∫
∂Σt′

ϵµναβA
αβ −

∫
∂Σt

ϵµναβA
αβ, (2.1.14)

Hence, from eq. 2.1.13, one can then identify each term in the last line of eq. 2.1.14
as the conserved charge. Then, by eq. 2.1.9, Aµν = ∇µχν is the antisymmetric tensor
associated with the conserved current −Rµνχν . As a consequence, the global conserved
quantity, cχ, associated with a Killing vector, χµ, is given by

cχ =
∫
∂Σ
ϵµναβ∇αχβ. (2.1.15)

The integral on the right hand side of eq. 2.1.15 is known as a Komar integral (45, 46).
Note that cχ is independent of choice of spacelike hypersurface, Σ, the only requirement
being that the surface ∂Σ is such that the flux of the conserved current over it vanishes.
Finally, it should be noted that this form of a conserved quantity is not restricted to
Killing vectors, in the sense that any physically significant quantity that gives rise to a
two-form will result in a conserved quantity. An example of this is the electromagnetic
tensor, Fµν , whose associated conserved quantity is the electric charge (1).

2.2 Causal structure

The characterization of the causal structure of spacetime is made by causal curves,
which are curves such that its tangent vector is everywhere either timelike or null. Since
observers and light rays can only travel on causal curves, it is possible to establish a
notion of causality by studying which events can be connected by them. In other words,
two events are said to be causally connected if an observer or a light ray emanating from
one of them can reach the other. Consequently, the causal structure of spacetime can be
regarded as the characterization of the sets that can be interpreted as the future and
past of events. In this section, these sets are defined, their boundaries are analyzed, and
general results and possible pathologies are discussed.

In special relativity, each event, a, in Minkowski spacetime has a light cone as-
sociated with it, which is delimited by null geodesics and contains the events that are
connected by timelike geodesics to it. One labels half of these events as the future of
a, as they can be influenced by a light ray or an observer emanating from a. Similarly,
one labels the other half as the past of a, as those events can influence a. Due to the
trivial topology of Minkowski spacetime, the causal structure in special relativity can
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be completely described by light cones. Since every event, a, in an arbitrary spacetime,
(M, gµν), has a convex normal neighborhood, i.e., a neighborhood, S, of a such that for
every a′, a′′ ∈ S there exists a unique geodesic connecting a′ and a′′ and contained entirely
in S (A rigorous proof of this can be found in (18), while a convenient statement can be
found in (1)), one can conclude that the causal structure of an arbitrary spacetime is
locally identical to that of Minkowski spacetime. However, significant changes can arise
globally due to the nontrivial topology of an arbitrary spacetime. Evidently, analyzing the
details of the causal structure of an arbitrary spacetime is futile, as it is dependent on its
topology. Nevertheless, with a few restrictions that are justified by physical assumptions,
it is possible derive very important results valid in general. Our goal is to then analyze
how restrictions on arbitrary spacetimes can give information about the sets that one
would justifiably label as the past and future of events in (M, gµν).

As one is interested in results concerning physically reliable spacetimes, it is nec-
essary to first make a restriction regarding a global property. One would like to be able
to make a continuous choice of past and future, that is, for each event, a ∈M , one wishes
to be able to consistently and continuously identify which vectors are directed to the
future and which are directed to the past. On physical grounds, such a designation has
to be related to a well-defined “arrow of time”, for instance, the one given by “natural”
thermodynamic processes. If a continuous choice can be made, (M, gµν) is said to be time
orientable (this is analogous, but not equivalent, to the notion of orientability when one
defines integration on manifolds). Conversely, if a continuous timelike vector can be cho-
sen in (M, gµν), then it is time orientable. Such a timelike vector can be interpreted as
the geometrical quantity associated with the “arrow of time”. This timelike vector, tµ,
is said to provide a time orientation, and can be used to divide nonspacelike vectors at
each point into two sets. More precisely, by identifying tµ as being directed to the future,
a timelike or null vector, sµ, is said to be future directed if sµtµ < 0, and past directed
if sµtµ > 0. Note that in order to identify that such vectors are pointing in the same
direction, it is necessary to take into account the minus sign in the “squared distance”
in the timelike direction, hence the respective inequalities. The following result states an
important property of the interior of these sets.

Proposition 2.2.1. Let (M, gµν) be a time orientable spacetime. The set of future (past)
directed timelike vectors in the tangent vector space of any a ∈M is path-connected.

Sketch of Proof. Let Fa denote the set of future (past) timelike directed vectors in the
tangent vector space of a ∈ M , i.e., sµ ∈ Fa if sµtµ < 0 (sµtµ > 0) and sµsµ < 0, and
consider a map ψ : [0, 1]→ Fa defined as

ψ(λ) = λsµ + (1− λ)wµ, (2.2.1)
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with sµ, wµ ∈ Fa. To show that this map is continuous, first note that for all λ ∈ [0, 1],
the vector ℓµ(λ) = λsµ + (1− λ)wµ is in Fa. In other words,

ℓµ(λ)tµ = (λsµ + (1− λ)wµ)tµ
= λsµtµ + (1− λ)wµtµ

(2.2.2)

is negative (positive) for all λ ∈ [0, 1] and sµ, wµ ∈ Fa. Similarly,

ℓµℓµ(λ) = (λsµ + (1− λ)wµ)(λsµ + (1− λ)wµ)
= λ2sµsµ + (1− λ)2wµwµ + 2λ(1− λ)sµwµ,

(2.2.3)

which is also negative for all λ ∈ [0, 1] and sµ, wµ ∈ Fa. Using the topology induced by
the metric, gµν , on Fa, one can deduce that the inverse image of any open set will be
mapped into either the empty set of [0, 1], an open interval of [0, 1] or [0, 1]. Thus, the
set of future (past) directed timelike vectors in the tangent vector space of any a ∈M is
path-connected.

The notion of orientability can be extended to curves in a similar way. A differ-
entiable curve, λ, is said to be a future directed timelike curve if its tangent vector is
everywhere future directed timelike. Similarly, if the tangent vector is everywhere either
future directed timelike or null, λ is said to be a future directed causal curve. It is im-
portant to note that, by curve, it is meant one that contains multiple points, so that the
trivial case λ(t) = a is excluded. In addition, it is also useful to have a precise definition of
when a curve “ends”. Let λ be a future directed causal curve. An event, a, is said to be a
future endpoint of λ if for every neighborhood, A, of a there exists a t0 such that λ(t) ∈ A
for all t > t0. By the Hausdorff property of M , which states that for any two events it
is always possible to find a neighborhood of one that does not contain the other, a curve
can have, at most, one future endpoint. Likewise, a curve is said to be future inextendible
if it has no future endpoint. For example, in fig. 3a one can identify the point a ∈ λ(t)
as being its future endpoint. In contrast, the curve in fig. 3b is future inextendible, since
it runs into an artificially removed point. To understand why such a curve has no future
endpoint, note that one can always “zoom in” closer to the removed point and find neigh-
borhoods such as those exemplified. Consequently, no event in spacetime would respect
the properties of a future endpoint. Lastly, analogous definitions and properties apply
to past directed curves, past endpoints and past inextendibility, by interchanging future
with past in the definitions.

With these ideas, one can precisely define the sets that can be interpreted as
future and past of an event in a time orientable spacetime. The chronological future of
a ∈ M , I+({a}), is defined as the set of events that can be reached by a future directed
timelike curve starting from a. In other words, all the events that can be reached by an
observer emanating from a. Note that, unless spacetime possesses closed timelike curves,



30

t′′

t′
A′′

A′

λ(t)
tµ

sµ

a

A′′′ t′′′
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Figure 3 – Examples of future directed causal curves.

Source: By the author.

a ̸∈ I+({a}). Similarly, the causal future of a, J+({a}), is defined as the union of a and
the set of events that can be reached by a future directed causal curve starting from a.
That is, all the events that can be reached by an observer or a light ray emanating from
a and a itself. The chronological and causal past of a, I−({a}) and J−({a}), are defined
likewise. Similarly, for any subset S ⊂M ,

I+(S) =
⋃
a ∈ S

I+({a}), (2.2.4)

J+(S) =
⋃
a ∈ S

J+({a}), (2.2.5)

and the chronological and causal past of S, I−(S) and J−(S), are defined analogously.
Evidently, from the definitions of the chronological and causal future,

I+(S) ⊂ J+(S). (2.2.6)

Indeed, this result is also true for the chronological and causal pasts. In the following, the
results discussed are valid for the pasts and futures, but for simplicity of notation and
space, they will be expressed only for the future or the past, and the notation I+({a}) =
I+(a) and J+({a}) = J+(a) will be adopted.

Let a, a′ ∈M , a′ ∈ I+(a) and γ denote the future directed timelike curve connect-
ing a to a′. It is possible to use the timelike nature of γ to deform it slightly and connect
a to any point in a given neighborhood of a′ while maintaining its timelike nature. This
process would correspond to “tilting” the tangent vector to γ to a null direction at each
point, yielding another future directed timelike curve. Evidently, this can be done for any
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event in I+(a), since any timelike vector can have its norm arbitrarily reduced while still
being timelike. Hence, for any event a′ ∈ I+(a), it is always possible to find a neighbor-
hood, A, of a′ such that A ⊂ I+(a). Fig. 4 illustrates this property1, in which the event
a′′ ∈ A is connected to a by the future directed timelike curve γ′. In particular, this means
that the chronological future of any set event is always open, and from eq. 2.2.4, one then
has that

I+(S) = ⟨I+(S)⟩, (2.2.7)

where ⟨I+(S)⟩ denotes the interior of the set S (see appendix A.1).

a
x1

cx0

a′′

I+(a) a′

A

b

S′

S

b′ ∈ ∂S

γ

γ′

Figure 4 – Spacetime diagram of the future of an event.

Source: By the author.

Additionally, one can also consider a set S ⊂ I+(a), an event, b ∈ S, and an
neighborhood of it, S ′, that intersects ∂S (see fig. 4). Now, applying the same logic
of deformation of a timelike curve to b and an event b′ ∈ ∂S, one can conclude that
S ⊂ I+(a). Hence, this means that every event that can be connected to S by a timelike
curve can also be connected to S by a timelike curve, which allows one to state that

I+(S) = I+(S), (2.2.8)

where S denotes the closure of the set S.

Proposition 2.2.2. Let (M, gµν) be a time orientable spacetime, a, a′ ∈ M and a′ ∈
J+(a). Then I+(a′) ⊂ I+(a).

Proof. Let γ denote the future directed causal curve connecting a to a′. Consider a point
a′′ ∈ I+(a′) and let γ′ denote the future directed timelike curve connecting a′ to a′′. A
1 In such an illustration, a two-dimensional manifold with Minkowski metric, ds2 = −c2(dx0)2 +

(dx1)2, was considered. Generalizations of these diagrams for higher dimensions is straight-
forward, but for simplicity they will only be presented for the two-dimensional case with a
Minkowski metric. In the representations that follow, the coordinate system presented in fig.
4 will be adopted.
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curve connecting a to a′′ can be made by joining γ and γ′ at a′, and it is possible to
vary it slightly to produce a future directed timelike curve, γ′′, connecting a to a′′. Fig. 5
illustrates an example of this process, and since it can be done for any a′′ ∈ I+(a′), then
I+(a′) ⊂ I+(a).

a′′

a′

a

γ

I+(a′)I+(a)

γ′γ′′

Figure 5 – Spacetime diagram for the proof of proposition 2.2.2.

Source: By the author.

Note that the requirement of time orientability in this result and the ones that
follow is not a geometrical one, in the sense that one could state the following results
for more general spacetimes. However, the corresponding concept of the chronological
and causal sets would not be of physical interest, since they would present unphysical
behavior, e.g., discontinuous change in the notion of going to the future or past.

It follows from prop. 2.2.2 that for any set S ⊂M , I+(S) can be expressed as the
union of all I+(a) such that a ∈ J+(S). It also allows one to state the following.

Proposition 2.2.3. Let (M, gµν) be a time orientable spacetime, a ∈M and γ be a future
directed causal curve emanating from a such that for all a′ ∈ γ, a′ ̸∈ I+(a). Then γ is a
null geodesic.

Proof. Since the causal structure of (M, gµν) is locally the same as of Minkowski spacetime,
the causal future of any event is locally delimited by null geodesics emanating from it.
If at any point a′ ∈ γ the curve γ fails to be a null geodesic, then γ must enter I+(a′)
since the future of a′ must be generated, locally, by null geodesics. However, from prop.
2.2.2, this would contradict the condition that points in γ are not in I+(a). Thus, if γ is a
causal curve emanating from a and does not enter I+(a), it must be a null geodesic.

Hence, the property that the causal future of a point is delimited by null geodesics
holds globally in any time orientable spacetime. With these properties, it is also possible
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to show (47) that for any set S ⊂M ,

J+(S) ⊂ I+(S), (2.2.9)

and combining with eq. 2.2.6 yields

J+(S) = I+(S). (2.2.10)

Furthermore, from eqs. 2.2.6 and 2.2.7, one also has

I+(S) ⊆ ⟨J+(S)⟩. (2.2.11)

However, for any a ∈ ⟨J+(S)⟩, one can find a neighborhood of it, S ′, such that S ′ ⊂ J+(S).
Using prop. 2.2.2, one can then show that there exists a future directed timelike curve
from S to a, which means that

I+(S) = ⟨J+(S)⟩. (2.2.12)

Finally, by using eqs. 2.2.10, 2.2.12, and the fact that I+(S) is open, one obtains

∂J+(S) = ∂I+(S). (2.2.13)

The next theorem states an important result regarding the inextendibility of null
geodesics in ∂J+(S)\S, a proof of which can be found in (47).

Theorem 2.2.4. Let (M, gµν) be a time orientable spacetime and S ⊂ M be nonempty
closed set. Then every point a ∈ ∂J+(S)\S lies on a null geodesic which lies entirely in
∂J+(S) and is either past inextendible or has past endpoint on S.

Theorem 2.2.4 states that the past directed null geodesic γ emanating from a′ ∈
∂J+(S)\S is contained entirely in ∂J+(S)\S and either reaches S or possesses no past
endpoint. An exemplification of this result is given in fig. 6. In such an illustration, note
that the event a′ is causally connected to S by the null geodesic γ′. However, the event
a′′ is not causally connected to S, since the null geodesic γ′′ which is entirely contained
in ∂J+(S)\S runs into an removed point. Thus, γ′′ does not reach S and does not have a
past endpoint. Furthermore, the conclusion that this null geodesic has no past endpoint
translates to the fact that although a′′ ∈ ∂J+(S), a′′ /∈ J+(S). Finally, note that because
of eqs. 2.2.8 and 2.2.13, the requirement of S to be closed implies no loss of generality.

Moving on, two properties of closed sets that will be useful for the developments
that follow are now defined. Given a closed set, S, its edge, e(S), is the set of points a ∈ S
such that every neighborhood of a contains a point a′ ∈ I+(a), a point a′′ ∈ I−(a) and
a future directed timelike curve from a′′ to a′ that does not intersect S. If e(S) = ∅, S
is said to be edgeless. An example of an edgeless set is a null or spacelike hypersurface
that extends indefinitely in all directions. Similarly, a set S ⊂ M is said to be achronal
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a′

γ′

a′′

γ′′

Removed point

I+(S)

S

∂J+(S)\S

∂J+(S) ∩ S

Figure 6 – Spacetime diagram of a closed set and its future (see theorem 2.2.4).

Source: By the author.

I+(S′)

I−(S′)

S′

Figure 7 – Spacetime diagram illustrating the edge of a closed achronal set, S ′.

Source: By the author.

if I+(S) ∩ S = ∅ (or, equivalently, if I−(S) ∩ S = ∅). For instance, it is possible to see
that the set S in fig. 6 is not achronal. In contrast, fig. 7 illustrates a closed achronal
set, S ′, with edge. In particular, the achronality property is of importance because, given
a three-dimensional achronal set S ′, it is possible to construct an homeomorphism from
neighborhoods of a ∈ S ′ to R3. Details on this construction can be found in (1), which
yields the following result.

Theorem 2.2.5. Let (M, gµν) be a time orientable spacetime and S ⊂M be a nonempty
edgeless achronal set. Then S is a C0 hypersurface.

The significance of this theorem can be exemplified by considering the boundary
of the causal future of a closed set, S ⊂ M . From eq. 2.2.13, it is not possible to find
two points, a, a′ ∈ ∂J+(S), such that a′ ∈ I+(a), because from prop. 2.2.2, this would
contradict the fact that a′ ∈ ∂J+(S). Thus, ∂J+(S) is achronal. Moreover, it is also always
closed because it is a boundary (see appendix A.1). Similarly, the arguments of theorem
2.2.4 can be used to show that e(∂J+(S)) = ∅ (47), and hence, ∂J+(S) respects the
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requirements1 of theorem 2.2.5 and is a topological hypersurface. Of course, ∂J+(S)\S
must contain only null geodesics. Therefore, this segment of the hypersurface must be null.
This can be deduced from the fact that its achronality ensures that any timelike vector
cannot be tangent to it, otherwise one could follow the integral curves of such a vector in
∂J+(S) and contradict its achronality. Also, a timelike vector cannot be normal to this
segment, as the vector space normal to it would be spanned only by spacelike vectors,
and thus, not allowing null geodesics to be contained in it. The same line of reasoning
applies to the segments ∂J+(S) ∩ S of the hypersurface, which means that they must be
null or spacelike.

In order to discuss more aspects of the causal structure, it is necessary to analyze
further restrictions for causally and deterministically “well behaved” spacetimes. An ex-
ample of a pathology that would make one deem a spacetime to be “badly behaved” is
possessing a closed timelike curve. Physically, this condition translates to the possibility
of “time travel”, i.e., for an observer to reach an event in its past. Indeed, a closed timelike
curve would also imply that it would not be possible to physically distinguish between a
cause and an effect, meaning that the notion of causality, and time itself, would be ques-
tionable. In light of this, a spacetime that has no closed timelike curve is said to respect
the chronology condition. Nevertheless, a spacetime, (M, gµν), can obey the chronology
condition but still be deemed to be pathological if a perturbation of the metric results in
a closed timelike curve. For instance, if one considers a timelike vector sµ at a ∈M , and
define the metric

g′
µν = gµν − sµsν , (2.2.14)

it is possible to see that any timelike or null vector of gµν is a timelike vector of g′
µν , i.e., the

light cone of g′
µν is slightly larger than that of gµν . As such, if the spacetime (M, g′

µν) were
to have a closed timelike curve, one would deem (M, gµν) physically unreliable even though
(M, gµν) itself does not have closed timelike curves. In light of this, a spacetime, (M, gµν),
is said to be stably causal if there exists a continuous nonvanishing timelike vector, sµ,
such that the spacetime (M, g′

µν) possesses no closed timelike curve. It can be shown (18)
that in order for a spacetime to be stably causal there must exist a differentiable function,
f , on (M, gµν) such that ∇µf is everywhere timelike. The requirement that ∇µf to be
timelike means that it can be regarded as the “arrow of time”, as thus, establish a time
orientation on (M, gµν). This would imply that along every future (past) directed causal
curve f must strictly increase or decrease, and hence, (M, g′

µν) with g′
µν constructed from

∇µf could not have any closed timelike curve.

The notion of the causal structure to be “well behaved” can also be analyzed
1 The edgeless property is not necessary to conclude that ∂J+(S) must be a topological hy-

persurface, which is a consequence of the fact that ∂J+(S) is an achronal boundary (47).
Nonetheless, the theorem was stated as such because it will be used later for an achronal
edgeless set which is not an achronal boundary.
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through the set of events, D(S), that can be completely determined by conditions on
another set, S. Hence, the set D(S) is one such that every observer or light ray that
can reach it must have passed through S (48). More precisely, given a closed achronal
set, S, the future Cauchy development, D+(S), is defined as the set of events such that
every past inextendible causal curve that passes through it intersects S. The past Cauchy
development, D−(S), is defined similarly by interchanging future and past. The Cauchy
development is defined as

D(S) = D+(S) ∪D−(S). (2.2.15)

Thus, the Cauchy development of a closed achronal set, S, is the set of events that
can be completely determined by information on S, which evidently contains S, as any
inextendible causal curve emanating from S crosses S. Note that no generality is lost by
considering a closed set, as the physical conditions on any open set, S ′, are expected to
be continuous, and thus, should suffice to determine the conditions on S ′. Concerning the
achronality requirement, a notion of a Cauchy development can still be defined for non-
achronal sets, but its physical usefulness is not as interesting since parts of the set would
be in its future (47). Accordingly, the concept of determinism present in the definition
of Cauchy development is then a tool to analyze the evolution laws of physical fields in
spacetime. A precise description of the initial-value formulation, which analyses how the
conditions on a set can be used to determine the physical conditions in its domain of
dependence, can be found in, e.g., (1).

With the definition of D+(S), it is clear that its boundary delimiters the region
from which data can be completely predicted from data on S. Such boundary is known as
the future Cauchy horizon of S, H+(S). More precisely, a ∈ H+(S) if for all a′ ∈ D+(S),
a ̸∈ I−(a′). The past Cauchy horizon, H−(S), is defined analogously. The Cauchy horizon
is the union of H+(S) and H−(S), which can also be written as

H(S) = ∂D(S). (2.2.16)

Fig. 8 illustrates examples of the Cauchy development and Cauchy horizon for a closed
achronal set, S, and the effects of a removed point on these sets. The significance of D(S)
and H(S) becomes clear by the following simple, but remarkable result.

Theorem 2.2.6. Let (M, gµν) be a time orientable spacetime. A nonempty closed achronal
set, Σ, has Cauchy development equal to M , D(Σ) = M , if and only if H(Σ) = ∅.

Proof. If H(Σ) = ∂D(Σ) = ∅, then D(Σ) = ⟨D(Σ)⟩ = D(Σ), so D(Σ) is both open and
closed. Thus, since D(Σ) ⊃ Σ ̸= ∅ and M is connected, one concludes that D(Σ) = M .

A closed achronal set, Σ, for which D(Σ) = M is called a Cauchy hypersurface.
Since a set with edge implies that there are causal curves that do not intersect it, it follows
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D+(S)

D−(S)

H+(S)

H−(S)H−(S)

S

(a) Spacetime with no removed points.

D+(S)

D−(S)

H+(S)

H−(S)H−(S)

S

(b) Spacetime with a removed point.

Figure 8 – Spacetime diagrams illustrating the Cauchy development and Cauchy horizon
of a closed achronal set, S.

Source: By the author.

that any Cauchy hypersurface must be edgeless. Hence, by theorem 2.2.5, every Cauchy
hypersurface is a topological hypersurface. The nature of this hypersurface can be deduced
from its achronal characteristic, since it means that no timelike vector can be tangent
to it. Therefore, a Cauchy hypersurface must be made of spacelike or null segments.
In addition, a spacetime which possesses a Cauchy hypersurface is said to be globally
hyperbolic. Consequently, in globally hyperbolic spacetimes, the entire development of
spacetime can be analyzed by conditions at Σ. Finally, note that the Cauchy horizon
measures the failure of a set to be a Cauchy hypersurface, as given by theorem 2.2.6.

It can also be deduced that no closed timelike curve can exist in a globally hyper-
bolic spacetime. A closed timelike curve which intersects Σ would violate its achronality,
and one which does not intersect it would mean that D(S) ̸= M , violating global hy-
perbolicity. These arguments can be strengthened to conclude that a globally hyperbolic
spacetime must be stably causal (1). Moreover, since globally hyperbolic spacetimes can
be interpreted as possessing no “deterministic violations” (49), spacetimes that do not
possess a Cauchy hypersurface can be regarded as having sources of “uncontrollable influ-
ences” where information is created or destroyed, such as pathological regions or removed
points. Hence, globally hyperbolic spacetimes are those that are causally and determin-
istic “well behaved”, in the sense that evolution laws can be regarded as “well posed”
problems (i.e., evolution laws have a unique solution that changes continuously with vari-
ations of initial conditions). Lastly, it is possible to use the integral curves of the timelike
vector from the stably causal property of a globally hyperbolic spacetime to construct a
homeomorphism between Cauchy hypersurfaces. This construction leads to the following
result (18), allowing one to interpret Σ as an “instant of time”.



38

Theorem 2.2.7. Let (M, gµν) be a globally hyperbolic spacetime. Then the topology of M
is R× Σ, where Σ denotes any Cauchy hypersurface.

We conclude our discussion of causal structure by stating an result regarding the
causal future of a compact set in globally hyperbolic spacetimes (50).

Theorem 2.2.8. Let (M, gµν) be globally hyperbolic and let S ⊂ M be compact. Then
J+(S) is closed.

Thus, for any compact set S in a globally hyperbolic spacetime, J+(S) = J+(S),
which implies that ∂J+(S) ⊂ J+(S), and hence, from theorem 2.2.4, in a globally hy-
perbolic spacetime every point a ∈ ∂J+(S)\S can be connected by a past directed null
geodesic to S. More specifically, this means that the situation presented in fig. 6, in which
a null geodesic in ∂J+(S) has no past endpoint on S, cannot occur for a compact set in
a globally hyperbolic spacetime.

2.3 Energy conditions

The purpose of this section is to present possible restrictions on the energy-
momentum tensor, which are nothing more than ways one would expect a physically
reasonable distribution of energy to behave (see, e.g., (18)). Such conditions are of sig-
nificance because, even though one may not have information about the explicit form of
the energy-momentum tensor, using Einstein’s equation one can infer how the geometry
of spacetime is expected to affect the motion of observers and light rays. The interpreta-
tion of these conditions in the context of spacetime curvature will be exemplified in the
discussion of dynamics of null geodesics in § 2.4.

An energy-momentum tensor, Tµν , such that

Tµνs
µsν ≥ 0, ∀ sµ timelike, (2.3.1)

is said to satisfy the weak energy condition. This condition can be interpreted as stating
that the energy density measured by any observer must be non-negative. In a classical
sense, this condition can be seen to hold, as the notion of negative energy density only
rises when one considers quantum theories.

Similarly, Tµν is said to satisfy the strong energy condition if

Tµνs
µsν ≥ −1

2T, ∀ s
µ unit timelike, (2.3.2)

where T = Tµ
µ. This condition simply puts a restriction on how strong the stress of

matter can become compared with the energy density, as measured by any observer. In
particular, the numerical factor on the right hand side of eq. 2.3.2 is a direct consequence
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of the explicit form of Einstein’s equation. To see this, one contracts Einstein’s equation
with the inverse metric, gµν , which leads to

R = −8πG
c4 T, (2.3.3)

so that it is possible to write Einstein’s equation, equivalently, as

Rµν = 8πG
c4

(
Tµν −

1
2Tgµν

)
. (2.3.4)

Thus, given eq. 2.3.4, the strong energy condition implies the non-negativity of the scalar
Rµνs

µsν . As will be discussed in more detail in § 2.4, this non-negativity signifies that
timelike or null geodesics tend to get closer together, which in turn can be interpreted as
the attractive nature of gravity.

In addition, for all future directed timelike vectors, sµ, the dominant energy con-
dition states that the vector −T µνsν is future directed timelike or null. In other words, it
states that the flow of energy as measured by any observer must be, at most, at the speed
of light and directed to the future (1). It should be noted that apart from the dominant
energy condition implying the weak one, these conditions are independent mathematical
hypotheses. Finally, due to continuity, the weak and the strong energy conditions imply
the null energy condition,

Tµνℓ
µℓν ≥ 0, ∀ ℓµ null. (2.3.5)

Alternatively, one can also deduce that the weak and strong energy condition imply the
null one by explicit analysis of the components of the energy-momentum tensor (see, e.g.,
(51)).

2.4 Null geodesic congruences

A congruence in an open set, S ⊂M , is a family of curves such that through each
a ∈ S passes exactly one curve of this family. Consequently, a congruence gives rise to a
smooth vector field in S, by taking it to be the tangent to the curves in the congruence
at each point, and the converse is also true. A null geodesic congruence1 is one that
the curves are null geodesics. One’s interest in studying them arises from the fact that,
through fairly general arguments, it is possible to derive results concerning the dynamics
of null geodesics. Such results can then be used, for example, to study the behavior of the
null segments of the boundary of the past or future of a set.

The analysis of a congruence lies in the study of the transverse vector space,
which is spanned by vectors orthogonal to the one that generates the congruence, known
as deviation vectors (see appendix A.4). The failure of a deviation vector to be parallel
transported along the curves of the congruence gives information about the dynamics of
1 See fig. 31b for an example of a congruence.
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the curves, as it will show how they become closer or further apart, or rotate around
each other. For a null geodesic congruence, the deviation vectors can be visualized as the
separation between two “infinitesimally nearby” null geodesics that are being followed by
light rays that were emitted by a source at the same time. The analysis of the deviation
vectors in a null geodesic congruence can be made as follows.

Let ℓµ be the tangent to a null geodesic congruence in S, which is parametrized
by affine parameter λ and let Va denote the tangent vector space at a ∈ S. The deviation
vectors, sµ, lie in the vector subspace spanned by vectors orthogonal to ℓµ, denoted by
V a. However, this is not the vector space of interest, because ℓµ ∈ V a. Namely, it is
not possible to analyze the deviation vectors by restricting one’s attention to V a, as the
projection of tensors to V a would be associated with a degenerate metric (see eq. A.2.18).
Thus, it is necessary to isolate the purely transverse part of V a, i.e., elements of V a that
are not proportional to ℓµ. To do so, one must use an auxiliary vector, ηµ, such that
ηµℓµ ̸= 0, which means that ℓµ does not belong to the vector space spanned by vectors
orthogonal to ηµ, denoted by V ′

a. Hence, the deviation vectors lie in the vector subspace
spanned by the vectors that are orthogonal to both ℓµ and ηµ, denoted by V̂a. Since this
vector subspace is spanned only by vectors that are orthogonal to ℓµ and does not include
ℓµ itself, it is precisely the vector space of interest. In this manner, it is very convenient to
use the gauge freedom of ηµ to make it be null and obey ηµℓµ = −1. Fig. 9 illustrates the
vectors under these conditions and their respective orthogonal spaces at a point a ∈ γ,
where γ is a null geodesic of the congruence. Note that one dimension is suppressed, so
that V a and V ′

a are planes and V̂a is a line. With this choice of ηµ and considering the

`µ

ηµ

V ′
a

V a

V̂a

a

γ(λ)

Figure 9 – Diagram of the tangent vector spaces of interest at a point on a null geodesic.

Source: By the author.

properties of an orthogonal projection operator presented in appendix A.5, the metric
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that acts on V̂a is given by
hµν = gµν + 2ℓ(µην), (2.4.1)

which can be used to project tensors on V̂a, isolating their purely transverse part. By
projection of tensors, it is meant the contraction of all its indices with hµν .

The characterization of V̂a becomes clear if one considers a local Lorentz frame,
that is, a coordinate system, {cx0, x1, x2, x3}, in a neighborhood of a such that the metric
is given by diag(−1, 1, 1, 1)1. Note that this is possible due to the property that any space-
time is locally flat, i.e., locally homeomorphic to Minkowski spacetime. In this coordinate
system, one can write the tangent to the null geodesic congruence and an auxiliary null
vector as

ℓµ = 1√
2

(1, 1, 0, 0), (2.4.2)

ηµ = 1√
2

(1,−1, 0, 0), (2.4.3)

which indicate the Riemannian character of hµν . Evidently, a basis of V̂a, {eµ2 , eµ3}, is

eµ2 = (0, 0, 1, 0), (2.4.4)

eµ3 = (0, 0, 0, 1). (2.4.5)

Since {ℓµ, ηµ, eµ2 , eµ3} is a basis of Va and sµ can be written as a linear combination
of eµ2 and eµ3 , it is clear that ℓµ and sµ commute (see eqs. A.2.4 and A.3.4). Denoting
Bµν = ∇νℓµ and using eq. A.4.15, one finds

sµ∇µℓ
ν = ℓµ∇µs

ν = Bν
µs

µ. (2.4.6)

Hence, the map Bν
µ measures the failure of deviation vectors to be parallel propagated,

and therefore, it is the operator of interest to analyze the dynamics of the congruence.
Clearly, this map is orthogonal to ℓµ, in the sense that contraction of any of its indices
with ℓµ vanishes. However, it is not orthogonal to ηµ, which means that the vector Bν

µs
µ

may still be proportional to ℓµ. In order to isolate the purely transverse part of Bµν , one
uses the transverse metric to project it on V̂a

2,

B̂µν = hαµh
β
νBαβ

= Bµν + ℓµη
αBαν + ℓνη

αBµα + ℓµℓνη
αηβBαβ. (2.4.7)

In this manner, B̂µν is the operator that gives information about the purely transverse
behavior of the null congruence. Due to the dimension of the vector space of interest, it
is clear that B̂µν is effectively a 2× 2 matrix, so that it can be decomposed as

B̂µν = 1
2θhµν + σµν + ωµν , (2.4.8)

1 This coordinate system is convenient to exemplify our analysis, but, as any other, it is otherwise
meaningless and has no effect on scalars, which are the quantities of interest.

2 This process can be interpreted as restricting the action of Bν
µ to vectors in V̂a.
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where

θ = B̂µνhµν , (2.4.9)

σµν = B̂(µν) −
1
2θhµν ,

(2.4.10)

ωµν = B̂[µν]. (2.4.11)

Consequently, the action of B̂µν on the deviation vectors can be analyzed by in-
terpreting the terms of its decomposition, as exemplified in (51). The trace of B̂µν , θ, is
associated with the rate of change of the congruence cross-section area. Therefore, θ > 0
means that the geodesics are diverging, while θ < 0 means that they are converging. Sim-
ilarly, the symmetric tracefree part, σµν , is associated with the rate of change of the shape
of the cross-section, and the antisymmetric part, ωµν , is associated with the rotation of
the cross-section. Because of these interpretations, θ is referred to as the expansion, σµν
as the shear tensor and ωµν as the vorticity tensor.

The quantity of most physical significance is the expansion, which tells one how
geodesics in the congruence move closer or further apart. In particular, one would like to
calculate how it changes as one moves along the curves in the congruence. This can be
done by first considering how Bµν changes along the integral curves of ℓµ,

ℓα∇αBµν = ℓα∇α∇νℓµ

= ℓα∇ν∇αℓµ +Rανµ
βℓαℓβ

= ∇ν(ℓα∇αℓµ)− (∇νℓ
α)(∇αℓµ) +Rανµ

βℓαℓβ

= −Bα
νBµα −Rναµ

βℓαℓβ. (2.4.12)

Now, using the explicit form of the transverse metric, one can verify that B̂µνh
µν = Bµνg

µν

and BµνBµν = B̂µνB̂µν . Considering eq. 2.4.8, one then finds

B̂µνB̂µν = 1
2θ

2 + σµνσµν + ωµνωµν , (2.4.13)

and thus, taking the trace of eq. 2.4.12 yields

ℓµ∇µθ = dθ

dλ
= −1

2θ
2 − σµνσµν + ωµνωµν −Rµνℓ

µℓν . (2.4.14)

Eq. 2.4.14 is known as Raychaudhuri’s equation, and it dictates the behavior of
the expansion along the null geodesics in the congruence. To analyze it, it is of interest to
study the sign of the non-expansion terms. The term −σµνσµν is manifestly nonpositive
due to the fact that the shear tensor is orthogonal to both ℓµ and ηµ, i.e., it is purely
“spacelike”. The sign of the Ricci tensor term can be analyzed under the assumptions of
the energy conditions. If one contracts Einstein’s equation twice with the tangent vector
field to the null congruence, one obtains

Rµνℓ
µℓν = 8πG

c4 Tµνℓ
µℓν , (2.4.15)
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which gives a relation to the Ricci tensor term in Raychaudhuri’s equation, and it will be
nonpositive if the weak or strong energy condition holds, as they imply the null energy
condition. This can be interpreted as the attractive nature of gravity, as if such a condition
is satisfied, null geodesics will tend to converge due to the contribution to the dynamics
of the expansion. This interpretation also follows for a timelike congruence, in which the
corresponding term in the Raychaudhuri’s equation is the one analyzed in § 2.3. Hence,
the attractive nature of gravity follows from suitable energy conditions, as they represent
an “attractive” contribution to the dynamics of geodesics, be it a timelike or a null one.

In order to analyze the term ωµνωµν , one should consider the following result,
known as Frobenius’ theorem, a proof of which can be found in (1).

Theorem 2.4.1. A congruence of curves, whose tangent vector is ℓµ, is orthogonal to a
hypersurface (in the sense that it is proportional to the normal of a family of hypersurfaces
described by Γ(xa) = a) if and only if (ℓ ∧ dℓ)µνα = 0, i.e., ℓ[µ∇νℓα] = 0.

One can deduce an immediate consequence of Frobenius’ theorem by considering
a hypersurface described by Γ(xa) = a, where a is a constant scalar. With this char-
acterization, the normal vector to this hypersurface is wµ = ∇µΓ, as it “points” in the
direction of increasing a and is orthogonal to the directions where a is constant. However,
if wµ = ∇µΓ is a null vector, then it is also tangent to the null hypersurface. This result
is of significance because, using eq. A.3.2, one readily obtains

wν∇νwµ = wν∇µwν = 1
2∇µ(wνwν). (2.4.16)

In essence, since wνwν vanishes on Γ, its gradient, ∇µ(wνwν), must be proportional to
its normal vector, wµ. This means that wν∇νw

µ ∝ wµ, which is the geodesic equation
in a non-affinely parametrized form. Hence, wµ is the tangent to the null geodesics that
lie within Γ. More precisely, the tangent to a null geodesic congruence is normal to the
hypersurface in which the null geodesics lie within. Because of this, the null geodesics are
referred to as the generators of the null hypersurface. Thus, Frobenius’ theorem implies
that the tangent to any null geodesic congruence will obey ℓ[µ∇νℓα] = 0. In summary, from
a physical perspective, each null hypersurface can be used to describe the propagation
of the wave front of the light rays following the null geodesics that generate it, and the
action of the map B̂µν on deviation vectors gives information about the behavior of the
wave front over time.

In light of this, the requirement for a null vector to be hypersurface orthogonal
can be shown to be related to the vorticity tensor of the null congruence, which one can
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verify by contracting ηµ with the condition in Frobenius’ theorem,

0 = ℓ[µ∇νℓα]η
µ

= (ℓµ∇[νℓα] + ℓν∇[αℓµ] + ℓα∇[µℓν])ηµ

= −B[αν] + ℓνη
µB[µα] + ℓαη

µB[νµ]

= −B[αν] +Bµ[αℓν]η
µ + ℓ[αBν]µη

µ

= B̂[αν]

= ωαν , (2.4.17)

where eq. 2.4.7 was used in the fourth line. Hence, Frobenius’ theorem implies that the
vorticity tensor of any null geodesic congruence must vanish1. These conclusions lead to
the following result.

Proposition 2.4.2. Let ℓµ denote the tangent vector to a null geodesic congruence and
Rµνℓ

µℓν ≥ 0. If the expansion of the congruence attains the negative value θ0 at any point
on a geodesic in the congruence, then θ → −∞ along that geodesic in affine parameter
λ ≤ 2/|θ0|, assuming that such geodesic extends that far.

Proof. Under the assumption that Rµνℓ
µℓν ≥ 0 and that the congruence is of null

geodesics, Raychaudhuri’s equation implies that

dθ

dλ
+ 1

2θ
2 ≤ 0, (2.4.18)

which can be rewritten as
d

dλ
(θ−1) ≥ 0, (2.4.19)

and hence
θ−1 ≥ θ−1

0 + 1
2λ, (2.4.20)

where θ0 is the initial value of θ. If the congruence is initially converging, eq. 2.4.20 implies
that θ → −∞ within an affine parameter λ ≤ 2/|θ0|.

This result can be interpreted as stating that, in a spacetime where Einstein’s
equation and the weak or strong energy condition hold, a congruence of null geodesics
will develop caustics in a finite affine parameter. A caustic is a point at which some curves
in the congruence intersect, which is merely a singularity of the congruence (i.e., a point
in which it is not defined), and implies nothing regarding pathologies in the structure of
spacetime.

We conclude this section by noting that the assumption that the null geodesics are
affinely parametrized is merely a way to simplify our analysis. In particular, the following
1 Such a strong result is not valid for timelike geodesic congruence. Nonetheless, Frobenius’

theorem also implies that in order for a congruence of timelike curves to be orthogonal to a
hypersurface, its vorticity tensor must also vanish (51).
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version of Raychaudhuri’s equation is valid for arbitrarily parametrized null geodesic
congruence,

dθ

dλ
= κθ − 1

2θ
2 − σµνσµν + ωµνωµν −Rµνℓ

µℓν , (2.4.21)

which can be readily derived from 2.4.12 by using the geodesic equation, ℓν∇νℓ
µ = κℓµ,

and that the expansion is now defined as

θ = ∇µℓµ − κ. (2.4.22)

Consequently, the results of prop. 2.4.2 are still valid, the only difference being in the
limit of the parameter for the development of caustics.

2.5 Conjugate points

Conjugate points are of interest because they represent points that can be almost
joined by a family of geodesics. More precisely, consider a null geodesic, γ, with tangent
ℓµ. If a vector field, sµ, is a solution of the Jacobi equation,

ℓν∇ν(ℓα∇αs
µ) = −Rναβ

µℓνsαℓβ, (2.5.1)

it is referred to as a Jacobi field on γ. Since it is a deviation vector, a Jacobi field can be
interpreted as the separation of two “infinitesimally nearby” geodesics. A pair of points
a, a′ ∈ γ are said to be conjugate along γ if there exists a Jacobi field which is not
identically zero but vanishes at both a and a′. Thus, conjugate points can be interpreted
as points in which a “infinitesimally nearby” geodesic to γ intersects it at both a and a′.
The following proposition strengthens this interpretation, as it shows that the existence
of conjugate points is associated with the behavior of the expansion of a congruence.

Proposition 2.5.1. Let γ be a null geodesic and a, a′ ∈ γ. Suppose that the congruence
of null geodesics which γ is a part of emanates from a. Then a′ is conjugate to a if and
only if θ → −∞ at a′.

Proof. Let ℓµ be the tangent to γ, being parametrized by λ. The components of the Jacobi
field, sµ ∈ V̂a, of γ, obey the linear ordinary differential equations at each a ∈ γ

d2sa

dλ2 = −Rbcd
aℓbscℓd, (2.5.2)

and thus, sa(λ) must depend linearly on the initial conditions, i.e.,

sa(λ) = Sab(λ)ds
b

dλ
(0) + S ′a

b(λ)sb(0). (2.5.3)

However, since the congruence emanates from a, sa(0) = 0, so that

sa(λ) = Sab(λ)ds
b

dλ
(0), (2.5.4)
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from which one can deduce that Sab(0) = 0 and dSab/dλ(0) = δab. By combining eqs.
2.5.2 and 2.5.4, one obtains

d2Sab
dλ2 = −Rcde

aℓcℓeSdb. (2.5.5)

Since a′ will be conjugate to a if and only if there exists nontrivial initial data for which
sµ = 0 at a′, then by eq. 2.5.4, the necessary and sufficient condition of conjugacy is that
det (Sµν) = 0 at a′. From this, it follows that det (Sµν) ̸= 0 between conjugate points.
As such, it is possible to study the condition on the determinant of Sµν by noting that it
must be related to the tensor field Bµν = ∇νℓµ of the congruence. This relation can be
derived from

dsa(λ)
dλ

= ℓb∇bs
a = Ba

bs
b, (2.5.6)

which follows from the fact that the Jacobi field and ℓµ commute. From eq. 2.5.4, one
then has

dSab(λ)
dλ

= Ba
cS

c
b, (2.5.7)

which in matrix form reads
dS(λ)
dλ

= BS(λ), B = 1
S

dS(λ)
dλ

. (2.5.8)

In order to proceed, it is necessary to make use of the result that the derivative and trace
operator commute, i.e,

tr
(
dA(λ)
dλ

)
= d

dλ
[tr(A(λ))] , (2.5.9)

and the identity tr(A(λ)) = ln [det(expA(λ))] which is valid for any invertible matrix A

(52). The definition of the expansion then yields

θ = tr(B)

= tr
(

1
S

dS(λ)
dλ

)

= tr
(
d

dλ
[lnS(λ)]

)

= d

dλ
(ln |det(S(λ))|)

= 1
det(S(λ))

d

dλ
det(S(λ)).

(2.5.10)

Now, since the map Sab(λ) satisfies eq. 2.5.5, the derivative of its determinant cannot
vanish anywhere on γ. Hence, θ → −∞⇔ det(S(λ))→ 0.

In other words, conjugate points are associated with caustics in a congruence.
Namely, one can use proposition 2.4.2 to also deduce the existence of a point conjugate
to the one at which the congruence emanates if the expansion attains a negative value
at any point on the congruence. The next result states an important consequence of the
existence of conjugate points on null geodesics, a proof of which can be found in (47).
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Theorem 2.5.2. Let γ be a null geodesic and a, a′ ∈ γ. If there is a point conjugate to
a in (a, a′), then there is a timelike curve connecting a to a′.

Hence, the existence of conjugate points along a null geodesic implies that it can
be smoothly deformed to yield a timelike curve. This can be interpreted as the failure of
the null geodesic to remain in the boundary of the causal future (past) of a set, i.e., it
must have entered the chronological future (past) of the set. The following remarks and
results will be stated for the causal future of a set, but they are also valid for the causal
past, with adequate changes in conditions.

A similar notion of conjugacy can be defined for a point and a two-dimensional
spacelike submanifold (i.e., a surface), S, of a spacetime (M, gµν). At each point a ∈ S,
there exists two future directed null vectors that are orthogonal to S. An example of such
a surface is the one spanned by the deviation vectors of a null geodesic congruence. As
discussed in § 2.4, {eµ2 , eµ3} span such a surface, while {ℓµ, ηµ} are the future directed null
vectors (here it is assumed that a time orientation is provided by tµ = (1, 0, 0, 0)). Due
to the choice of coordinates on a local Lorentz frame, ℓµ is referred to as the tangent to
the “outgoing” null congruence, and ηµ as the tangent to the “incoming” null congruence.
Fig. 10 exemplifies such a surface, in which one space dimension is suppressed, so that S
is depicted as a curve.

ηµ `µ

x1S

x2

cx0

Figure 10 – Surface spanned by vectors orthogonal to the “incoming” and “outgoing” null
vectors, or equivalently, to (∂x0)µ and (∂x1)µ.

Source: By the author.

With these remarks, the notion of conjugacy can be defined in the following man-
ner. Let γ be a null geodesic orthogonal to S (which will be the integral curve of ℓµ or ηµ)
and a′ ∈ γ but a′ ̸∈ S. The point a′ is said to be conjugate to S along γ if there exists a
Jacobi field, sµ, on γ which is nonzero on S but vanishes at a′. By the same arguments of
the conjugacy of two points, a′ will be conjugate to S if and only if the expansion of the
congruence of geodesics is orthogonal (the one generated by ℓµ or ηµ) to S approaches
−∞ at a. Using proposition 2.4.2 and a development analogous to that of the proof of
proposition 2.5.1, one can derive the following result.
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Proposition 2.5.3. Let (M, gµν) be a spacetime satisfying Rµνℓ
µℓν ≥ 0 for all null ℓµ.

Let S be a two-dimensional spacelike submanifold of M such that the expansion of an
orthogonal null geodesic congruence generated by ℓµ has the negative value θ0 at a ∈ S.
Then within finite parameter, there exists a point a′ conjugate to S along the null geodesic
γ passing through a, assuming that γ extends that far.

The requirement of Rµνℓ
µℓν ≥ 0 for all ℓµ null is a consequence of the fact that any

two null vectors whose inner product does not vanish can be used to construct a surface
that respects the properties of the proposition, simply by taking the orthogonal space,
V̂ . Thus, such a condition could be weakened to require that Rµνℓ

µℓν ≥ 0 be respected
only for the tangent to the null congruence one wishes to analyze. Furthermore, the null
geodesics need to be orthogonal to S as a consequence of the definition of conjugacy of a
surface and a point. In particular, if γ were not orthogonal to S, the Jacobi field would
not lie within S, and the definition of conjugacy would not be adequate. With this in
mind, a similar proof like that of theorem 2.5.2 yields the following (47).

Theorem 2.5.4. Let (M, gµν) be a spacetime, let S be a two-dimensional spacelike sub-
manifold of M and let γ be a differentiable causal curve from S to a. Then the necessary
and sufficient condition that γ cannot be smoothly deformed to a timelike curve connecting
S and a is that γ be a null geodesic orthogonal to S with no conjugate point to S between
S and a.

Finally, as a consequence of theorem 2.5.4 and the properties of a globally hyper-
bolic spacetime, it is possible to state and prove the following theorem.

Theorem 2.5.5. Let (M, gµν) be a globally hyperbolic spacetime and let S be a compact
orientable two-dimensional spacelike submanifold of M . Then every a ∈ ∂J+(S) lies on a
future directed null geodesic starting from S which is orthogonal to S and has no conjugate
point to S between S and a.

Proof. From the remarks below theorem 2.2.8, it follows that if a ∈ ∂J+(S), then it must
be connected to S by a null geodesic. By theorem 2.5.4, if this null geodesic were not
orthogonal to S or had a conjugate point between S and a, then it would be possible
to deform it to produce a timelike curve connecting S to a, which would mean that
a ̸∈ ∂J+(S).

2.6 Singularities

This section is devoted to a brief discussion of a singularity theorem which proves,
under certain conditions, the development of singularities in the context of gravitational
collapse. First, it should be noted that a precise definition of a singularity is significantly
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problematic, as none of the many attempts to indicate their presence in a spacetime seem
to fully describe it in all the necessary aspects (1). Nevertheless, one satisfying way to
characterize a spacetime to possess a singularity is by identifying the “holes” it leaves
behind. In other words, one can define a spacetime to be singular by identifying geodesics
that reach these “holes”, which one could justifiably assume to be due to the presence of
a singularity (12).

In this manner, it is necessary to give a precise notion of what it means for a
geodesic to reach such a pathology. Since geodesics are a property of the intrinsic spacetime
structure, the failure of their affine parameters to extend to arbitrarily large values can be
associated with an encounter with a pathology. In light of this, a geodesic is defined to be
incomplete if it is inextendible in at least one direction, but has only a finite range of affine
parameter. It is easy to see that this definition precisely accounts for what happens when
a geodesic encounters an “removed point”, as the one exemplified in fig. 6. Consequently, a
spacetime is said to be singular if it possesses at least one incomplete geodesic. Although
this definition does not give a perfect notion of a singularity or details about its nature,
the pathology arising in a spacetime that has at least on incomplete geodesic is evident,
and one can reason that this class of spacetimes earns the adjective “singular”. In fact,
the notion of geodesic incompleteness is the one present in the singularity theorems (18),
and it is reasonable to believe that this concept is enough to conclude that spacetime
pathologies−or singularities− are predicted by general relativity under certain conditions.
Essentially, this line of reasoning is based on the idea that observers or light rays that
follow incomplete geodesics will end their existence in a finite affine parameter.

In order to state the pertinent theorem that proves geodesic incompleteness, it
is necessary to define the notion of a trapped surface. Let (M, gµν) be a spacetime. A
trapped surface, T , is a closed (i.e., compact and without boundary), two-dimensional
spacelike submanifold of M such that the expansion of both sets of orthogonal future
directed null geodesics (e.g., the future directed “incoming” and “outgoing” families of
null geodesics) is everywhere negative. Fig. 11a illustrates a surface, T , which is emitting
a flash of light. The surfaces S ′ and S ′′ illustrate the behavior of the “incoming” and
“outgoing” wavefronts of the light emitted, respectively. As exemplified for a single event
a ∈ T , such surfaces are constructed by considering all events in T . If the area of S ′ and
S ′′ are both less1 than the area of T , then T is a closed trapped surface, as exemplified
in fig. 11b.

The requirement of T to be closed is related to the idea that one wishes to interpret

1 In the following, we shall refer to the incoming and outgoing families of null geodesic without
the quote unquote, but the reader should recall that such nomenclature does not necessarily
indicate the behavior of the geodesics. For example, for a trapped surface, the outgoing null
geodesics, which one would expect to be “naturally” diverging from one another, are actually
converging.
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T

a

S′ S′′

S

(a) Behavior of the wave fronts of T .

T

S ′

S

S ′′

a

(b) Example of a trapped surface.

Figure 11 – Spacelike surface, T , and the orthogonal families of null geodesics.

Source: Adapted from HAWKING; ELLIS (18).

trapped surfaces in the context of spacetime curvature. In other words, if one does not
require T to be closed, the intersection of the past light cone of any two spacelike separated
points in Minkowski spacetime would be an “open trapped surface” (53). As will be
discussed below, trapped surfaces will be associated with regions of strong gravitational
field, and the trivial “open trapped surfaces” that exist in flat spacetime are uninteresting.
Not only that, the compact property is essential to the proof of the pertinent theorem.
Evidently, a trapped surface satisfies the requirements of propositions 2.5.3 and theorems
2.5.4 and 2.5.5, which in combination with restrictions on the causal structure can be
related to geodesic incompleteness. Such a relation is given by the next theorem, originally
derived in (9).

Theorem 2.6.1. Let (M, gµν) be a globally hyperbolic spacetime with a noncompact
Cauchy hypersurface satisfying Rµνℓ

µℓν ≥ 0 for all null ℓµ. If (M, gµν) contains a trapped
surface, then it is not null geodesically complete.

The conditions of the theorem above can be interpreted as follows. Concerning the
restriction on the contraction of the Ricci tensor, as has already been discussed, it will be
respected if Einstein’s equation holds and the weak or strong energy condition is respected
by Tµν . The condition that spacetime contains a trapped surface can be interpreted by
considering that the light rays that are following the outgoing null geodesics, which one
would expect to be “naturally” diverging, are actually converging. In particular, the for-
mation of a trapped surface can be interpreted as the limit at which gravitational collapse
can no longer be stopped, since the areas of wave fronts of both incoming and outgoing
families of null geodesics will decrease, and the distribution of energy contained inside a
trapped surface will necessarily be contained in the region delimited by the outgoing null



51

geodesics. Additionally, the requirement of existence of a noncompact Cauchy hypersur-
face can be interpreted as the requirement that the universe is “infinite”. In essence, this
means that the spatial section of the universe does not “close around itself”, e.g., a plane
or hyperbolic spatial section. The conclusion of null geodesic incompleteness can then be
interpreted as a consequence of the pathological region resulting from the collapse associ-
ated with the trapped surface, which will undoubtedly be related to loss of determinism
in at least one region of spacetime. Finally, the proof of this theorem consists in obtaining
a contradiction between the null geodesic completeness, which implies that ∂J+(T ) must
be compact, and the existence of a noncompact Cauchy hypersurface. Details on this
development can be found in, e.g., (1).

Arguably, the assumption of global hyperbolicity is by far the strongest, but the
restriction on the topology of the Cauchy hypersurface is also severely significant, such
that it raises questions regarding the physical reliability of the results of this theorem.
Evidently, experimental confirmation of either assumption is impossible, so that although
this theorem provides a proof of the development of pathologies in a type of spacetime,
its physical relevance is questionable. Nonetheless, developments originally proposed in
(13) removed the requirement of the existence of Cauchy hypersurfaces. Not only that,
the results derived there relate the existence of singularities in the context of gravitational
collapse and cosmology with fairly general assumptions, the former still being related with
the existence of trapped surfaces. It is in this sense that singularities in physically reliable
spacetimes are a genuine prediction of general relativity.

2.7 Asymptotic flatness

The last tool necessary in order to have the complete framework to study black
holes is the concept of asymptotic flatness. This concept is of significance because it
characterizes isolated systems in the context of general relativity, and it also gives rise to
a satisfying notion of what it means for an observer to be “distant” from the sources. For
instance, the usefulness of this notion in general relativity can be seen in situations where
one wishes to study the character of emitted radiation in a system, as it is equivalent to
analyze the behavior of the metric for large distances and late times. Such analysis can
then be used to study what events can be causally connected to the “distant” regions. In
essence, since the presence of energy can be detected by the curvature of spacetime (as
per Einstein’s equation), a region can be characterized as “distant” if it is very close to
being flat, that is, if the spacetime behaves similar to Minkowski spacetime in comparison
with some sense of “central region”.

Roughly speaking, asymptotic flatness can then be summarized as a spacetime
whose metric, written in coordinates {t, x, y, z}, reduces to that of Minkowski as r →∞
and ct→ ±∞, where r = (x2 + y2 + z2)1/2. The issue with simply defining a spacetime to
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be asymptotic flat as such arises from the fact that this notion is coordinate dependent,
and one wishes to be able to analyze the quantities at the limit of asymptotic flatness
in a coordinate independent manner. To progress towards a definition that is adequate,
it is useful to first analyze the Minkowski metric for large distances and characterize the
“distant” regions from some “central region” given by a coordinate system. Such char-
acterization can then be used to compare with regions of other spacetimes, and identify
those that behave similarly.

To start this analysis, consider the form of the Minkowski metric, ηµν , in null
coordinates,

ds2 = −dudw + 1
4(w − u)2(dθ2 + sin2 θdϕ2), (2.7.1)

where w = ct + r, u = ct − r and {r, θ, ϕ} are the ordinary spherical coordinates. Note
that the pathologies such as w − u = 0 and sin θ = 0 are coordinate dependent, i.e.,
they are merely a consequence of the limitations of the coordinate system. In particular,
they can be removed by imposing adequate coordinate restrictions, e.g., 0 < θ < π, and
in the points where the metric given by eq. 2.7.1 is not defined, one has to use another
appropriate coordinate system. Additionally, the lack of terms dw2 and du2 in eq. 2.7.1 is
a consequence of the fact that the coordinate basis vectors (∂w)µ and (∂u)µ are null, thus,
the hypersurfaces {w = constant} and {u = constant} are also null. Because of this, such
coordinates can then be identified as representing the outgoing and incoming radial null
geodesics, respectively. To analyze the behavior of one of these families at large distances,
it would be necessary to take the limit of the corresponding null coordinate. However,
it is evident that taking the limit of w or u to infinity would yield a badly behaving
metric. Furthermore, coordinate transformations that would be able to describe infinity
at a finite distance, such as 1/w, would also result in a pathological metric. Nevertheless,
such pathologies can be removed by means of a conformal transformation.

A conformal transformation is a map, ψ : M → M ′, such that its action on gµν

is given by ψ∗gµν = Ω2gµν . The smooth, nonvanishing, non-negative function Ω is called
conformal factor. Additionally, if ψ is a diffeomorphism, it is also said to be a conformal
isometry. In this context, the metric Ω2gµν is referred to as the unphysical metric and
(ψ[M ],Ω2gµν) is the unphysical spacetime. These nomenclatures are a consequence of the
fact that the curvature tensors are not preserved in a general conformal transformation,
so that Ω2gµν will not be a solution to Einstein’s equation.

Consider a conformal isometry of Minkowski spacetime,

η′
µν = Ω2ηµν , (2.7.2)

with conformal factor given by

Ω2 = 4(1 + w2)−1(1 + u2)−1. (2.7.3)
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By defining new coordinates, t′ and r′,

t′ = arctanw + arctan u, r′ = arctanw − arctan u, (2.7.4)

the metric η′
µν in coordinates {t′, r′, θ, ϕ} reads

(ds′)2 = −(dt′)2 + (dr′)2 + sin2 r′(dθ2 + sin2 θdϕ2). (2.7.5)

The metric given by eq. 2.7.5 is precisely the Lorentz metric on the four-dimensional
cylinder, S3 × R, but the coordinate ranges of t′ and r′ are restricted by the coordinate
transformation, which are given by

−π < t′ + r′ < π, −π < t′ − r′ < π, 0 ≤ r′. (2.7.6)

Clearly, the metric is pathological at r′ = 0, r′ = π, θ = 0 and θ = π. The removal of
such singularities also follows from adequate coordinate restrictions. However, note that
the pathological points are not ones associated with large distances and times, as was
the case of the metric given by eq. 2.7.1. Hence, this metric is smooth in the regions of
interest.

The conformal transformation that results in the metric given by eq. 2.7.5 and
coordinate restrictions given by eq. 2.7.6 is referred to as the conformal compactification
of the Minkowski spacetime. The conformal infinity of Minkowski spacetime is defined as
the boundary of the open region, S, given by the coordinate restrictions of eq. 2.7.6 in
the S3 ×R manifold. Consequently, one may view a conformal compactification as a way
to produce a well behaved metric that brings the infinitely “distant” regions of a physical
spacetime in time or space to a finite region in the unphysical spacetime, which is precisely
the boundary ∂S. The conformal infinity of Minkowski spacetime can be naturally divided
into five parts, as detailed below and illustrated in the conformal compactification, fig.
12.

(1) The point I−, called past timelike infinity, given by coordinates t′ = −π , r′ = 0,
i.e., ct→ −∞ at finite r.

(2) The null hypersurface I −, called past null infinity, given by t′ = −π + r′ for 0 <
r′ < π, i.e., ct− r → −∞ at finite ct+ r.

(3) The point I0, called spatial infinity, given by coordinates t′ = 0, r′ = π, i.e., r →∞
at finite ct.

(4) The null hypersurface I +, called future null infinity, given by t′ = π − r′ for
0 < r′ < π, i.e., ct+ r →∞ at finite ct− r.

(5) The point I+, called future timelike infinity, given by coordinates t′ = π , r′ = 0,
i.e., ct→∞ at finite r.
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r′ = π r′ = 0

t′ = π

t′ = 0

t′ = −π

I +

I −

I0

I+

I−

Figure 12 – Conformal compactification of Minkowski spacetime in the manifold S3 ×R.

Source: Adapted from WALD (1).

The interpretation of each of these sets and points follows from the analysis of
Minkowski spacetime in spherical coordinates. But first, note that a conformal transforma-
tion may affect the norm of a vector, but it always leaves its characterization unchanged.
More precisely, it “maps” (see appendix A.3) timelike, spacelike and null vectors into
timelike, spacelike, and null vectors, respectively. Thus, it preserves the causal structure
of the transformed spacetime. In a more general manner, one also has the following result
(1).

Proposition 2.7.1. Let (M, gµν) be a spacetime, ψ denote a conformal isometry, γ be a
curve with tangent vector ℓµ and ∇′

µ denote the connection compatible with Ω2gµν. If ℓµ

is null and obeys ℓν∇νℓ
µ = fℓµ, where f is an arbitrary function on γ, then ℓν∇′

νℓ
µ ∝ ℓµ.

In particular, this result can be interpreted as stating that null geodesics are con-
formally invariant1. Although it is not valid, in general, for timelike or spacelike geodesics,
one can still deduce that all timelike geodesics of Minkowski spacetime begin at I− and
end at I+, and all spacial sections pass through I0 (18). Similarly, all null geodesics be-
1 However, an affine parameter for γ may not be an affine parameter for ψ[γ].
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gin at I − and end at I +. However, note that a non-geodesic timelike curve may end
at I +. By construction, radial null geodesics correspond to ±45° lines in the conformal
diagram (also known as a Penrose diagram (54)) of Minkowski spacetime on the (t′, r′)
plane, fig. 13. Note that the angular coordinates are suppressed, so each point, except for

I +

I −

I+

I0

I−

r
=

0

Figure 13 – Conformal diagram of Minkowski spacetime.

Source: By the author.

I−, I+, I0 and those with r = 0, is a two-sphere of radius r(t′, r′). Furthermore, red lines
correspond to surfaces of constant t, while blue lines correspond to surfaces of constant
r, and a radial null geodesic is represented by a black line inside the diagram. Note that
the red and black lines are “reflected” on r = 0, as the conformal diagram can be drawn
from a part of the conformal compactification without loss of information. In this sense,
one can see that an incoming null geodesic emerges from I −, reaches the “center” of the
spacetime and then emerges as an outgoing null geodesic which will eventually reach I +.

The analysis of the conformal compactification of Minkowski spacetime allows one
to give a precise definition of asymptotic flatness, using the following line of reasoning
and definitions. A spacetime, (M, gµν), is said to be asymptotically simple if it there exists
a spacetime, (M ′, g′

µν), and a conformal isometry, ψ : M →M ′, with conformal factor Ω
such that Ω = 0|∂(ψ[M ]), ∇µΩ ̸= 0|∂(ψ[M ]), ∂(ψ[M ]) is smooth, and every null geodesic has
two endpoints on ∂(ψ[M ]). This definition precisely captures the notion of a spacetime
being asymptotically similar to that of Minkowski, as it is possible to see in detail from its
conditions. By requiring that M be related by a conformal isometry to an open region of
M ′, one demands that ψ[M ] has the same causal structure of M . The restrictions on the
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behavior of the conformal factor are necessary for the correspondence between ∂(ψ[M ])
and the infinity of the transformed spacetime. In particular, Ω = 0|∂(ψ[M ]) implies that
the affine parameter of a null geodesic diverges on ∂(ψ[M ]), which can be interpreted
as the infinite rescaling of the affine parameter at such regions. Moreover, by analysis
of differentiability of the Ricci scalar of g′

µν (18), the condition ∇µΩ ̸= 0|∂(ψ[M ]) implies
that ∇µΩ|∂(ψ[M ]) must be a null vector, which is precisely the normal to I − and I +.
On the other hand, the requirement of ∂(ψ[M ]) to be smooth means that ∂(ψ[M ]) must
be the union of the null hypersurfaces I + and I −, which is denoted by I and is
referred to simply as the infinity of an asymptotically simple spacetime. Namely, not only
is the conformal boundary of M not smooth in I−, I+ and I0, it is also uninteresting
to analyze the spacetime there. In other words, one is not interested in properties of a
spacetime at a finite distance from the sources at early or late times, as well as only
arbitrarily large distances. The limit of interest is precisely the one at large distances at
early or late times, which is associated with the behavior of null geodesics. Finally, the
last requirement excludes the possibility of regions where the gravitational interaction
acts in such a manner as to “trap” null geodesics, meaning that they would not have
endpoints in ∂(ψ[M ]). However, as will be discussed in ch. 3, there are spacetimes of
interest that behave like Minkowski in regions far from the sources, but possess regions of
strong gravitational field that result in such entrapment. Thus, it is necessary to generalize
the definition of asymptotic simplicity to allow for such cases.

A spacetime, (M, gµν), is said to be weakly asymptotically simple if there exists
an asymptotically simple spacetime, (M ′, g′

µν), and a neighborhood, S ′, of ∂(ψ[M ′]) such
that ψ−1[S ′], is isometric to an open set S ⊂ M . Hence, a weakly asymptotically simple
spacetime can be converted to a asymptotically simple one by “ignoring” the regions where
gravity acts in a manner as to “trap” null geodesics. Finally, a spacetime is defined to be
asymptotically flat if it is weakly asymptotically simple and Rµν = 0 on a neighborhood
of ∂(ψ[M ′]). This last condition is merely a requirement that spacetime obeys the vacuum
Einstein’s equation at “infinity”, i.e., Tµν = 0 on a neighborhood of ∂(ψ[M ′]). It should
be noted in spacetimes in which there is electric charge, this condition can be modified to
allow for electromagnetic radiation near I . In light of this definition, one can interpret
asymptotically flat spacetimes as those in which the “distant” at early and late times are
similar to that of Minkowski spacetime. Furthermore, because of the constraints on the
Ricci tensor in such regions, one can justifiably affirm that such behavior is associated with
the lack of an energy distribution. Finally, even if the energy distribution in spacetime
ends up producing regions such that gravity “traps” null geodesics, one can still make a
comparison by considering the regions where such effects do not happen.

These arguments and definitions are illustrated in fig. 14. The asymptotically flat
spacetime, (M, gµν), has a region, R, illustrated in black, for which null geodesics become
“trapped”. Due to our definition of asymptotic flatness, there must be an asymptotically



57

simple spacetime, (M ′, g′
µν), such that there exists an isometry, ψ′ : M → M ′, which

maps the open set S = M\R, into a region of M ′. Additionally, the conformal isometry

(M, gµν)

Asymptotically flat spacetime

(ψ[M ′],Ω2g′µν)

(M ′, g′µν)

Ω = 0

Rµν = 0

Region of “entrapment” of

null geodesics

Asymptotically simple spacetime

Conformal isometry of (M ′, g′µν)

S S′

ψ−1[S′]
ψ′ ψ

∂(ψ[M ′]) = I

Figure 14 – Concept of asymptotically flat spacetimes.

Source: By the author.

of (M ′, g′
µν) is such that there is a neighborhood of I , S ′, for which the region ψ−1[S ′]

is precisely the image of the map ψ′. Moreover, the light gray region in ψ[M ′] is a neigh-
borhood of I such that its inverse image is a region for which Rµν = 0. Lastly, note that
ψ[M ′] must necessarily be bounded, as indicated by the black line (and the value of the
conformal factor there), but the asymptotically simple and asymptotically flat spacetimes
are not. In other words, one should view their illustrations as extending infinitely.
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3 CLASSICAL ASPECTS OF BLACK HOLES

All the machinery is now in place to describe black holes in the framework of
general relativity. Roughly speaking, a black hole is a region of spacetime from which
nothing can “escape”. This “no escape” property can be precisely defined when one is
dealing with an asymptotically flat spacetime, in the sense that the future null infinity,
I +, can characterize a region for which observers and light rays can contemplate “es-
caping” to. In essence, for such spacetimes, the “entrapment” property is directly related
to the behavior of the vector associated with displacements in the radial direction. That
is, the distribution of energy will affect the metric in such a way as to produce a region
whose geometry does not allow light rays or observers to increase their radial coordinate
to a certain value, meaning that they are “trapped” in a region of spacetime. The goal of
this chapter is to make these statements precise, investigate the consequences of these re-
gions, and derive properties for the physical quantities that can be measured by observers
outside of them.

To do so, we first analyze spacetime outside a spherically symmetric distribution
of energy and how the metric behaves depending on the region in which the distribution
is contained. In this manner, we will see that there is a limit for the radius for which
the distribution can be contained and still allow observers and light rays to “escape”
from the effects of the gravitational interaction. Although this analysis is of an idealized
description of an energy distribution, it provides many important results that can be
straightforwardly generalized to other distributions that also give rise to a “no escape”
region. With the support of this simplified model, we will then give a precise definition
of the black hole region of a spacetime based on the concept of asymptotic flatness.
Furthermore, considering the results of causal structure and null geodesic congruences, it
will be possible to deduce several properties for the dynamics of the black holes, which
will be valid for spacetimes that possess globally hyperbolic regions. These properties will
mainly follow from geometrical arguments, but they will also rely on assumptions that
can be stated in the form of the so-called cosmic censor conjecture.

After discussing the black hole region and its boundary, we will study relations for
the surface gravity as measured by observers at the asymptotic region, as well as derive
relations for the mass, angular momentum, and area of black holes that are described
by a time invariant configuration. We will also see that the importance of the black hole
uniqueness theorems follows from another conjecture, namely, that at sufficiently “late
times” after its formation, a black hole is expected to reach a time independent state, so
that it will be completely characterized by three parameters as seen by observers outside
of it: its mass, angular momentum, and electric charge.
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3.1 Schwarzschild spacetime

The analysis of spacetime geometry outside a spherically symmetric distribution
of energy illustrates several properties that are useful for the study of black holes. Due to
its high symmetry, it is a good starting point to analyze the properties of regions where
gravity behaves in such a manner so that nothing can get out. The exterior (i.e., vacuum)
geometry of such energy distributions is given by the following result, known as Birkhoff’s
theorem (2).

Theorem 3.1.1. Let the geometry of a given region of a spacetime be spherically sym-
metric and be a solution of the vacuum (i.e., Tµν = 0) Einstein’s equation. Then that
geometry is locally isometric to Schwarzschild geometry.

This theorem states that spacetime outside a spherically symmetric distribution
of energy must be described by the Schwarzschild metric (i.e., it must be a piece of
Schwarzschild spacetime), which in coordinates {t, r, θ, ϕ}, takes the form

ds2 = −
(

1− rs
r

)
c2dt2 +

(
1− rs

r

)−1
dr2 + r2(dθ2 + sin2 θdϕ2), (3.1.1)

where rs is the Schwarzschild radius (see eq. 1.4). In this sense, Birkhoff’s theorem estab-
lishes the uniqueness of Schwarzschild geometry for the exterior region of an spherically
symmetric energy distribution. Now, from the fact that Schwarzschild metric is indepen-
dent of t, it is possible to roughly see that it is also asymptotically flat, as the components
of the metric in this coordinate system behave like gab = ηab +O(r−1) for large r for all
values of t. Details on the asymptotic flat property of the Schwarzschild spacetime follow-
ing the definition given in § 2.7 will be discussed below. Additionally, the term M in rs

(see eq. 1.4) can be identified as the geometrical quantity associated with the mass of the
energy distribution, as it is the “charge” associated with the gravitational interaction as
measured by an observer at rest at the asymptotic region (i.e., an observer whose radial
coordinate is arbitrarily large), where the gravitational effects can be approximated by
Newtonian gravity.

Regarding the symmetries of the Schwarzschild spacetime, from the discussion of
Lie differentiation in appendix A.3, one knows that in a coordinate system where the
components of a tensor are independent of a coordinate, xa, the Lie derivative of such
tensor with respect to (∂xa)µ vanishes. Thus, ξµ = (∂t)µ is a Killing vector. In particular,
the existence of a timelike Killing vector implies that the orbits of the one-parameter group
of diffeomorphisms generated by it are timelike curves, which can be interpreted as the
invariance of the metric over time translations. A spacetime with a timelike Killing vector
in a neighborhood of infinity, I , is said to be stationary. In fact, Schwarzschild spacetime
obeys the stronger property of being static, as it is stationary and ξµ is hypersurface
orthogonal (see theorem 2.4.1). As per Frobenius’ theorem, this last condition is equivalent
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to requiring the vanishing of the vorticity tensor of the congruence generated by ξµ. If that
were not the case, the orbits of ξµ would favor a direction on the spacelike hypersurfaces
{t = constant}, meaning that spacetime would not be invariant under a time reflection,
i.e., a transformation such as dt → −dt. Hence, Birkhoff’s theorem implies that the
unique solution to the exterior geometry of a spherically symmetric distribution of energy
is also static. This can be interpreted as stating that Einstein’s equation implies that there
exists no monopole gravitational radiation, in the exact same way as Maxwell’s equations
imply that there are no monopole electromagnetic radiation. Additionally, as the metric
components in eq. 3.1.1 are also independent of ϕ, ψµ = (∂ϕ)µ is also a Killing vector.
Together with other two Killing vectors that are a linear combination of ψµ and (∂θ)µ,
they span the group SO(3), which is associated with the invariance of the metric over
rotations in any angular direction, i.e., spherical symmetry. Because of this, one has that
the orbits of this group of isometries in the spacetime will result in two-spheres, so that
the action of the metric on these surfaces must characterize the area of a two-sphere, A.
As such, it is important to note that the coordinate r, which is defined by the area of a
two-sphere,

r =
(
A

4π

)1/2
, (3.1.2)

need not represent the physical distance to the center of a two-sphere.

Even though Schwarzschild spacetime is mostly of interest to analyze the spacetime
outside an spherically symmetric energy distribution, it is relevant to study its global
properties. In this manner, a striking feature of the Schwarzschild metric is that it is
pathological for r = 0 and r = rs. By evaluation of curvature scalars (i.e., quantities
associated with curvature that are invariant) (2), say,

RµναβRµναβ = 12r2
s

r6 , (3.1.3)

it becomes clear that the singular character at r = rs is merely a consequence of the
coordinate system, and in fact, an observer can reach r < rs in a finite proper time (2).
However, the singularity at r = 0 is a physical singularity. Hence, it cannot be eliminated
by a coordinate transformation. This translates to the fact that it is not possible to find
a coordinate system such that the metric is well behaved at r = 0. Now, since the region
r < rs is accessible to observers, it is of interest to analyze how they evolve there. Notice,
however, that in the hypersurface {r = rs}, ξµ and ∇µr (i.e., the vector orthogonal to
hypersurfaces {r = constant}) are null, and in the region r < rs, ξµ is spacelike and ∇µr

is timelike. Thus, for observers that reach the hypersurface {r = rs}, the singularity at
r = 0 is no longer a matter of “where”, but “when”. More precisely, the observer will
end his existence in a finite proper time due to the incompleteness of his geodesic upon
his inevitable encounter with the singularity. Furthermore, note that this behavior is not
restricted to the motion of observers, that is, any light ray that reaches the region r ≤ rs



62

will not only not be able to escape to r > rs, but it will also reach the singularity1 in
a finite affine parameter if it goes into r < rs. Hence, it follows that the hypersurface
{r = rs} is precisely the delimiter of the region of the Schwarzschild spacetime which
observers and light rays cannot escape from.

In order to use the Schwarzschild metric in coordinates {t, r, θ, ϕ} to describe the
entire spacetime that possesses the region r < rs, it is necessary to remove the hypersurface
{r = rs} due to its singular nature. Such a process produces two disjointed open regions,
and the requirement for spacetime to be connected will restrict one’s analysis to only one of
them. Nevertheless, it is possible to perform coordinate transformations as to find a metric
that is not pathological for r = rs, and then extend its domain to the entire spacetime
(18). In particular, the conformal diagram of the Schwarzschild spacetime can then be
developed by performing a conformal transformation of the metric in this appropriate
coordinate system. This can be done by considering the following transformations and
line of reasoning.

First, note that radial null geodesics of the Schwarzschild metric (i.e., ds2 = 0 for
constant dϕ = dθ = 0) must respect the relation

cdt =
(

1− rs
r

)−1
dr. (3.1.4)

It is then useful to define the tortoise coordinate, r′, by

dr′ =
(

1− rs
r

)−1
dr, (3.1.5)

so that radial null geodesics obey cdt = dr′. The coordinate transformation of interest is
one that removes the singular behavior at r = rs and uses coordinates that are represen-
tative of the families of radial null geodesics.

Consider then the transformation

w = exp
(
ct+ r′

2rs

)
, u = − exp

(
r′ − ct

2rs

)
, (3.1.6)

in which the Schwarzschild metric takes the form

ds2 = −4r3
s

r
exp

(
− r

rs

)
dwdu+ r2(dθ2 + sin2 θdϕ2), (3.1.7)

where r = r(w, u) is given implicitly by

wu = −
(
r

rs
− 1

)
exp

(
r

rs

)
. (3.1.8)

The coordinates (w, u) are said to be null, for the same reasons as discussed in the
Minkowski case (see § 2.7). Note that the Schwarzschild metric in coordinates {w, u, θ, ϕ}
1 Evidently, this follows if one considers that general relativity is valid in arbitrarily high cur-

vature regime. That is, at some point in this analysis the Planck scale will be accessible, and
as discussed in ch. 1, the predictions of general relativity may not hold accurately.
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is not pathological for r = rs, thus, one may analytically extend it (55) to describe the
entire region 0 < r < ∞ by allowing {w, u} to take any value in the interval (−∞,∞)
compatible with r > 0. The analytically extended Schwarzschild spacetime is then de-
scribed by the following intervals in these coordinates. The region r > rs corresponds to
w > 0, u < 0, the hypersurface {r = rs} corresponds to w = 0 or u = 0, and the region
r < rs corresponds to w < 0, u > 0. Similarly to the Minkowski case, in order to depict
the entire spacetime in a finite illustration, it is necessary to bring infinity to a finite range
of coordinates. Consider then another coordinate transformation,

w′ = arctanw, u′ = arctan u, (3.1.9)

in which the Schwarzschild metric takes the form

ds2 = − 4r3
s

r cos2 w′ cos2 u′ exp
(
− r

rs

)
dw′du′ + r2(dθ2 + sin2 θdϕ2). (3.1.10)

Hence, the entire range of coordinates {t, r} is depicted by coordinates {w′, u′} in the
interval (−π/2, π/2). Clearly, the metric given in eq. 3.1.10 presents pathologies in these
intervals, but one can reach a well behaved form by performing a conformal transformation
with conformal factor

Ω = cosw′ cosu′, (3.1.11)

which yields the unphysical metric

(ds′)2 = −4r3
s

r
exp

(
− r

rs

)
dw′du′ + r2 cos2 w′ cos2 u′(dθ2 + sin2 θdϕ2). (3.1.12)

This conformal compactification of the analytically extended Schwarzschild space-
time in coordinates {w′, u′} is illustrated in fig. 15, where the angular coordinates have
been suppressed. Thus, each point represents a two-sphere of radius r(w′, u′), except for
some parts of its boundary. The correspondence between the coordinates and the regions
discussed so far is as follows. The hypersurface {r = rs} corresponds to w′ = 0 or u′ = 0,
with different values of time coordinate, t, values depending on the axis. The singularity
at r = 0 corresponds to w′ + u′ = ±π/2. The line w′ = π/2 for −π/2 < u′ < 0 corre-
sponds to the region r →∞, t→∞, as the line u′ = −π/2 for 0 < w′ < π/2 corresponds
to the region r → ∞, t → −∞. In addition, red lines correspond to the hypersurfaces
{t = constant}, blue lines correspond to the hypersurfaces {r = constant} and 45° lines
correspond to radial null geodesics. The change in shape of the lines of the pertinent
hypersurfaces in the region r < rs is due to the change in sign in the norm of ξµ and
∇µr. Finally, the two arrows in the region r < rs are representative of the incoming and
outgoing families of future directed null geodesics orthogonal to the spacelike surface, T .

The conformal diagram of the analytically extended Schwarzschild spacetime is
illustrated in fig. 16. The interpretation of each one of the presented regions follows from
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Figure 15 – Conformal compactification of the analytically extended Schwarzschild space-
time on the plane w′ × u′.

Source: By the author.
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Figure 16 – Conformal diagram of the analytically extended Schwarzschild spacetime.

Source: By the author.

fig. 15. Region I is the region r > rs, and will be the representation of the spacetime in
the vacuum region of any spherically symmetrical distribution of energy. Its asymptotic
behavior is depicted from the limits of the conformal compactification in fig. 15, and
identified in fig. 16 as the null hypersurfaces I − and I +. With this, one can conclude
that Schwarzschild spacetime is asymptotically flat, as from the form of the conformal
factor given by eq. 3.1.11, it is possible to see that it obeys all the properties of the
definition given in § 2.7. Additionally, region II corresponds to r < rs, and the “no escape”
property can be clearly identified, as any observer must decrease its radial coordinate and
any light ray (as represented by the two arrows pointing out of the surface T in fig. 15)
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will also eventually reach the singularity, represented by a thick white line. Since any
light ray emitted in region II must decrease its radial coordinate, the area of its wave
front must decrease (see eq. 3.1.2). Namely, the identification of the coordinates {w′, u′}
as the outgoing and incoming families of future directed null geodesics leads one to the
conclusion that any two-sphere in region II is a trapped surface. Explicit verification
that the expansion of the congruence of null geodesics generated by (∂w′)µ and (∂u′)µ is
everywhere negative in the region r < rs can be found in (51). In contrast, region III
has the exact opposite properties of region II, as any light ray in it must have come from
the singularity and will eventually leave region III. Finally, region IV represents another
asymptotically flat region that is causally disconnected from region I, possessing its own
set of null infinities.

Although the conformal diagram of the analytically extended spacetime gives a
better picture to the analysis of the Schwarzschild spacetime, the extension of the coordi-
nates produces regions whose physical significance is questionable. First, note that region
II will be a product of a spherically symmetric system if the energy distribution is such
that it is contained in a radius r < rs. One can study the plausibility of distributions
of energy to obey such a scenario by considering, for example, the interior of stars. A
star can be approximately described as a self-gravitating sphere of hydrogen supported
by thermal and radiation pressure as a result of the process of nuclear fusion at the core.
As the fuel for the fusion depletes in the later stages of the life of a star, the temperature
will decrease and so will the pressure. However, the final state of the star with T → 0 will
not result in P → 0 because of the degeneracy pressure, as a consequence of the Pauli
exclusion principle (56). Nonetheless, the decrease in pressure will result in a contraction
that can produce a configuration where the mass is contained in a radius r ≤ rs. If such
a configuration were to be produced, then a trapped surface must be formed around the
distribution, and following theorem 2.6.1, the spacetime will be null geodesically incom-
plete. It has been shown that these conclusions hold even if there are small deviations of
spherical symmetry (18). Even without knowledge of theorem 2.6.1, one can still identify
the pathological behavior of gravitational collapse, as the formation of region II will occur
if the star is massive enough1. The critical mass for which the degeneracy pressure will
not be enough to sustain the effects of the gravitational interaction, resulting in the star
being contained in an arbitrarily small radius, is given by Mc ≃ 1.4 M⊙, known as the
Chandrasekhar limit. Details on the derivation of this limit can be found in, e.g., (55).

Consequently, at the late stages of the life of a star with a mass greater than
Mc and with small deviations of spherical symmetry, the gravitational effects will not be
sustained, resulting in a configuration where region II will form, and a region where the
“no escape” property will be an undeniable product of the collapse. The collapse of such
1 Indeed, the formation of region II can occur in an arbitrarily low curvature regime (see eq.

3.1.3).
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a distribution of energy can be illustrated in the conformal diagram of the Schwarzschild
spacetime, as shown in fig. 17a. The exterior region is depicted in light gray, which,
from Birkhoff’s theorem, must be a piece of the conformal diagram of the analytically
extended Schwarzschild spacetime. The interior of the distribution is depicted in gray,
where the geometry depends on the details of the energy-momentum tensor, which has to
be spherically symmetric. In such an illustration, the gray area covers regions III and IV,
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Figure 17 – Collapse of a spherically symmetric distribution of energy in the conformal
diagram of the extended Schwarzschild spacetime.

Source: By the author.

and at some point its surface crosses the Schwarzschild radius, which represents the point
of no return when it comes to the collapse, i.e., all the distribution and signals emitted from
it will unavoidably reach the singularity. Note that, in the context of gravitational collapse,
regions III and IV never form, as a consequence of the fact that the Schwarzschild metric
is only a solution to the exterior region. Fig. 17b is the conformal diagram of interest,
illustrating all the important properties of regions I and II, as well as the collapsing
spherically symmetric energy distribution in a finite drawing.

The collapse of a spherically symmetric energy distribution can also be illustrated
in a spacetime diagram, fig. 18. In such representation, only the incoming null geodesics
are at 45° 1, and consequently, light cones do not necessarily form 45°. Now that only one
space dimension is suppressed, the structure of the collapse becomes even more obvious.
The event a indicates the formation of the region with the “no escape” property, since
no event in its causal future has a radial coordinate greater than rs. Although details
about the light cones inside the dark region are dependent on the details of the energy
distribution (which evidently dictates how outgoing null geodesics evolve from a to the

1 This can be done by using the incoming Eddington–Finkelstein coordinates (see (18)).
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surface of the distribution), after the outgoing null geodesics exit the distribution, they
will either reach the singularity or remain with radial coordinate r = rs. Indeed, this
translates to the conclusion that any two-sphere in the region r < rs will be a trapped
surface. As indicated, the surface T is a trapped surface, and one can picture the two
arrows coming out of it as the incoming and outgoing null families of geodesics, similar
to the ones depicted in fig. 15.
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Figure 18 – Spacetime diagram of a spherically symmetric gravitational collapse.

Source: Adapted from PENROSE (9).

Furthermore, the behavior of the outgoing null geodesics that exit the energy
distribution just before it reaches r = rs indicates how observers on the outside perceive
the collapse, which can be deduced by the following line of reasoning. Consider an observer
with radial coordinate r > rs whose world line coincides with the integral curves of the
timelike Killing vector, ξµ. Its normalized tangent reads

ℓµ = ξµ

V (r) , (3.1.13)

where
V (r) = (−c−2ξµξµ(r))1/2 = (−c−2gtt(r))1/2. (3.1.14)
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In order words, normalization of ℓµ translates to

dτ

dt
= V (r), (3.1.15)

where τ denotes the observer’s proper time. Consequently, the factor V is known as redshift
factor, as it relates the proper time of an observer following the orbit of ξµ at r > rs to
the proper time of an observer following the orbit of ξµ at the asymptotic region (i.e.,
one with r → ∞). Namely, a light ray emitted at r > rs will reach the observer at the
asymptotic region, whose proper time coincides with the coordinate time, t, redshifted
by a factor of V . Hence, one can relate the passage of time for an observer following the
orbit of ξµ at r and r′ by

dτ

dτ ′ = V (r)
V (r′) . (3.1.16)

Evidently, the behavior of the redshift factor as r → rs indicates that the gravi-
tational time dilation diverges (see eq. 3.1.1), which means that for any observer1 with
radial coordinate r > rs, it takes an infinite amount of time for any energy distribution
to reach r = rs. In essence, an observer at r > rs would perceive the energy distribution
apparently slow down as it gets closer to r = rs, and the light coming from it would
get arbitrarily redshifted. As commented earlier, observers can reach r = rs in a finite
amount of proper time, and the conclusion that for observers at r > rs this takes an
infinite amount of time is merely another consequence of the conclusion that the notion
of simultaneity is observer dependent.

3.2 Black holes

In the last section, the analysis of the Schwarzschild spacetime concluded that
spherically symmetric distributions of energy contained in a radius r ≤ rs would result
in a region such that no observer or light ray that enters it could reach r > rs. This
“no escape” property can be precisely defined for any asymptotically flat spacetime2, if
one considers that the causal past of the future null infinity does not contain the entire
spacetime, as a consequence of such regions. In other words, there are events in such
spacetimes that are not causally connected to I +. However, in order to evaluate which
events are causally connected to the “infinitely distant” regions, it is necessary to have
knowledge of the development of the entire spacetime. Thus, it is convenient to restrict
one’s analysis to asymptotic flat spacetimes that are causally and deterministic “well
behaved”, or at least, posses regions that are.
1 This conclusion generalizes to observers that are not following the integral curves of ξµ but

remain outside the black hole, as the variation of their spatial coordinates would contribute
with a finite time dilation factor.

2 It is also possible to give a satisfying notion of a black hole when one is dealing with a spacetime
which is not asymptotically flat but has regions that can be identified as “infinity” (1).
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More precisely, consider an asymptotically flat spacetime, (M, gµν), with associ-
ated conformal isometry1, ψ, to (M ′, g′

µν). The spacetime (M, gµν) is said to be strongly
asymptotically predictable if there exists an open set, A′ ⊂M ′, with ψ[M ] ∩ J−(I +) ⊂ A′

such that (A′, g′
µν) is globally hyperbolic. That is, the region ψ−1[A′] is a globally hyper-

bolic region of (M, gµν). The black hole region of a strongly asymptotically predictable
spacetime, (M, gµν), is defined to be

B = M\ψ−1[J−(I +)]. (3.2.1)

This definition can be interpreted as stating that the development of the spacetime on
the boundary of the black hole region and outside of it does not depend on its interior.
In light of this, an asymptotically flat spacetime which fails to be strongly asymptotically
predictable is said to possess a naked singularity (see (57) for a detailed discussion).

Note that the singularity in the gravitational collapse of a spherically symmetric
energy distribution is not in J−(I +) (see the conformal diagram, fig. 17b), as a conse-
quence of the black hole region “clothing” it. A naked singularity, on the other hand, can
be causally connected to I +. For example, the singularity in region III of the conformal
diagram of the analytically extended Schwarzschild spacetime (see fig 16) is in J−(I +),
which is unphysical in the context of gravitational collapse (in fact, because it has the
exact opposite properties of the region II, region III is referred to as a white hole). Many
considerations over the past decades have been made regarding the general physical plau-
sibility of naked singularities, and the lack of successful counter examples (see, e.g., (58))
have led to a conjecture, in which one of its formulations takes the form stated below
(usually referred to as the weak version).

Cosmic censor conjecture. All physical spacetimes are globally hyperbolic.

Since a spacetime possessing an arbitrary naked singularity cannot be globally
hyperbolic, the above formulation of the cosmic censor conjecture can be interpreted
as stating that naked singularities, except for a possible initial cosmological one (which
under certain conditions, is also predicted by results given in (13)), cannot be present
in any physically reasonable spacetime, since they can be regarded as a way to violate
predictability of the spacetime (unless, of course, one has the knowledge of how to describe
spacetime singularities and impose adequate boundary conditions). In this sense, the
cosmic censor conjecture can be understood as the requirement that gravitational collapse

1 The “middle” asymptotically simple spacetime (see fig. 14) is not mentioned for simplicity,
its existence is implied by our definition of asymptotic flatness (see § 2.7). In particular, one
may picture the “associated conformal isometry”, ψ as the composition of the maps ψ and ψ′

illustrated in fig. 14.
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always results in a predictable black hole1. Although the cosmic censor conjecture is
believed to be an excellent assumption in an extensive way mainly due to indirect evidence,
proof of it is an open problem in general relativity. Lastly, more precise formulations can
be made regarding the predictability from data on Cauchy hypersurfaces, which can be
found in (1). The reader can also find a more comprehensive and philosophical discussion
in (59).

By restricting the analysis of black holes to strongly asymptotically predictable
spacetimes, the interpretation of a Cauchy hypersurface as an “instant of time” can be
used to define a black hole at a given time. Let ψ−1[A′] ⊂ M be the globally hyperbolic
region of a strongly asymptotically predictable spacetime, (M, gµν), and let Σ denote a
Cauchy hypersurface. The black hole region at a time Σ is defined to be B ∩Σ, and each
connected component of B ∩ Σ is a black hole at a time Σ. The following theorem gives
a property of the evolution of black holes over Cauchy hypersurfaces.

Theorem 3.2.1. Let (M, gµν) be a strongly asymptotically predictable spacetime and let
Σ2 and Σ1 be Cauchy hypersurfaces for ψ−1[A′] ⊂ M , with Σ2 ⊂ I+(Σ1). Let B1 be a
nonempty connected component of B ∩ Σ1. Then J+(B1) ∩ Σ2 ̸= ∅ and is contained in a
single connected component of B ∩ Σ2.

Proof. J+(B1) ∩ Σ2 ̸= ∅ follows from the condition that Σ1 and Σ2 are Cauchy hyper-
surfaces and I+(Σ1) ⊃ Σ2. From the definition of the black hole region, one has that
J+(B1) ⊂ B, which means that J+(B1)∩Σ2 is contained in B∩Σ2. Now, if J+(B1)∩Σ2

were not connected, then it would be possible to find disjoint open sets, S and S ′ con-
tained in Σ2 such that S∩J+(B1) ̸= ∅, S ′∩J+(B1) ̸= ∅ and S∪S ′ = J+(B1)∩Σ2. Then,
one would have that B1∩I−(S) ̸= ∅, B1∩I−(S ′) ̸= ∅ and B1 ⊂ I−(S)∩I−(S ′). However,
no point a ∈ B1 could lie in both I−(S) and I−(S ′), as it would be possible to divide
timelike vectors at a into two nonempty disjoint sets, contradicting the connectedness of
the set of future directed vectors at a (see theorem A.1.2 and proposition 2.2.1). Hence,
it would be possible to write B1 as the union of the disjoint open sets I−(S) ∩ Σ1 and
I−(S ′) ∩ Σ1, contradicting its connectedness. Thus, J+(B1) ∩ Σ2 is connected.

This result states that a black hole cannot disappear from the strongly asymptoti-
cally predictable spacetime, i.e., J+(B1)∩Σ2 ̸= ∅, and it cannot bifurcate, as J+(B1)∩Σ2

must be contained in a single connected component of the black hole region in Σ2. It should
be noted that it has no dependence on Einstein’s equation or conditions respected by the
energy distribution in spacetime, as it is a consequence of the properties of Cauchy hy-

1 Note that since the definition of geodesic completeness relies affine parameter range and such
a concept is not necessarily conformally invariant (see § 2.7), we will also require geodesic
completeness in the physical spacetime.
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persurfaces and that B ∩ ψ−1[J−(I +)] = ∅. The following result relates the existence of
trapped surfaces with the black hole region, proof of which can be found in (18).

Proposition 3.2.2. Let (M, gµν) be a strongly asymptotically predictable spacetime satis-
fying Rµνℓ

µℓν ≥ 0 for all null ℓµ. Suppose M contains a trapped surface, T . Then T ⊂ B.

Thus, in strongly asymptotically predictable spacetimes where Einstein’s equation
and the weak or strong energy condition hold, a trapped surface implies that the spacetime
possesses a non-empty black hole region. However, the converse is not true, a black hole
region does not imply the existence of a trapped surface. Furthermore, from theorem 2.6.1,
black holes can then be associated with singularities under certain conditions, which will,
of course, not be naked. Lastly, note that although the definition of the black hole region
requires knowledge of the entire development of spacetime, one can use local properties
(in time and space) to locate a connected component of the black hole region if one can
detect trapped surfaces.

The definition of a variation of the concept of a trapped surface will also be use-
ful for the discussion of further properties of black holes. Let (M, gµν) be a strongly
asymptotically predictable spacetime. An outer trapped surface is a compact spacelike
two-dimensional submanifold of M such that the expansion of the orthogonal outgoing
future directed null geodesic congruence to it is everywhere nonpositive, i.e., θ ≤ 0. That
is, an outer trapped surface differs from a trapped surface simply because the expansion
of the “outgoing” future directed null congruence may vanish, instead of being manifestly
negative. With this definition, the trapped region, T , at a time Σ, is the set of all points
a ∈ Σ such that there is an outer trapped surface in Σ through a. The apparent horizon,
A , is the boundary of the trapped region, A = ∂T . The outer (inner) boundary ∂T is
called the outer (inner) apparent horizon. The following result relates the existence of
these sets with the black hole region at a time Σ, proof of which can be found in (18).

Proposition 3.2.3. Let (M, gµν) be a strongly asymptotically predictable spacetime satis-
fying Rµνℓ

µℓν ≥ 0 for all null ℓµ. Let Σ be a Cauchy hypersurface for the globally hyperbolic
region ψ−1[A′] ⊂M and T ⊂ Σ be a trapped region. Then T ⊂ BΣ and the outer apparent
horizon is a surface such that the expansion of its outgoing orthogonal future directed null
congruence vanishes.

Under the same assumptions of prop. 3.2.2, this proposition shows that the trapped
region, and thus, the apparent horizon, must lie inside the black hole region. These proper-
ties of the trapped region and the apparent horizon can be seen in the conformal diagram
of the analytically extended Schwarzschild spacetime, fig. 16. Evidently, in such case, the
trapped region coincides with the black hole region, and the outer apparent horizon co-
incides with the boundary of BΣ, which is precisely the intersection of the hypersurface
{r = rs} with the Cauchy hypersurface, Σ.
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3.3 Event horizon

Let (M, gµν) be a strongly asymptotically predictable spacetime. The event hori-
zon, H, of (M, gµν) is the boundary of the black hole region (see eq. 3.2.1) in the physical
spacetime, H = ∂(ψ−1[J−(I +)]). Since the event horizon does not contain I +, it is
made only of the null geodesics (see proposition 2.7.1) in ∂(J−(I +))\I +, and thus, H
is a null hypersurface. In fact, one can verify that the event horizon is a part of the
black hole region by the following line of reasoning. Let a, a′ ∈ I +, a′ ∈ J+(a) (with
the causal past evaluated at the unphysical spacetime) and another event, a′′, such that
a′′ ∈ ψ[M ] ∩ J−(a). Then, following the same argumentation as the one presented in the
proof of proposition 2.2.2, one can conclude that a′′ ∈ I−(a′). Since one may apply this
logic to any two events located in arbitrarily large parameter of the null geodesic genera-
tors of I +, one then concludes that ψ−1[J−(I +)] = ψ−1[I−(I +)]. Hence, the black hole
region is closed in the physical spacetime, i.e., H ⊂ B. In particular, this means that one
may define the black hole region, equivalently, as B = M\ψ−1[I−(I +)].

Additionally, by theorem 2.2.4, the event horizon must be generated by future
inextendible null geodesics contained entirely in it, as no generator of H can have a future
endpoint on I +. Consequently, the generators of H cannot develop caustics, since that
would mean that the generator has left ∂(ψ−1[J−(I +)]). Nonetheless, a generator may
enter H at a caustic (which can happen if the black hole absorbs matter or radiation,
or when it is formed, as exemplified by the event a in fig. 18), but once it enters, it
can never leave, since it would be in contradiction with theorem 2.2.4. Lastly, note that
ψ[H] ⊂ ψ[M ] ∩ J−(I +) ⊂ A′, where A′ is the globally hyperbolic region of the strongly
asymptotically predictable spacetime. As stated above, this condition does not exclude
the possibility of, for example, the null geodesic generators of H in the physical spacetime
to be future incomplete. In this sense, one should regard this as an additional assumption
for the physical spacetime.

Similarly as the intersection of the black hole region with a Cauchy hypersurface
was used to define a black hole at a given time, one can define the event horizon at a
time, Σ, to be H ∩ Σ, which is a spacelike two-dimensional submanifold of Σ. Similarly,
each connected component of H ∩Σ is the event horizon of a black hole at a time Σ. The
next theorem gives an important result regarding the evolution of the event horizon over
Cauchy hypersurfaces, originally derived in (17)1.

Theorem 3.3.1. Let (M, gµν) be a strongly asymptotically predictable spacetime satisfying
Rµνℓ

µℓν ≥ 0 for all ℓµ null. Let Σ1 and Σ2 be Cauchy hypersurfaces for the globally
hyperbolic region ψ−1[A′] ⊂M with Σ2 ⊂ I+(Σ1) and let H1 = H ∩Σ1 and H2 = H ∩Σ2.
Then the area of H2 is greater or equal to the area of H1.

1 A more general version of this theorem can be found in (60).
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Proof. Since through each point in H1 passes precisely one null geodesic generator of H,
one can construct a map f : H1 →H2 with f [H1] ⊆H2 by following the generators from
Σ1 to Σ2. As I+(Σ1) ⊃ Σ2, the variation of the area mapped by following the generators
from Σ1 to Σ2 is given by the expansion of the generators of H. Hence, it suffices to show
that the expansion of the null geodesic generators of the event horizon is non-negative.
Suppose θ < 0 at a ∈H1, such that through it passes the null geodesic γ. Assuming that
the null geodesics in H are complete, it follows from proposition 2.5.3 that within finite
affine parameter there will be a point a′ ∈ γ conjugate to a, which means that points in
γ beyond a′ are timelike related to a. Thus, γ must have left H at a′, contradicting the
result that the null generators of the horizon have to be contained entirely in it, as per
theorem 2.2.4. Hence, θ ≥ 0 everywhere on H.

Note that this theorem relies on the assumption that the null geodesic generators
of the event horizon are complete, which will be the case if one considers that singularities
do not develop on H. Furthermore, it also requires that Rµνℓ

µℓν ≥ 0 for all null ℓµ, which
will be the case if Einstein’s equation and the strong or weak energy condition hold. In
particular, the development of caustics on H can only happen if the area of the event
horizon at a given time increases, i.e., a generator entering H rather than leaving it.
Finally, this result concerns the evolution of HΣ, which is the event horizon of the black
hole region at a time Σ. Because this is a global property (in terms of a spatial section) of
the black hole region, one can ask if for a spacetime containing multiple black holes at a
time Σ one of them could decrease the area of its event horizon while being “compensated”
by a greater increase in the area of others. In other words, one can ask if the results of the
theorem hold locally. It has been shown that this is indeed the case (61), as if a connected
component of H2 has a smaller area than any connected component of H1, then it must
have formed at a time Σ such that Σ1 < Σ < Σ2, since theorem 3.2.1 states that black
holes cannot bifurcate.

Fig. 19 illustrates the dynamics of the event horizon over Cauchy hypersurfaces.
Namely, at a time Σ, there exists a black hole whose event horizon area is given by S1(Σ),
and at the event a ∈ Σ, another black hole forms. Following, at a time Σ′, the black
hole formed at a time Σ and the other one merge, and at a time Σ′′, there are again two
black holes. Now, if the area of the event horizon of the smaller black hole at Σ′′, given
by S3(Σ′′), is smaller than both S1(Σ′) and S2(Σ′), then it must have formed in a time
between Σ′ and Σ′′.

To conclude this section, a property of the event horizon of stationary spacetimes
is presented. To state the pertinent result, it is necessary to first define the notion of a
Killing horizon. A null hypersurface whose normal vector is a Killing vector is said to be
a Killing horizon. The next result, derived originally in (11), states that the event horizon
of a stationary black hole must be a Killing horizon, and is known as the strong rigidity
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Figure 19 – Spacetime diagram illustrating the dynamics of connected components of H .

Source: By the author.

theorem (see also (34) for a convenient statement).

Theorem 3.3.2. Let (M, gµν) be an strongly asymptotically predictable stationary space-
time which obeys the Einstein’s equation such that the metric and the matter fields are
analytic. Then H is a Killing horizon.

Theorem 3.3.2 is merely a consequence of the fact that, in stationary spacetimes,
the expansion of the null geodesic generators of the event horizon must vanish identically,
so that the area of H is invariant over time translations. More precisely, the Killing
vector associated with the time translation symmetry, ξµ (see § 3.1), must be tangent to
H, which means that it must be spacelike or null. If that were not the case, H would not
be mapped into itself along the orbits of ξµ, thus contradicting the stationary property
of spacetime. For instance, ξµ is the normal to the event horizon of a Schwarzschild black
hole (i.e., a black hole described by the Schwarzschild metric). Consequently, since the
expansion of the null vector normal to H vanishes, the event horizon and outer apparent
horizon of a stationary black hole coincide.

It should be noted that the Killing horizon characteristic of the event horizon of a
stationary black hole can also be deduced without invoking Einstein’s equation, relying on
purely geometrical arguments, defined as follows. An axisymmetric spacetime possesses
a spacelike Killing vector, ψµ, associated with rotations at infinity, that is, its orbits are
closed curves of length 2π in a neighborhood of I . A spacetime is said to be stationary
and axisymmetric if the Killing vectors associated with these isometries commute. A
stationary and axisymmetric spacetime is said to possess the t-ϕ orthogonality property if
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the two planes spanned by ξµ and ψµ are orthogonal to a family of surfaces. More details
on these properties can be found in (1).

In particular, it can be shown (20) that in a static or stationary spacetime with
the t-ϕ orthogonality property, the event horizon must be a Killing horizon. This result
is known as the weak rigidity theorem. This result is of significance because, although
theorem 3.3.2 is an interesting result, the assumption that the metric and matter fields
are analytic has no physical justification. In this sense, a purely geometrical result provides
another rationale for this property.

3.4 Surface gravity

The purpose of this section is to introduce a scalar that can be defined for null
hypersurfaces and extended to Killing horizons, which will be of great importance to the
analysis of classical and semiclassical aspects of black holes. Now, the definition of this
quantity does not rely on the assumption that the event horizon is a Killing horizon,
but several physically significant properties of it do. Hence, it is of interest to restrict
this discussion to stationary black holes. In particular, we will also see that the physical
interpretation of this quantity can be easily investigated in the case of a Schwarschild
black hole. For simplicity, geometrized units will be adopted in this section.

Since the event horizon is a null hypersurface, its normal vector, χµ, must respect

χµχµ
H= 0, (3.4.1)

where the sign H was used on the equality to state that it is only valid on H. Since
the vector ∇µ(χνχν) must also be normal to the horizon (see the remarks below theorem
2.4.1), one can define a scalar, κ, to be the proportionality factor between these two
vectors,

∇µ(χνχν) H= −2κχµ, (3.4.2)

which is equivalently to writing
χν∇νχ

µ H= κχµ, (3.4.3)

as per Killing’s equation. It is also possible to find an explicit relation for κ by noting
that since χµ is hypersurface orthogonal on the horizon, it obeys χ[µ∇νχα]

H= 0. As a
consequence of Killing’s equation, Frobenius’ theorem yields

χµ∇νχα
H= −2χ[ν∇α]χµ. (3.4.4)

By contracting eq. 3.4.4 with ∇νχα, one finds

χµ(∇νχα)(∇νχα) H= (∇νχα)(χν∇αχµ − χα∇νχµ)
H= χν(∇νχα)(∇αχµ)− χα(∇νχα)(∇νχµ)
H= 2(χν∇νχα)(∇αχµ), (3.4.5)
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in which Killing’s equation was used and the indices were relabeled. By using eq. 3.4.3
repeatedly, one obtains

κ2 H= −1
2(∇µχν)(∇µχν), (3.4.6)

which is the desired relation. Note that this relation is equivalent to eq. 3.4.3 in the case
where a null hypersurface is a Killing horizon, but is generally more efficient to evaluate
the explicit form of κ through eq. 3.4.6.

To investigate the physical interpretation of κ for an event horizon, it is convenient
to analyze the case of a Schwarzschild black hole. Consider the observer with four-velocity
ℓµ, as given by eq. 3.1.13. One can verify if such an observer at r > rs follows a geodesic
by evaluating if its tangent respects the geodesic equation. This evaluation yields

aµ = ℓν∇νℓ
µ

= ξν

V
∇ν

ξµ

V

= ξν∇νξ
µ

V 2 + ξνξµ

V
∇ν

1
V

= −ξ
ν∇µξν
V 2 − ξνξµ

2V 4∇νV
2

= ∇
µ(−ξνξν)

2V 2 + ξµξνξα

V 4 ∇νξα

= ∇
µV

V

= ξν∇νξ
µ

(−ξαξα) , (3.4.7)

as the last term on the third line vanishes due to the contraction of a symmetric tensor
with an antisymmetric one, and Killing’s equation as well as ∇µV 2/2V 2 = ∇µV/V were
used. As it can be readily verified that ξµ is not proportional to ∇µV , this result shows
that an observer following an orbit of ξµ which is not at the asymptotic region is not in
a geodesic motion. That is, it is necessary to apply an acceleration for his world line to
remain an integral curve of ξµ, whose module is given by

a = (aµaµ)1/2 = (ξν∇νξ
µξα∇αξµ)1/2

(−ξβξβ) . (3.4.8)

To continue, it is useful to consider that this acceleration is being applied by an observer
with four-velocity ℓµ at the asymptotic region through a massless inextendible string. In
order to evaluate the acceleration the observer at infinity must be exerting on the string,
consider the following line of reasoning.

Let ar denote the module of the local acceleration and let a∞ denote the module
of the acceleration measured at infinity, as illustrated in fig. 20. In order to “pull” or
“release” a unit mass test point-like body that is following an integral curve of ξµ, the
observer at infinity must apply a force such that the work done is dW∞ = a∞dℓ. Similarly,
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the work applied to the unit mass body is measured locally to be dWr = ardℓ, since the
string is ideal and thus, dℓ must be the same in both cases. Clearly, these two variations
of energy cannot be equal, otherwise energy could be created by sending light rays from
one end of the string to the other (as per the redshift factor, V ). The proportionality
factor between a∞ and ar can be found precisely from this fact, as the passage of time
for the observer at r is not the same for the one at infinity. Therefore, for energy to be
conserved, it is necessary that

a∞ = V (r)ar. (3.4.9)

V → 1

r →∞

V = (−gtt(r))1/2

r

Massless inextendible string

aµ(r)
a
µ (r → ∞)

a
µ (r → ∞)

aµ(r)

Central
region

`µ
`µ

Figure 20 – Spacetime diagram for the evaluation of a∞.

Source: By the author.

To proceed, note that any Killing vector must obey

χ[µ∇νχα] = 2!
3!(χµ∇[νχα] + χν∇[αχµ] + χα∇[µχν])

= 1
3(χµ∇νχα + χν∇αχµ + χα∇µχν)

= 1
3(χµ∇νχα + χν∇αχµ − χα∇νχµ). (3.4.10)

Contracting eq. 3.4.10 with itself with all the indices raised yields

3(χ[µ∇νχα])(χ[µ∇νχα]) = χµχµ(∇νχα)(∇νχα)− 2χµχν(∇νχα)(∇µχα). (3.4.11)

If one divides eq. 3.4.11 by the norm of χµ and takes the limit r → rs, one finds that
the right hand side must vanish. This can be deduced from the fact that, if κ ̸= 0, then
∇µ(χνχν) ̸= 0 on the horizon (see the remarks below theorem 2.4.1), while Frobenius’
theorem implies that

∇β(χ[µ∇νχα])(χ[µ∇νχα]) = 2χ[µ∇νχα]∇βχ[µ∇νχα]
H= 0. (3.4.12)
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Thus, L’Hopital’s rule (62) implies that the limit of the left hand side of eq. 3.4.11 divided
by χµχµ as r → rs results in

lim
r→rs

[(∇νχα)(∇νχα)] = lim
r→rs

[
2χµχν(∇νχα)(∇µχα)

(−χβχβ)

]
, (3.4.13)

which by using eq. 3.4.6 reduces to

κ = lim
r→rs

[
(χν∇νχα)1/2(χµ∇µχα)1/2

(−χβχβ)1/2

]
. (3.4.14)

Finally, for a Schwarzschild black hole, χµ = ξµ, and using eqs. 3.1.14 and 3.4.8 yields

κ = lim
r→rs

[V (r)ar]. (3.4.15)

Hence, κ is exactly the acceleration measured by an observer following the orbit of
ξµ at the asymptotic region to hold a unit mass test point-like body at a constant radial
coordinate as r → rs, which can be interpreted as the gravitational acceleration1 at the
event horizon of a Schwarzschild black hole. Due to this interpretation, κ is referred to
as the surface gravity of a stationary black hole. It should be noted that the acceleration
necessary to keep a particle “at rest” at the event horizon of a black hole, as measured
from the asymptotic region, can be evaluated for any black hole (but details about the
spacetime would be necessary). However, most of the interesting properties of κ rely on
the assumption that the black hole is stationary.

The value of κ for the Schwarzschild black hole can be computed using eq. 3.4.6.
Since the null Killing vector normal to the event horizon is ξµ, eq. 3.4.6 reads,

κ2 H= −1
2(∇µξν)(∇µξν). (3.4.16)

To evaluate the surface gravity, one makes use of eq. A.3.16 and notes that

∇µξν = gµα∇αξ
ν = gµα(∂αξν + Γναβξβ). (3.4.17)

Since ξµ = (∂t)µ, it is not difficult to conclude2 that the only nonvanishing independent
component of ∇µξν is ∇rξt = −rs/2r2. As ∇rξt = −∇tξr, eq. 3.4.16 reads

κ2 = −grrgtt(∇rξt)2
∣∣∣∣
r=rs

= r2
s

4r4

∣∣∣∣
r=rs

. (3.4.18)

Thus, restoring the constants, the surface gravity of the Schwarzschild black hole is

κ = c2

2rs
. (3.4.19)

1 Although κ is finite, the local acceleration, ars , diverges.
2 This conclusion follows from the Christoffel symbols presented in appendix B.1. The metric

presented there is a more general one, but it reduces to the Schwarschild metric when the
factor a = 0. More details on this metric are given in § 3.5.
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It follows from the explicit form of the surface gravity of the Schwarzschild black
hole that it is constant over the event horizon. In fact, this result can be proven to be
much more general. In order to investigate explicitly the variation of κ over the event
horizon of any stationary black hole, one needs an adequate operator to do so. Since the
surface gravity is defined only on H, it can only be differentiated in directions tangent
to the event horizon. One would assume that a choice of operator to measure the change
of κ over H would be the projector operator associated with its metric, but since H is a
null hypersurface, no such natural operator exists. Nevertheless, such differentiation can
be done by considering the tensor1 ϵµναβχβ, where ϵµναβ is the volume element of M .
Since this tensor is tangent to the horizon (in the sense that it is orthogonal to any vector
normal to it), one may apply ϵµναβχβ∇α to any equation holding there, and its action
will give information about the variation of said quantity over the horizon. Moreover,
due to the antisymmetric property of ϵµναβ, one can apply, equivalently, ϵµναβχ[β∇α]. For
simplicity, the development of calculations can be made by applying only χ[β∇α] and then
contracting with the volume element at the end.

By applying χ[β∇α] to eq. 3.4.3, one obtains

χµχ[β∇α]κ
H= χ[β∇α](χν∇νχµ)︸ ︷︷ ︸

(I)

−κχ[β∇α]χµ. (3.4.20)

Note that (I) can be written as

χ[β∇α](χν∇νχµ) = (χ[β∇α]χ
ν)(∇νχµ) + χνχ[β∇α]∇νχµ

H= κχ[β∇α]χµ − χνRνµ[α
σχβ]χσ, (3.4.21)

where eqs. 2.1.8, 3.4.3 were used and eq. 3.4.4 was used twice. Due to the antisymmetry
of the first two indices of the Riemann tensor, as per eq. A.4.5, eq. 3.4.20 then reads

χµχ[β∇α]κ
H= χνRµν[α

σχβ]χσ. (3.4.22)

One’s goal now is to rewrite the right hand side of eq. 3.4.22 to find a relation for χ[β∇α]κ.
To proceed, apply χ[β∇α] to eq. 3.4.4, which yields

(χ[β∇σ]χµ)(∇νχα)︸ ︷︷ ︸
(II)

+χµχ[β∇σ]∇νχα = −2(χ[β∇σ]χ[ν)∇α]χµ︸ ︷︷ ︸
(III)

−2(χ[β∇σ]∇[αχ|µ|)χν].

(3.4.23)
Eq. 3.4.23 can be simplified by noting that

(II)− (III) = (χ[β∇σ]χµ)(∇νχα) + (χ[β∇σ]χν)∇αχµ − (χ[β∇σ]χα)∇νχµ

= −1
2[(χµ∇βχσ)(∇νχα) + (χν∇βχσ)∇αχµ − (χα∇βχσ)∇νχµ]

= −1
2(∇βχσ)[(χµ∇νχα + 2χ[ν∇α]χµ] H= 0. (3.4.24)

1 This tensor should not be thought of as the volume element of H, since it does not obey eq.
A.5.6. Evidently, there is no such tensor.
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Consequently, using eq. 2.1.8, eq. 3.4.23 yields

−χµRνα[σ
δχβ]χδ = 2χ[νRα]µ[σ

δχβ]χδ. (3.4.25)

By contracting gσµ with eq. 3.4.25, one finds

−χµRνα[µ
δχβ]χδ = 2χ[νRα]

µ
[µ
δχβ]χδ,

−χβRναµ
δχµχδ + χδRναβ

δχµχ
µ = χ[νRα]µ

µδχβχδ − χ[νRα]µβ
δχµχδ. (3.4.26)

Note that the left hand side of eq. 3.4.26 vanishes at H, as the first term is the contraction
of a symmetric tensor with and antisymmetric one, whereas the second term is multiplied
by the norm of a null vector. Therefore, by using that Rαµ

µδ = −Rα
δ, eqs. A.4.4, A.4.5

and A.4.7, it is possible to find

−χ[νRα]
δχβχδ

H= χµRβµ[α
δχν]χδ, (3.4.27)

which is the desired relation to use in eq. 3.4.22, allowing one to write

χ[β∇α]κ
H= −χ[βRα]

µχµ. (3.4.28)

Eq. 3.4.28 was derived using only geometrical arguments, being a consequence of
the fact that κ was defined by eq. 3.4.3 and that χµ is the normal to a Killing horizon.
Eq. 3.4.28 is of interest because one can use it to relate the variation of κ over the horizon
with the energy-momentum tensor. More specifically, considering Einstein’s equation, one
can apply χµ twice with the adequate choice of indices, so that one finds

χαRµνχ
ν − 1

2Rχαgµνχ
ν = 8πχαTµνχν . (3.4.29)

By antisymetrizing over (αµ), one obtains

χ[αRµ]
νχν = 8πχ[αTµ]

νχν . (3.4.30)

Now, since the black hole is stationary, the expansion of the null geodesic generators of
H must vanish, and from the Killing horizon property of H, one has that ∇(µχν) = 0.
Since the generators of a null geodesic congruence must have a vanishing vorticity tensor,
Raychaudhuri’s equation yields

Rµνχ
µχν

H= 0. (3.4.31)

From Einstein’s equation, eq. 3.4.31 then implies that Tµνχµχν H= 0. In essence, this means
that the vector −T µνχν is orthogonal to χµ on the horizon, thus, it must be spacelike
or null on it. However, if the dominant energy condition holds, then −T µνχν must be
proportional to χµ, so that the right hand side of eq. 3.4.30 vanishes. Hence, if Einstein’s
equation and dominant energy condition hold, the surface gravity is constant over the
event horizon of a stationary black hole, i.e.,

ϵµναβχ[µ∇ν]κ
H= 0. (3.4.32)
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Finally, it should be noted that one can arrive at the same conclusion without
invoking Einstein’s equation, as shown in (63). Such derivation consists in purely geomet-
rical arguments, and is made by considering that a static, or merely stationary spacetime,
obeys the t-ϕ orthogonality property, in a very similar fashion as for the geometrical
arguments given for the weak rigidity theorem. For an extensive review of the many
formulations of the constancy of κ over Killing horizons, see (20).

3.5 Stationary black holes

In the last sections, several properties of the black hole region and the event
horizon, H, were discussed, including the Killing horizon property of H of a stationary
black hole and a derivation of the generality of the constancy of the surface gravity over
H in such cases. The reason behind the interest in properties of stationary black holes
lies in the idea that, although details of the gravitational collapse1 that results in a black
hole can greatly affect the geometry of the spacetime, at sufficiently “late times” after its
formation, the black hole is expected to reach a stationary final state due to the emission
of gravitational waves and interaction with others sources of energy in the spacetime.
This assumption is corroborated by the behavior of other systems, e.g., electromagnetic
ones, in which a time dependent configuration of charges radiates away the higher order
multipole moments and eventually “settles down” to a stationary final state (1,55). These
results and arguments have led to the following conjecture.

Stationary state conjecture. Let (M, gµν) be a strongly asymptotically predictable
spacetime, Σt be a Cauchy hypersurface for the globally hyperbolic region ψ−1[A] ⊂ M

(see § 3.2) and B denote the black hole region of (M, gµν). If B ∩ Σt′ = ∅ for all t′ < t

and B ∩ Σt′ ̸= ∅ for all t′ ≥ t, then at Σt′, with t′ ≫ t, the spacetime will be described by
a stationary metric.

In other words, at sufficiently “late times” after its formation, a black hole will be
in a stationary state. In particular, the usage of quote unquote for “late times” is due to
the fact2 that one cannot simply use the coordinate time, or more precisely, the proper
time of any observer outside a black hole to make such statements. As was exemplified
in the discussion of Schwarzschild spacetime, the coordinate time is not an appropriate
coordinate to make statements regarding H, and in fact, the Schwarzschild black hole
never forms in the frame of reference of outside observers. Consequently, it is more appro-
priate to make such statements regarding the evolution of black holes over “time” by the
means of Cauchy hypersurfaces, which is precisely what was done for theorems 3.2.1 and
1 It should be noted that other sources of gravitational collapse, such as inhomogeneities in the

early universe, will produce black holes that, viewed as isolated systems at sufficient “late
times”, will also reach a stationary final state.

2 In the following we shall drop the quote unquote for such statements.
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3.3.1. Indeed, although Cauchy hypersurfaces are not unique, since a globally hyperbolic
spacetime has topology R × Σ (see theorem 2.2.7), one can make use of them to make
adequate statements.

Now, the stationary state conjecture is of physical significance because it is possible
to show that the description of a stationary black hole solution of the Einstein–Maxwell
equation (i.e., a solution of eq. 2.1 with the energy momentum tensor given by the elec-
tromagnetic field (64)) is made uniquely by the Kerr-Newman metric. This metric can be
written in Boyer–Lindquist coordinates (see, e.g., (65)) as

ds2 =−
(

∆− a2 sin2 θ

Σ

)
c2dt2 − 2a sin2 θ(r2 + a2 −∆)

Σ cdtdϕ

+
[

(r2 + a2)2 −∆a2 sin2 θ

Σ

]
sin2 θdϕ2 + Σ

∆dr2 + Σdθ2,

(3.5.1)

where

a = L

Mc
, Σ = r2 + a2 cos2 θ, ∆ = r2 − rsr + a2 + e2, e2 = q2G

4πϵ0c4 , (3.5.2)

L is the angular momentum of the black hole, q its electric charge and ϵ0 is the vacuum
permittivity. The length parameters related to angular momentum and electric charge are
refereed to as the Kerr parameter, a, and length electric charge, e.

The uniqueness of the Kerr-Newman metric to describe stationary black holes1

is often referred to as the result from the black hole uniqueness theorems, which can be
summarized as follows2. It was first shown that every stationary black hole must be static
or axisymmetric, which was followed by the proof of uniqueness of the Schwarschild space-
time as the only static vacuum black hole solution. It was then proved that a stationary
axisymmetric black hole must be characterized only by its mass and angular momentum,
and generalization of these statements to charged distributions of energy was then derived.
A qualitative review of the highly technical arguments from which these conclusions were
made and the references of the original derivations can be found in (66), while details
on the quantitative aspects can be found in (20) and the derivation of the Kerr-Newman
metric can be found in (53). See also (59) for an interesting discussion.

These series of results that prove the uniqueness of the Kerr-Newman metric as
a description of stationary black holes in the presence of suitable matter fields (see § 5.3
for further discussion) clearly states, together with the stationary state conjecture, that
at sufficiently late times after its formation, a black hole3 will have only three degrees of
1 Even though the Kerr-Newman metric is the most general stationary black hole solution of

the Einstein-Maxwell equation, there is no analogue of Birkhorff’s theorem to it, i.e., it is not
the most general description of a star (55).

2 Unless stated otherwise, in following we will restrict our analysis to black hole solutions of the
Einstein-Maxwell equation.

3 By black hole, we mean the region B ∩ Σ, where Σ denotes a Cauchy hypersurface.
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freedom: its mass, angular momentum, and electric charge. As a consequence, stationary
black holes are said to have no “hair”, i.e., no distinguishable characteristics of the energy
distribution that gave rise to it are accessible to outside observers after it has “settled
down” to a stationary state other than the parameters (rs, a, e). Lastly, as will be discussed
in detail below, the Kerr-Newman metric describes a connected black hole region. It seems
that the only stationary spacetime for which one would have a non-connected black hole
region is one describing multiple black holes with a = 0 and 2e = rs, which would
have to be a static configuration (67, 68). As implied by our focus on the analysis of the
Kerr-Newman metric, this section is restricted to cases in which the black hole region
is connected, since the exception mentioned above is non interesting as it is highly non-
physical.

The region in the exterior of the energy distribution described by the Kerr-Newman
metric is known as electrovac due to the fact that it is vacuum with the exception of
possible electromagnetic fields as a consequence of the charge of the energy distribution.
However, in physical scenarios, if the contributions of the electromagnetic field are of
considerable order, over time the black hole will attract charges of opposite sign, eventually
decreasing the significance of these contributions. Hence, astrophysical bodies can be
treated to respect e ≃ 0 to a very good order of approximation, which restricts their
description to the Kerr family of metrics, given by eq. 3.5.1 with e = 0. Consequently, any
Kerr black hole will be uniquely described by its mass and angular momentum. Details
on the Kerr metric, such as Christoffel symbols and its inverse, are presented in appendix
B.1. In addition, if a = 0 and e ̸= 0, eq. 3.5.1 reduces to the Reissner–Nordström solution,
which describes the spacetime outside a charged spherically symmetric distribution of
energy.

Mathematically speaking, the Kerr metric differs very little from the Kerr-Newman
metric. In fact, the qualitative nature of the analysis of the Kerr metric is mostly unaf-
fected by the presence of electric charge. Thus, most of the results concerning a Kerr
black hole can be straightforwardly generalized to a Kerr-Newman one. Because of this,
for the remainder of this section the focus will be on the qualitative structure of the Kerr
spacetime and its black hole region, but there will be remarks when the relevant quan-
titative structure changes if one were to consider e ̸= 0. Starting, we will first discuss
its symmetries, and evaluate conserved quantities associated with the Killing vectors. We
then turn our attention to the black hole region, computing the radial coordinate at which
observers and light rays cannot escape to infinity and analyzing its properties as measured
by observers at the asymptotic region. Next, using the tangent to the null geodesic gen-
erators of the event horizon, we will derive a relation between the mass, area and angular
momentum of the black hole, and study how such quantities vary when the black hole is
perturbed. Finally, we discuss the physical plausibility of the inequalities of the mass and
Kerr parameter, a.
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The symmetries of the Kerr spacetime can be identified directly from its form
in Boyer–Lindquist coordinates. First, as expected, none of its coordinate components
depend on t, translating to the fact that ξµ = (∂t)µ, which is a timelike in a neighborhood
of infinity, I , is a Killing vector. From this and the fact that the metric components
behave as gab = ηab + O(r−1) for large r, one can roughly see that it is asymptotically
flat. A detailed demonstration of this property of the Kerr spacetime can be found in
(69). However, although the Kerr metric is stationary, it is not static due to the presence
of the term dtdϕ. This also implies that it is not spherically symmetric, as the angular
momentum of the energy distribution privileges a direction in space. This direction can
be easily identified from the fact that the metric components also do not depend on ϕ, so
ψµ = (∂ϕ)µ is the Killing vector associated with translation in the direction of the rotation
of the energy distribution that gave rise to the black hole. Since this Killing vector can
be reparametrized so that its orbits are closed curves of length 2π, the Kerr metric is
also axisymmetric. Indeed, the Kerr-Newman metric is a stationary and axisymmetric
spacetime that obeys the t-ϕ orthogonality property (20).

The Killing vectors discussed give rise to quantities conserved along geodesics,

E = −sµξµ, (3.5.3)

L = sµψµ, (3.5.4)

which can be interpreted as energy per unit rest mass and angular momentum per unit
rest mass, respectively. It should be noted that the scalars given by eqs. 3.5.3 and 3.5.4
can still be interpreted as such, even if sµ is not the tangent to a geodesic. That is, the
scalar may not be conserved, but its interpretation as the energy or angular momentum
of the observer with four-velocity sµ is still physically justified. Additionally, one expects
that these interpretations should also be valid for the conservation laws that give rise
to the conserved charges given by the Komar integrals (see § 2.1). More precisely, one
expects that the conserved quantity given by the Komar integral of the timelike Killing
vector to be related to the total mass of the spacetime, while the Komar integral of the
spacelike Killing vector is expected to be related to its total angular momentum.

It is possible to find these relations by evaluating the Komar integral over a two-
sphere at the asymptotic region. For simplicity, calculations for ξµ and ψµ will be per-
formed simultaneously. This computation is based on the fact that the integrand of the
Komar integral must be proportional to the volume element on a two-sphere, as the vector
space of two-forms over a two-dimensional vector space is one-dimensional (see theorem
A.2.1). This statement translates to

ϵµναβ∇α(∂a)β = faϵµναβζ
ατβ, (3.5.5)

where a is an index to represent each Killing vector, and τµ, ζµ are the normal vectors
to the two-sphere at sufficiently large r, i.e., they are normalized and orthogonal to the
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hypersurfaces {t = constant},

τµ = ∇µt

(−∇µt∇µt)1/2 = gµν∇νt

(−gtt)1/2 = gµν∂νt

(−gtt)1/2 = gµt

(−gtt)1/2 , (3.5.6)

and {r = constant},

ζµ = ∇µr

(∇µr∇µr)1/2 = gµν∇νr

(grr)1/2 = gµν∂νr

(grr)1/2 = gµr

(grr)1/2 . (3.5.7)

Denoting the volume element on the two-sphere by ϵµν , one can evaluate the scalar fa by
applying ϵµν to both sides of eq. 3.5.5. Using Killing’s equation, eqs. A.3.15, A.5.6, and
A.5.8, one obtains

faϵ
µνϵµν = ϵµνϵµναβ∇α(∂a)β,

2fa = −4δ[λ
αδ

σ]
βζλτσ∇α(∂a)β,

fa = −2ζλτσ∇λ(∂a)σ

= −2(−gttgrr)−1/2gλrδtσ (∂λ(∂a)σ + Γσλρ(∂a)ρ)
= −2(−gttgrr)−1/2grrΓtra. (3.5.8)

By considering the explicit form of the volume element on the two-sphere, given
by eq. A.5.17, one can write the Komar integral as∫

∂Σ
ϵµναβ∇α(∂a)β =

∫
∂Σ
faϵµν =

∫
∂Σ
far

2dΩ. (3.5.9)

Since the Komar integral is independent of ∂Σ1, one can take it to be a two-sphere at the
asymptotic region, i.e., r →∞. Evaluation of the scalar fa in this limit for the pertinent
cases, considering only terms of dominant order, yields

ft = −2(−gttgrr)−1/2grrΓtrt =⇒ lim
r→∞

ft = −crs
r2 , (3.5.10)

fϕ = −2(−gttgrr)−1/2grrΓtrϕ =⇒ lim
r→∞

fϕ = 3rsa sin θ
r2 . (3.5.11)

Thus, the Komar integrals for the Killing vectors of the Kerr metric read∫
∂Σ
ϵµναβ∇αξβ = −crs

∫
∂Σ
dΩ, (3.5.12)

∫
∂Σ
ϵµναβ∇αψβ = 3rsa

∫
∂Σ

sin θdΩ, (3.5.13)

in which one finds the expected relations for the total mass,

M = − c

8πG

∫
∂Σ
ϵµναβ∇αξβ, (3.5.14)

1 For a Kerr-Newman black hole, the Komar integral will have an extra term due to electric
charge contribution. Namely, since the current −Rµνχν will not vanish due to the electrovac
region, one would have to take into account its contributions.
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and angular momentum,
L = c3

16πG

∫
∂Σ
ϵµναβ∇αψβ. (3.5.15)

To discuss the black hole region of the Kerr spacetime, first note that the Kerr
metric is a solution of the vacuum Einstein’s equation for any value of mass, rs, and Kerr
parameter, a. For the case a = 0, the metric reduces to the Schwarzschild metric and
the pertinent results have already been discussed. Moreover, note that the sign of the
Kerr parameter is not relevant, as if a < 0, one can simply perform the transformation
ϕ→ −ϕ (which results in a→ −a), so one can consider a > 0 without loss of generality.
In this manner, it is clear that the Kerr metric is pathological for Σ = 0 and ∆ = 0. By
evaluating curvature scalars (51), it becomes clear that the singular character at ∆ = 0
is coordinate dependent, given by the values

r± = 1
2

(
rs ±

(
r2
s − 4a2

)1/2
)
. (3.5.16)

Consequently, one can relate the Kerr parameter and the Schwarzschild radius to the
coordinate singularities by

a2 = r+r−, (3.5.17)

rs = r+ + r−. (3.5.18)

For the case 2a < rs, known as slow Kerr, there are two coordinate singularities. The
case 2a = rs is known as the extreme Kerr1, and has only one coordinate singularity. For
the case 2a > rs, known as fast Kerr, there are no coordinate singularities. However, the
singularity at Σ = 0, which is present in all of these cases, is a true, physical singularity,
given by

r2 + a2 cos2 θ = 0. (3.5.19)

For details on the analytical extension of the metric to describe the entire spacetime for
each of the cases above, as well as their conformal diagrams, see (70). In the following,
only the slow Kerr case will be considered. The analysis of the fast and extreme case will
be made at the end of this section.

We now show that the outer coordinate singularity, r+, delimits the black hole
region of Kerr spacetime. As introduced before, the vector ∇µr (see eq. 3.5.7) is normal
to the hypersurfaces {r = constant}. From its norm, ∇µr∇µr = grr = ∆/Σ, one can see
that it will be spacelike in the regions r > r+ and r < r−, timelike in r− < r < r+ and
null on the hypersurfaces {r = r±}. Note that the fact that ∇µr is timelike in the region
delimited by the coordinate singularities implies that sµ∇µr = dr/dλ will be negative for
any future directed timelike or null vector, sµ, in r− < r < r+, where λ is the parameter
of the causal curve. Hence, any light ray or observer passing through the hypersurface
1 Analogous cases arise if e ̸= 0. For instance, the extreme Kerr-Newman black hole obeys

4(a2 + e2) = r2
s .
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{r = r+} will inevitably reach the hypersurface {r = r−}, with the region r > r+ no
longer being accessible to them. More precisely, no observer or light ray in r < r+ can
be in the past of events in the region r > r+, and thus, r+ delimiters the black hole
region of the Kerr spacetime. From this, one can evaluate the area of the event horizon1

by integrating the two-dimensional metric that rises from the Kerr metric with dt = 0
and r = r+,

A =
∫

H
(gθθgϕϕ)1/2dθdϕ

= (r2
+ + a2)

∫ 2π

0
dϕ
∫ π

0
sin θdθ

= 4π(r2
+ + a2). (3.5.20)

Lastly, although the hypersurface {r = r−} is not as significant to the black hole region,
it also earns the adjective “horizon” due to the behavior of the vector ∇µr, that is, it also
acts as a one-way membrane. Indeed, analysis of the extended Kerr spacetime confirms
that the hypersurface {r = r−} is a Cauchy horizon, marking the region from which
predictions regarding the evolution of physical fields can be made from outside the black
hole (see (1,18) for further discussion).

Moving on, from the fact that the Kerr spacetime is stationary, ξµ must be null
or spacelike on the event horizon. Since ξµξµ = gtt, one can conclude that ξµ becomes
spacelike in the region

1
2

(
rs −

(
r2
s − 4a2 cos2 θ

)1/2
)
< r <

1
2

(
rs +

(
r2
s − 4a2 cos2 θ

)1/2
)
. (3.5.21)

Evidently, the upper limit of this region does not coincide with r+ if cos2 θ ̸= 1. This
means that there is a region outside the black hole for which observers cannot follow
the integral curves of ξµ. Such region, corresponding to r+ < r < re, is known as the
ergoregion, and the surface {r = re, t = constant}, where re denotes the upper limit in eq.
3.5.21, is known as the ergosphere. To analyze the possible behavior of world lines in the
ergoregion, one can consider the constraints on the components of the tangent vector, sµ,
of a future directed causal curve parametrized by λ,

sµsµ = gtt

(
dt

dλ

)2

+2gtϕ
(
dt

dλ

)(
dϕ

dλ

)
+grr

(
dr

dλ

)2

+gϕϕ
(
dϕ

dλ

)2

+gθθ
(
dθ

dλ

)2

≤ 0, (3.5.22)

in which one can see that all terms are manifestly positive, except for the second one. Now,
in the ergoregion, gtϕ < 0 and dt/dλ = sµ∇µt > 0, since ∇µt is past directed timelike, in
order for t to increase as one moves to the future. Hence, one concludes that dϕ/dλ > 0
for any timelike or null vector in the region r+ < r < re, which means it is impossible for
an observer or signal in this region to not rotate in the direction of the black hole. This
effect is known as frame dragging.
1 By area of the event horizon, it is meant the area of H . Because of the null nature of the

hypersurface, its “volume” is zero.
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Even though it is not possible to follow the orbits of ξµ once an observer reaches
the hypersurface {r = re}, they still can maintain a fixed r and θ and move following the
orbits of a Killing vector that is a linear combination of ξµ and ψµ. Such observers would,
of course, see no variation of the metric as they evolve. We now show that there exists
a family of observers that follow such orbits and move orthogonal to the hypersurfaces
{t = constant}. That is, the tangent vector to their world lines is proportional to ∇µt.
It is easy to see that the failure of the world lines of these observers to coincide with the
orbits of ξµ is directly related to the nonvanishing of the gϕt term in the Kerr metric.
Indeed, an interesting property of this family of observers, whose tangent vector will be
denoted by χµ, is that they have no angular momentum,

L = ψµχ
µ ∝ ψµτ

µ = 0, (3.5.23)

but have a nonvanishing coordinate angular velocity which is a function of their radial
coordinate,

Ω(r) = χϕ

χt
= dϕ

dt
= τϕ

τ t
= gϕt

gtt
= − gϕt

gϕϕ
, (3.5.24)

where gναgαµ = δνµ was used for both results. From the Kerr metric, one obtains

Ω(r) = ca(r2 + a2 −∆)
(r2 + a2)2 −∆a2 sin2 θ

. (3.5.25)

Finally, normalizing the tangent vector to the world line of these observers yields

χµ = ξµ + Ω(r)ψµ

(−gtt − 2Ω(r)gtϕ − Ω2(r)gϕϕ)1/2 . (3.5.26)

Note that the coordinate angular velocity given by eq. 3.5.25 is the one measured
by observers following an orbit of ξµ at the asymptotic region, i.e., those whose proper
time coincides with the coordinate time. The significance of the family of observers that
follow the orbits of χµ in the ergoregion is given by the following line of reasoning. Since
ξµ is spacelike on the hypersurface {r = r+}, the null Killing vector tangent to the null
geodesic generators of the event horizon must be a linear combination of ξµ and ψµ. By
requiring that such a linear combination be null, a possible solution1 is χµ = ξµ+Ω(r+)ψµ,
where

Ω(r+) = ca

r2
+ + a2 . (3.5.27)

Now, no observer would be able to follow the orbits of χµ at r+, but as Ω(r) is the
angular velocity of the particles as measured by “distant” observers with four velocity ξµ,
as r → r+, these observers can identify Ω(r+) as the angular velocity of the event horizon,
which will be denoted simply as Ω. Thus, the tangent vector to the null geodesic generators
1 Any other solution is proportional to χµ. This one is “preferred” for our analysis since it is

the tangent vector that rises when one parametrizes the null geodesics generators of H by the
time coordinate, t.



89

of the event horizon of the Kerr black hole, when the null geodesics are parametrized by
t, is

χµ = ξµ + Ωψµ. (3.5.28)

One can straightforwardly deduce that the family of observers that follow the
orbits of χµ is not in geodesic motion. Evidently, the acceleration necessary to keep such
observers following the orbits of χµ as r → r+, as measured by observers at the asymptotic
region following the orbits of ξµ, is precisely the surface gravity of a Kerr black hole.
However, note that such measurement cannot be made by an ideal string as proposed for
the Schwarzschild black hole, since χϕ ̸= 0. The measurement process would be made by
local observers at r → r+ and converted to a measure at infinity by a redshift factor,
which is given by the norm of the vector in eq. 3.5.26. As such, from the explicit form of
χµ, one can obtain (71)

κ = c2 (r2
s − 4a2)1/2

rs
(
rs + (r2

s − 4a2)1/2
) . (3.5.29)

Furthermore, it follows from the explicit form of Ω that

χµξµ
H= 0, (3.5.30)

χµψµ
H= 0, (3.5.31)

and from the fact that ξµ and ψµ are elements of a coordinate basis, [ξ, χ]µ and [ξ, ψ]µ

must vanish, which is equivalent to

χν∇νξ
µ = ξν∇νχ

µ, (3.5.32)

χν∇νψ
µ = ψν∇νχ

µ. (3.5.33)

In the developments that follow, it will be necessary to make use of the transverse
metric of H with respect to χµ. In particular, the auxiliary null vector used to define
the transverse metric in § 2.4 which obeys ηµχµ = −1, will be chosen for convenience to
respect further relations, as detailed below. In a local Lorentz frame at the event horizon,
with coordinates {cx0, x1, x2, x3}, one can write

χµ = (1, 1, 0, 0), (3.5.34)

ξµ = (0, 0, 1, 0), (3.5.35)

as a consequence of eq. 3.5.30. From eq. 3.5.28, these choices fix ψµ to be

ψµ =
( 1

Ω ,
1
Ω ,−

1
Ω , 0

)
. (3.5.36)

A vector, ϑµ, given by
ϑµ = (0, 0, 0, 1), (3.5.37)
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together with ξµ and ψµ, clearly yields a basis for the vector space spanned by vectors
orthogonal to χµ. Thus, by choosing

ηµ = (1, 0,−1, 0), (3.5.38)

it will also respect the following relations,

ηµξµ = −1, (3.5.39)

ηµψµ = 0, (3.5.40)

ηµϑµ = 0. (3.5.41)

Lastly, the transverse metric still takes the form given by eq. 2.4.1, since it is a consequence
of the condition ηµχµ = −1.

The next property of interest of a Kerr black hole is the relationship between
the variations of mass, angular momentum and area of the event horizon of two slightly
different Kerr black holes. To derive such a relation, consider first how these quantities
relate for a single black hole, which can be found by applying the Levi-Civita connection to
eq. 3.5.28 and integrating over the event horizon. Adopting geometrized units throughout
this calculation, the integration yields∫

H
ϵµναβ∇αχβ =

∫
H
ϵµναβ∇αξβ + Ω

∫
H
ϵµναβ∇αψβ. (3.5.42)

Now, one can identify the integrals on the right hand side of eq. 3.5.42 with the Komar
integrals over ∂Σ = H , which is possible due to the fact that it is independent of ∂Σ,
provided that the flux of the conserved current vanishes over it. Thus, one has∫

H
ϵµναβ∇αχβ︸ ︷︷ ︸

(I)

= −8πM + 16πΩL. (3.5.43)

In order to evaluate (I), one should note that the volume element restricted to H

is (see appendix A.5 and § 2.4)
ϵµν = ϵµναβη

αχβ, (3.5.44)

where ηµ is the auxiliary null vector which in a local Lorentz frame at H takes the form
given by eq. 3.5.38. Since H is a surface, one can use the linearity of two-forms over it
to compute (I) in terms of ϵµν and the proportionality factor, f , i.e.,

fϵµν = ϵµναβ∇αχβ. (3.5.45)

The scalar f can be evaluated by contracting ϵµν with eq. 3.5.45, which yields

f = 1
2ϵ

µνϵµναβ∇αχβ. (3.5.46)
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It is possible to simplify f by using that ηµχµ = −1, which coupled with the fact that χµ

is a Killing vector, the definition of κ and eq. A.5.8, yields

f = 1
2ηλχδϵµναβϵ

µνλδ∇αχβ

= −2ηλχδδ[λ
αδ

δ]
β∇αχβ

= −2ηλχδ∇[λχδ]

= 2ηλχδ∇δχλ

= 2κηλχλ

= −2κ. (3.5.47)

Thus, one has
(I) =

∫
H
fϵµν = −2

∫
H
κϵµν , (3.5.48)

but since a Kerr black hole is stationary, κ is constant over H and
∫
H ϵµν is just the area

of the event horizon (see eq. 3.5.20), hence, eq. 3.5.43 reads

M = 1
4πκA+ 2ΩL. (3.5.49)

Eq. 3.5.49 is known as Smarr’s formula, and is the desired relation for the quan-
tities of interest of a Kerr black hole. For a Kerr-Newman black hole, Smarr’s formula
has an extra term corresponding to the electric charge contribution, qΦ, where Φ is the
electric potential at the event horizon1. Such a relation would be derived in the exact
same manner, and the additional term would show in the mass, as the total mass of the
spacetime would be equal to the mass of the black hole plus the contributions of the
energy-momentum tensor in the electrovac region (see (20) for details).

To proceed, one needs to perturb Smarr’s formula, where one finds

δM = 1
4π (κδA+ δκA) + 2(δΩL+ ΩδL), (3.5.50)

which has the unwanted variations δκ and δΩ. As the relation of interest for the perturbed
version of eq. 3.5.49 is for variations only on the mass, angular momentum and event
horizon area, it is necessary to turn one’s attention to perturbations of the Kerr metric.
The idea is to consider two neighboring configurations of Kerr black holes (19), which
are presented in more detail in appendix B.2. As such, the variation of quantities of two
nearby stationary solutions is denoted δ.

To remove the unwanted terms in eq. 3.5.50, one starts by contracting eq. 3.4.2
with the auxiliary vector ηµ, which yields

κ = 1
2η

µ∇µ(χνχν). (3.5.51)

1 Which can also be shown to be constant over H (20).
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By perturbing eq. 3.5.51, one obtains

δκ = 1
2[(δηµ)∇µ(χνχν) + ηµ∇µ(χνδχν + χνδχν)︸ ︷︷ ︸

(I)

]. (3.5.52)

Using eqs. 3.5.33, B.2.8 and Killing’s equation, one can deduce that (I) is equal to

(I) = ηµχν∇µ(δχν) + ηµ(δχν)∇µχ
ν + ηµχν∇µ(δχν) + ηµ(δχν)∇µχν

= ηµχν∇µ(δχν) + ηµ(δχν)∇µχ
ν + ηµχν∇µ(δΩψν) + ηµ(δΩψν)∇µχν

= ηµχν∇µ(δχν) + ηµ(δχν)∇µχ
ν + ηµχν(δΩ)∇µψ

ν + ηµ(δΩ)χν∇µψν

= 2η(µχν)∇µ(δχν) + ηµ(δχν)∇µχ
ν + 2ηµχν(δΩ)∇µψ

ν − ηνχµ∇µ(δχν)
= 2η(µχν)∇µ(δχν) + 2ηµ(δχν)∇µχ

ν + 2(δΩ)ηµχν∇µψ
ν . (3.5.53)

where the term ηνχµ∇µ(δχν) was added and subtracted in the fourth line. This allows
one to write eq. 3.5.52 as

δκ = (δηµ)χν∇µχ
ν︸ ︷︷ ︸

(II)

+ η(µχν)∇µ(δχν)︸ ︷︷ ︸
(III)

+ ηµ(δχν)∇µχ
ν︸ ︷︷ ︸

(IV)

+(δΩ)ηµχν∇µψ
ν . (3.5.54)

Eq. 3.5.54 can be simplified by noting that, as a consequence of eq B.2.13, one has

(II) + (IV) = ∇µχν((δηµ)χν + ηµ(δχν)) = 0. (3.5.55)

Similarly, using eqs. B.2.9, B.2.14 and the transverse metric on H , eq. 2.4.1, one can
rewrite (III),

η(µχν)∇µ(δχν) = 1
2(hµν − gµν)∇µ(δχν)

= 1
2(αhµν∇µχν + hµνχν∇µα−∇ν(δχν))

= −1
2∇

ν(γνµχµ + (δΩ)χν)

= −1
2(γνµ∇νχµ + χµ∇νγνµ + (δΩ)∇νχν)

= −1
2χ

µ∇νγνµ

= 1
2χµ∇νγ

νµ, (3.5.56)

where the terms hµν∇µχν and γνµ∇νχµ vanish by being the contraction of a symmetric
tensor with an antisymmetric one, and ∇νχν = 0, as per Killing’s equation. Thus, eq.
3.5.54 reads

δκ = 1
2χµ∇νγ

νµ + (δΩ)ηµχν∇µψ
ν , (3.5.57)

and by integrating over H , one obtains

δκA = 1
2

∫
H
ϵαβχµ∇νγ

νµ + (δΩ)
∫

H
ϵαβη

µχν∇µψ
ν︸ ︷︷ ︸

(V)

, (3.5.58)
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where ϵµν is the volume element on H .

One can evaluate (V) by considering the scalar f ′ that relates the two-form
ϵµναβ∇αψβ to its integrand,

f ′ϵµναβ∇αψβ = ϵµνη
αχβ∇αψ

β, (3.5.59)

which can be computed by applying ϵµν to both sides of eq. 3.5.59,

f ′ϵµνσρησχρϵµναβ∇αψβ = ϵµνϵµνηαχβ∇αψβ,

−4f ′δ[σ
αδ

ρ]
βησχρ∇αψβ = 2ηαχβ∇αψβ,

−4f ′ησχρ∇σψρ = 2ηαχβ∇αψβ,

f ′ = −1
2 , (3.5.60)

and from the Komar integral of the spacelike Killing vector, one has

(V) = −1
2

∫
H
ϵµναβ∇αψβ = −8πL. (3.5.61)

Thus, eq. 3.5.58 reduces to∫
H
ϵαβχµ∇νγ

νµ︸ ︷︷ ︸
(VI)

= 2Aδκ+ 16πLδΩ. (3.5.62)

In order to proceed, it is necessary to make use of the general result stated by eq.
B.2.19. Such result is useful because one can evaluate (VI) by relating their integrands.
More precisely, the scalar, f ′′, that relates the integrand of (VI) to that of the integral
over H of eq. B.2.19 is given by

f ′′ϵµναβξ
β∇ρ(γαρ − gαργ) = ϵµνχα∇βγ

βα,

f ′′ϵµνρληρχλϵµναβξ
β∇ρ(γαρ − gαργ) = ϵµνϵµνχα∇βγ

βα,

−4f ′′δ[ρ
αδ

λ]
βηρχλξ

β∇ρ(γαρ − gαργ) = 2χα∇βγ
βα,

−2f ′′η[αχβ]ξ
β∇ρ(γαρ − gαργ) = χα∇βγ

βα,

−f ′′χα∇ρ(γαρ − gαργ) = χα∇βγ
βα,

−f ′′χα∇ργ
ρα = χα∇βγ

βα,

f ′′ = −1, (3.5.63)

where ηµχµ = −1 and eqs. 3.5.30, 3.5.39, and B.2.10 were used. Therefore, one has∫
S
ϵναβδξ

δ∇ρ(γβρ − gβργ)︸ ︷︷ ︸
(VII)

= −2Aδκ− 16πLδΩ. (3.5.64)

Using eq. B.2.28, (VII) is evaluated to be 8πδM . Hence, one obtains a relation for the
variation of the surface gravity, mass and angular velocity,

δM = − 1
4πAδκ− 2LδΩ, (3.5.65)
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which can be summed with eq. 3.5.50 to yield the sought result. Restoring the constants,
one finds

c2δM = κc2

8πGδA+ ΩδL. (3.5.66)

Thus, the variation in first order of mass, area and angular momentum of a sta-
tionary uncharged black hole over a perturbation respects eq. 3.5.66. For a Kerr-Newman
black hole, there is an extra term corresponding to variation of electric charge, Φδq. In-
deed, since all terms have units of energy, such an equation may simply be interpreted as
an “energy conservation law” applied to the geometrical properties of a black hole. Finally,
note that the geometrical interpretation for the total mass and angular momentum of a
black hole follows from the fact that these quantities are defined from the Komar inte-
grals. In other words, they rise from Killing vectors, which are derived from the metric,
and thus, are a consequence of spacetime geometry.

The last property of interest of a stationary black hole in the classical framework
that will be discussed is the physical plausibility of the extreme and fast Kerr cases. As
noted in the derivation of the coordinate singularities, the extreme case has only one
coordinate singularity, while the fast case has none. In the extreme case, the behavior of
the hypersurface {r = r+} is very similar, as it acts as a way one membrane. However,
the absence of a coordinate singularity in the fast case means that the fast Kerr metric
does not describe a black hole, but rather, a naked singularity.

Assuming that the cosmic censor conjecture holds, one would then conclude that
the fast case is unphysical. In particular, since perturbations of the extreme case would
also produce a naked singularity, one would also expect that the extreme case should
not be physically accessible, in the sense that no continuous process applied to a slow
Kerr black hole could produce an extreme Kerr black hole. This notion of attainability of
configuration that one would deem to be physical, but which could produce an unphysical
one if it is perturbed, is very similar to the one discussed in § 2.2 for the definition of a
stably causal spacetime. In essence, since the surface gravity of an extreme Kerr black
hole must vanish (see eq. 3.5.29), these ideas can be stated as the impossibility of reducing
the surface gravity of a Kerr black hole to zero. Note that this is also the case for the
surface gravity of an extreme Kerr-Newman or Reissner–Nordström (rs = 2e) black hole
(1). Additionally, note that this line of reasoning is based only on the assumption that
the cosmic censor conjecture should hold, but it has been shown that it is possible to
reach extremal cases of Kerr black holes by finite amount of processes (72) (although this
is not a violation of the cosmic censor conjecture). Nonetheless, these exceptions to the
attainability of κ = 0 can be used to point to a more appropriate version of this property
of the surface gravity (73), which one could argue to be nothing more than a particular
case of the cosmic censor conjecture. Such a development was proposed in (74) and takes
the form of the theorem below.
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Theorem 3.5.1. Let (M, gµν) be a strongly asymptotically predictable spacetime with
gµν continuous and piecewise C3, and Σt denote Cauchy hypersurfaces for the globally
hyperbolic region ψ−1[A′] ⊂M . If Σt contains trapped surfaces for all t < t′ but none for
t > t′, then the weak energy condition does not hold in a neighborhood of the apparent
horizon of Σt′.

Details on the proof of this theorem can be found in (74) and references therein. Its
content can be interpreted by considering that the slow Kerr black hole possesses trapped
surfaces, while the extreme Kerr black hole does not (see (70) for details on the analytical
extension of the Kerr metric and analysis of the expansion of the incoming and outgoing
null congruences). In particular, one can visualize the “extremization” of a slow Kerr black
hole as a series of continuous processes in which the black hole “captures” distributions of
energy with parameters that contribute to reducing the inequality rs > 2a. Consequently,
any absorption (excluding negative energy, as per the weak energy condition in theorem
3.5.1) will “inflate” the inner apparent horizon, up to the point where it merges with the
outer horizon. At that point, there would be no trapped surfaces, which would correspond
to the extreme case. This is precisely what the result above restricts, which says that unless
the weak energy condition is violated, it is not possible to “eliminate” all trapped surfaces
by a finite amount of processes.

In fact, the analysis of particular cases of the attainability of extreme black holes
was considered in detail in (75,76). In such an analysis, an explicit examination was made
of the behavior of test point-like massive objects falling into a black hole, possessing
parameters that, if absorbed, would extremize it or produce a naked singularity. More
specifically, in the case of a rotating black hole, the gravitational spin interaction (77)
would result in a repulsion that would stop the body from entering the black hole region.
Similarly, for the case of a charged black hole, electric repulsion would also play a role in
restricting the absorption of charged bodies that would extremize the black hole.
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4 SEMICLASSICAL ASPECTS OF BLACK HOLES

The next step on the road to the black hole information problem is the effec-
tive emission of particles by black holes, which rises as a prediction from quantum field
theory in curved spacetime. Although semiclassical gravity is expected to be only an ap-
proximation at the scales where spacetime structure can still be described classically, it
is reasonable to anticipate that the predictions that rise from this limit of application
of both of these highly successful theories will provide insights into quantum effects in
gravitation as well as information regarding the development of an adequate theory of
quantum gravity. Nevertheless, in extreme regions, such as the vicinity of a singularity
or the early universe, in which the curvature scales are of order of ℓ−2

p (see eq. 1.1), the
pertinent phenomena will have to be analyzed under the light of a complete theory of
quantum gravity. However, these extreme regimes will not appear for most of our analy-
sis, and semiclassical gravity will be an adequate approximation to analyze the most of
the physics of black holes whose mass is much greater than the Planck mass (i.e., black
holes that obey rs ≫ ℓp).

We first present a precise description of the formalism of quantum field theory and
a review of its basic elements in Minkowski spacetime. The first section of this chapter
is devoted to the presentation of these concepts as well as their generalization to curved
spacetime. In this context, we study the solutions of a free scalar field in Minkowski
spacetime in order to develop the calculations in curved spacetime, while also discussing
the ambiguity in the definition of a vacuum state for general spacetimes. Using these
developments, we show how a dynamical gravitational field can lead to the creation of
particles and study this effect in detail in the case of a Kerr black hole. Additionally,
we analyze the classical properties of stationary black holes in light of these predictions
and thermodynamic arguments. We then conclude the chapter by discussing the deep
implication that entanglement (see appendix C for a review of the necessary concepts
that lead to this implication) has for quantum field theory and black holes. Namely, this
conclusion follows from the assumption that any physically reliable quantum state must
satisfy a condition in order for it to be possible to define a nonsingular “energy-momentum
expectation value”.

4.1 Quantum field theory in curved spacetime

In the Lagrange formalism, a system of point-like massive bodies is characterized
by a set of discrete generalized coordinates, qα, which are a representation of the degrees
of freedom of the system. The principle of least action leads one to the Euler-Lagrange
equations, which can be used to derive the equations of motion of bodies (43). In classical
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field theory, the object of study is now a field (which will not necessarily be a scalar),
denoted by ψ(t,x), where x = (x1, x2, x3). In particular, a classical field is characterized
by its value at each point of spacetime. Consequently, a system described by a field
possesses infinite degrees of freedom, as the dynamical variables of the system are now
the values of the field at each point of the manifold. An example of a classical field is the
electromagnetic field, Aµ(t,x), which is perhaps the best example in nature in which a
phenomenon – the electromagnetic interaction – is fundamentally described by a field.

Let ψ(t,x) denote a classical field over Minkowski spacetime. The Lagrangian,
L, of the field can be written as a volume integral of a density function, known as the
Lagrange density,

L(t) =
∫
d3x L(ψ(t,x), ∂µψ(t,x)), (4.1.1)

where the restrictions on the possible dependence of L on the field and its derivatives
have been found to be adequate to describe phenomena represented by field theories (43).
The principle of least action,

δ
∫ t′

t
dt′′

∫
d3x L(ψ(t,x), ∂µψ(t,x)) = 0, (4.1.2)

leads one to the Euler-Lagrange field equations,

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0. (4.1.3)

The Hamiltonian formalism can also be applied to a field theory by defining the
canonically conjugate field,

π(x, t) = ∂L
∂(∂tψ) , (4.1.4)

in which the Hamiltonian can be written as an integral of the Hamiltonian density,
H (t,x),

H(t) =
∫
d3x H (t,x), H (t,x) = π(t,x)∂tψ(t,x)− L(ψ(t,x), ∂µψ(t,x)). (4.1.5)

By requiring that a variation of H vanishes, one obtains Hamilton’s equations of motion,

∂tψ(t,x) = δH

δπ
, ∂tπ(t,x) = −δH

δψ
. (4.1.6)

Lastly, by defining the Poisson brackets for the functionals (see, e.g., (43)) A[ϕ, π]
and B[ϕ, π],

{A,B} =
∫
d3x

(
δA

δϕ(x)
δB

δπ(x) −
δA

δπ(x)
δB

δϕ(x)

)
, (4.1.7)

one can find relations for the field and canonically conjugate field,

{ψ(t,x), π(t,x′)} = δ3(x− x′), (4.1.8)
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{ψ(t,x), ψ((t,x′)} = {π(t,x), π(t,x′)} = 0, (4.1.9)

where δ3(x− x′) is the three-dimensional Dirac delta distribution (78).

The process of quantization of a classical field is analogous to the one of a classical
harmonic oscillator. Namely, the classical field and the canonically conjugate field are
promoted to operators, ψ̂(t,x) and π̂(t,x), which are postulated to satisfy the equal-time
commutation relations

[ψ̂(t,x), π̂(t,x′)] = iℏδ3(x− x′)Î , (4.1.10)

[ψ̂(t,x), ψ̂(t,x′)] = [π̂(t,x), π̂(t,x′)] = 0, (4.1.11)

where Î is the identity operator of the pertinent Hilbert space. By postulating these
relations, it is implied that the field is a bosonic one. In contrast, a fermionic field would
be postulated to obey corresponding anticommutator relations. The reason behind these
nomenclatures will become clear below. In either case, the self-adjoint operators, ψ̂(t,x)
and π̂(t,x), act on the possible quantum states of the system, which are elements of the
pertinent Hilbert space.

These ideas can be straightforwardly generalized to curved spacetimes which are
globally hyperbolic, simply by identifying the field as a tensor over M , using the covariant
volume element in the integrals and applying the Levi-Civita connection instead of the
ordinary partial derivative. In particular, the globally hyperbolic property is necessary in
order to ensure1 that the evolution of the field is a “well posed” problem (see § 2.2). The
development of this work is based on a free neutral scalar field, whose Lagrangian reads

L = 1
2
√
−g

[
∇µψ∇µψ −

(
m2c2

ℏ2 + ξR

)
ψ2
]
, (4.1.12)

where m is the field mass, R is the Ricci scalar and ξ a real constant. By “free”, it is
meant that the field does not interact with itself or other fields, except with the spacetime
background, i.e., by means of gravitational interaction. Interaction with other fields would
yield a scalar potential term in the Lagrangian, and the gravitational interaction is made
explicit by the presence of the Levi-Civita connection and the term ξRψ2. This last
term is present due to the fact that when m = 0 and ξ = 1/6, the action is invariant
over conformal transformations2. Hence, one can argue that, in the general case, simply
taking ξ = 0 is not necessarily the most physically adequate choice. Nevertheless, for
developments of interest this term will not affect the results, and for simplicity, it will be
considered that the field is minimally coupled, i.e., ξ = 0. Applying the Lagrangian of eq.

1 Nevertheless, one can argue that suitable conditions on spacelike hypersurface that fails to a
Cauchy hypersurface should suffice for the evolution of the field to be a “well posed” problem
(see § 5.1).

2 Another reason for including this term is due to the renormalization of the theory when one
considers an interaction term such as λψ4 (33).



100

4.1.12 in the Euler-Lagrange Field equations yields the Klein-Gordon equation,(
∇µ∇µ + m2c2

ℏ2 + ξR

)
ψ = 0. (4.1.13)

Further details on this equation, as well as how it can be deduced that it describes spinless
particles can be found in (79). In the developments that follow, we will adopt geometrized
units.

We will use the Heisenberg picture, so that the dynamics of the system is given
entirely by the evolution of the fundamental operator of the system, the field operator. In
order to study how the field operator acts on the vector states, it is useful to first consider
“classical” (i.e., scalar) solutions of the Klein-Gordon equation. Let fa and fb be scalar
solutions of the Klein-Gordon equation. Consider the vector

ℓµ = f ∗
a∇µfb − fb∇µf ∗

a , (4.1.14)

where ∗ represents complex conjugation. One can readily verify that ℓµ respects the co-
variant form of the conservation equation, and, if the solutions vanish as r →∞, following
the same line of reasoning as the one that lead to the Komar integral in § 2.1, one can
show that the conserved charge associated with the conserved current ℓµ is simply the
integral of ϵµναβℓβ over a spacelike hypersurface, Σ. Consequently, this conserved quantity
can be used to define the Klein-Gordon inner product, (fa, fb), as

(fa, fb) = i
∫

Σ
ϵµναβ

(
f ∗
a∇βfb − fb∇βf ∗

a

)
, (4.1.15)

which, clearly, is independent of the choice of Σ. It is easy to see that this inner product
is linear with respect to the second argument and antilinear with respect to the first. One
can also readily verify that

(fa, fb)∗ = (fb, fa) = −(f ∗
a , f

∗
b ). (4.1.16)

Consider, now, a solution of the minimally coupled Klein-Gordon equation in
Minkowski spacetime which takes the form

fp = cpe
ipµxµ

, (4.1.17)

with pµ = (ωp,p), p = (px1
, px

2
, px

3), ωp =
√
|p|+m2 and cp a constant. Note that the

solution index, p, is three dimensional, being associated with the mode p, but the vector
notation in the index has been removed for clearer notation. A solution is said to be a
positive frequency solution if

ξµ∇µfp = −iωpfp for ωp > 0, (4.1.18)

where ξµ is a timelike Killing vector of Minkowski spacetime. The complex conjugate
of a positive frequency solution is said to be a negative frequency solution. It should be
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noted that a more rigorous nomenclature would be positive or negative norm solution
(with a norm given by the Klein-Gordon inner product), but we will adopt the customary
nomenclature of frequencies to identify solutions.

In this manner, the most general solution of the minimally coupled Klein-Gordon
equation is a linear combination of positive frequency solutions, fp, and negative frequency
solutions, f ∗

p , i.e., {fp, f ∗
p} comprises a basis of the vector space of solutions. The structure

of an inner product gives rise to a notion of orthogonality between the elements of a basis,
namely,

(fp, fp′) = δ3(p− p′), (4.1.19)

(fp, f ∗
p′) = 0. (4.1.20)

Eq. 4.1.19 can then be used to find cp = (2ωp)−1/2(2π)−3/2. The expansion of the field
operator, ψ̂, in terms of this basis is given by

ψ̂ =
∫ ∞

−∞
d3p

(
âpfp + â†

pf
∗
p

)
, (4.1.21)

where âp and â†
p are the operators in the expansion of ψ̂ in terms of the basis {fp, f ∗

p}.
Evidently, these operators can also be written as

âp = (fp, ψ̂), (4.1.22)

â†
p = (f ∗

p , ψ̂). (4.1.23)

Additionally, from the orthogonality of solutions, eqs. 4.1.19 and 4.1.20, it also follows the
commutation relations,

[âp, â†
p′ ] = δ3(p− p′)Î , (4.1.24)

[âp, âp′ ] = [â†
p, â

†
p′ ] = 0. (4.1.25)

To interpret these operators, it is convenient to restrict the solutions fp to a volume
with periodic boundary conditions. This can be done by considering that the system is
confined to a cube of side L, such that the solution given in eq. 4.1.17 now takes the form

fp = (2L3ωp)−1/2eipµxµ

, (4.1.26)

where
pa = 2πn

L
, n = 0,±1,±2, ..., a = x1, x2, x3. (4.1.27)

By doing so, the Dirac delta appearing in the orthogonality condition becomes a Kronecker
delta, which then results in

[âp, â†
p′ ] = δpp′ . (4.1.28)

Now, returning to a classical perspective and using a spatial Fourier decomposition, it
is possible to see that the minimally coupled Klein-Gordon equation implies that the
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complex coefficients, ap, individually satisfy the harmonic oscillator equation. In analogy
with the quantization of such a system, one can then identify the operators âp and â†

p

in eq. 4.1.21 as annihilation and creation operators for a particular mode, respectively.
Hence, one can define the vacuum state, |0⟩, to be the one which is “destroyed” by the
action of any âp, i.e.,

âp|0⟩ = 0, ∀ p, (4.1.29)

and also being normalized as ⟨0|0⟩ = 1.

One can also define the number operator to be

N̂p = â†
pâp, (4.1.30)

which measures the number of “quanta” or “excitations” in the mode p. Following the
Fock representation (i.e., states are represented by their “quanta” content), the Hilbert
space of a system is represented using the eigenvalues of the number operator. Note that
this is viable due to the fact that any of its elements can be constructed by acting â†

p on
|0⟩. In particular, an orthonormal basis of the Hilbert space is given by the set of vectors
that can be written as

|αp1 , βp2 , . . .⟩ = (α!β! . . .)−1/2(â†
p1)α(â†

p2)β . . . |0⟩, (4.1.31)

where an arbitrary vector such as the one in eq. 4.1.31 can be interpreted to represent a
state with α quanta in mode p1, β quanta in mode p2 and so forth. This is precisely the
interpretation that quantum field theory provides of “particles”1, in other words, they are
merely “excitations” of the quantum field.

Hence, in this interpretation lies the root of the field nomenclature given above
for the commutation relations. Namely, a field whose quanta obey Bose-Einstein statistics
(56) will be a bosonic one, while one whose quanta obey Fermi-Dirac statistics will be a
fermionic one (33). Additionally, note that the “confinement” of the field in a box in order
to obtain the proper delta in the commutation relation, eq. 4.1.28, is merely a mathemat-
ical procedure. In particular, one may always perform this process in order to discretize
the index of the solutions, which can also be made by constructing an orthonormal set
of wave packets from fp. Conversely, one may always take the limit L → ∞ in order to
reinstate the continuous index. Finally, the interpretation of these operators generalizes
straightforwardly to curved spacetime, as the field operator can always be expanded in the
form given in eq. 4.1.21 when one considers a prescription to identify positive frequency
solutions.

It is useful to investigate how two bases of the vector space of solutions of the
Klein-Gordon (not necessarily the minimally coupled) equation, {fω, f ∗

ω} and {uω, u∗
ω},

1 In the following, we shall drop the quote unquote in the word particles, but the reader should
recall that this is merely a compact way of referring to the “excitations” of a quantum field.
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relate. Namely, it is evident that the construction of annihilation and creation operators
is directly connected with the choice of basis, and one wishes to analyze how such operators
can be expressed in terms of one another. To do so, note that ψ̂ can be written in terms
of each basis independently,

ψ̂ =
∫
dω(âωfω + â†

ωf
∗
ω)

=
∫
dω(b̂ωuω + b̂†

ωu
∗
ω), (4.1.32)

where the index ω should be interpreted as the set of pertinent indices of the system, i.e.,
it represents a number of continuous and/or discrete indices, and the integral is merely a
symbol to denote the pertinent sums. Evidently, one can also write uω in terms of {fω, f ∗

ω},

uω =
∫
dω′(αωω′fω′ + βωω′f ∗

ω′). (4.1.33)

The coefficients αωω′ and βωω′ are known as Bogolubov coefficients and the change of basis
represented by them is known as a Bogolubov transformation.

By applying (fω′ , ·) and (f ∗
ω′ , ·) to eq. 4.1.33, one finds

αωω′ = (fω′ , uω), (4.1.34)

βωω′ = −(f ∗
ω′ , uω). (4.1.35)

Using the normalization conditions and the properties of the inner product, one can then
readily verify that the inverse transformation reads

fω =
∫
dω′(α∗

ω′ωuω′ − βω′ωu
∗
ω′). (4.1.36)

The coefficients can also be used to relate the operators associated with each basis by
using that b̂ω = (uω, ψ̂) and âω = (fω, ψ̂), which yield

b̂ω =
∫
dω′(α∗

ωω′ âω′ − β∗
ωω′ â

†
ω′), (4.1.37)

âω =
∫
dω′(αω′ω b̂ω′ + β∗

ω′ω b̂
†
ω′). (4.1.38)

By applying (uω′ , ·) and (u∗
ω′ , ·) to eq. 4.1.33, one finds that the coefficients also respect∫

dω′′(αωω′′α∗
ω′ω′′ − βωω′′β∗

ω′ω′′) = δ(ω − ω′), (4.1.39)
∫
dω′′(αωω′′βω′ω′′ − βωω′′αω′ω′′) = 0. (4.1.40)

Note that there are infinitely many choices of basis of solutions of the Klein-Gordon
equation, and since the vacuum state is defined by identifying the positive frequency
solution on a basis, one might ask if the definition of the vacuum state is dependent on
the choice of basis. First, note that in order to label a solution as a positive frequency
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one in a “natural” manner, it is necessary for spacetime to possess a timelike Killing
vector, and evaluate the condition given by eq. 4.1.18. Thus, adopting a different basis
but maintaining the prescription to split solutions into positive and negative ones will
yield the same vacuum state. This can be readily verified by noting that, from eqs. 4.1.37
and 4.1.38, the creation operators defined by different bases are related by the coefficients
αωω′ , but they may also be related to the annihilation operators if the coefficients βωω′

do not vanish. Now, if the creation operators defined by a basis are linear combination
of creation and annihilation operators defined by another basis, then it is clear that the
vacuum state defined by 4.1.29 will be basis dependent, i.e., there will be a disagreement
in the measurement of “quanta” of the vacuum state defined by a given basis.

This disagreement will be derived explicitly in the next section, but to see this in
more detail now, consider the vacuum state as defined in a inertial frame of reference,
A , in Minkowski spacetime. Due to the static nature of Minkowski spacetime, there is a
timelike Killing vector that can be used to define the vacuum state. It is straightforward
to deduce (44) that the positive frequency solutions in any other inertial frame which
is related to A by an orthochronous Lorentz transformation can be written as a linear
combination of the positive frequency solutions in A . Thus, the coefficients βωω′ vanish
in the Bogolubov transformation relating the bases of solutions, which means that the
definition of the vacuum state is independent of the choice of inertial frame of reference.
This “natural” vacuum state that rises due to the static property of Minkowski spacetime
is known as static vacuum1. However, uniformly accelerated observers do not perceive the
static vacuum as one with no quanta. As we will see in the next section, the nature of
this phenomenon lies in the fact that positive frequency solutions in such a non-inertial
frame are related to positive and negative frequency solutions in an inertial frame. In
fact, this is known as the Fulling-Davies-Unruh effect (80), which states that a uniformly
accelerated observer perceives the static vacuum as a thermal state.

Finally, for the discussion of the propagation of the scalar field in spacetimes, it
will be necessary to consider the geometric optics approximation. This approximation is
of use when the wavelength of a wave propagating in spacetime is orders of magnitude
smaller than the typical length scale of the analysis. Namely, the radius of curvature of
the spacetime2 and the length over which the amplitude of the wave varies. For example,
if one considers a wave of the form ψ = A(xa)eiS(xa), then the wave equation (which is
also the massless minimally coupled Klein-Gordon equation) under the assumption that

1 The definition of a “natural” vacuum state associated with a timelike Killing vector does
not become more “special” if such a vector is also hypersurface orthogonal. In other words,
the argumentation presented would not change if the spacetime in consideration were only
stationary.

2 The typical radius of the curvature of the spacetime can be evaluated by
(
RµναβRµναβ

)−1/4
.
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∇µS ≫ ∇µA implies that (81)
∇µS∇µS = 0. (4.1.41)

Since the propagation of a wave is given by the curves normal to the surfaces of constant
phase, S, eq. 4.1.41 can be interpreted as stating that the wave vector is null. Moreover,
following the same line of reasoning as the remarks presented below theorem 2.4.1, the
propagation of the wave must be along null geodesics. Thus, in order to study the prop-
agation of the solutions of the massless minimally coupled Klein-Gordon equation under
the geometric optics approximation, it suffices to know the behavior of the null geodesics
of spacetime.

4.2 Effective particle creation by black holes

The content of the effective particle creation effect by black holes is directly related
to the failure of observers in different regions of spacetime to agree on a definition of a
vacuum state. In particular, because of the necessity of a timelike Killing vector to define
a preferred vacuum state, perhaps the most notable difference between quantum field
theory in Minkowski spacetime and general spacetimes is the ambiguity in the definition
of a physical vacuum state. This is a consequence of the fact that without a “natural”
definition of positive frequency solutions, i.e., a “natural” symmetry, the vacuum state
that rises from any choice of basis has no physical meaning.

Nonetheless, for stationary spacetimes, or merely those that possess stationary re-
gions, it is possible to use the timelike Killing vector associated with the time translation
symmetry to have a preferred selection of positive frequency solutions. In the context of
black holes, this is the fundamental aspect behind the process of effective particle cre-
ation. In essence, in a spacetime possessing a black hole that resulted from gravitational
collapse, one expects that at “early times”1 the energy distribution that gave rise to the
black hole should be described by a metric that is asymptotically flat (in the sense that
the spacetime has a region similar to I −), and thus, stationary. Following considerations
of the stationary final state conjecture, at late times after the formation of the black
hole, the spacetime will also be described by a asymptotically flat metric, so that it is
possible to use the prescription given by the timelike Killing vector in I − and I + to
compare the vacuum state defined in them. Such a comparison is simply made through
the Bogolubov coefficients relating a basis in each of these regions. In this manner, one
finds that the vacuum state in past null infinity, |0⟩I − , will not be equal to the vacuum
state in future null infinity, |0⟩I + , as illustrated in fig. 21. A detailed analysis of this dis-
agreement between definitions of the vacuum state will be made for a black hole that was
1 The way “early time” is referred to here is in the same sense as the one presented in the

stationary state conjecture (see § 3.5). More precisely, one identifies “early times” by means
of Cauchy hypersurfaces. The reader should recall that these time comparisons are related to
a “slicing” of the spacetime in Cauchy hypersurfaces.
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the result of gravitational collapse. Natural units (see ch. 1) will be adopted throughout
this development.

Gravitational

collapse

Initial stationary
configuration configuration

6=

Star Black hole

Final stationary

|0〉I− |0〉I +

Figure 21 – Change in the definition of the vacuum state due to the process of gravita-
tional collapse.

Source: Adapted from FABBRI; NAVARRO-SALAS (81).

As discussed, it will be assumed that the spacetime possesses an early time and,
at least, distant stationary region, I −, and due to the stationary state conjecture, a late
time stationary region, I +. The analysis starts by considering linear independent sets of
solutions in both regions. Let {fω, f ∗

ω} denote such a set on I −, and {uω, u∗
ω} one on I +,

where the index ω should be understood to represent the pertinent number of continuous
and/or discrete indices. Evidently, one can write the field operator unambiguously in
terms of {fω, f ∗

ω} if it is complete, where the basis is defined using the timelike Killing
vector in I −,

ψ̂ =
∫
dω(âωfω + â†

ωf
∗
ω), (4.2.1)

but the corresponding expansion does not hold for {uω, u∗
ω}. This is a consequence of

the fact that all the null geodesics of spacetime have a past endpoint on I −, but the
same cannot be said for I +. In particular, there are null geodesics that never reach I +

because they enter the black hole region. Thus, it is actually H ∪I +, where H denotes
the event horizon, that is the hypersurface that all null geodesics encounter. Namely, in
order to expand ψ̂ in terms of {uω, u∗

ω}, it is necessary to also specify a set of solutions at
H and use both sets simultaneously.

Let {uω, u∗
ω} denote a complete set of solutions on I + with zero Cauchy data on

H, i.e., they vanish on H as well as their gradients, and let {sω, s∗
ω} denote a complete

set of solutions on H with zero Cauchy data on I + (see fig. 22). Then {uω, u∗
ω, sω, s

∗
ω} is

a basis of the vector space of solutions. Hence, the field operator can be written as

ψ̂ =
∫
dω(b̂ωuω + ĉωsω + b̂†

ωu
∗
ω + ĉ†

ωs
∗
ω). (4.2.2)
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Note that the split of {uω, u∗
ω} is unambiguous due to the timelike Killing vector in I +,

but the same cannot be said for {sω, s∗
ω}, as on H there is no timelike Killing vector. This

I + I +

I − I −

H

distribution
Collapsing energy

uω

fω

sω

Figure 22 – Evolution of field modes in the process of black hole formation.

Source: Adapted from HAWKING (39).

means that there is no natural definition of a vacuum state at H, but this is not relevant
to the calculation of the particle creation effect (82), as the analysis of the vacuum state
is only in I +. Each of the sets {uω, u∗

ω} and {sω, s∗
ω} obey their respective orthogonality

relations individually, but since they are also in disjoint regions at late times, one must
have

(sω, uω′) = (sω, u∗
ω′) = 0. (4.2.3)

To proceed, it is necessary to analyze the Bogolubov transformation relating the bases
{uω, u∗

ω, sω, s
∗
ω} and {fω, f ∗

ω}. In particular, the relation of interest is the one between the
operator b̂ω and the operators âω and â†

ω. This relation can then be used to construct the
number operator on I + and act it on the state |0⟩I − , which will give information about
how the vacuum state of I − is perceived at I +.

The expansion of uω in terms of {fω, f ∗
ω} is given by eq. 4.1.33, and the operator

b̂†
ω relates to the operators âω and â†

ω by eq. 4.1.37. Taking the conjugate transpose of eq.
4.1.37 yields

b̂†
ω =

∫
dω′(αωω′ â†

ω′ − βωω′ âω′). (4.2.4)

From eqs. 4.1.37 and 4.2.4, one can then construct the number operator on I +, N̂ω =
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b̂†
ω b̂ω, which reads

N̂ω =
∫
dω′

∫
dω′′

(
αωω′′α∗

ωω′ â
†
ω′′ âω′ − αωω′′β∗

ωω′ â
†
ω′′ â

†
ω′ − α∗

ωω′βωω′′ âω′′ âω′

+βωω′′β∗
ωω′ âω′′ â†

ω′

)
. (4.2.5)

Using this construction, it is possible to evaluate I −⟨0|N̂ω|0⟩I − . The action of each of the
individual operators in 4.2.5 follows from their interpretation of creation and annihilation
operators individually for each mode (see, e.g., (56) for a deduction of the action of these
operators for a simple harmonic oscillator). Hence, from the condition that the state
vectors given in eq. 4.1.31 form an orthonormal basis, one finds

I −⟨0|â†
ω′′ âω′ |0⟩I − = 0, (4.2.6)

I −⟨0|â†
ω′′ â

†
ω′ |0⟩I − = 0, (4.2.7)

I −⟨0|âω′′ âω′ |0⟩I − = 0, (4.2.8)

I −⟨0|âω′′ â†
ω′ |0⟩I − = I −⟨1ω′′ |1ω′⟩I − = δ(ω′ − ω′′). (4.2.9)

Thus,
I −⟨0|N̂ω|0⟩I − =

∫
dω′|βωω′ |2. (4.2.10)

As discussed at the end of § 4.1, the information about how the vacuum state in I − is
perceived by observers in the future asymptotic region is given by the coefficients βωω′ .
Indeed, eq. 4.2.10 shows that if the coefficients βωω′ do not vanish, then the state |0⟩I −

will not be perceived as one with no particles at I +. In other words, the failure of
the positive frequency solutions in I − to evolve to linear combinations of only positive
frequency solutions in I + is precisely the reason why these two regions have different
definitions of vacuum states.

Therefore, to evaluate the content of the perceived state in I +, it suffices to
find an explicit relation to the integral on the right hand side of eq. 4.2.10. However,
evaluating the Bogolubov coefficients explicitly and integrating is not trivial in general,
and one can justifiably expect that they will be highly dependent on details of the collapse.
Nevertheless, it will soon become clear that details of the collapse are negligible, as the
effect of the black hole region and the stationary state conjecture will make it so that only
the parameters (rs, a, e) are of significance to the spectrum of measured particles at I +.
In this manner, the path that will be taken is to find a relation for |βωω′ |2 and |αωω′|2 and
then use eq. 4.1.39 to evaluate eq 4.2.10, as first done originally in (38). To find how the
coefficients relate, it is necessary to solve the Klein-Gordon equation and make use of the
explicit forms of fω and uω.

Consider the massless Klein-Gordon equation, for simplicity, in the Kerr spacetime,
which from eq. A.3.17, reads

1√
−g

∂µ
[√
−ggµν∂νψ

]
= 0. (4.2.11)
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Using the Kerr metric and its inverse (see appendix B.1), eq. 4.2.11 can be written as
{

1
∆
[
(r2 + a2)2 −∆a2 sin2 θ

]
∂2
t −

(
∆− a2 sin2 θ

∆ sin2 θ

)
∂2
ϕ +

(2rsar
∆

)
∂t∂ϕ − ∂r(∆∂r)

− 1
sin θ∂θ (sin θ∂θ)

}
ψ = 0. (4.2.12)

Supposing a solution ψ = R(r)Θ(θ)eimϕe−iωt, eq. 4.2.12 separates and yields equations for
R(r) and Θ(θ). Using λ as the separation constant, one obtains

∆ d

dr

(
∆dR(r)

dr

)
+
[
ω(r2 + a2)2 +m2a2 − 2rsarmω − (ω2a2 + λ)∆

]
R(r) = 0, (4.2.13)

1
sin θ

d

dθ

(
sin θdΘ(θ)

dθ

)
+
(
λ+ ω2a2 cos θ − m2

sin2 θ

)
Θ(θ) = 0. (4.2.14)

The angular equation, eq. 4.2.14, is an eigenvalue equation whose solution is known
to give rise to the oblate spheroidal harmonics (83). Indeed, this equation, coupled with
the harmonic oscillator equation for the coordinate ϕ, is very similar to those which
yield the spheroidal harmonics, the only difference being the additional ω2a2 cos θΘ(θ)
term. This small difference makes it so that the eigenvalues, λℓm, associated with the
oblate spheroidal harmonics, Sℓm(θ, ϕ) = Θℓm(θ)eimϕ, have a nontrivial dependence on
the integers ℓ(= 0, 1, 2 . . .) and m(= −ℓ, ℓ+ 1, . . . , ℓ− 1, ℓ). Nevertheless, these functions
are orthogonal (84) in the sense that by imposing adequate regularity conditions (85),
they can be shown to obey∫ 2π

0
dϕ
∫ π

0
dθ sin θS∗

ℓm(θ, ϕ)Sℓ′m′(θ, ϕ) = δℓℓ′δmm′ . (4.2.15)

As for the radial equation, eq. 4.2.13, it is easier to analyze it through a more
adequate coordinate. In appendix B.3, the derivation of principal null congruences for the
Kerr spacetime is presented, and an adequate coordinate, r′, is defined (see eq. B.3.17).
By also defining

U(r) = R(r)(r2 + a2)1/2, (4.2.16)

eq. 4.2.13 takes the form
dU(r)
dr′ + V (r) = 0, (4.2.17)

with

V (r) = ω2 + 1
(r2 + a2)2

[
m2a2 − 2rsarmω − (ω2a2 + λ)∆

]
+ ∆

(r2 + a2)3 [∆ + r(2r − rs)]−
3r2∆2

(r2 + a2)4 . (4.2.18)

Due to the interest in analyzing the solutions of Klein-Gordon equation in the asymptotic
regions, it suffices to study the behaviour of V (r) as r → ∞. In addition, because the
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hypersurface H ∪I + is the one that all null geodesics encounter, it will also be useful to
analyze the behaviour of the potential as r → r+. In these limits, one finds

V (r) =

ω
2, r →∞,

(ω −mΩ)2, r → r+.
(4.2.19)

Thus, considering the definition of the null coordinates in the Kerr spacetime, eqs.
B.3.19 and B.3.20, as well as the well behaved angular coordinate, ϕ′, at H, given by eq.
B.3.18, one obtains scalar solutions of eq. 4.2.12 with form

ψI − = Sℓm(θ, ϕ)
r

(e−iωw︸ ︷︷ ︸
(I)

+ e−iωu︸ ︷︷ ︸
(II)

), (4.2.20)

ψI + = Sℓm(θ, ϕ)
r

(e−iωw︸ ︷︷ ︸
(III)

+ e−iωu︸ ︷︷ ︸
(IV)

), (4.2.21)

ψH = eimϕ
′Θℓm(θ)

(r2
+ + a2)1/2 (e−i(ω−mΩ)w︸ ︷︷ ︸

(V)

+ e−i(ω−mΩ)u︸ ︷︷ ︸
(VI)

). (4.2.22)

The interpretation of each of these solutions is straightforward when one considers that
solutions that evolve with a constant value of outgoing coordinate, w, correspond to null
geodesics of the incoming principal null congruence. Evidently, the same line of reasoning
applies to solutions with a constant value of incoming null coordinate, u, that is, they
correspond to null geodesics of the outgoing principal null congruence. Hence, the solutions
(I), (III) and (V) are incoming at the corresponding regions, while the solutions (II), (IV)
and (VI) are outgoing, as illustrated in fig. 23. Note that such an illustration is made using
the conformal diagram of a black hole that formed due to the collapse of a spherically
symmetric distribution of energy, which is adequate to illustrate the qualitative causal
structure on or outside the event horizon.

Although all of these solutions are physical, not all of them will be relevant to
the computation of the Bogolubov coefficients. More precisely, the observers at the future
asymptotic region will only have access to the solutions (III) and (IV), but (III) is just the
“natural” evolution of (I) along the asymptotic region, while (IV) will be the result of the
“natural” evolution of (II) along the asymptotic region as well as the contributions from
(I) as it is scattered (as a consequence of the potential barrier given by eq. 4.2.18) and
“reflected” by the spacetime. More precisely, only the solutions (I), (IV) and (V) will be
of significance to the computation of the coefficients, the latter being necessary only for
the analysis of the phases of the solutions as they are “reflected” “close” to the formation
of H. Therefore, normalized solutions (33) of eq. 4.2.12 in the asymptotic regions read

fωℓm = e−iωw

Cπr(2ω)1/2Sℓm(θ, ϕ), (4.2.23)
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Figure 23 – Solutions of the Klein-Gordon equation in the regions of interest in the con-
formal diagram of the analytically extended Schwarzschild spacetime.

Source: By the author.

uωℓm = e−iωu

Cπr(2ω)1/2Sℓm(θ, ϕ), (4.2.24)

where Cπ is factor containing the 2π terms and now the explicit number of indices neces-
sary to label the solutions have been shown, so that the index ω is now one-dimensional.
Namely, an equation such as eq. 4.2.1 actually reads

ψ̂ =
∑
ℓ,m

∫ ∞

0
dω(âωℓmfωℓm + â†

ωℓmf
∗
ωℓm), (4.2.25)

in which the discrete indices ℓ and m can be interpreted as the quantum numbers asso-
ciated with angular momentum (33). Finally, as discussed above, a wave packet formed
by superposition of the fωℓm is incoming and localized at large r at ct→ −∞, while one
formed by the superposition of uωℓm is outgoing and localized at large r at ct → ∞. For
simplicity of notation, in the developments that follow, the discrete quantum numbers
will be suppressed.

In order to evaluate the Bogolubov coefficients with the explicit forms of solutions
of the Klein-Gordon equation, it is useful to consider the “time reversed” evolution of
the solutions uω that reached I + at large constant values of incoming null coordinate.
When following such a solution backwards in time, part of it will be scattered by the
potential barrier (i.e., due to V (r)) and reach I − with a frequency similar to the one it
had when it was “emitted” in I +. The other part of uω that was not scattered will pass
through the center of the collapsing energy distribution and “emerge” as an incoming
solution1 that will reach I − having a large frequency ω′ ≫ ω. This significant blueshift
1 This corresponds to the process of “reflection” of a null geodesic in the conformal diagram.
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is a consequence of the fact that when uω reaches the collapsing distribution, it will be in
a much more dense configuration in comparison with how it was when it “left” it as an
incoming wave. Indeed, this can be thought of as the “time inversion” of the gravitational
redshift effect that arises when one receives signals emitted from a source closer to an
energy distribution (see § 3.1 for details on this for a spherically symmetric distribution
of energy). Because of this large blueshift and the consideration of high frequency modes1,
the propagation of the solutions from I + to I − is made through null geodesics, as per
the geometric optics approximation. Now, since the expansion of uω in terms of {fω′ , f ∗

ω′}
is valid in the entire spacetime, one can use the “traced backwards” form of uω at I −

to evaluate the modules of the Bogolubov coefficients, αωω′ and βωω′ . However, due to
the large blueshift at the event horizon, the expansion of uω in terms of {fω′ , f ∗

ω′} will be
made by coefficients obeying ω′ ≫ ω. Consequently, the spectrum of effectively created
particles is determined by βωω′ (see eq. 4.2.10) for arbitrarily large ω′.

The pertinent analysis is then made by viewing the solutions uω not as a function
of their incoming null coordinate, uω(u), as given by eq. 4.2.24, but actually, as a function
of the outgoing null coordinate, uω(w), that it has when it “reaches” I −. Therefore,
one has to evaluate how the incoming coordinate of a pertinent solution at I + (i.e., a
solution (IV) in fig. 23) relates to the outgoing coordinate of a pertinent solution at I −

(i.e., a solution (I) in fig. 23). This function, u(w), relates the incoming null coordinate of
an outgoing null geodesic to the outgoing coordinate of an incoming null geodesic, both
belonging to the respective principal null congruences. In contrast, the function uω(w) is
the form of a solution at I + when traced to I − in terms of the outgoing null coordinate
of the null geodesic that reaches I −. Using developments of (33), consider the following
line of reasoning to evaluate u(w).

Let w0 be the outgoing null coordinate of the incoming null geodesic that generates
the event horizon. This null geodesic and any other incoming one with outgoing null
coordinate w > w0 which is not scattered by the potential barrier will, evidently, never
reach I +, since it will either generate or cross the event horizon. In this context, the
analysis of interest is of how an incoming null geodesic with outgoing coordinate w < w0

evolves into an outgoing null geodesic with incoming coordinate u(w). To do so, consider
an incoming null geodesic with w′ ≫ w0, parametrized by affine parameter, λ. Because
w′ ≫ w0, the part of this solution that reaches the event horizon will do so a “long time”
after its formation2, and one can consider that at that point the black hole would have
“settled down” to a Kerr black hole. Let λ′ and λ′′ denote the affine parameter value of
this curve as it intersects the outgoing null geodesic with incoming null coordinate u(w0)

1 In this approximation, one can justifiably neglect interactions of the wave solution with the
energy distribution.

2 In the sense that the outgoing parameter of the incoming null geodesic is numerically of orders
of magnitude bigger than the one that generates the event horizon.
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Figure 24 – Incoming and outgoing null geodesics in the collapse of spherically symmetric
energy distribution for the evaluation of u(w).

Source: By the author.

and u(w), respectively, as illustrated in fig. 24. Now, if one considers that

w0 − w ≪ 1, (4.2.26)

then, physically, this means that the outgoing null geodesic with incoming coordinate u(w)
leaves the collapsing distribution “just before” the formation of the event horizon1. Thus,
the affine parameter, λ, can be chosen so that the evolution of the incoming parameter,
u(λ), of the incoming null geodesic with outgoing coordinate w′ as it approaches H is
approximated by eq. B.3.25.

Indeed, one can characterize the incoming coordinate, u, of an outgoing null
geodesic by the value of the affine parameter, λ′′, that the incoming null geodesic with
outgoing coordinate w′ had when it crossed it. For example, an incoming null geodesic
that obeys eq. 4.2.26 will “emerge” as an outgoing null geodesic with incoming coordinate
given by

u(λ′′) ≈ −1
κ

ln
(
λ′′

C ′

)
. (4.2.27)

Similarly, one evidently has that u(λ′) → ∞, as λ′ was adopted to vanish at the event
horizon (see appendix B.3). Therefore, the affine separation distance between the outgoing
null geodesics with incoming coordinates u(w0) and u(w), λ′′ − λ′, as measured by any
incoming null geodesic that crosses the event horizon, is then simply λ′′.

Note that the affine parameter distance between incoming null geodesics, with
outgoing coordinates w and w0, can be chosen to be constant throughout the spacetime
1 In the sense that the incoming parameter of the outgoing null geodesic minus the one that

generates the event horizon is orders of magnitude smaller than −1.
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(33), i.e., when they “emerge” as outgoing null geodesics with incoming coordinates u(w)
and w(w0), they will still have the same affine parameter distance. Additionally, due to the
asymptotic flat nature of the Kerr spacetime, the parameter w itself is an affine parameter1

at I −, i.e., along the outgoing null geodesics with incoming coordinates u → −∞ that
generate I −. This translates to

w0 − w = Cλ′′, (4.2.28)

where C is a negative constant. Hence, one can apply eq. 4.2.28 in eq. 4.2.27, resulting in

u(w) ≈ −1
κ

ln
(
w0 − w
C ′

)
, (4.2.29)

where all constants have been absorbed in the positive constant C ′. This relation is what
determines the spectrum of created particles due to the gravitational collapse of an energy
distribution that results in a black hole. More precisely, the stationary state conjecture
and the arbitrarily high blueshift (for the “traced backwards” solutions at I +) at the
event horizon make it so that the Bogolubov coefficients are determined, predominantly,
by solutions that obey eq. 4.2.29. It is in this sense that the details of the gravitational
collapse will pose negligible influence on the spectrum of created particles.

Lastly, in order to compute the exact final form of uω(w) at I −, it is also necessary
to study how its phase changes as it passes close to H. Evidently, from eq. 4.2.22, the
effective frequency at H is ω−mΩ, so that when one traces the surfaces of constant phase
of the solutions uω from H to I −, they will reach I − the same effective frequency. Thus,
by tracing back uω from I + to I −, one finds that it reaches I − with the form

uω(w) =

r
−1S(θ, ϕ) [2(ω −mΩ)]−1/2 exp

[
i(ω−mΩ)

κ
ln
(
w0−w
C′

)]
, w < w0,

0, w > w0,
(4.2.30)

where w0 is the outgoing null coordinate of the incoming null geodesic that generates the
event horizon. The vanishing of the solution for w < w0 is a consequence of the fact that
scattered solutions will reach I − with a relatively small frequency, and those that are
not scattered will cross H, being irrelevant to created particles at I +.

From the explicit form of uω(w) on I −, eq. 4.2.30, one can evaluate the Bogolubov
coefficients as follows. Consider the Fourier transform of uω(w) (78),

Uω(ω′) = 1√
2π

∫ ∞

−∞
uω(w)eiω′wdw, (4.2.31)

and its inverse,

uω(w) = 1√
2π

∫ ∞

−∞
Uω(ω′)e−iω′wdω′. (4.2.32)

1 This can be deduced by the same developments that led to eq. B.3.24.
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From eq. 4.2.32, it is possible to write

uω(w) = 1√
2π

(∫ ∞

0
Uω(ω′)e−iω′wdω′ +

∫ 0

−∞
Uω(ω′)e−iω′wdω′

)
= 1√

2π

(∫ ∞

0
Uω(ω′)e−iω′wdω′ +

∫ ∞

0
Uω(−ω′)eiω′wdω′

)
, (4.2.33)

where the variable change ω′ → −ω′ was performed in the second integral of the second
line. Now, from eq. 4.1.33 and the asymptotic form of the solutions fω, given by eq. 4.2.23,
one also has

uω =
∫ ∞

0
dω′

(
αωω′S(θ, ϕ)
Cπr
√

2ω′
e−iω′w + βωω′S(θ, ϕ)

Cπr
√

2ω′
eiω

′w

)
. (4.2.34)

Comparison of eqs. 4.2.33 and 4.2.34 yields

αωω′ = Cπr
√

4πω′

S(θ, ϕ) Uω(ω′), (4.2.35)

βωω′ = Cπr
√

4πω′

S(θ, ϕ) Uω(−ω′). (4.2.36)

Finally, using the Fourier transform, eq. 4.2.31, and the “traced backwards” form of uω,
eq. 4.2.30, one obtains

αωω′ =
∫ w0

−∞

(
ω′

ω −mΩ

)1/2

eiω
′w exp

[
i(ω −mΩ)

κ
ln
(
w0 − w
C ′

)]
dw, (4.2.37)

βωω′ =
∫ w0

−∞

(
ω′

ω −mΩ

)1/2

e−iω′w exp
[
i(ω −mΩ)

κ
ln
(
w0 − w
C ′

)]
dw. (4.2.38)

The goal now is to work with these integrals in order to find a relation for the
modules of the coefficients. Consider first the change of variable s = w0−w in eq. 4.2.37,
and s = w − w0 in eq. 4.2.38, which yields

αωω′ = −
∫ 0

∞

(
ω′

ω −mΩ

)1/2

eiω
′w0e−iω′s exp

[
i(ω −mΩ)

κ
ln
(
s

C ′

)]
ds, (4.2.39)

βωω′ =
∫ 0

−∞

(
ω′

ω −mΩ

)1/2

e−iω′w0e−iω′s exp
[
i(ω −mΩ)

κ
ln
(
− s

C ′

)]
ds. (4.2.40)

To simplify these integrals, it is useful to make use of complex analysis. Since their in-
tegrands are analytic and proportional to e−iω′s with ω′ > 0, one can relate the integral
along the real axis to one along the imaginary axis by studying a closed contour in the
lower half of the circle, |z| = R. The adequate choices of contours to each integral are
illustrated in figs. 25a and 25b. In this manner, residue theorem (86) can then be used to
show that the integral in eqs. 4.2.39 and 4.2.40 over the respective closed contours for αωω′

and βωω′ vanishes. Moreover, Jordan’s lemma (86) can be used to show that the integral
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Figure 25 – Contour of integration on the complex plane for evaluation of αωω′ and βωω′ ,
with s→∞.

Source: By the author.

along the contour C3 also vanishes. Hence, one finds that it is possible to rewrite both
integrals with limits along the imaginary axis,

αωω′ :
∫ 0

∞
=
∫ 0

−i∞
, (4.2.41)

βωω′ :
∫ 0

−∞
=
∫ 0

−i∞
. (4.2.42)

These changes in limits of integration, together with another variable substitution,
s = is′, for both integrals, yields

αωω′ = −i
∫ 0

−∞

(
ω′

ω −mΩ

)1/2

eiω
′w0eω

′s′ exp
[
i(ω −mΩ)

κ
ln
(
is′

C ′

)]
ds′, (4.2.43)

βωω′ = i
∫ 0

−∞

(
ω′

ω −mΩ

)1/2

e−iω′w0eω
′s′ exp

[
i(ω −mΩ)

κ
ln
(
−is

′

C ′

)]
ds′. (4.2.44)

By restricting the action of the natural logarithm function for the region s′ < 0 so that it
can be a single valued function,

ln
(
±is

′

C ′

)
= ∓i

(
π

2

)
+ ln

(
|s′|
C ′

)
, (4.2.45)

one finds
αωω′ = −ie

iω′w0

√
2π

exp
[
π(ω −mΩ)

2κ

]
I, (4.2.46)

βωω′ = i
e−iω′w0

√
2π

exp
[
−π(ω −mΩ)

2κ

]
I, (4.2.47)

where

I =
∫ 0

−∞

(
ω′

ω −mΩ

)1/2

eω
′s′ exp

[
i(ω −mΩ)

κ
ln
(
|s′|
C ′

)]
ds′. (4.2.48)
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Eqs. 4.2.46 and 4.2.47 can be used to write the desired relation between the mod-
ules of the Bogolubov coefficients,

|αωω′ |2 = exp
[
−2π(ω −mΩ)

κ

]
|βωω′ |2. (4.2.49)

In this manner, one can use eq. 4.1.39 with ω = ω′, which yields a relation for the right
hand side of eq. 4.2.10, resulting in

I −⟨0|Nω|0⟩I − =
{

exp
[
−2π(ω −mΩ)

κ

]
− 1

}−1

δ(0). (4.2.50)

The infinity that rises in eq. 4.2.50 due to the Dirac delta term δ(0) (78) is a physical one.
Evidently, since one is analyzing the expected number of particles at I +, a steady flux
from a stationary configuration will result in an infinite number of particles1. Hence, the
quantity of interest is the expected number of particles per unit time. An heuristic way
of evaluating such quantity from eq. 4.2.50 is to make use of the integral representation
of the Dirac delta and isolate its infinity in a “time variable”. More precisely, consider the
identity

δ(x− a) = lim
t→∞

1
2π

∫ t
2

− t
2

ei(x−a)t′dt′, (4.2.51)

which is just a more convenient way of writing the integral representation. It can then be
used to isolate the infinity in a “time variable”, in the sense that

δ(0) = lim
t→∞

t

2π , (4.2.52)

which allows one to obtain
d

dt
(I −⟨0|Nω|0⟩I −) = 1

2π

{
exp

[
−2π(ω −mΩ)

κ

]
− 1

}−1

. (4.2.53)

A more rigorous way of obtaining this result is by considering wave packets con-
structed from uω or by confining the solutions to a finite volume (see (33) for details on
this procedure). As discussed in § 4.1, these are mathematical procedures that reduce
the delta in eq. 4.1.39 to a Kronecker one. Physically, this can be interpreted as a way
to localize the modes so that the infinity arising from the steady flux is removed. Addi-
tionally, one should include a fraction term to the distribution presented in eq. 4.2.53 to
account for the scattering of waves discussed earlier, as a consequence of the potential
barrier2. This term, denoted by Γℓm(ω), is related to the part of the waves that, when
traced back from I + would reach the collapsing body “just before” the formation of the
event horizon, so that one now has

d

dt
(I −⟨0|Nωℓm|0⟩I −) = Γℓm(ω)

2π

{
exp

[
−2π(ω −mΩ)

κ

]
− 1

}−1

. (4.2.54)

1 Neglecting change in mass of the black hole. This issue will be discussed in detail in § 5.1.
2 The exact form of this term can be evaluated by relaxing the approximation of geometric

optics.
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As the black hole evolves to a stationary state through the emission of gravitational radia-
tion, this fraction becomes closer to the one that dictates the amount of waves that would
cross the white hole horizon (see § 3.2) if one were to consider the analytical extension
of the spacetime. Because the scattering properties from I + to I − are symmetrical in
such extension, for u→∞, one may interpret Γℓm(ω) as the probability that an incoming
wave emitted in I − will cross the black hole event horizon. Therefore, eq. 4.2.54 can be
interpreted as stating that the expected number of particles perceived at u → ∞ in I +

between ω and ω+ dω, and with angular momentum quantum numbers ℓ and m per unit
time, is given by a black body spectrum (87) with temperature

T = ℏκ
2πckB

. (4.2.55)

For a Schwarzschild black hole, considering eq. 3.4.19, one has

T ≈ 6.18 10−8
(
M

M⊙

)−1

K, (4.2.56)

i.e., the temperature of a Schwarzschild black hole is inversely proportional to its mass.

In essence, these results translate to the conclusion that a stationary black hole
will behave as a gray body of absorptivity Γℓm(ω) and temperature proportional to its
surface gravity. This effective particle creation effect by black holes is also referred to as
the Hawking effect, while the approximately1 thermal radiation predicted by it is referred
to as Hawking radiation. Finally, the term −mΩ accompanying the frequency in the black
body spectrum in eq. 4.2.54 can be interpreted as a “chemical potential” term, which
physically means that for a given mode, the effective emission of particles with angular
momentum m is more likely than that of particles with angular momentum −m. For a
Kerr-Newman black hole, there will be an extra term corresponding to the electric charge
contribution, such that the “chemical potential” term takes the form −mΩ− eΦ (see the
remarks below eq. 3.5.49). The same interpretation follows for its presence, that is, the
effective emission of particles will also favor those with the same sign of electric charge as
that of the black hole. Consequently, the spectrum of emitted particles from a black hole
tends to carry away angular momentum and electric charge.

4.3 Black holes and thermodynamics

In this section, we will discuss how the classical properties derived in ch. 3 can be
interpreted in light of the semiclassical particle creation effect. Particularly, the discussion
about the nature of the classical properties of black holes arose even before the derivation
of the effective particle creation effect, where it was suggested that black holes must possess
1 An affirmation of an exactly thermal character would only be justifiable in a development

taking account the effects of emitted particles on the metric, physical optics (i.e., exact wave
propagation), as well as trans-Planckian physics.
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a physical entropy in order to preserve the second law of thermodynamics (21,22,88). In
fact, the impossibility of reducing the surface gravity of a black hole to zero (see theorem
3.5.1) was first assumed (19) as a way to make a complete correspondence between the
classical properties of black holes, which are rigorous results of differential geometry (89,
90), and the laws of thermodynamics, which are approximations of macroscopic properties
of a system. To start this discussion, we first give a brief review of the concepts necessary
to the state the laws of thermodynamics.

By laws of thermodynamics, we refer to the postulate construction presented in
(87) which leads to the relations and properties of entropy, temperature and energy of a
composite system (which will be referred to simply as a system), i.e., a system composed
of subsystems with some constraint between them. In such a construction, the entropy
is viewed as a function of extensive parameters, i.e., the parameters that can be used to
fully characterize a time independent state of a system, known as an equilibrium state.
The entropy may be a homogeneous first order function of the extensive parameters and
additive over systems, both of which are approximations of the interactions and properties
of the system. One can relate the variation of the entropy with the variation of energy,
U , volume, V , and mole number, N , of a system by

δU = TδS − PδV + µδN, (4.3.1)

commonly referred to as the first law, which is merely a consequence of energy conserva-
tion. Here, T is the temperature, P is the pressure, µ is the chemical potential, and the δ
is representative of variations of an equilibrium state to a neighboring one, which is made
by virtue of a quasi-static process. From this relationship, the zeroth law can be stated
following the net flow of energy between constituents of a system. In other words, a system
in equilibrium has constant temperature. The second law is related to the time asymme-
try of “natural” physical processes, which can be related to the “natural” flow of energy
between two systems after a constraint is released, corresponding to the mathematical
relation

δS ≥ 0. (4.3.2)

The third law states that the entropy of a system goes to a constant as T → 0.

Although these general, macroscopic properties (i.e., properties of systems con-
taining a large number of particles such that measurements have negligible statistical
fluctuations) are in excellent agreement with experiments, they are not useful for the
derivation of intrinsic properties of a system. That is, they do not describe how unique
microscopic properties amount to these macroscopic relations. A proposal to give this
description is through postulating that the entropy is a multiple of the logarithm of the
probability of the macroscopic state of a system. Consequently, the entropy of a system
can be interpreted as a measure of its degrees of freedom, i.e., the number of quantum
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states accessible to the energy distribution that describes it. Following this postulate and
using quantum and classical statistical mechanics, one can provide a justification for the
postulates and the laws of thermodynamics. Because of this proposed definition of en-
tropy, the second law of thermodynamics can then be interpreted as the natural evolution
of a system from a less to a more probable macroscopic state. Lastly, it should be noted
that the fact that T = 0 is unattainable is not a consequence of the third law (87). In
reality, both quantum and classical statistical mechanics state that in order to achieve
absolute zero, it would be necessary an infinite number of processes.

Regardless of the nature of the interactions present in a system, one expects that
the laws of thermodynamics are applicable to it. In order to investigate how they may
apply to black holes, it is useful to consider how a black hole is perceived by an observer
outside of it. Such an observer would make measurements of the energy distribution
outside the black hole and would assign an entropy to it. However, due to the uniqueness
theorems, the information about the energy distribution inside the black hole is limited
to the three parameters that describe it, (rs, a, e), and it is not clear how such an observer
would go about assigning an entropy to the black hole, if it even has a nonvanishing one.
Suppose, first, a scenario in which the black hole has a vanishing entropy. This would
clearly be problematic when one considers the second law of thermodynamics, as it would
be possible to reduce the entropy of the universe simply by allowing energy to cross the
event horizon. Thus, in order to preserve the second law of thermodynamics, black holes
must have a nonvanishing physical entropy.

This being the case, one then must have that the entropy assigned to a stationary
black hole must be dependent only on the parameters that characterize its “equilibrium
state”, much like the dependence of the ordinary entropy on the extensive parameters
of a system in equilibrium. Now, consider the relation in first order of the parameters
of a stationary black hole when it is perturbed, eq. 3.5.66. Notice that the first law of
thermodynamics has a similar form, where one has a TdS term followed by arbitrary
“work” terms. The association of a possible physical temperature of a black hole with a
multiple of κ, as given by the Hawking effect (see eq. 4.2.55), then leads to one to the
association of the entropy with a multiple of the area of the event horizon, namely,

SB = kBA

4ℓ2
p

= c3kBA

4ℏG , (4.3.3)

which for a Schwarzschild black hole, reads

SB ≈ 3.61 1053
(
M

M⊙

)2 J
K . (4.3.4)

Intriguingly, in order for eq. 3.5.66 to have the exact same form of eq. 4.3.1 given eq.
4.2.55, SB has to be defined with the Planck length. Evidently, such an association gains
a deeper physical meaning when one considers the Hawking effect, as otherwise a simple
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prescription of this assignment of entropy would have no physical meaning, other than
an attempt to preserve the second law of thermodynamics. That is, because the black
hole is effectively emitting radiation with an approximate black body spectrum, one can
arguably affirm that that Hawking effect is a justification for a physical temperature of a
black hole.

In light of this, if one considers that the event horizon area is in fact related to
the physical entropy of a black hole, then the entropy of a system containing a black hole
is given by the generalized entropy

S = S ′ + SB, (4.3.5)

where S ′ is the entropy of the energy outside of the black hole. Thus, the second law of
thermodynamics can be restated as the generalized second law (21),

δS ≥ 0. (4.3.6)

Indeed, when semiclassical analysis is taken into account, purely classical violations of
the generalized second law do not hold (1), so that the full consideration of the Hawking
effect leads one to believe that the association of κ with the temperature of a black hole is
a physical one (see, e.g., (91) for a detailed discussion), rather than just a mathematical
analogy. It is in this sense that one may conclude that the classical properties derived in
ch. 3 are merely the laws of thermodynamics applied to a system containing a black hole.

Still, in the context of quantum field theory in curved spacetime, the assumptions
made in order to derive the classical properties may not hold. A clear example of this
is theorem 3.3.1, which relies on the condition that Rµνℓ

µℓν ≥ 0 for all null ℓµ. As dis-
cussed, this condition will be satisfied if Einstein’s equation and null energy condition
hold. More precisely, due to Raychaudhuri’s equation, it is known that one can interpret
such condition as the attractive nature of gravity, which also follows from the weak and
strong energy conditions. But, in the semiclassical framework, it is straightforward to
find examples where these conditions are violated, e.g., the Casimir effect (33, 92) (still,
“averaged” energy conditions can be satisfied in such cases (93)). Although this is a clear
indicator that theorem 3.3.1 is no longer valid in the semiclassical depiction of a black
hole, this is in agreement with the expectation that a black hole should lose energy due
to the Hawking effect, reducing its area, and thus, its entropy (more details on this will
be given in § 5.1). Evidently, this is also in agreement with the generalized second law.

Concerning the other properties, first note that the stationary state conjecture
is also physically justifiable by analogous behavior of thermodynamic systems, in which
arbitrary states are expected to “settle down” to a final, time independent, equilibrium
state, being described uniquely by extensive parameters. Hence, the constancy of κ over
the event horizon of a stationary black hole can be argued to be analogous, or some
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perspectives might even say, equivalent, to the constancy of T in the constituents of a
system in equilibrium. Recall that this property may be derived by using the Killing
horizon property of H and assuming the validity of Einstein’s equation and the dominant
energy condition (which is associated with the speed limit of observers and signals), or
from purely geometrical arguments following from the t-ϕ orthogonality property. As
discussed, one can also interpret the relation of the variations of the parameters of a
black hole simply as the first law of thermodynamics applied to it (in fact, it can be seen
merely as an “energy conservation law”). In particular, note that the derivation of eq.
3.5.66 followed from the constancy of κ over H, the Killing horizon nature of the event
horizon, variations over neighboring stationary solutions and the asymptotic properties
of the Kerr spacetime. In other words, such a result can also be derived through purely
geometrical arguments. Notwithstanding, it has also been shown (94) that a more general
form of eq. 3.5.66 holds in any metric theory of gravity (see ch. 1) whose field equations
are derived from a diffeomorphism covariant Lagrangian (95–97). In this framework, the
variation relation (to first order) is seen as a direct consequence of the variation identity
of the Noether current, and the black hole entropy is seen as the Noether charge arising
from the symmetry represented by the diffeomorphism. Similarly, it is straightforward to
see that black holes also obey that their area goes to a constant as κ→ 0 (see eqs. 3.5.20
and 3.5.29). Furthermore, following considerations of the cosmic censor conjecture, one
expects that it would be impossible to reduce the surface gravity of a black hole to zero
in a finite amount of time, much like statistical mechanics states that it is impossible to
achieve T = 0 by a finite number of processes.

Because of the geometrical arguments and conjectures associated with the deriva-
tions of classical properties of black holes, it is evident that they do not necessarily
depend on the specific content of the field equations (although they may also be derived
from them). This generality points to a possible connection between gravitation and the
description of heat, which is, in fact, not exclusive to black holes. Other thermodynamic
properties of null hypersurfaces, not necessarily event horizons, have also been developed
in the last decades (see, e.g., (98–102)). Moreover, under certain hypotheses, one can also
derive Einstein’s equation from the thermodynamic relation of heat, temperature and
entropy (103). Although these developments are promising, no underlying explanation
for such connections has been found, and there is still an important question regarding
the microscopic derivation of these properties and laws. For instance, if the geometrical
quantities of a black hole are in fact associated with its thermodynamic properties, one
can only guess as to what, and where, are the degrees of freedom responsible for them.
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4.4 Energy-momentum expectation values and Hadamard states

To conclude this chapter, we will discuss an important implication of entangle-
ment for quantum field theory, which mainly follows from analysis of a construction of a
suitable “energy-momentum expectation value”. As it is well known, in classical theories,
the mathematical object that contains all the information about an energy distribution
is the energy momentum tensor, Tµν . Of course, this is precisely the object that acts
as a source for the gravitational interaction, as postulated by Einstein’s equation, eq.
2.1. Consequently, in the semiclassical framework, one would expect that some notion of
“semiclassical Einstein’s equation” (34), i.e.,

Rµν −
1
2Rgµν = 8πG

c4 ⟨ψ|T̂µν |ψ⟩, (4.4.1)

to be an adequate description of the effect of the quantum field on the spacetime metric for
an arbitrary state, |ψ⟩. However, it is far from clear how one would go about constructing
the operator T̂µν for each a ∈M , since the most “natural” approach of doing so by using
the corresponding classical tensor would yield ill-defined operations. Namely, this is a
consequence of the fact that in the process of quantization, (see eqs. 4.1.10 and 4.1.11),
the quantum field operator is actually defined as an operator-valued distribution (1, 34).

For instance, if one tries to construct T̂µν for the classical Klein-Gordon field from
its energy momentum tensor1,

Tµν = ∇µψ∇νψ −
1
2gµν(∇αψ∇αψ + m2c2

ℏ2 ψ2), (4.4.2)

it is clear that this would not yield a well defined operator as a consequence of the nonlinear
operations on ψ̂. Focusing on the terms ψ̂2, a way to deal with such a complication is
to first consider the well defined bi-distribution ψ̂(a)ψ̂(a′) and then take the limit to the
corresponding event, i.e., a→ a′. However, for any state with finitely many particles, the
expectation value ⟨ψ|[ψ̂(a)]2|ψ⟩ would diverge. In essence, this can be seen by substituting
the formal expression for ψ̂, eq. 4.1.21, in

lim
a→a′

ψ̂(a)ψ̂(a′), (4.4.3)

which yields an infinite sum of terms âpâ†
p evaluated at the event a.

In Minkowski spacetime, this divergence can be traced back to the interpretation
that this calculation is merely the sum of the zero-point energies of the infinite number of
harmonic oscillators that give rise to the field. Evidently, by interpreting the divergence
as such, one can then make use of a “vacuum energy subtraction” to define a smooth
function of a and a′ by

F (a, a′) = ⟨ψ|ψ̂(a)ψ̂(a′)|ψ⟩ − ⟨0|ψ̂(a)ψ̂(a′)|0⟩, (4.4.4)
1 The energy-momentum tensor of classical fields can be evaluated from the variation of their

action with respect to the spacetime metric (33).
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where |0⟩ denotes the Minkowski static vacuum. Hence, one can then define

⟨ψ|[ψ̂(a)]2|ψ⟩ = lim
a→a′

F (a, a′), (4.4.5)

and using a similar logic, one may construct an adequate notion of ⟨ψ|T̂µν |ψ⟩ in Minkowski
spacetime. However, because of the absence of a preferred physical definition of a vacuum
state in an arbitrary spacetime, the notion of a “vacuum energy subtraction” loses its
“natural” meaning. Nevertheless, it is possible to construct an axiomatic approach to
establish the uniqueness of ⟨ψ|T̂µν |ψ⟩ up to an addition of a conserved local curvature
term, so that one can single-out a condition for what classes of states one would deem
physical, i.e., those that would lead to a physically adequate definition of ⟨ψ|T̂µν |ψ⟩ in
any spacetime.

This physical condition can be defined by requiring that the subtraction in eq.
4.4.4 is made not by some notion of a vacuum state, but rather, a locally constructed
bi-distribution with similar characteristics as ⟨0|ψ̂(a)ψ̂(a′)|0⟩. Namely, this locally con-
structed bi-distribution should have a divergence of leading order as to mimic the singular
character of ⟨0|ψ̂(a)ψ̂(a′)|0⟩, such as those that are proportional, in leading order, to the
inverse squared geodesic distance between the events a and a′. Thus, the Hadamard ansatz
for this bi-distribution, H(a, a′), can be written as

H(a, a′) = U(a, a′)
(2π)2σ(a, a′) + V (a, a′) ln σ +W (a, a′), (4.4.6)

where U(a, a′), V (a, a′) and W (a, a′) are smooth functions that equal one when a = a′, and
σ(x, x′) is the squared geodesic distance between the unique geodesic connecting a and a′.
Note that the existence of such a unique geodesic is a consequence of the result that every
event in a spacetime has a convex normal neighborhood (see § 2.2), while the particular
characteristics of the smooth functions in eq. 4.4.6 can be found by requiring that H(a, a′)
obeys the Klein-Gordon equation, eq. 4.1.13. More details on the construction of this bi-
distribution, such as the subtleties that come into play when the geodesic connection a

and a′ is null, can be found in (34).

Therefore, given the Hadamard ansatz of eq. 4.4.6, one can define

F (a, a′) = ⟨ψ|ψ̂(a)ψ̂(a′)|ψ⟩ −H(a, a′), (4.4.7)

so that one obtains a unique, physical prescription to define ⟨ψ|[ψ̂(a)]2|ψ⟩ (and thus,
⟨ψ|T̂µν |ψ⟩), provided that the state be one such that F (a, a′) is a smooth (or sufficiently
differentiable) function of a and a′. The condition of order of differentiability can be traced
back to the physical assumption that the energy momentum tensor be locally conserved
(34). In essence, these ideas for the definition of ⟨ψ|T̂µν |ψ⟩ on arbitrary spacetimes can
be interpreted as a requirement that the “short distance singularity structure” of the
Hadamard ansatz (corresponding to the first term on the right hand side of eq. 4.4.6) to
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be similar to that of ⟨0|ψ̂(a)ψ̂(a′)|0⟩. Consequently, one can argue that it is physically rea-
sonable to require that, for a state to be considered physically acceptable, ⟨ψ|ψ̂(a)ψ̂(a′)|ψ⟩
must exist and have a “short distance singularity structure” of the Hadamard ansatz, eq.
4.4.6. States satisfying this condition, known as Hadamard condition, are referred to as
Hadamard states.

The above discussion can be summarized in the statement that ⟨ψ|T̂µν |ψ⟩ is defined
up to a curvature term and is non singular for all Hadamard states. Conversely, ⟨ψ|T̂µν |ψ⟩
should be singular for any non-Hadamard state. Furthermore, one can verify that for a
massive Klein-Gordon field in any static, globally hyperbolic spacetime, the static vacuum
state is a Hadamard state. It then follows that all states with only finitely many quanta
in each mode of the field satisfy the Hadamard condition. Thus, there is a wide class
of Hadamard states in globally hyperbolic spacetimes. Also, it can be shown that the
Hadamard condition is preserved under dynamical evolution. More precisely, if a state
satisfies the Hadamard condition in a neighborhood of any Cauchy hypersurface, then it
satisfies the Hadamard condition throughout spacetime. For details and proofs of these
properties, see (34) and references therein.

The importance of Hadamard states for quantum field theory can be analyzed in
the following manner (40). Let (M, gµν) be a globally hyperbolic spacetime and Σ denote
a Cauchy hypersurface. The full system described by the quantum field is then given by
the quantum field observables in a neighborhood of Σ, so that one can use dynamical
evolution laws to obtain the states of the field throughout spacetime. Now, consider a
division Σ into two subsystems, where each one is given by the quantum field observables
in the disjoint open regions Σ1 ⊂ Σ and Σ2 ⊂ Σ that have common boundary, S, such
that Σ1 ∪Σ2 ∪ S = Σ. Let V1 and V2 denote the globally hyperbolic regions with Cauchy
hypersurfaces Σ1 and Σ2, respectively. Consequently, the subsystem α will consist of the
field observables in the globally hyperbolic region Vα, with α = 1, 2, as illustrated in fig.
26. It is then straightforward to see that for any Hadamard state, the two subsystems will
be entangled.

This can be deduced by considering events a ∈ S, a′ ∈ Σ1 and a′′ ∈ Σ2. The
entanglement of the two subsystems can be shown by studying the condition given by eq.
C.3.7 when both a′ and a′′ approach a. More precisely, if |ψ⟩ is a Hadamard state and ψ̂

is the field operator of a free scalar field, then by the Hadamard condition (see eqs. 4.4.6
and 4.4.7),

lim
a′,a′′→a

[
⟨ψ|ψ̂(a′)ψ̂(a′′)|ψ⟩

]
= lim

a′,a′′→a

U(a′, a′′)
(2π)2σ(a′, a′′) , (4.4.8)

which is clearly divergent, as σ(a′, a′′) is the squared geodesic distance between the events
a′ and a′′. However, for any physically acceptable state, one also has

lim
a′,a′′→a

[
⟨ψ|ψ̂(a′)|ψ⟩⟨ψ|ψ̂(a′′)|ψ⟩

]
=
[
⟨ψ|ψ̂(a)|ψ⟩

]2
, (4.4.9)
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Figure 26 – Subsystems with globally hyperbolic regions V1 and V2 in the globally hyper-
bolic spacetime (M, gµν).

Source: Adapted from UNRUH; WALD (40).

which is finite, since the state |ψ⟩ is a superposition of states with finitely many particles
(see the expansion of the field operator in terms of annihilation and creation operators,
eq. 4.1.21). Consequently, one has that

lim
a′,a′′→a

[
⟨ψ|ψ̂(a′)ψ̂(a′′)|ψ⟩

]
̸= lim

a′,a′′→a

[
⟨ψ|ψ̂(a′)|ψ⟩⟨ψ|ψ̂(a′′)|ψ⟩

]
. (4.4.10)

By eq. C.3.7, one can then conclude that entanglement between states in causally
complementary regions always occurs in quantum field theory for any spacetime and
Hadamard state. In the context of black holes, the application of this result is evident
if one considers the regions ⟨B⟩ ∩ Σ and Σ\B, with the common boundary being H. In
particular, for any physically acceptable (Hadamard) state, the field observables inside
and outside the black hole at a given time will be entangled.
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5 BLACK HOLE INFORMATION PROBLEM

The results and discussions of chs. 4 and 5 as well as those in appendix C give us
all the necessary tools to precisely formulate the black hole information problem. In this
chapter, we will discuss the consequences of the Hawking effect on the dynamical evolution
of the black hole, which mainly follow from the expectation that the emitted particles will
carry away energy, angular momentum, and electric charge in such a way as to reduce
the parameters of the black hole, causing it to slowly reduce in size. With the assumption
that the evolution of the black hole is approximately given by a quasi-static process and
that no deviation from semiclassical predictions occurs when the black hole reaches the
Planck scale (i.e., rs ∼ ℓp), we will see that information loss is a genuine prediction of
semiclassical gravity. In a classical sense, this would correspond to the idea that, after
the black hole has disappeared due to the emission of radiation, observers would not be
able to access most of the distinguishable information about the energy distribution that
gave rise to it other than the three parameters, (rs, a, e), i.e., information would have
been lost. From a quantum mechanics perspective, the process of black hole formation
and complete evaporation corresponds to the evolution of a pure state to a mixed one.
We will then discuss some proposals for alternatives that would result in a process in
which unitary evolution is preserved, but mainly at the cost of questioning the validity of
semiclassical predictions in regimes in which one expects it to be an adequate description
of the fundamental interactions. Finally, we will review the assumptions and hypotheses
that lead to the black hole information problem.

5.1 Consequences of particle creation by black holes

In this section, we will analyze the consequences of the Hawking effect for the
dynamical evolution of B ∩Σ (which we refer to simply as a black hole), where Σ denotes
a Cauchy hypersurface. Although calculating the precise effect of the emitted particles on
the metric (also known as back reaction effects) is not a trivial task for four-dimensional
spacetimes, one expects that the main consequence of their effective emission will be to
reduce the parameters of the black hole at a given time, i.e., its mass, angular momentum
and electric charge. In particular, the energy reduction is merely a consequence of the fact
that the positive energy flux to infinity implies that there must exist a negative energy
flux going into the B ∩ Σ, while the reduction of the Kerr parameter, a, and the length
electric charge, e, are expected due to the fact that created particles tend to carry away
such physical properties, as discussed in the remarks below eq. 4.2.55. In fact, it can be
shown that the reduction in angular momentum and electric charge is much faster than
the one in mass, so that a Kerr-Newman black hole will quickly (in comparison with
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time scales of interest) become a Schwarzschild black hole (see (104–106) for quantitative
details). Because of this, in the following discussions we will only consider a Schwarzschild
black hole.

As per eqs. 3.4.19 and 4.2.55, the temperature of the spectrum associated with
a Schwarzschild black hole is inversely proportional to its mass, which means that the
energy of created particles tends to increase as a Schwarzschild black hole shrinks. More
specifically, this relation between the particle energy spectrum and black hole mass ensures
that created particles will have a small influence on the spacetime metric for most of their
evolution, so that neglecting back reaction effects will be a good approximation when the
black hole has a mass much greater than the Planck mass. In this sense, the details of the
back reaction effects will pose little influence over the event horizon, H, and the exterior
region, Σ\B. Consequently, the geometry of the spacetime can be described by a sequence
of quasi-static processes in which the mass of the black hole, rs, decreases slowly, with the
process of energy loss being approximated by Stefan’s law (87) with temperature given
by eq. 4.2.55. This argumentation leads one to the conclusion that a black hole should
completely evaporate, i.e., radiate away its mass, in a finite amount of time. Evidently,
the Planck scale will be accessible to H at some finite time. Hence, this prediction is only
valid if one considers that no deviations from general relativity and quantum field theory
occur on that scale. For the moment, let us consider that to be the case and analyze the
consequences of a complete evaporation process.

The conformal diagram of a Schwarzschild black hole that resulted from a spheri-
cally symmetric collapse and evaporates completely is depicted in fig. 27 (38,107). In this
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(b) Illustration of spacelike hypersurfaces.

Figure 27 – Conformal diagram of a Schwarzschild black hole that formed from a spheri-
cally symmetric distribution of energy and evaporated completely.

Source: By the author.

representation of the causal structure of such spacetime, one can see that “after” complete
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evaporation, events located at the origin of spatial coordinates are causally connected to
I +. In contrast, all causal curves that cross H do not reach any spacelike hypersurface
“after” complete evaporation. This signifies that knowledge of the field observables in any
spacelike hypersurface “after” the event of complete evaporation, such as Σ′ in fig. 27b,
will not suffice to determine conditions in the entire spacetime. Indeed, if one considers
any spacelike hypersurface “before” complete evaporation, such as Σ or Σ′′ in fig. 27b,
then D(Σ′) does not contain it. Conversely, one can also conclude that Σ′ is also not
contained in either D(Σ) or D(Σ′′) (108). However, given suitable initial conditions, one
can argue that data at either Σ or Σ′′ may very well be enough to determine conditions at
Σ′ (107). In this sense, adequate spacelike hypersurfaces “before” complete evaporation
can be regarded as ones for which conditions in the entire spacetime can be determined
from. Thus, one can argue that the initial value problem for the matter fields earns the
adjective “well posed” in the entire spacetime1.

Additionally, the hypothesis that the black hole disappears is in accord with theo-
rem 3.2.1, whose results are based on the condition that the evolution of the black hole is
given along Cauchy hypersurfaces. In any case, this supposed “loss of determinancy” (in
the sense that knowledge of conditions at Σ′ will certainly not be sufficient to describe the
entire region of the spacetime “before” the complete evaporation) is clearly independent
of the details of what happens to the distribution that follows the causal curves that cross
H, relying only on the assumption that they will no longer be accessible to any observer
after the black hole has completely evaporated. This “past-indeterminacy” at Σ′ can be
precisely quantified by the following line of reasoning.

Using the representation of fig. 27b, consider a time2, Σ′′, for which the spherically
symmetric energy distribution has not collapsed to form a black hole yet, and consider
that maximum possible knowledge of its details has been acquired, i.e., it is described by
a pure state. Consider now a time, Σ, in which the black hole has already formed and
“settled down” to a stationary configuration. In accord with quantum field theory, the
quantum field states inside and outside the black hole are entangled (see § 4.4), which
means that the state of the system outside of the black hole can only be described by a
density operator (see appendix C.1). Nonetheless, the full state of the system at Σ still
has the same purity as the one at Σ′′. At this point, the black hole is emitting radiation
as a gray body with an approximately thermal spectrum, with temperature given by eq.
4.2.55 and absorptivity Γ, and slowly evaporating due to loss of energy, in accord with
semiclassical properties. If the evaporation occurs completely, then the state of the field
at a “time” Σ′ will still be mixed, as it remains entangled with the states inside the black

1 Nevertheless, this heuristic argumentation does not suffice to argue that black hole evaporation
is not in conflict with predictability (109).

2 This hypersurface can be considered as an “instant of time” because the region “before”
complete evaporation is globally hyperbolic.
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hole, even though it no longer exists. In essence, the system will evolve from a pure state
at Σ′′ to a mixed state at Σ′, which in the vocabulary of mixtures, corresponds to a loss
of quantum coherence. Hence, the information about the quantum field state at Σ′ (which
is the only region accessible to observers after complete evaporation) will not be enough
to determine the state of the system at a time Σ′′ or Σ, i.e., information will be lost.

Generalization of this argumentation for an energy distribution which is not spher-
ically symmetric or stationary follows from the results and discussions in chs. 3 and 4.
More precisely, the stationary state conjecture, the black hole uniqueness theorems, and
the fact that the event horizon acts in a way as to make sure that the details of the
collapse pose negligible influence over the spectrum of created particles measured at late
times at I + ensure that the same conclusion holds.

The description of the process of black hole formation and evaporation stated
above merits two important remarks. First, the loss of information can be clearly traced
back to the interpretation that the evolution of the black hole “removes” the degrees
of freedom of the quantum field to observers outside of the black hole, as its complete
evaporation means that those degrees of freedom are no longer accessible. In essence, the
complete evaporation of a black hole can be interpreted as leaving a lasting “deterministic
pathology” on the spacetime, signified by the fact that conditions on “late time” spacelike
hypersurfaces do not suffice to entirely determine those “before” complete evaporation.
The second remark concerns the evolution from a pure state to a mixed one1, which can
be wrongfully interpreted as a breakdown of postulates of quantum mechanics. In fact,
the evolution from a pure state to a mixed one should not be confused with a lack of
conservation of probability, which would in turn be extremely problematic. Note that this
is not the case because the dynamical evolution of the quantum field in the process of
black hole formation and complete evaporation is not given along Cauchy hypersurfaces.
Precisely, because conditions at Σ′ certainly do not suffice to determine conditions at Σ′′,
evolution of the quantum state from Σ′′ to Σ′ is expected to be non-unitary (see eqs.
C.1.11, C.1.12, and C.1.24). In this sense, the formation and complete evaporation of
a black hole may be interpreted as producing an open system, which would result in a
physical non-unitary evolution.

It should be noted that this conclusion of loss of quantum coherence is in accord
with quantum field theory and, in fact, it even happens in any “well behaved”, globally
hyperbolic spacetime for suitable choices of “initial” and “final” hypersurface. In essence,
one can obtain the same conclusion if one considers the dynamical evolution of the quan-
tum field observables for a massless Klein-Gordon field in Minkowski spacetime from a
Cauchy hypersurface (e.g., a hyperplane) to, say, an “asymptotically null” hyperboloid

1 The point of this analysis is that, regardless of the purity of the initial state of the energy
distribution that gave rise to the black hole, the final state will be in a mixed state.
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(see fig. 28). The exact same phenomenon of loss of quantum coherence occurs in this
globally hyperbolic spacetime, in which the hypersurface Σ′ fails to be a Cauchy hyper-
surface and thus, evolution of the state from Σ to Σ′ corresponds to the evolution of a
pure to a mixed state, i.e., a non-unitary evolution (see (40) for a physical example of
this process). In this sense, physical non-unitary evolution is a prediction of quantum field
theory for suitable choices of “initial” and ”final” hypersurfaces.

Σ

Σ′

Figure 28 – Spacetime diagram of Minkowski spacetime showing a Cauchy hypersurface,
Σ, and a hyperboloid, Σ′.

Source: Adapted from WALD (34).

In the exact same manner, during the entire process of black hole formation and
evaporation, the quantum field respects deterministic equations of motion, and presents no
kind of pathological behavior. The same can be said about the structure of spacetime and
the physics governing it, except perhaps at the singularity. Thus, under the assumption
that a black hole evaporates completely, the result of information loss is in complete
accord with predictions of quantum field theory in curved spacetime.

5.2 Alternatives to information loss

There are, however, proposals of alternatives which revolve around possibilities
regarding the physics of black holes in order to restore unitary evolution. In this section,
we briefly summarize some of the most notable of them, and discuss how and where the
picture stated in the last section fails.

One of the proposals to restore unitarity is known as remnants (see, e.g., (110)),
which states that the evaporation process does not continue when the black hole reaches
the Planck scale, so that a Planck-sized object containing all the information would be
the final state of a black hole (see region I in fig. 29 for an illustration of where the
conformal diagram of fig. 27 would fail in this framework). Another perspective to avoid
information loss is known as firewalls (see, e.g., (111)), which states that the evaporation
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process does occur as simply as predicted by semiclassical gravity1, in particular, that
there is less entanglement (or none at all) between pairs of created particles (i.e., those
that reach infinity and those that represent the negative energy flux into the black hole).
As a consequence, an infalling observer would perceive high energy field quanta at the
event horizon, and there would be no evolution from a pure to mixed state in the process
of evaporation (see region II in fig. 29). Additionally, there is the view of fuzzballs (114),
which is named after the proposed structure that should follow from gravitational collapse,
rather than a black hole. In this view, the whole concept of evaporation and information
loss is avoided by simply stating that black holes do not form, as some new physics would
prevent it (see region III in fig. 29).

I +

I −

I

II

III

Figure 29 – Regions of possible failure of semiclassical gravity in the conformal diagram
of a spherically symmetric black hole formed from gravitational collapse.

Source: By the author.

Although these proposals lead to a more complete discussion and shed light on
the reliable fundamental structure of the theories involved in the process of black hole
formation and evaporation, there are significant flaws in arguing that semiclassical predic-
tions do not hold at arbitrary scales. More specifically, proposals that seek to invalidate
predictions of general relativity and quantum field theory in regimes where one justifi-
ably expects them to be an adequate description of nature is problematic. For example,
in order for the fuzzball proposal to be an adequate possibility, it would be necessary
to contradict predictions of general relativity concerning gravitational collapse. In other
words, since the formation of an event horizon does not necessarily require high energy or
high curvature conditions, proposing that semiclassical gravity presents flaws in arbitrary
energy scales to prevent the formation of any black hole is contradictory. Recall that the

1 The firewall proposal was mainly motivated by the concept of black hole complementarity
(112,113), which in summary, states that information that enters the event horizon is accessible
on the outside.
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scales of curvature at the event horizon of a Schwarzschild black hole are proportional to
r−2
s (see eq. 3.1.3), which means that supermassive collapses would have an event horizon

form in arbitrarily low curvature regimes1. Hence, it is hard to see how these claims would
be useful to describe the impossibility of the formation of an event horizon in the collapse
of such distributions, which is an instance of scales where semiclassical predictions are ex-
pected to hold very accurately. Regarding the firewall proposal, the same argument comes
into play, since the explanation for the reduction or lack of entanglement (i.e., deviation
from semiclassical picture) would have to hold at arbitrarily low energy and curvature
regimes.

That being said, there are no similar remarks to the remnant proposal, since the
scale at which the evaporation process is proposed to stop is one where details on the
quantum gravitational phenomena would be necessary to accurately predict the fate of
the black hole. Nevertheless, following such a hypothesis, the Planck-sized object would
need to possess an extremely high entanglement entropy (and in fact, arbitrarily high,
since any black hole would have to result in a remnant), which would clearly need to exceed
the “ordinary” proposal of a black hole entropy, as given by eq. 4.3.3. In addition, in order
for observers to physically access the information, an interaction with the remnants would
be necessary, and due to the arbitrarity present in the amount of entropy it would have, it
is unclear how such interaction would work in the general case. In contrast, if remnants do
not interact with the rest of the universe, then information can be basically assumed to be
inaccessible. Lastly, the exact same reasoning applies to proposals that seek to invalidate
the conclusion of information loss by arguing that it goes into a “baby universe” (say, if
the singularity is actually a “bridge” between two universes). That is, if information is
inaccessible to any observer at a time “after” complete evaporation, then it is hard to
argue why it would not merit the conclusion of being lost.

Nonetheless, there is no way to make a precise prediction concerning the result of
the evaporation process without a complete theory of quantum gravity, which will allow
for a complete evaluation of the particle creation, back reaction effects and determination
of black hole physics beyond Planck scales. This is precisely the content of the black hole
information problem, which is this question regarding the result of the process of black
hole evaporation. In particular, one would like to know if information is truly lost, or how
this inadequate conclusion can shed light on the regime in which semiclassical analysis is
expected to fail. That is, although general relativity and quantum field theory provide a
good description of black hole physics on most of the accessible energy scales, and in the
author’s opinion, point to the most plausible result of information loss, it is possible only
to speculate as to how this will be addressed in an adequate theory of quantum gravity.

1 Indeed, because an event horizon has no local significance, arguments based on some mecha-
nism that would stop the formation of any black hole are inconsistent.
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5.3 Nature of the black hole information problem

The evolution of the black hole region in light of semiclassical developments points
to the physical prediction of information loss. Evidently, the formulation of this prediction
and the state of affairs regarding it relies on several assumptions and hypotheses that
rise from the theories involved in the semiclassical framework of gravity. The purpose
of this section is to discuss these assumptions and hypotheses. It should be noted that
an extensive discussion concerning the physical principles behind the theories involved
is beyond the scope of this work. In particular, our starting point will be to assume the
validity of the postulates of general relativity (see chs. 1 and 2) and the quantization
process in quantum field theory (see § 4.1). The reader can find an extensive discussion
on these concepts, as well as experimental evidence for their validity, in (5, 23,115).

With these remarks, consider, first, some results that arise in the purely classical
analysis in the framework of general relativity. Arguably, the main point is the physical
plausibility of the existence of black holes. As discussed, gravitational collapse and patho-
logical regions are genuine predictions of the theory (see § 2.6), which mainly follow from
analysis of the stability of astronomical bodies and the eventual formation of trapped
surfaces (see § 3.1). Considering the cosmic censor conjecture (see § 3.2), the existence
of black holes can then be seen as a way to preserve determinism in spacetimes, rather
than a generic prediction of the theory. In particular, the physical assumption behind this
comes from the expectation of global hyperbolicity (see § 2.2), namely, that a physically
reliable spacetime is one in which the dynamical evolution of physical fields is a “well
posed” problem. Additionally, by defining black holes in the context of asymptotically
flat spacetimes (see § 2.7), one makes use of the frame of reference of observers at the
asymptotic region to analyze physically significant parameters. As it is customary in the
analysis of physical systems, one considers that the system is isolated for a simpler anal-
ysis. Although no physical black hole would constitute an isolated system, a theoretical
treatment of one as such is clearly justified by the expectation that an idealized analysis
would yield results that are of significance for observations.

With the existence and definition of black holes in the framework of general rela-
tivity being well justified, the most notable property to the formulation of the information
problem comes from the uniqueness theorems (see § 3.5), which are also rigorous results in
differential geometry and topology. However, it is evident that its physical relevance (i.e.,
applicability to real scenarios) follows directly from the assumption that black holes reach
a stationary final state. Indeed, the expectation that physical properties not associated
with invariance over a one-parameter group of isometries (see § 2.1) should be radiated
away is precisely the justification for this conjecture. Although one might argue that the
stationary state conjecture does not rise as a consequence of a fundamental physical as-
sumption such as determinism in spacetimes, it is undeniable that the similar character
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of other dynamical systems and the prediction of gravitational waves justifies it. In sum-
mary, the cosmic censor and stationary state conjecture are reasonable assumptions in
the classical realm.

When quantum field theory in curved spacetime is taken into account, it is natural
to question if these conjectures and properties hold in the same manner. With regard to
the cosmic censor conjecture, the assumption that gravitational collapse should result in
a black hole remains reasonable, since versions of the singularity theorems with weakened
energy conditions (e.g., quantum energy inequalities (116)) are valid1. As a matter of
fact, considering that violations of the weak version of the cosmic censor conjecture can
be found in quantum mechanics (117), and that theorem 3.5.1 need not hold in such a
framework, one can justifiably challenge its physical reliability in a more general manner.
In other words, singularities, either naked or “concealed” by event horizons, may very well
be a genuine feature of a complete theory of gravitation.

Now, the main concern with singularities is not necessarily with their existence,
but rather, with what their existence implies in a theory in which one does not have the
necessary tools to describe them in a satisfactory manner. In other words, the intrinsic
quantum process for which the weak version of the cosmic censor conjecture may not hold,
and the expectation of determinism (or at least, predictability2) in a physical theory
support the hypothesis that, with a complete theory of quantum gravity, an adequate
description of singularities might be possible (118). This is meant not only in the sense
that one would have information about the quantum gravitational phenomena that occur
in the vicinity of a singularity, but also, details about the appropriate boundary conditions
one would impose there. Evidently, this does not invalidate predictions of black holes or
their physical importance in the semiclassical context, but simply points to the possibility
that not every singularity has to be concealed by an event horizon in a complete theory
of quantum gravity.

Currently, as far as the author is aware, there are no arguments that suggest
that the stationary state conjecture should not hold in the semiclassical framework, but
the same cannot be said about the black hole uniqueness theorems. Indeed, it is well
known that the uniqueness theorems summarized in § 3.5 are valid only when suitable
classical fields are present (1), i.e., they are valid for Einstein-Maxwell equation, so that
full consideration of more general equations can bring to light some “hair”3. Nonetheless,
one can argue that such time independent solutions not described by the Kerr-Newman
metric would be subjected to some sort of generalized uniqueness theorems (see (119) for

1 However, general developments taking into account back reaction effects and interactions may
still change these conclusions.

2 See details below.
3 In the sense that time independent black holes may not be described uniquely by (rs, a) and

finitely many “charge” variables.
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an extensive review of solutions and arguments supporting this hypothesis).

Turning our attention now to the pertinent effects that arise in the semiclassical
framework, perhaps the most important assumptions and hypotheses are those that lead
to the effective particle creation effect and the conclusion of entanglement between field
observables inside and outside the black hole. First, one has the requirement of global
hyperbolicity, which is necessary for one to have a “well posed” (see § 2.2) problem for
the dynamical evolution of the quantum field observables (see § 4.1). For instance, note
that even though it can be deduced that a hypersurface such as Σ in fig. 27b does not obey
D(Σ) = M , this does not mean that M is not globally hyperbolic. More precisely, it only
means that Σ is not a Cauchy hypersurface. Additionally, since it can be argued that data
on Σ can still be regarded to be enough to determine conditions at Σ′, evolution of the field
observables from Σ to Σ′ could still constitute a “well posed” problem, regardless of global
hyperbolicity1. Second, one has to consider the geometric optics approximation, which
is well justified for analysis of scalar solutions of the minimally coupled Klein-Gordon
equation with high frequency (see § 4.2). In particular, the analysis of high frequency
solutions is only relevant to the “traced backwards” form of solution from I + to H, as
from H to I − the geometric optics approximation is justified by the arbitrary blueshift
at the event horizon.

In fact, such a property is also responsible for ensuring that details of the energy
distribution that gave rise to the black hole pose negligible influence over the spectrum
of created particles. Because of this and the rigorous arguments that are involved in the
derivation of the Hawking effect, one is tempted to believe that perhaps the only flaw
in its prediction lies in the fact that the exponential redshift suffered by the outgoing
particles means that they originate from modes with extremely high frequency. In other
words, the approximately thermal spectrum measured at I + should possess much higher
wavenumbers when the particles are located closer to the event horizon, and may very well
constitute a situation in which Planck scales are accessible. Not only that, consideration
of only high frequency modes from I + to H, and neglection of back reaction effects in
the derivation of the Hawking effect lead one to the question of how much information
Hawking radiation would actually carry, as well as if its deduction is independent of
Planckian physics.

Supposing for the moment that one is satisfied with the semiclassical arguments
that give rise to Hawking radiation, the prediction of information loss follows from the
conclusion of entanglement between the quantum field observables inside and outside the
black hole. As briefly commented in appendix C.3, entanglement is an intrinsic property
of quantum mechanics derived from the theory alone, and experimental evidence for it is
abundant. Nonetheless, it sparked a powerful discussion regarding its role in a physical

1 However, one would still expect that suitable causality conditions are satisfied (109).
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theory that is both local and realistic (120). By realistic, it is meant that the physical
quantities that are predicted by the theory have definite values, i.e., the observables of
the theory are consistent with an objective reality, independent of the process of measure-
ment. By local, it is meant that measurements made on spacelike separated (i.e., causally
disconnected) systems cannot be relevant to one another. Although these philosophical
perspectives concerning the nature of a successful theory are (arguably) justifiable, one
can deduce that quantum mechanics is not, in general, in accord with such principles, as
per Bell’s inequalities1 (122). Certainly, it is not difficult to see that entanglement implies
that measurements made on arbitrarily distant entangled systems can be of influence to
one another. Not only that, experiments that show violations of Bell’s inequalities (see,
e.g., (123, 124)) support the conclusion that local realistic theories are not adequate for
the description of quantum phenomena. In this purely theoretical sense, entanglement is a
necessary consequence of a physical theory that accurately describes quantum phenomena.

In the context of quantum field theory in curved spacetime, entanglement rises as
an intrinsic feature of causally complementary regions due to Hadamard states (see § 4.4).
As discussed, the physical assumption behind this class of states is that they are those
for which the expectation value ⟨ψ|T̂µν |ψ⟩ is non singular. In light of the expectation that
quantum gravitational effects to be governed by equations whose source is directly related
to some notion of “energy-momentum expectation values”, the requirement for physically
acceptable classes of states to be those that obey the Hadamard condition is well justified
(34). In fact, entanglement between the field observables inside and outside the black hole,
as predicted by the requirement that states obey the Hadamard condition (see the remarks
below eq. 4.4.9), is the justification for the nature of the Hawking radiation, i.e., it justifies
its approximately thermal character. Precisely, the same exact explanation arises when
one considers the Fulling-Davies-Unruh effect (see § 4.1) in Minkowski spacetime, in which
the thermal radiation measured by uniformly accelerated observers originates from the
entanglement of the field observables in the left and right Rindler wedges (34). Certainly,
in the context of black holes, the particles emitted to I + at late times are (most likely)
weakly correlated with each other (i.e., there are weak correlations between measurements
of particles emitted in different modes), but the fact that they are correlated with particles
that enter the black hole (i.e., those corresponding to the negative energy flux) is a direct
consequence of the nature of the entanglement (40,125).

Given that entanglement and the approximately thermal character of Hawking
radiation are well justified, the result is that the process of black hole formation and
complete evaporation will constitute the evolution from a pure state to a mixed one.
The conclusion of information loss follows precisely from this loss of quantum coherence,

1 These inequalities can be understood as a way to predict constraints on experiments using
a local realistic theory, and then compare them with predictions of quantum mechanics. See
(121) for a detailed discussion.



138

as quantified by the Von Neumann (see § C.2), but the physical plausibility of such
evolution has also been the topic of much discussion. Namely, it has been argued that
this process could be stated in the requirement that the dynamical evolution of ρ̂ has to
be given by a more general equation than the Schrödinger’s one (see, e.g., (56)), which
in turn, would result in violations of energy-momentum conservation (126, 127). Indeed,
no physical process known to date provides an account for violation of unitarity (in the
sense that a pure state evolves into a mixed state) for dynamical evolution of a system
over Cauchy hypersurfaces. However, we stress again that in the process of black hole
formation and evaporation, the violation of unitarity is a consequence of semiclassical
predictions in light of the fact that any spacelike “late time” hypersurface will not suffice
to determine conditions in all spacetime. Consequently, it should be noted that, in this
context, the failure of the evolution of the system from a pure to a mixed state does not
imply that probability is not conserved (which, arguably, is a fundamental principle), but
rather, that at “late times” no observer will be able to make a complete description of
the system via dynamical evolution to the past. It is in this sense that information loss
is in complete accord with semiclassical predictions following the assumption of complete
evaporation (40), and one can also argue that such evolution may happen in more general
processes in light of a complete theory of quantum gravity (128).

The last point worthy of discussion is not about an assumption that contributes
directly to the formulation of the black hole information problem, but rather, how one can
interpret semiclassical properties of black holes from a “full picture” perspective. Namely,
since one may interpret the Hawking effect as a manifestation of the physical temperature
of a black hole (see § 4.3), it is of interest to understand which relevant assumptions about
the information problem corroborate or invalidate such interpretation. First, it should be
noted that, by temperature, we refer to a behavior of a system in which its microscopic
degrees of freedom result in a emission of radiation in accord with a black body spectrum.
Although the predominant behavior of the spectrum of created particles is given by a black
body spectrum (see eq. 4.2.54), most likely deviations will arise from a detailed calculation
(in the sense that considerations of back reaction effects, higher range of frequency and
quantum gravitational phenomena may change its precise form). Nonetheless, given the
constraints that come into play in the development presented in § 4.2, one can show that
the content of the Hawking radiation is in agreement with a correspondence with black
body radiation. Indeed, in Wald’s words (82):

“The density matrix for emission of particles to infinity at late times by spontaneous
particle creation resulting from spherical gravitational collapse to a black hole is identical
in all aspects to that of black body thermal emission at temperature kT = ℏκ/2πc”.

Generalizations of such a statement to a Kerr-Newman black hole follows from
the stationary state conjecture and most of the arguments presented in the derivation of
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the Hawking effect in ch. 4 (see (38, 82) for a detailed discussion). Thus, the agreement
of the predominant part of the Hawking radiation with a black body spectrum is not
just numerical (see eq. 4.2.54), it is identical in all aspects (clearly, the gray body factor
does not affect the nature of the spectrum). This corroborates the interpretation of κ,
as given by eq. 4.2.55, as the physical temperature of a black hole, and the discussion
in § 4.3 supports the idea that one may interpret the stationary final state of a black
hole as physically equivalent to any other system in thermodynamic equilibrium (90).
In this sense, the semiclassical properties are known to constitute the alleged black hole
thermodynamics.

However, if that is truly the case, then the physical assumptions that give rise to
the semiclassical properties derived in chs. 3 and 4 should have a deeper meaning. For
instance, when one considers the property that κ = 0 should be unattainable, a possible
interpretation is that this is just a restatement of the cosmic censor conjecture. Simi-
larly, when one considers the constancy of κ over the event horizon, one may derive it
from Einstein’s equation and the dominant energy condition or from purely geometrical
arguments. Additionally, the fact that one can derive an analogous “energy conservation
law” (see eq. 3.5.66) for more general metric theories of gravity, and the arguments sur-
rounding the generalized second law corroborate the ideas stated above. Consequently, if
one were to consider a physical association between the geometrical and thermodynamic
properties of black holes, it would be natural to question what are the underlying physical
correspondences between the arguments that lead to these sets of relations, both from a
geometrical and thermodynamic perspective. In essence, it is unclear what would be the
microscopic properties that give rise to the thermodynamic properties of black holes, and
although many developments were proposed (90), it is safe to say that this is still an open
question.

In light of the discussions above, it is clear that analysis of the black hole informa-
tion problem is of extreme interest to studying fundamental properties of the gravitational
interaction. Thus, it is critical to the development of a complete quantum theory of grav-
ity. Evidently, this does not follow because it is “paradoxical”, as many references tend
to label it as, but in fact, because it provides some of the best clues available to study
gravitation in regimes where semiclassical gravity is expected to breakdown. In essence,
considering the success of both general relativity and quantum field theory to describe
phenomena at currently accessible energy scales, it is natural to suppose that they are
merely consequences (or effective theories) of a deeper, more comprehensive theory of
the fundamental interactions. It is in this sense that the conclusion of information loss
and the state of affairs surrounding it are expected to point to aspects of these theories
that will help one reevaluate the assumptions of reality. In a more provocative tone, it is
tempting to believe that the black hole information problem may lead to progress towards
the development of a new conceptual framework.
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6 CONCLUSIONS AND PERSPECTIVES

In this work, we reviewed the classical and semiclassical description of black holes
and presented the black hole information problem. With a precise formulation of the
problem, we were able to identify the many assumptions and hypotheses that give rise to
it and discuss their physical plausibility. The main conclusion of this analysis is that the
conjectures and hypotheses necessary for the classical description of black holes and the
derivation of the semiclassical particle creation effect are well justified in the framework of
quantum field theory in curved spacetime. Consequently, under the “natural” assumption
of complete evaporation and considering the Einstein-Maxwell equation, the conclusion
of information loss is in complete accord with semiclassical predictions, and does not
stand in contradiction with any known phenomena. However, it is clear that by studying
the evolution of the black hole, at some point one will require knowledge of physics at
the Planck scale. Without the development of a complete, satisfying theory of quantum
gravity, it is the author’s opinion that the conclusion of information loss stands as the
most adequate one given the current knowledge about gravitation.

Nevertheless, the developments presented in this work point to several open ques-
tions, and the perspective for future research is extensive. We briefly summarize below
some of the most intriguing of them and possible directions for progress in black hole
physics and in the development of a quantum theory of gravity.

6.1 Hawking effect and information in Hawking radiation

Although the predominant character of Hawking radiation is thermal, the geo-
metric optics approximation, neglection of back reaction effects, and lack of details of
quantum gravitational effects at the Planck scale raise questions about how much infor-
mation it actually carries. Indeed, although there are clear constraints on the thermal
character of Hawking radiation (129), a quantification of its precise dependence on details
of the gravitational collapse can only be analyzed under the light of a complete theory
of quantum gravity. Similarly, these approximations also lead to questions regarding the
universality of the Hawking effect (125), as well as the precise origin of Hawking radia-
tion (130). Perhaps the most notable progress towards answers to these questions comes
from considerations of analogue gravity (see, e.g., (131) for an extensive review), which
investigates analogue behavior of gravitation in other physical systems. First proposed
as an analysis of moving mirrors (35, 132) and sonic analogue black holes (133, 134), the
prediction of a thermal character in such systems can be understood as corroboration of
the Hawking effect and its existence for physical black holes. Evidently, observation and
experimentation of analogue black holes is a much more suitable task for investigation
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of the Hawking effect (135–137), and one can justifiably expect that it may lead to new
insights into fundamental aspects of semiclassical gravitation.

In a more general context for physical black holes, one can use the expected contri-
butions of Hawking radiation to the observable effects in the γ-ray background, and then
evaluate the possible constraints on the population of black holes in a given mass range.
Most notably, one can analyze the possibility of black holes which formed in the early
epochs of the universe to be candidates for dark matter (see, e.g., (138, 139)). Although
experimental evidence for black holes (see, (140–142) for notable observations and (143)
for an extensive review) supports the prediction of the Hawking effect, experimental con-
firmation of it may be out of reach for the foreseeable future. This is clearly related to the
fact that the most notable (i.e., supermassive) black holes have an extremely small associ-
ated temperature. In this sense, purely theoretical advancements in a theory of quantum
gravity stand as the most promising direction for general investigations of the Hawking
effect in gravitation.

6.2 Degrees of freedom in black holes

Following the interpretation of the Hawking effect as a manifestation of a phys-
ical temperature of a black hole, many more considerations rise for its thermodynamic
properties. Notably, lying at the center of these considerations is the question about the
degrees of freedom responsible not only for black hole entropy, but also its temperature.
The first direct calculation of black hole entropy followed from considerations of Euclidean
quantum gravity (144, 145), which provided an interpretation of metric contributions to
the partition function. The generality of these results has also been discussed further in
(97, 146). Different perspectives arising from quantum geometry (147) and entanglement
entropy (148, 149) have also been considered as interesting approaches to reproduce the
“macroscopical” result of an entropy that is proportional to the area of an event hori-
zon. However, arguably the most quantitatively successful calculation is the one following
from string theory (150–153), which managed to reproduce the numerical factor of 1/4.
Although these developments are promising, the nature and location of the degrees of
freedom of a black hole is still an open question (90). Because of this, one can also raise
questions regarding Boltzmann’s interpretation of entropy. In other words, in a gravita-
tional context, perhaps entropy may simply present itself as a mathematical aspect, as it
arguably does for the explanation of heat engines.

6.3 Thermodynamic aspects of gravitation

The issue of thermodynamic properties of the gravitational interaction is also of
interest, in which black hole thermodynamics presents itself simply as the most notable
front (90, 154). Indeed, the idea that one may interpret the area of a black hole as its
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physical entropy sparked the discussion about thermodynamic properties of any null hy-
persurface, in the sense that one may attribute entropy to any region of a spacetime (155).
That this entropy can be interpreted as a result of entanglement entropy (as is the case
for black holes) may follow for any region of spacetime (156). Most intriguingly, one can
consider a point of view in which such entropy could be interpreted as a measurement of
the degrees of freedom of a more fundamental theory of gravitation, rather than just those
of a region enclosed by an event horizon. An extensive review of the many thermodynamic
aspects of gravity can be found in (157).

Additionally, it is also attractive to consider a perspective in which geometrical
and physical arguments that come into play in the framework of general relativity are
related to the justification of the laws of thermodynamics. That is, if the principles that
give rise to a geometrical interpretation of gravity are simply different manifestations from
those that give rise to the laws of thermodynamics. For example, how one should interpret
assumptions such as the cosmic censor conjecture or the stationary state conjecture in
light of their importance for the derivation of the classical properties of black holes in
“equilibrium”.

6.4 Quantum gravity and black hole information problem

With regard to black holes and the information problem in general, the search for
clues of how physics at the Planck scale could interfere with the conclusion of informa-
tion loss is ongoing and extensive. Proposals for black hole quantization (158) preserving
unitarity, presence of “soft hair” due to the gravitational wave memory effect (see, e.g.
(159–161)), and emergent gravity (162–164) have surfaced, but arguably the most notable
developments are those stated in the AdS/CFT (Anti-de Sitter/conformal field theory)
conjecture (153,165). In essence, this conjecture can be understood as the assertion that
a complete theory of gravity is dual1 to a conformal field theory2 defined on the boundary
of anti-de Sitter spacetime (18). Namely, this conjecture is an example of the holographic
principle (168), and stands as one of the intriguing developments in the context of quan-
tum gravity and the black hole information problem. Indeed, the main argument against
information loss in this proposal lies in the fact that the conformal field theory for which
a complete description of gravity is dual would not admit non-unitary evolution. Thus,
since it would be possible to describe the process of black hole formation and evapora-
tion through the dual conformal field theory, the evolution of a pure state to a mixed one
would not occur, even in a complete theory of quantum gravity.Although promising, these

1 Namely, duality is a relation between different theories that can describe the same physical
phenomena (166). In the context of this particular duality, the word holography is used to
refer to the fact that one of the theories is defined in a higher dimension.

2 A conformal field theory is a quantum field theory that is invariant under conformal transfor-
mations (167).
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proposals for developments on black hole physics that may shed light on the evolution
of the black hole region are still lacking a precise formulation and, arguably, do not yet
constitute a satisfying solution to the question of the final state of a black hole.

In fact, the effect of black holes on the quantum superposition of states has been
argued to be much more radical, in the sense that decoherence (i.e., loss of quantum coher-
ence) of quantum superposition is expected to occur for states simply in the presence of a
black hole (169). Additionally, in a more general fashion, one can also show that the same
conclusion holds for any Killing horizon (170). The full extent of these properties, which
at first seem to be restricted to black holes but then are generalized to other gravitational
systems, as well as the cosmic censor conjecture, some “generalized uniqueness theorems”
for black holes, and the nature of Hadamard states, again falls on the developments of a
quantum theory to describe the gravitational interaction.

6.5 Concluding words

As discussed, most of these questions and possible directions of study are related to
the development of a complete theory of quantum gravity. In a more pragmatic approach,
perhaps if one were able to describe the black hole region in a local manner, i.e., without
the need to rely on a potential asymptotic structure of a spacetime, a more adequate
description of the pertinent phenomena would surface. In fact, one can only guess as to
what would be the full picture of a more general theory of fundamental interactions, which
may even enforce a different philosophical perspective at low energy and low curvature
regimes, in a very similar way as general relativity did to Newtonian gravity. For instance,
one could be tempted to believe that developments in a quantum theory of gravity could
shed light on the nature of the concept of entropy, whose nature even in flat spacetime
is far from having the status of universal agreement. In other words, although the black
hole information problem may simply be stated as a question concerning the final state
of a black hole in the semiclassical framework of gravity, its resolution may impact other
theories. It remains for future research to delve deeper into these questions and possible
connections.
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APPENDIX A – MANIFOLDS

The purpose of this appendix is to provide an objective review of the basic mathe-
matical framework necessary for the development of this work. We start by presenting the
definition of a topology and several properties of interest in topological spaces, as well as
proving two results to illustrate their application. From such formalism, an n-dimensional
manifold is defined as a topological space such that every point in it belongs to a set
that can be identified with Rn. Consequently, the notion of tensors on manifolds arises
naturally from that of a tangent vector space at each point, and a spacetime is defined as
an n-dimensional manifold that has a Lorentzian metric tensor field defined on it. This
definition will, evidently, carry properties one expects a physical manifold should have.
We then discuss concepts of interest and also additional structures that follow directly
from the metric tensor, such as the Levi-Civita connection, the notion of curvature, and
the integration of functions on arbitrary manifolds.

It should be noted that this is not meant to serve as a pedagogical introduction,
but rather, as a reference to the development of relations and the arguments presented
in this work. The interested reader can find a more pedagogical, detailed presentation of
such subjects in the references on which the construction of this appendix was based on
(1,2, 18,51,171–175).

A.1 Topological spaces

A topology is a structure one imposes on a set, in the same manner as one imposes
an algebraic structure on numbers. Such a structure may seem rather arbitrary, but a
topology on a set can be naturally induced by an additional structure, e.g., an inner
product over a vector space. In particular, a topology on a set is useful because it tells
one how elements in a set are “connected”, even though the elements of the pertinent set
can be any mathematical object.

More precisely, a topological space, (X,T ), consists of a set, X, and a collection,
T , of subsets of X, called the topology, satisfying the following properties.

(1) The entire set, X, and the empty set, ∅, are in T .

(2) The union of an arbitrary collection of subsets is in T , i.e., if Sµ ∈ T , then

⋃
µ

Sµ ∈ T .
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(3) The intersection of a finite number of subsets is in T , i.e., if S1, ..., Sµ ∈ T , then

µ⋂
ν=1

Sν ∈ T .

Subsets of X which are in the collection T are called open sets. A neighborhood
of S ⊂ X consists of an open subset of X that contains S. A subset, S, is said to be
closed if its complement, X\S = {x ∈ X| x /∈ S}, is open. It follows from the topological
space axioms that the intersection of an arbitrary collection of closed sets is closed and
the union of a finite collection of closed sets is also closed. A subset of X can be both open
and closed, or neither open nor closed. If the only subsets which are both open and closed
are X and ∅, the topological space is said to be connected. Equivalently, connectedness of
a topological space can be defined as the impossibility of the set X to be represented as
the union of disjoint (i.e., S ⋂S ′ = ∅) non-empty open sets.

Let (X,T ) and (X ′,T ′) be topological spaces. Consider the Cartesian product,
X ×X ′ = {(a, a′)| a ∈ X, a′ ∈ X ′} and the collection, T , of all subsets of X ×X ′ that
can be expressed as unions of sets of the form S × S ′, with S ∈ T and S ′ ∈ T ′. It
can be verified that (X ×X ′, T ) is a topological space, in which T is called the product
topology. For example, if one considers the standard topology on R, i.e., open sets are open
intervals, one can construct a topology on Rn simply by taking the product topology n

times. By doing so, the topology induced on Rn is known as the standard topology.

For an arbitrary subset S ⊂ X, the closure, S, of S is the intersection of all closed
sets that contain S. Evidently, S is closed, contains S, and equals S if and only if S is
closed. The interior of S, ⟨S⟩, is the union of all open sets contained in S. Clearly, ⟨S⟩ is
open, is contained in S, and equals S if and only if S is open. The boundary of S, ∂S, is
S\⟨S⟩. Equivalently, the boundary of S can be expressed as the intersection between its
closure and the closure of its complement, ∂S = S ∩ (X\S), from which it is clear that
the boundary of a set is always a closed set.

Let (X,T ) and (X ′,T ′) be topological spaces. A map ψ : X → X ′ is said to be
continuous if the inverse image of every open set S ′ ⊂ X ′, ψ−1[S ′] = {x ∈ X| ψ(x) ∈ S ′},
is an open set in X. In particular, this notion of continuity is equivalent to the (ϵ, δ)
definition (176) if one takes the standard topology on R and analyses maps ψ : R → R.
The importance of this more general definition of continuity is exemplified in the proof of
the following theorem.

Theorem A.1.1. The closed interval [0, 1] in R with the standard topology is connected.

Proof. First, note that although [0, 1] is a closed interval, it is an open set inside itself,
i.e., in the topology T , where X = [0, 1] and (X,T ) is a topological space. Now, if the
set [0, 1] were not connected, it would be possible to find non-empty disjoint open sets, S
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and S ′, contained in [0, 1] such that S ∪ S ′ = [0, 1]. Suppose this is the case, and define a
map ψ : [0, 1]→ R such that

ψ(a) =

0, a ∈ S,

1, a ∈ S ′.
(A.1.1)

Evidently, this map is continuous because the inverse image of an open set S ′′ ∈ R,
ψ−1[S ′′], is either S, S ′, [0, 1] or ∅, since any open set in R either contains 0, 1, both or
neither. However, if the image of ψ consists of both 0 and 1, then by the intermediate
value theorem (see, e.g., (62) for a convenient statement and (177) for a proof), ψ must
take on every value in the interval (0, 1). Since ψ clearly does not, then S or S ′ must be
the empty set, contradicting the supposition that neither is. Thus, [0, 1] is connected in
R with the standard topology.

A topological space, (X,T ), is said to be path-connected if for any two points
a, a′ ∈ X there exists a continuous map ψ : [0, 1]→ X such that ψ(0) = a and ψ(1) = a′.
The following theorem states an important property of path-connected topological spaces.

Theorem A.1.2. A path-connected topological space is connected.

Proof. Let (X,T ) be a path-connected topological space and suppose that it is not con-
nected. Then it would be possible to find non-empty disjoint open sets, S and S ′ contained
in X such that S∪S ′ = X. By path-connectedness, it is possible to find a continuous map,
ψ, such that ψ(0) = a and ψ(1) = a′ with a ∈ S and a′ ∈ S ′. However, this implies that
ψ−1[S] and ψ−1[S ′] are two disjoint non-empty open sets whose union is [0, 1], contradict-
ing theorem A.1.1. Hence, S or S ′ must be the empty set, contradicting the supposition
that neither is. Thus, every path-connected topological space is connected.

Let (X,T ) and (X ′,T ′) be topological spaces. If a map ψ : X → X ′ is continuous,
a bijection, and its inverse is continuous, then ψ is said to be a homeomorphism and
(X,T ) and (X ′,T ′) are said to be homeomorphic. Homeomorphic topological spaces are
identical from the perspective of topological properties.

A topological space, (X,T ), is said to be Hausdorff if for each pair of distinct
points, a, a′ ∈ X, one can find a neighborhood of a, S, and of a′, S ′, such that S ⋂S ′ = ∅.
The usefulness of this property lies in the fact that one can use it to identify topological
spaces that possess points that cannot be “separated”.

Let (X,T ) be a topological space and S ⊂ X. A collection of open sets, {Sµ},
is said to be an open cover of S if the union of these sets contains S. A subcollection of
the open cover which also covers S is called a subcover. A set S is said to be compact is
every open cover of S has a finite subcover. This notion is useful because, under certain
circumstances, it allows one to identify when a set is “finite”. Similarly, an open cover
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{S ′
µ} is said to be a refinement of {Sµ} if for each S ′

µ there exists a Sµ such that S ′
µ ⊂

Sµ. Moreover, the open cover {S ′
µ} is said to be locally finite if each a ∈ X has an

neighborhood S ′′ such that only a finite amount of S ′
µ respects S ′′∩S ′ ̸= ∅. Finally, (X,T )

is paracompact if every open cover has a locally finite refinement. Paracompactness can
then be interpreted as stating that the topological space can be divided into pieces, which
can then be used, for example, to extend local properties to global ones.

An n-dimensional manifold, M , is a topological space such that every point has
a neighborhood homeomorphic to a neighborhood of a point in Rn with the standard
topology. Let ψµ denote a homeomorphism from a neighborhood of a ∈ M , Sµ, into Rn,
known as a coordinate system. For any two non-disjoint open sets, Sµ and Sν , contained
in M , the manifold is said to Cr if the function ψν ◦ψ−1

µ : [ψµ[Sµ ∩Sν ]]→ [ψν [Sµ ∩Sν ]] is
Cr. Fig. 30 illustrates this map, with its action being the white region, corresponding to
the intersection of the open sets. One also imposes the condition that the collection {Sµ}
and the family {ψµ} are maximal, i.e., all Sµ, ψµ which are compatible with the condition
above are included in {Sµ} and {ψµ}. In particular, our discussion will be restricted to
C∞ manifolds, which will be referred to simply as manifolds.

M

Rn

Rn

Rn

ψµ

ψν

ψν ◦ ψ−1
µ

Sµ

Sν

ψν

Figure 30 – Manifold, M , and the smooth map ψν ◦ ψ−1
µ .

Source: By the author.

Let M be an n-dimensional manifold and M ′ be an n′-dimensional manifold, such
that n′ ≤ n. A map ψ : M ′ → M is said to be Cr if the function ψν ◦ ψ ◦ ψ−1

µ :
[ψµ[Sµ]]→ [ψν [Sν ]] is Cr for all homeomorphisms to Rn for each respective manifold, ψµ
and ψν . Additionally, if ψ is one-to-one, ψ[M ′] is said to be a Cr n′-dimensional embedded
submanifold of M . A two-dimensional Cr embedded submanifold is called a Cr surface,
while an (n − 1)-dimensional (with n ≥ 4) Cr embedded submanifold is called a Cr

hypersurface.
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A.2 Tensor fields

It is straightforward to see that Rn with the standard topology has the natural
structure of a n-dimensional vector space, which rises by taking a vector to be the n-
tuple associated with each (x1, . . . , xn) ∈ Rn, together with the field of real numbers and
ordinary sum and multiplication by scalar operations. However, in arbitrary manifolds,
this global notion is lost due to the nontrivial topology. Since a vector space is necessary
to define tensors, which are geometrical quantities associated with the properties of nature
from a physical perspective, it is of interest to retrieve this notion for arbitrary manifolds.
Still, one wishes to do so in a way that is intrinsic to the manifold structure, that is,
without recurring to a higher dimension manifold which it might be embedded. We will
now see that this can be done precisely by the concept of a vector space that is tangent
to each point in the manifold.

Let M be an n-dimensional manifold. The tangent vector space at a point a ∈M ,
Va, is the collection of vectors defined at a, together with the field of real numbers and
ordinary sum and multiplication by scalar operations. The notion of a vector in a point of
a arbitrary manifold rises if one considers that directional derivatives can be interpreted
as vectors. More precisely, let F denote the collection of smooth functions f : M → R.
A tangent vector at a point a ∈ M is a map, s : F → R, which is linear and respects
the Leibniz rule. Namely, given a coordinate system, one can associate the directional
derivative of each coordinate as a basis vector, and thus, any s(f) ∈ Va can be written as

s(f) =
n−1∑
µ=0

sµ∂µ(f), (A.2.1)

where
∂µ(f) = ∂µ(f ◦ ψ−1)

∣∣∣
ψ(a)

, (A.2.2)

with ∂µ = ∂/∂xµ, {xµ} the Cartesian coordinates of Rn and f ∈ F . Evidently, from eq.
A.2.2, one can see that ∂µ(f) is the directional derivative of the function f ◦ψ−1 : [ψ[S]]→
R at the point ψ(a) ∈ Rn. Hence, one may picture ∂µ(f) as an arrow at ψ(a) pointing
in the direction of increasing xµ. It is important to note that a unique function f is not
relevant to the definition of a unique vector, as with the information of the directional
derivative of any function one can uniquely define a vector. A proof of the dimensionality
of Va, which must be equal to the dimensionality of the manifold, can be found in (1). Also,
note that if one chooses a different coordinate system, ψ′, eq. A.2.2 would have defined
a different coordinate basis, which would, clearly, span the same tangent vector space.
In particular, given a coordinate system, ψ, and a vector, s, the pertinent association is
given by

(s1, . . . , sn)←→ s1 ∂

∂x1 + . . .+ sn
∂

∂xn
, (A.2.3)

where the scalars (s1, . . . , sn) are the coordinate components of the vector s in the coor-
dinate system ψ.
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A vector field is an assignment of a tangent vector at each point a ∈ M . A Cr

vector field, s, on a manifold is a vector field such that its coordinate components are Cr

functions. For any two vector fields, s and w, their commutator, [s, w], is

[s, w](f) = s[w(f)]− w[s(f)]. (A.2.4)

Note that the commutator of two vector fields in a coordinate basis vanishes, as a con-
sequence of the equality of mixed partial derivatives in Rn. In the following, the symbol
(f) in vectors will be dropped, as the action of a vector on an arbitrary smooth function
is implied by its nature.

Let V be an n-dimensional vector space. The elements of V will be denoted with
contravariant indices, i.e., sµ ∈ V . Consider the collection of linear maps f : V → R. This
collection, together with the field of real numbers and ordinary sum and multiplication by
scalar operations, has the structure of a vector space and is known as the dual vector space
to V , V ∗. Elements of V ∗ are called dual vectors, and are denoted by covariant indices,
i.e., ωµ ∈ V ∗. A dual vector field is an assignment of a tangent dual vector at each a ∈M .
A dual vector field is said to be Cr if for each Cr vector field, sµ, the function ωµ(sµ) is
Cr. Given a basis of V , {sµ1 , . . . , sµn}, a dual basis, {w1

µ, . . . , w
n
µ}, to {sµ1 , . . . , sµn} is defined

as vectors of V ∗ such that waµ(sµb ) = δab, where δab is 1 if a = b and 0 otherwise. Using this
same line of reasoning, the dual to V ∗, V ∗∗, can be seen to be canonically isomorphic to
V . In essence, this follows from the fact that the linear maps f ′ : V ∗ → R can be defined
“naturally” as

f ′(sµ, wµ) = wµ(sµ), (A.2.5)

and thus, the only spaces of significance are V and V ∗. Consequently, one may view vectors
as linear maps f : V ∗ → R, in which case one may write wµ(sµ) simply as wµsµ or sµwµ.
Lastly, due to the one-to-one correspondence between vectors and directional derivatives,
it is natural to denote the elements of a basis of the tangent vector space induced by a
coordinate system simply as (∂xn)µ, where xn is representative of the coordinates induced
in Rn by the coordinate system. Similarly, constructing a dual basis by requiring that
saµ(∂xb)µ = δab leads one to the convenient representation of elements of the dual basis by
(dxa)µ.

A tensor, T , of rank (ℓ, ℓ′) over a vector space, V , is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
ℓ

×V × · · · × V︸ ︷︷ ︸
ℓ′

→ R, (A.2.6)

i.e., given ℓ dual vectors and ℓ′ vectors, T produces a real number, and its linearity does
not depend on the number of vectors or dual vector it operates on. Namely, a tensor of
rank (ℓ, ℓ′) is denoted by T µ1···µℓ

ν1···νℓ′ , i.e., ℓ contravariant indices and ℓ′ covariant indices.
Such tensor is an element of the vector space of tensors of rank (ℓ, ℓ′), denoted by T (ℓ, ℓ′).
A tensor field is an assignment of a tangent tensor at each a ∈ M . A tensor field of
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rank (ℓ, ℓ′) is said to be Cr if, by operating on ℓ Cr dual vector fields and ℓ′ Cr vector
fields, it yields a Cr function. Evidently, a vector is a tensor of rank (1, 0), a dual vector
is a tensor of rank (0, 1) and a scalar is a tensor of rank (0, 0). In the following, we will
refer to smooth tensor fields simply as tensors, unless stated otherwise. Since tensors are
geometrical objects, they are invariant, but their components on a coordinate system are
not. The transformation law for the components of a tensor can be readily derived from
eq. A.2.1 and the relation between a basis and its dual.

The notation adopted for the representation of tensors is called abstract index
notation. In particular, “abstract” indices, represented by Greek letters, will be used to
indicate the rank of the tensor, that is, in which objects it acts on. Thus, T µ1···µℓ

ν1···νℓ′ ∈
T (ℓ, ℓ′). Additionally, “concrete” indices, represented by Latin letters, will be used to
indicate the components of a tensor in a coordinate system. Hence, T a1···aℓ

b1···bℓ′ ∈ R.
Consequently, latin letters take on values from 0 to n − 1, where n is the dimension
of the pertinent vector space. Furthermore, following Einstein’s summation convention,
repeated indices on an equation, regardless of being Greek or Latin letters, imply a sum.
Such indices are referred to as “dummy” indices, as they carry no information regarding
the rank of the tensor and are merely an implication of a “hidden” sum of such indices
from 0 to n− 1. Finally, equations such as

T µ1···µℓ
ν1···νℓ′ = 0 (A.2.7)

should be interpreted as stating that the tensor T µ1···µℓ
ν1···νℓ′ is the zero element of the

vector space of T (ℓ, ℓ′). As it is known, under the ordinary sum operation, this is just the
object that has all of its components in any coordinate system equal to zero.

We now define two operations on tensors. The first one is called the outer product,
which is a map ⊗ : T (ℓ, ℓ′)×T (η, η′)→ T (ℓ+η, ℓ′ +η′). The outer product of T µ1···µℓ

ν1···νℓ′

and Sµ1···µη
ν1···νη′ is denoted by

T µ1···µℓ
ν1···νℓ′ ⊗ Sα1···αη

β1···βη′ = T µ1···µℓ
ν1···νℓ′S

α1···αη
β1···βη′ . (A.2.8)

The second operation is called contraction with respect to the γth contravariant slot and
λth covariant slot, and is a map Cγλ : T (ℓ, ℓ′)→ T (ℓ− 1, ℓ′ − 1) defined as

Cγ,λT
µ1···µγ ···µℓ

ν1···νλ···νℓ′ = T µ1···a···µℓ
ν1···a···νℓ′ , (A.2.9)

where the γth contravariant slot, represented by a, operates on each element of the basis
{sµ1 , . . . , sµn}, while the λth covariant slot, also represented by a, operates on the corre-
sponding dual vector of the dual basis {w1

µ, . . . , w
n
µ}. Note that since a is a repeated index,

a summation is implied. Also, even though the definition of the contraction requires a ba-
sis of V and its dual, the operation is well defined in the sense that T µ1···a···µℓ

ν1···a···νℓ′ is a
geometrical object, i.e., independent of coordinate system. As such, due to the action of
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the contraction on a (1, 1) tensor, one can interpret it as the trace of a tensor over the
γth contravariant slot and λth slot. Finally, note that, since the repeated index in the
contraction is merely a representation of a summation, it does not “count” for the rank
of the tensor, so that T µ1···a···µℓ

ν1···a···νℓ′ ∈ T (ℓ− 1, ℓ′ − 1).

It is also useful to study the symmetric and antisymmetric parts of tensors. In order
to isolate them for a given tensor, one constructs a new tensor by taking the sum over
all permutations of its indices. Evidently, for the antisymmetric case, odd permutations
must have a minus sign. For instance, one can write the symmetric part of a tensor Tµνα,
denoted by T(µνα) as

T(µνα) = 1
3!(Tµνα + Tναµ + Tαµν + Tνµα + Tανµ + Tµαν), (A.2.10)

and the antisymmetric part, denoted by T[µνα], as

T[µνα] = 1
3!(Tµνα + Tναµ + Tαµν − Tνµα − Tανµ − Tµαν). (A.2.11)

In general, one has
T(µ1...µℓ) = 1

ℓ!Tµα(1)···µα(ℓ) , (A.2.12)

T[µ1...µℓ] = 1
ℓ!δαTµα(1)···µα(ℓ) , (A.2.13)

where a sum is taken over all permutations of 1, ..., ℓ, and δα (not a tensor) is +1 for
even permutations and −1 for odd permutations. These prescriptions are also valid for
contravariant indices. Furthermore, the contraction of indices of symmetric slots with
antisymmetric slots will always vanish, as the terms of the contraction will cancel out
exactly.

An ℓ-form over V is an antisymmetric tensor of rank (0, ℓ),

sµ1···µℓ
= s[µ1···µℓ]. (A.2.14)

The vector space of ℓ-forms over V is denoted by Λℓ. Even though it is not natural to say
that a tensor of rank (0, 1) is symmetric or antisymmetric, it is customary to refer to dual
vectors as 1-forms. Similarly, a tensor of rank (0, 0) is referred to as a 0-form. Let sµ1···µℓ

be
an ℓ-form and wν1···νℓ′ be an ℓ′-form. One can construct an (ℓ+ℓ′)-form by antisymmetrizing
the outer product of sµ1···µℓ

and wν1···νℓ′ , thus defining a map ∧ : Λℓ×Λℓ′ → Λℓ+ℓ′ , known
as the wedge product, by

(s ∧ w)µ1···µℓν1···νℓ′ = (ℓ+ ℓ′)!
ℓ!ℓ′! s[µ1···µℓ

wν1···νℓ′ ]. (A.2.15)

Theorem A.2.1. Let V be a n-dimensional vector space and Λℓ denote the vector space
of ℓ-forms over V . Then dim Λℓ = n!/ℓ!(n− ℓ)! if ℓ ≤ n and dim Λℓ = 0 if ℓ > n.
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Proof. Consider a basis of the vector space of two-forms over a three-dimensional vector
space, which can be written as {dx0∧dx1, dx1∧dx2, dx0∧dx2}. Note that this basis is con-
structed by taking the linear independent wedge products of all possible combinations of
two elements of {dx0, dx1, dx2}, which is the basis of one-forms over the three-dimensional
vector space. Furthermore, since the wedge product produces a δα (see eq. A.2.13) over
exchange of indices, combinations with the same indices in different positions will yield
a linear dependent element. Additionally, due to the antisymmetry, repeated indices will
make the wedge product vanish. Thus, a basis of ℓ-forms over an n-dimensional vector
space can be constructed by taking ℓ distinct elements of the set {dx0, . . . , dxn−1} such
that two arrangements with the same elements are considered to be equivalent. The num-
ber of elements that can be constructed in this manner is given by the binomial coefficient
(178), therefore

dim Λℓ =
(
n

ℓ

)
= n!
ℓ!(n− ℓ)! . (A.2.16)

Moreover, if ℓ > n, then any combination of {dx0, . . . , dxn−1} will result in elements with
repeated dx’s, which, by the rules of the wedge product, will vanish.

We now define the metric tensor, which is the operator that measures the infinites-
imal squared distance given by an infinitesimal displacement. Seeing that the notion of an
infinitesimal displacement in a given direction is precisely captured by vectors as deriva-
tive operators, the metric can be interpreted as the inner product of the tangent space
at each a ∈M . Hence, a metric, gµν , is a symmetric, nondegenerate map V × V → R. A
symmetric metric respects the property that

gµνs
µwν = gµνs

νwµ, ∀ sµ, wµ ∈ V, (A.2.17)

and by nondegenerate, it is meant

gµνs
µwν = 0, ∀ wµ ∈ Va if and only if sµ = 0. (A.2.18)

Evidently, since any tensor can be reduced to a symmetric and antisymmetric part,
one must have that g(µν) = gµν and g[µν] = 0. The symmetric property can be interpreted
when one considers the geometrical notion of an inner product, i.e., the “measurement” it
makes should not depend on the order of vectors it acts on. Additionally, the nondegen-
erate property implies that the n×n matrix form of gµν has a nonvanishing determinant,
i.e., gµν is invertible. Moreover, note that the metric gives rise to a “natural” isomorphism
between V and V ∗, as it can be seen, equivalently, as a map V → V ∗. Similarly, the
inverse metric, which acts as the inner product of V ∗, can be seen as a map V ∗×V ∗ → R,
or equivalently, as a map V ∗ → V . Since the metric and its inverse can be used to identify
vectors with dual vectors, and vice versa, they can be used to “raise” or “lower” indices
in tensors. In order for this process to be consistent, the metric and its inverse must obey
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gµαgαν = δµν , where δµν is the identity map over V . For example, the inner product of sµ

and wµ can be written as
gµνs

µwν = sµwµ = sµw
µ. (A.2.19)

The signature of a metric is the number of + and − that one gets by applying it to
all vectors of an orthonormal basis of V . Riemannian metrics, i.e., metrics with signatures
+ . . .+, are positive definite. However, metrics do not need to be positive definite. For
instance, a Lorentzian metric has the signature − + . . .+ (with only one minus), which
evidently gives rise to three classes of vectors, depending on the sign of their norm. In
particular, if sµsµ < 0, the vector is said to be timelike. Similarly, if sµsµ = 0, the vector
is said to be null, and if sµsµ > 0, it is said to be spacelike.

A spacetime, (M, gµν), is a connected Hausdorff manifold that has a Lorentzian
metric defined on it. From a physical perspective, the points of a spacetime are then re-
ferred to as events. In particular, the restrictions on the manifold structure of a spacetime
are necessary in order to exclude unphysical ones. Namely, there are physical reasons
to believe that a spacetime is a manifold with such properties. First, a spacetime is ex-
pected to be Hausdorff, so that it is always possible to physically distinguish different
events. Second, connectedness implies that spacetime cannot be divided into regions that
cannot communicate. If this was not the case, one could only consider a connected com-
ponent, since detection of other connected components would never be possible. Lastly, a
Lorentzian metric is necessary for a consistent differentiation between a time dimension
and space dimensions, which is also in accord with a limited spatial velocity as measured
by observers. It should be noted that the Hausdorff property together with the existence
of a Lorentzian metric imply that a spacetime must be paracompact. For an extensive
discussion on the restrictions on the topology of the universe and these properties, see,
e.g., (49). For simplicity, it will be assumed that the metric defined on a spacetime is
a smooth tensor field, but we stress that this is not a necessary property for some of
the developments presented in this work. For discussions on the order of differentiability
necessary for the metric tensor, see (18).

A Cr curve, λ, on a manifold, M , is a Cr map λ : R → M . One can associate a
tangent vector, sµ, to λ at each point a ∈ λ by setting it to be equal to the derivative
of the function f ◦ λ, where f ∈ F , evaluated at a with respect to the parameter of the
curve, t. More precisely, by choosing a coordinate system, the curve λ(t) will get mapped
into a curve xa(t) in Rn. Thus, for any f ∈ F , one has

sµ = dxa

dt
(∂xa)µ. (A.2.20)

Conversely, it is possible to find the integral curves of sµ, that is, the family of curves in
M such that for each point a ∈ M only one curve of this family passes, and its tangent
vector is sµ. By choosing a coordinate system in a neighborhood of a, finding these curves
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reduces to solving the system

dxa

dt
= sa(x0, ..., xn−1). (A.2.21)

Finally, a curve is said to be timelike, null or spacelike if for each a ∈ λ, its tangent vector
is timelike, null or spacelike, respectively.

A similar characterization of embedded submanifolds can be made. Let (M, gµν)
be an n-dimensional spacetime, S ⊂M be a hypersurface and a ∈ S. The tangent space,
V a, of the manifold S can be viewed as a (n− 1)-dimensional subspace of Va, the tangent
space of a ∈ M . Such subspace can be identified with the one orthogonal to a vector
ℓµ ∈ Va, i.e., sµ ∈ V a if sµℓµ = 0, and, consequently, the vector ℓµ is said to be normal
to S. If the normal to a hypersurface is timelike, the hypersurface is said to be spacelike,
and if its normal is null, the hypersurface is said to be null. Similar associations hold for
surfaces, where its characterization is made by the nature of the vectors that span it. In
particular, a surface is said to be spacelike if the vectors that span it are spacelike. Note
that a spacelike surface can be generated by taking the orthogonal space to a timelike
and spacelike vector or two non-proportional null vectors.

A.3 Derivative operators

A connection, ∇, on a manifold, M , is a map that takes tensors of rank (ℓ, ℓ′) to
tensors of rank (ℓ, ℓ′ +1). Because of this, it is convenient to denote the connection as ∇µ,
even though it is not a dual vector. A connection can be interpreted as the operator that
“takes” tensors from a point in a manifold to another, so that one can analyze how the
tensor varies, since comparison of tensors over different vector spaces is not particularly
useful. Indeed, the notion of the “velocity” of a curve is already captured by tangent
vectors, but a connection will allow one to study “acceleration” of curves by providing a
means to analyze changes of tensors.

In order to interpret a connection as a derivative operator, one must require it to
be linear, respect the Leibniz rule and commute with contraction of indices of a tensor.
Additionally, it should be consistent with the notion of a vector as a directional derivative
of a function, f , i.e.,

s(f) = sµ∇µf, (A.3.1)

and one also requires that it be torsion free1, i.e.,

∇[µ∇ν]f = 0. (A.3.2)

1 Not requiring that the torsion vanishes would lead one to theories of gravitation such as
teleparallel gravity.
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From the requirement that ∇µ obey the Leibniz rule and eqs. A.3.1 and A.3.2, it
is possible to write the commutator of two vectors (see eq. A.2.4), sµ and wµ, as

[s, w](f) = s[w(f)]− w[s(f)]
= sµ∇µ(wν∇νf)− wµ∇µ(sν∇νf)
= (sµ∇µw

ν − wµ∇µs
ν)∇νf, (A.3.3)

and by comparison with eq. A.3.1 yields

[s, w]µ = sν∇νw
µ − wν∇νs

µ. (A.3.4)

One reliable connection can be easily defined by a coordinate system, simply by
taking it to be the ordinary derivative operator associated with it. Namely, the ordinary
derivative can be defined as the action of ∂µ = ∂/∂xµ on all components of the tensor with
respect to the coordinate basis induced by ψ. Consequently, the properties mentioned in
the definition of ∇µ follow directly from the properties of partial derivatives. However,
if one were to choose a different coordinate system, ψ′, the same process would yield
a different connection, as the tensors resulting from the actions of ∂µ and ∂′

µ would be
different. Thus, simply defining a connection as such is not a unique prescription.

To progress towards a unique definition of a connection, it is useful to study how
different choices of connections differ in their application on tensors. As given by eq.
A.3.1, any two connections must agree on their action on scalars. In order to investigate
the disagreement of the action of any two connections on vectors, it is convenient to
calculate the difference between their action on fsµ for an arbitrary smooth function f

and vector sµ,
∇µ(fsν)−∇′

µ(fsν) = f(∇µ −∇′
µ)sν . (A.3.5)

It is clear that the action of the connection on a vector does not depend only on its value
at a given point, but also on a neighborhood of that point. However, the right hand side
of eq. A.3.5 can be shown to depend only on the value of the vector at the point where
the derivative is being evaluated.

For example, consider the vector fsµ + f ′wµ, with f(a) = 1 and f ′(a) = 0. Both
functions are smooth, and one has information about their value only on a. They are
otherwise arbitrary on the rest of M . Due to the fact that the test function is factored
and the overall result of the right hand side is calculated at a, one obtains

[(∇µ −∇′
µ)(fsν + f ′wν)]

∣∣∣
a

= [(∇µ −∇′
µ)sν ]

∣∣∣
a
. (A.3.6)

From this, one concludes that [(∇µ − ∇′
µ)(fsµ + f ′wµ)]|a depends only on the value of

fsµ+f ′wµ at a. Thus, (∇µ−∇′
µ) defines a linear map from (1, 0) tensors to (1, 1) tensors

at a ∈M . More precisely, it defines a symmetric (due to eq. A.3.2) (1, 2) tensor,

(∇µ −∇′
µ)sν = Cν

µαs
α. (A.3.7)
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In the case of ∇′
µ = ∂µ, the tensor Cν

µα is called a Christoffel symbol and denoted
by Γνµα. Given any coordinate system, Γνµα relates the action of the ordinary derivative
operator to that of an arbitrary connection. In particular, given an arbitrary connection,
the component Γabc is the ath component of the variation of the vector (∂c)µ along the
direction of (∂b)µ, with such variation being the one associated with the arbitrary connec-
tion. Lastly, generalizations of eq. A.3.7 to tensors of arbitrary rank follows by induction.
In other words, one first considers the action of (∇µ − ∇′

µ) on a scalar such as sµwµ to
find the relation for dual vectors, and then for tensors of arbitrary rank one considers the
pertinent contraction of Cν

µα with each contravariant and covariant index.

Although eq A.3.7 gives a prescription to relate the action of any two connections, it
still does not give rise to a unique connection. In essence, to define a connection associated
with the structure of the manifold, one must consider the parallel transport of vectors. A
vector, sµ, is said to be parallel transported along a curve with tangent tµ if the equation

tµ∇µs
ν = 0 (A.3.8)

is satisfied along the curve. Consequently, parallel transport can be interpreted as the lack
of variation of a vector along a curve. The desired connection can be derived by requiring
that any two vectors sµ and wµ which are parallel transported along a curve with tangent
tµ have a constant inner product,

tµ∇µ(gναsνwα) = 0. (A.3.9)

Eq. A.3.9 will be valid for all curves and parallel transported vectors if and only if

∇µgνα = 0. (A.3.10)

The connection that respects eq. A.3.10 is said to be compatible with the metric,
and it is referred to as the Levi-Civita connection. In the following, ∇µ will denote the
Levi-Civita connection. In particular, the action of the ordinary derivative for a given
coordinate system is related to that of ∇µ by the Christoffel symbol

Γαµν = 1
2g

αβ(∂µgνβ + ∂νgµβ − ∂βgµν). (A.3.11)

It is useful to evaluate the contracted Christoffel symbol, which reads

Γaaµ = gac

2 ∂µgac, (A.3.12)

but since it is possible to relate the variation of the logarithm of the determinant of a
nonsingular matrix to the trace of its inverse (51), one can rewrite eq. A.3.12 as

Γaaµ = ∂µ ln
√
−g, (A.3.13)
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where g = det(gµν). Thus, choosing a coordinate system, considering the properties of ∇µ

and Γµνα, one finds
∇af = ∂af, ∀ f ∈ F , (A.3.14)

∇as
b = ∂as

b + Γbacsc, (A.3.15)

∇asb = ∂asb − Γcabsc, (A.3.16)

∇as
a = 1√

−g
∂a(
√
−gsa). (A.3.17)

and generalizations for higher rank tensors follow by induction.

It is also useful to define the derivative operator that takes ℓ-forms to (ℓ+1)-forms.
The exterior derivative is a map, d : Λℓ → Λℓ+1, defined by

(ds)νµ1···µℓ
= (ℓ+ 1)∇[νsµ1···µℓ]. (A.3.18)

Since the action of any two connections is related by the symmetric tensor, Cν
µα, the

definition of d is independent of choice of connection.

Lastly, we define the notion of Lie differentiation. Let M and N be n-dimensional
manifolds, and a map ψ : M → N be C∞, a bijection, and its inverse be C∞, i.e., a
diffeomorphism. Now, the case of particular interest is when M = N , and the pertinent
analysis is that of how tensors fields in M are affected by the action of ψ. Evidently, the
action of ψ on tensors of rank (0, 0) is such that the function smooth f : ψ[M ] → R is
“pulled back” to the function f ◦ ψ : M → R. Similarly, one can identify that the action
of ψ on tensors of rank (1, 0) is to “pushforward” tangent vectors at a ∈ M to tangent
vectors at ψ(a) ∈M , thus defining a map ψ∗ : Va → Vψ(a). For all smooth f : ψ[M ]→ R,
the vector (ψ∗s)µ ∈ Vψ(a) is defined by

(ψ∗s)µ(f) = sµ(f ◦ ψ), (A.3.19)

where sµ ∈ Va. In essence, by choosing a coordinate system in a neighborhood of a ∈ M
and one in a neighborhood of ψ(a) ∈ M , the action of ψ∗ can then be verified to be the
coordinate transformation associated with the change in a coordinate system. In other
words, ψ may be viewed as leaving a and vectors at a unchanged, and effectively being a
coordinate transformation.

Analogously, one may view the action of ψ on tensors of rank (0, 1) as a “pullback”
map ψ∗ : V ∗

ψ(a) → V ∗
a , so that (ψ∗s)µ ∈ V ∗

ψ(a) respects

(ψ∗w)µsµ = wµ(ψ∗s)µ, ∀ sµ ∈ Va. (A.3.20)

Since ψ is a diffeomorphism, one can then verify that the action of ψ∗ has to be given
by of (ψ−1)∗ for scalars to obey corresponding transformation laws, i.e., they must be
invariant over coordinate transformations. From the fact that ψ∗ = (ψ−1)∗, one can define



175

the action of ψ on tensors of rank (ℓ, ℓ′), which is denoted by (ψ∗T )µ1···µℓ
ν1···νℓ′ . Such a

definition is made by requiring that

(ψ∗T )µ1···µℓ
ν1···νℓ′ (w1)µ1 · · · (wℓ)µℓ

(s1)ν1 · · · (sℓ′)νℓ′

= T µ1···µℓ
ν1···νℓ′ (ψ∗w1)µ1 · · · (ψ∗wℓ)µℓ

(ψ∗s1)ν1 · · · (ψ∗sℓ′)νℓ′ . (A.3.21)

Consequently, from the interpretation of ψ∗ and ψ∗, one may view the action of the
diffeomorphism ψ as inducing a coordinate transformation at each a ∈M .

From these definitions and interpretations, one can study the variation of tensor
fields over the action of a family of diffeomorphisms as follows. Consider a one-parameter
group of diffeomorphisms ψs : R×M →M , that is, for each s ∈ R, ψs is a diffeomorphism.
In other words, one has

ψs ◦ ψs′ = ψs+s′ , (A.3.22)

which implies that ψ−s = (ψs)−1 and that ψ0 is the identity, mapping every point of M
into itself. Now, for a fixed a ∈M , ψs(a) : R→M defines a curve, called the orbit of ψs.
The tangent vector to the orbit of ψs, χµ, can be interpreted as the infinitesimal generator
of this one-parameter group. Thus, the Lie derivative of a tensor over ψs can be defined
as

LχT µ1···µℓ
ν1···νℓ′ = lim

s→0

(
(ψ∗

−sT )µ1···µℓ
ν1···νℓ′ − T µ1···µℓ

ν1···νℓ′

s

)
. (A.3.23)

In particular, the abstract index in the representation of χ has been removed for clearer
notation, and the action of the diffeomorphism is represented by ψ∗

−s so that the tensors
are evaluated in the same point in the manifold. Thus, the Lie derivative is a map of
tensors of rank (ℓ, ℓ′) to tensors of rank (ℓ, ℓ′), which clearly obeys the Leibniz rule. In
essence, it can be interpreted as the “infinitesimal” change that a diffeomorphism has on
a tensor, or, more precisely, how a tensor changes as one moves along an orbit of the
one-parameter group of diffeomorphisms.

From eq. A.3.23, one can find a prescription for evaluating the Lie derivative of
tensors of arbitrary rank. To do so, first note that eq. A.3.23 implies that

Lχf = χµ(f). (A.3.24)

Moreover, using the coordinate transformation perspective of differmorphisms, one can
consider a coordinate system such that the parameter s along the orbit of ψs is chosen as
one of the coordinates, x0, so that χµ = (∂s)µ. Then, the action of ψ−s corresponds to the
coordinate transformation x′0 = x0 + s, which means that

(ψ∗
−sT )a1···aℓ

b1···bℓ′ (x0, . . . , xn−1) = T a1···aℓ
b1···bℓ′ (x0 + s, . . . , xn−1), (A.3.25)

which yields a simple result for the Lie derivative of said tensor in this convenient coor-
dinate system,

LχT a1···aℓ
b1·sbℓ′ =

∂T a1···aℓ
b1···bℓ′

∂x0 . (A.3.26)
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Hence, if the coordinate components of a tensor do not depend on the coordinate x0, then
LχT a1···aℓ

b1···bℓ′ = 0.

For tensors of rank (1, 0), i.e., vectors, it is not difficult to deduce that in such
coordinate system the components of the Lχwµ and the commutator [χ,w]µ are the same.
Since both of these quantities are independent of the coordinate system, one can conclude
that

Lχwµ = [χ,w]µ. (A.3.27)

To evaluate Lχwµ, one uses the Leibniz rule and eqs. A.3.27, A.3.24 and the commutator
of two vectors in terms of the Levi-Civita connection (i.e., using writing eq. A.2.4 using
eq. A.3.1), which yields

Lχwµ = χν∇νwµ + wν∇µχ
ν . (A.3.28)

The Lie derivative of a tensor of arbitrary rank can then be derived by induction from
these results. In particular, its action of tensors of rank (0, 2) is given by

LχAµν = χα∇αAµν + Aνα∇µχ
α + Aµα∇νχ

α. (A.3.29)

Note that the notion of Lie derivative does not depend on an additional structure
on the manifold. In contrast, the notion of a unique connection only exists when one
is given an additional structure over the manifold, signifying that Lie differentiation is a
more fundamental form of differentiation than the one given by the action of a connection.
Of course, this translates to the fact that the connection appearing in eqs. A.3.28 and
A.3.29 is arbitrary, i.e., it need not be the Levi-Civita connection. This can be traced
back to the fact that all connections must agree on their action of scalars. Similarly, one
can also see that the notion of exterior differentiation is also intrinsic to the manifold
structure, as it is independent of choice of connection.

A.4 Curvature

The notion of curvature is directly related to the failure of multiple applications
of the Levi-Civita connection on a tensor to commute (1). Similar to (∇µ−∇′

µ), one can
verify that (∇µ∇ν − ∇ν∇µ) defines a linear map from (1, 0) tensors to (1, 2) tensors at
a ∈M . More precisely, it defines a (1, 3) tensor,

(∇µ∇ν −∇ν∇µ)sα = −Rµνβ
αsβ, (A.4.1)

known as the Riemann tensor.

From eq. A.4.1 and the same line of reasoning as for Cν
µα, it is possible to derive

(∇µ∇ν −∇ν∇µ)sα = Rµνα
βsβ, (A.4.2)

(∇µ∇ν −∇ν∇µ)Aαβ = −Rµνλ
αAλβ −Rµνλ

βAαλ. (A.4.3)



177

From these relations, one concludes that Rµνα
β obeys,

Rµναβ = −Rµνβα, (A.4.4)

Rµνβ
α = −Rνµβ

α, (A.4.5)

∇[µRνα]β
σ = 0, (A.4.6)

R[µνβ]
α = 0. (A.4.7)

Eq. A.4.6 is known as the Bianchi identity. Eqs. A.4.5, A.4.7 and A.4.4 also imply that

Rµναβ = Rαβµν . (A.4.8)

The trace of the Riemann tensor over the second and fourth indices (or equiva-
lently, over the first and third) defines the Ricci tensor

Rµν = Rµανβg
αβ = Rµαν

α, (A.4.9)

which is symmetric, as a consequence of eq. A.4.8. Finally, the Ricci scalar is defined as
the trace of the Ricci tensor,

R = Rµνg
µν = Rµ

µ. (A.4.10)

Given a coordinate system, the components of these tensors can be derived from (1)

Rµνβ
α = ∂νΓαµβ − ∂µΓανβ + ΓλµβΓαλν − ΓλνβΓαλµ. (A.4.11)

By contracting the Bianchi identity, over the second and fourth indices of the
Riemann tensor, one finds

∇µ
(
Rµν −

1
2Rgµν

)
= 0. (A.4.12)

This result is of significant importance, as by the field equations postulated by general
relativity (see eq. 2.1), it implies that ∇µT

µν = 0, i.e., the energy-momentum tensor is
locally conserved. Under further assumptions, it is also possible to show (179) that the
geodesic hypothesis is also a consequence of the contracted Bianchi identity. That is,
free massive point-like objects follow timelike geodesics. A geodesic, γ, is a curve whose
tangent vector is parallel propagated along itself, i.e., a curve whose tangent, sµ, satisfies
the geodesic equation,

sµ∇µs
ν = fsν , (A.4.13)

where f is an arbitrary function on the curve. In particular, the geodesic equation can
be interpreted as stating that the variation of a curve’s tangent is given only on its
direction, that is, the vector is varying “as little” as possible. In this sense, geodesics can
be interpreted as curves that are as “straight” as possible in a manifold. Indeed, this is
precisely the content of the hypothesis that freely falling bodies follow “locally straight”
curves.
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Furthermore, a geodesic is said to be affine parametrized if it satisfies the condition

sµ∇µs
ν = 0. (A.4.14)

If the tangent vector to γ(t) respects eq. A.4.13, then the tangent vector to γ(t′) obeys
eq. A.4.14, where dt′ = e

∫
f(t)dtdt. In other words, any geodesic can be reparametrized to

respect eq. A.4.14.

Let (M, gµν) be an n-dimensional manifold and γs(λ) denote a one-parameter
system of affinely parametrized geodesics. This system can be identified in M as the
image of the map ψ : M ′ → M , where M ′ is a two-dimensional strip of the plane (λ, s),
with 0 < λ < λ′ and −ϵ < s < ϵ (see fig. 31a). The image of the map ψ for lines
s = constant are affinely parametrized geodesics, as illustrated in 31b. One may choose s

M ′

s

λ

ε−ε 0
(a) Manifold, M ′, which is a strip of the plane

(λ, s) and whose image under the map ψ is
a family of null geodesics.

M

γ(λ)

λ

s

ψ[M ′]

(b) Embedding of M ′ in M through the map ψ.
The geodesic γ is parametrized by λ, and
the deviation vectors are (∂s)µ.

Figure 31 – One-parameter system of geodesics in M ′ and M .

Source: Adapted from PENROSE (47).

and λ as coordinates of M ′, that is, (∂λ)µ and (∂s)µ comprise a coordinate basis. More
precisely, ℓµ = (∂λ)µ is the tangent vector to the family of geodesics, and sµ = (∂s)µ

is known as the deviation vector, which can be interpreted as the displacement between
two “infinitesimally nearby” geodesics. By being coordinate vectors, their commutator
vanishes, and from eq. A.3.4 one then has

ℓν∇νs
µ = sν∇νℓ

µ, (A.4.15)
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Namely, the vector ℓν∇νs
µ can be interpreted as the relative velocity of infinitesimally

nearby geodesics, as it measures the rate of change of sµ along geodesics. Correspondingly,
the vector ℓν∇ν(ℓα∇αs

µ) can be interpreted as the relative acceleration.

In this sense, one can readily conclude that the relative acceleration between nearby
geodesics is directly related to the Riemann tensor, as

ℓν∇ν(ℓα∇αs
µ) = ℓν∇ν(sα∇αℓ

µ)
= ℓν∇νs

α(∇αℓ
µ) + ℓνsα∇ν∇αℓ

µ

= sν∇νℓ
α(∇αℓ

µ) + ℓνsα(∇α∇νℓ
µ −Rναβ

µℓβ)
= −Rναβ

µℓνsαℓβ. (A.4.16)

Eq. A.4.16 is known as the Jacobi equation, which tells one that geodesics will accelerate
in comparison with one another if and only if Rµνβ

α ̸= 0.

A.5 Integration

Let M be an n-dimensional manifold. If there exists an everywhere nonvanishing
n-form, sµ1···µn , on M , then M is said to be orientable and sµ1···µn is said to provide an
orientation. Due to theorem A.2.1, an orientation must be related to any other n-form by
scalar multiplication. Hence, given a coordinate system, ψ, an orientation can be written
as (see eq. A.2.15)

sµ1···µn = f(x0, . . . , xn−1)n!(dx0)[µ1 · · · (dxn−1)µn] = f(x0, . . . , xn−1)(dx0∧. . .∧dxn−1)µ1···µn .

(A.5.1)
If f > 0, the integral of an n-form,

wµ1···µn = f ′(x0, . . . , xn−1)(dx0 ∧ . . . ∧ dxn−1)µ1···µn , (A.5.2)

in the open region S ⊂M covered by the coordinate system ψ is defined as∫
S
wµ1···µn =

∫
ψ[S]

f ′dx0 . . . dxn−1, (A.5.3)

i.e., one uses a coordinate system to perform the integration process on Rn.

Consequently, the sign of the function f determines the sign of the integration of
n-forms that rises due to the coordinate system ψ. More precisely, eq. A.5.3 would have
been defined with a minus sign if f < 0. In particular, a coordinate system such that the
scalar f in the orientation is positive is said to be right handed, and if f < 0, it is said
to be left handed. This local definition of integration of an n-form can be expanded to
the entire manifold if it is paracompact (1). Such an expansion can be used to state the
following result, known as Stokes’ theorem (171).
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Theorem A.5.1. Let M be an n-dimensional oriented manifold, S be an n-dimensional
compact oriented submanifold with boundary and let sµ1···µn−1 be an (n − 1)-form on M

which is C1. Then ∫
S
(ds)νµ1···µn−1 =

∫
∂S
sµ1···µn−1 . (A.5.4)

On the other hand, integration of functions over M can be defined up to a choice
of sign (as a consequence of the arbitrarity in choice of orientation) when one has a metric
defined on it. Such integration is defined by∫

M
f =

∫
M
fϵµ1···µn , (A.5.5)

where ϵµ1···µn is an nonvanishing n-form, referred to as a volume element, which obeys

ϵµ1···µnϵµ1···µn = (−1)sn!, (A.5.6)

where s is the number of minuses in the signature of the metric. Note that eq. A.5.6
depends not only on the signature of the metric, but also on its explicit form, as the
“raised” indices in ϵµ1···µn are a result of multiple contractions with the gµν . Moreover,
differentiating eq. A.5.6 yields

∇νϵµ1···µn = 0. (A.5.7)

Considering that the vector space of antisymmetric tensors of rank (n, n) in an
n-dimensional manifold is one-dimensional, one can also deduce that

ϵµ1···µαµα+1···µℓϵµ1···µανα+1···νℓ
= (−1)s(ℓ− α)!α!δ[µα+1

να+1 · · · δµℓ]
νℓ
. (A.5.8)

Eq. A.5.8 is merely a consequence of the fact that the outer product ϵµ1···µnϵν1···νn must
be proportional to the antisymetrized outer product of multiple identity maps, δµν . Fur-
thermore, from eq. A.5.6, the coordinate components of ϵµ1···µn satisfy

gµ1ν1 · · · gµnνnϵµ1···µnϵν1···νn = (−1)sn!, (A.5.9)

which yields
ϵ12···n = [(−1)s det(gµν)]1/2 =

√
|g|. (A.5.10)

More precisely, in any right handed coordinate system, the volume element is

ϵµ1···µn =
√
|g|(dx0 ∧ . . . ∧ dxn−1)µ1···µn . (A.5.11)

Thus, one can interpret the integration of any n-form in an n-dimensional manifold, eq.
A.5.3, simply as the integration of a function, eq. A.5.5. This is merely a consequence of
the fact that any n-form is proportional to the volume element.

It is also of interest to discuss the form of the volume element of a lower dimensional
embedded submanifold of M . As discussed in the end of appendix A.2, one can identify
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the subspace of vectors that are orthogonal to a vector, χµ, with the tangent vector space
of a hypersurface, S, for which χµ is said to be normal to. Without loss of generality,
consider that χµ has norm ±1 and note that the volume element of S, ϵµ1···µn−1 , can be
identified with the metric that rises as one restricts the action of gµν to vectors that are
orthogonal to χµ. This metric, denoted by hµν , has to obey hµαhαν = δµν , as well as

hµνχν = hµνχµ = 0, (A.5.12)

which means that it is “orthogonal” to χµ. Additionally, in order to identify hµν as an
orthogonal projection operator (180), one also requires it to obey

hµαh
α
ν = hµν , (A.5.13)

and
gµαh

α
ν = gαµh

α
ν . (A.5.14)

Respecting these properties, hµν can take two forms, depending on the nature of
the normal vector1,

hµν =

gµν + χµχν for χµχµ < 0,

gµν − χµχν for χµχµ > 0.
(A.5.15)

Now, consider the (n − 1)-form ϵµ1···µn−1νχ
ν . This tensor is “orthogonal” to any vector

proportional to χµ, in the sense that contraction of any of its indices with it will vanish.
Thus, ϵµ1···µn−1νχ

ν is a tensor over the tangent vector space of any a ∈ S, so it must be
related by a scalar to the volume element of S. Note that this is the case because the
subvector space spanned by vectors orthogonal to χµ is (n−1)-dimensional, so that (n−1)-
forms over S span a one-dimensional vector space. However, since the volume element of
a manifold must obey eq. A.5.6, from eq. A.5.8 one can conclude that ϵµ1···µn−1νχ

ν itself
is the volume element of S, since χµ is normalized. Hence, in a right-handed coordinate
system of S, one obtains

ϵ12···n−1 νχ
ν =

√
|h|, (A.5.16)

where h = det(hµν). In a more general way, one can conclude the following. Given an
orthonormal set of vectors, {χµ, . . . , ηµ}, the volume element of a embedded submanifold,
S, whose tangent space is spanned by vectors orthogonal to the set {χµ, . . . , ηµ} is given
by ϵµ1···µn−ℓν1···νℓ

χν1 . . . ηνℓ . The coordinate components of this volume element in a right-
handed coordinate system of S are given by

ϵ12···n−ℓ ν1···νℓ
χν1 . . . ηνℓ =

√
|h|, (A.5.17)

where hµν is the metric that rises when one restricts gµν to act on the subspace of vectors
orthogonal to {χµ, . . . , ηµ}.
1 The case χµχµ = 0 will be analyzed in detail in § 2.4.



182

Lastly, it is also useful to use the one-dimensional property of n-forms in a n-
dimensional manifold to state two convenient forms of Stokes’ theorem. Let wµ1···µn−1 be
an (n− 1)-form such that

wµ1···µn−1 = ϵαµ1···µn−1v
α, (A.5.18)

where vµ is an arbitrary vector. Taking the exterior derivative of wµ1···µn−1 yields

(dw)βµ1···µn−1 = n∇[β(ϵ|α|µ1···µn−1]v
α)

= nϵα[µ1···µn−1∇β]v
α,

(A.5.19)

where eq. A.5.7 was used and it was indicated in the first line that the index α is not to
be antisymmetrized. Of course, (dw)βµ1···µn−1 must be related to the volume element by a
scalar,

fϵβµ1···µn−1 = nϵα[µ1···µn−1∇β]v
α, (A.5.20)

which can be evaluated by applying ϵβµ1···µn−1 to both sides of eq. A.5.20. Using eq. A.5.8,
this application yields

fn! = n(n− 1)!δβα∇βv
α,

f = ∇αv
α, (A.5.21)

and thus,

(dw)µ1···µn = ϵµ1···µn∇αv
α. (A.5.22)

Hence, for a compact and bounded S ⊂M that is n-dimensional, Stokes’ theorem can be
expressed as ∫

S
ϵµ1···µn∇αv

α =
∫
∂S
ϵαµ1···µn−1v

α. (A.5.23)

Similarly, Stokes’ theorem also allows one to find a relation for the integral of
wµ1···µn−2 = ϵαβµ1···µn−2A

αβ over a (n − 2)-dimensional embedded submanifold of M and
the integral of an (n − 1)-form over a (n − 1)-dimensional embedded submanifold of
M . Note, that Aαβ can be considered a two-form without loss of generality, since the
symmetric part of the tensor would get “filtered out” by contraction with the volume
element of M . Now, from the exterior derivative of the (n− 2)-form,

(dw)λµ1···µn−2 = (n− 1)ϵαβ[µ1···µn−2∇λ]A
αβ, (A.5.24)

one can find the scalar that relates it to the (n − 1)-form ϵβλµ1···µn−2∇αA
αβ. Again, note

that this is the case because these tensors are defined to be restricted to act on the
(n− 1)-dimensional embedded submanifold of M (i.e., they are “tangent” to it), so that
(n− 1)-forms span a one-dimensional vector space. This scalar can be found by using eq.
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A.5.8,

fϵβλµ1···µn−2∇αA
αβ = (n− 1)ϵαβ[µ1···µn−2∇λ]A

αβ,

fϵβλµ1···µn−2ϵ
ωλµ1···µn−2∇αA

αβ(∇ρAρω) = (n− 1)ϵωλµ1···µn−2ϵαβ[µ1···µn−2∇λ]A
αβ(∇ρAρω),

f(n− 1)!δωβ∇αA
αβ(∇ρAρω) = 2(n− 1)!δ[ω

αδ
λ]
β∇λA

αβ(∇ρAρω),
f(n− 1)!∇αA

αω(∇ρAρω) = 2(n− 1)!∇αA
αβ(∇ρAρβ),

f = 2.
(A.5.25)

Thus, for a compact and bounded S ⊂ M that is (n − 1)-dimensional, Stokes’ theorem
can also be expressed as∫

S
ϵβµ1···µn∇αA

αβ = 1
2

∫
∂S
ϵαβµ1···µn−2A

αβ. (A.5.26)
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APPENDIX B – KERR SPACETIME

The purpose of this appendix is to provide details on several results concerning
the Kerr metric, which will mainly be of use in chs. 3 and 4.

B.1 Inverse metric and Christoffel symbols

The contravariant form of the Kerr metric can be derived from the Kerr-Newman
metric with e = 0, eq. 3.5.1. First, its determinant reads

g = −Σ2 sin2 θ. (B.1.1)

Second, the covariant form of the metric can be evaluated to be

∂2
s = gab∂a∂b

= −
(

Σ′

Σ∆

)
1
c2∂

2
t −

(2rsar
Σ∆

) 1
c
∂t∂ϕ + ∆

Σ∂
2
r + 1

Σ∂
2
θ +

(
∆− a2 sin2 θ

Σ∆ sin2 θ

)
∂2
ϕ, (B.1.2)

where
Σ′ = (r2 + a2)Σ + rsa

2r sin2 θ, (B.1.3)

and the other variables are given by eq. 3.5.1. Lastly, the nonvanishing Christoffel symbols
of the Kerr metric are (181)

Γrtϕ = −c∆rsa sin2 θ(r2 − a2 cos2 θ)
2Σ3 , Γrtt = c2rs∆(r2 − a2 cos2 θ)

2Σ3 ,

Γrrr = 2ra2 sin2 θ − rs(r2 − a2 cos2 θ)
2Σ∆ , Γrrθ = −a

2 sin θ cos θ
Σ ,

Γrϕϕ = ∆ sin2 θ(−2rΣ2 + rsa
2 sin2 θ(r2 − a2 cos2 θ))

2Σ3 , Γrθθ = −r∆Σ ,

Γtrϕ = rsa sin2 θ(a2 cos2 θ(a2 − r2)− r2(a2 + 3r2))
2cΣ2∆ , Γttθ = −rsa

2r sin θ cos θ
Σ2 ,

Γttr = rs(r2 + a2)(r2 − a2 cos2 θ)
2Σ2∆ , Γtθϕ = rsa

3r sin3 θ cos θ
cΣ2 ,

Γθϕϕ = −sin θ cos θ(Σ′Σ + (r2 + a2)rsa2r sin2 θ)
Σ3 , Γθθθ = −a

2 sin θ cos θ
Σ ,

Γθtt = −c
2rsa

2r sin θ cos θ
Σ3 , Γθrr = a2 sin θ cos θ

Σ∆ ,

Γθtϕ = crsar(r2 + a2) sin θ cos θ
Σ3 , Γθrθ = r

Σ ,

Γϕrϕ = 2rΣ2 + rs(a4 sin2 θ cos2 θ − r2(Σ + r2 + a2))
2Σ2∆ , Γϕtθ = −crsar cot θ

Σ2 ,

Γϕtr = crsa(r2 − a2 cos2 θ)
2Σ2∆ , Γϕθϕ = cot θ(Σ2 + rsa

2r sin2 θ)
Σ2 .
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B.2 Neighboring Kerr black holes

In order to evaluate the infinitesimal variations to first order of the parameters
and area of a Kerr black hole discussed in § 3.5, it is useful to do so by analyzing the
difference of such parameters between two neighboring (in the sense that the difference in
parameter value is infinitesimal) states of a Kerr black hole. The framework presented is
based on (19). By considering that the original black hole is described by the metric gµν
and the perturbed is described by g′

µν , one can introduce a covariant tensor to represent
the perturbation by

γµν = g′
µν − gµν . (B.2.1)

Using the symbol δ to represent the variation of quantities over the perturbation, and
requiring that the relation gµαgαν = δµν holds in first order of γµν , one must have that

δgµν = γµν , (B.2.2)

δgµν = −γµν . (B.2.3)

To evaluate the quantities of interest, it will be necessary to study the variation
of tensors that are relevant to the description of the event horizon. Since there is a gauge
freedom associated with the mapping of the two spacetimes (i.e., how one compares events
of one with the other), it is possible to use this freedom to preserve the actions of the
isometries represented by ξµ and ψµ, as well as the position of the event horizon of the
two solutions, which correspond to requiring that

δξµ = 0, (B.2.4)

δψµ = 0, (B.2.5)

which in combination with the definition of γµν , yield

δξµ = γµνξ
ν , (B.2.6)

δψµ = γµνψ
ν . (B.2.7)

Using the null vector tangent to the horizon, eq. 3.5.28, one also has

δχµ = δξµ + ΩHδψ
µ + (δΩ)ψµ = (δΩ)ψµ, (B.2.8)

δχµ = γµνχ
ν + (δΩ)ψµ, (B.2.9)

which shows that even though the event horizon is the same position, its angular velocity
might still change.

Moving forward, by applying the Lie derivative along the Killing vectors, ξµ and
ψµ, on eq. B.2.1 and taking the trace, yields the following relations for γ = γµνgµν ,

ξµ∇µγ = ψµ∇µγ = χµ∇µγ = 0. (B.2.10)
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The invariance of the position of the event horizon also ensures that the scalars χµξµ,
χµψ

µ and χµηµ are invariant, where ηµ is the auxiliary null vector which can be defined in
both solution to be given by 3.5.38. For such contractions to be invariant, it is necessary
that

ξµ(δχµ) = 0, (B.2.11)

ψµ(δχµ) = 0, (B.2.12)

ηµ(δχµ) = −χµ(δηµ). (B.2.13)

Finally, the invariance of the event horizon also implies that δχµ and χµ are proportional,
so the perturbation is such that

δχµ = αχµ, (B.2.14)

which coupled with the fact that Lχ(δχµ) must vanish, yields

χµ∇µα = 0, (B.2.15)

χµ∇µ(δχν) = (δχµ)∇µχν . (B.2.16)

These are almost all the relations necessary for the analysis of the variation of the pa-
rameters and the area of a Kerr black hole. The last one which will be derived below is a
general result (1) that can be used to relate the variation of the mass to the variation of
asymptotic properties of each solution.

Consider two arbitrary vector fields, sµ and wµ, such that ∇µs
µ = ∇µw

µ = 0 and
[s, w]µ = 0. It can be readily verified that ∇µ(s[µwν]) = 0, which implies that (1)

∇[µ(ϵνα]βδs
βwδ) = 0. (B.2.17)

By integrating this three-form over a volume bounded by two-spheres, S and S ′, Stokes’
theorem allows one to write ∫

S
ϵναβδs

βwδ =
∫
S′
ϵναβδs

βwδ. (B.2.18)

The significance of this general result to the developments in ch. 3 lies in the case where
sµ = ξµ, the timelike Killing vector, and wµ = ∇ν(γµν−gµνγ). Clearly, ∇µξ

µ = 0, since it
is a Killing vector, and ∇µω

µ = 0, as it is the trace of the perturbed Einstein’s equation
(1). Furthermore, by arguments similar to those that led to eq. B.2.10, Lξwµ must vanish,
and thus, ξµ and wµ commute. By taking S to be a two-sphere at the asymptotic region
and S ′ = H , one then finds∫

S
ϵναβδξ

δ∇ρ(γβρ − gβργ) =
∫

H
ϵναβδξ

δ∇ρ(γβρ − gβργ). (B.2.19)

In order to develop the integral on the left hand side, it is convenient to evaluate the
function f that relates its two-form to the volume element of the two-sphere, ϵµναβζατβ
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(see eqs. 3.5.6 and 3.5.7). At the asymptotic region, one has

fϵµναβζ
ατβ = ϵµναβξ

β∇ρ(γαρ − gαργ),
2f = ϵµνλωζλτωϵµναβξ

β∇ρ(γαρ − gαργ),
f = −2(−gttgrr)−1/2δ[λ

αδ
ω]
βδ

r
λδ

t
ωξ

β∇ρ(γαρ − gαργ)
f = −2cδ[r

αδ
t]
βξ

β∇ρ(γαρ − gαργ)
f = −c∇ρ(γrρ − ηrργ). (B.2.20)

To evaluate f , one should first consider the asymptotic form of the Kerr metric,
which due to its asymptotic flat nature, is

gµν = ηµν + γµν , (B.2.21)

with
γabdx

adxb = rs
r
c2dt2 + rs

r
dr2 +O(r−2), (B.2.22)

where (1− x)−1 ≈ (1 + x) was used. These relations also lead to

γab∂a∂b = rs
r

1
c2∂

2
t + rs

r
∂2
r +O(r−2), (B.2.23)

Hence, using eq. A.3.17, one finds

∇ργ
rρ = ∂r(γrr) = −rs

r2 , (B.2.24)

∇ρ(ηrργ) = 0, (B.2.25)

which leads to,
f = crs

r2 . (B.2.26)

Returning to the integral on the left hand side of eq. B.2.19, one obtains∫
S
ϵναβδξ

δ∇ρ(γβρ − ηβργ) =
∫
S
fϵµναβζ

ατβ

= crs

∫
S
dΩ

= 8πGM
c

. (B.2.27)

This relation can be interpreted as using the asymptotic properties of spacetime to com-
pute its total mass. If one considers this relantionship for each individual neighboring
Kerr black hole, one can write the difference of their masses as∫

S
ϵναβδξ

δ∇ρ(γβρ − gβργ) = 8πGδM
c

, (B.2.28)

where perturbation of the metric is now given by eq. B.2.1, which is simply the difference
between each individual one, given in eq. B.2.21, and gµν is now given by the metric of
the original stationary configuration.
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B.3 Principal null congruences

In order to find the equations that describe the behavior of null geodesics, it is
useful to consider the conserved quantities associated with them. We will do so here,
adopting geometrized units.

In Kerr spacetime, these constants follow from the norm of the null vector and
the existence of Killing vectors. More precisely, there are the constants given by eqs. 3.5.3
and 3.5.4,

E = −gtt
(
dt

dλ

)
− gtϕ

(
dϕ

dλ

)
, (B.3.1)

L = −gtϕ
(
dt

dλ

)
− gϕϕ

(
dϕ

dλ

)
, (B.3.2)

and the one from the norm of the null vector,

gtt

(
dt

dλ

)2

+ 2gtϕ
(
dt

dλ

)(
dϕ

dλ

)
+ grr

(
dr

dλ

)2

+ gϕϕ

(
dϕ

dλ

)2

+ gθθ

(
dθ

dλ

)2

= 0, (B.3.3)

Similarly, there is also another conserved quantity which rises due to the fact that
the Kerr metric possesses a Killing tensor of valence 2 (182), Kµν , which is a symmetric
tensor that obeys (1)

∇(µKνα) = 0. (B.3.4)

Although Killing tensors do not rise as generators of a group of diffeomorphisms, they
do give rise to conserved quantities along geodesics by the exact same line of reasoning
as the one presented in § 2.1. In essence, the conserved quantity in null geodesics can be
expressed by

1
∆
[
(r2 + a2)E − aL

]2
− Σ2

∆

(
dr

dλ

)2

= C, (B.3.5)

(aE sin θ − L csc θ)2 + Σ2
(
dθ

dλ

)2

= C. (B.3.6)

Consequently, these results yield the following equations of motion

Σ
(
dt

dλ

)2

= 1
∆
{[

(r2 + a2)2 −∆a sin2 θ
]
E − arsrL

}
, (B.3.7)

Σ2
(
dr

dλ

)2

=
[
(r2 + a2)E − aL

]
−∆C, (B.3.8)

Σ2
(
dθ

dλ

)2

= − (aE sin θ − L csc θ)2 + C, (B.3.9)

Σ
(
dϕ

dλ

)2

= 1
∆
[
arsrE + (Σ− rsr)L csc2 θ

]
. (B.3.10)
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The principal null congruences are those with θ(λ) = θ0, which will be the case if
C = 0 and L = aE sin2 θ, resulting in

dt

dλ
= (r2 + a2)E

∆ , (B.3.11)

dr

dλ
= ±E, (B.3.12)

dθ

dλ
= 0, (B.3.13)

dϕ

dλ
= aE

∆ , (B.3.14)

in which one identifies those with dr/dλ > 0 as outgoing, and those with dr/dλ < 0 as
incoming. Thus, the vector that generates the principal outgoing null congruence is

ℓµ =
(
r2 + a2

∆ , 1, 0, a∆

)
, (B.3.15)

while the one which generates the principal incoming null congruence is

ηµ =
(
r2 + a2

2Σ ,− ∆
2Σ , 0,

a

2Σ

)
, (B.3.16)

being normalized by ℓµηµ = −1.

Before proceeding, it is convenient to define a new radial coordinate, r′, such that

dr′

dr
= r2 + a2

∆ , (B.3.17)

and an angular coordinate, ϕ′,
ϕ′ = ϕ− Ωt, (B.3.18)

which is well behaved at r = r+. In the same manner, it is also useful to define the
incoming and outgoing null coordinates

u = t− r′, (B.3.19)

w = t+ r′. (B.3.20)

Now, to develop the calculations for the particle creation effect of a Kerr black
hole, it will be necessary to evaluate the explicit form of the function u(λ), where λ is an
affine parameter of an incoming null geodesic of the principal null congruence and u is
the incoming null coordinate. From eqs. B.3.19 and B.3.17, one finds

du

dλ
= dt

dλ
− dr′

dr

dr

dλ

= 2Er
2 + a2

∆ . (B.3.21)
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Integrating eq. B.3.12, one obtains

r − r+ = −Eλ, (B.3.22)

where it was considered that r(0) = r+. Using this result in eq. B.3.21 yields

du

dλ
= 2E (r+ − Eλ)2 + a2

(r+ − Eλ)2 − (r+ + r−)(r+ − Eλ) + r+r−

= 2[(r+ − Eλ)2 + a2]
λ[Eλ− (r+ − r−)] , (B.3.23)

in which eq. 3.5.17 was used. Integration yields

u(λ) = 2Eλ− 1
κ

ln
(
λ

C ′

)
+ 2

(
r+ − r−

r2
− + a2

)
ln
[
Eλ− (r+ − r−)

C ′′

]
, (B.3.24)

where κ is the surface gravity of a Kerr black hole, and C ′ and C ′′ are negative constants.
The limit of interest is as r → r+, in which one has

u(λ) ≈ −1
κ

ln
(
λ

C ′

)
. (B.3.25)
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APPENDIX C – INFORMATION

The purpose of this appendix is to provide an objective review of the quantification
of information in quantum mechanics. Namely, the formalism of density operators, the Von
Neumann entropy, and how they lead to the concept of entanglement of systems. First,
we note that even though there is an intrinsic probabilistic notion to most measurements
in quantum mechanics, a lack of details about the precise state of a system can introduce
another layer of uncertainty, which is precisely the scenario in which one would justifiably
state that there is a “lack of information” in a quantum system. With this in mind, we
review how the formalism of density operators naturally takes into account “ensembles”
of pure states, which one can argue to be a situation in which one does not have all the
possible information about the precise state of the system. Indeed, as measured by the
Von Neumann entropy, the states known as mixed ones can be interpreted as having an
additional “degree of uncertainty”. Consequently, when dealing with composite systems,
the concept of entanglement identifies when the total state of a system is such that
measurements in one subsystem will affect measurements in the other, even if they are
spacelike separated.

Again, this is not meant to serve as a pedagogical introduction, but rather, as
a reference for the development of relations and the arguments presented in this work,
mainly in chs. 4 and 5. The interested reader can find a more pedagogical, detailed pre-
sentation of such subjects in the references on which the construction of this appendix
was based on (56,121,183,184).

C.1 Density operators

In a classical sense, information about a system is completely characterized by the
position and momentum of all the constituents of the energy distribution present in it.
From the formalisms of classical mechanics, the complete evolution of the system can then
be predicted with certainty. However, realistically, one can only measure averages of these
quantities, so that statistics come into play as a consequence of the lack of information
about the precise conditions of the system. The purpose of this section is to make these
statements precise in a setting in which quantum concepts should be considered, i.e., how
“lack of information” of a state in a quantum system can be precisely quantified. As it
is known, complete information about a quantum system can be expressed as complete
knowledge of the state that describes it, rather than the exact values of the physical
observations one can make. In other words, although there is an intrinsic uncertainty
present in quantum mechanics, which can be exemplified by the probabilistic nature of
measurements of observables for which the system is not in any of its eigenstates, one



194

can still identify how much of this uncertainty is a consequence of the theory itself, or
“lack of information” about the precise state of the system. The first step to analyze
these concepts in quantum mechanics is to identify scenarios in which one has complete
information about the state of a system. Recall that the state of a system is described
by a vector in a Hilbert space, H . Note that since these statements regard vectors that
are elements of a complex vector space, it is more convenient to denote them using the
bra-ket notation (56).

Of course, given a basis, {|µ⟩}, an arbitrary state, |ψ⟩, can be written as1

|ψ⟩ =
∑
µ

aµ|µ⟩, (C.1.1)

where aµ ∈ C and the sum is over d, with d = dim(H ). In the following, summations
should always be regarded to be over d, unless denoted otherwise. If the basis is orthonor-
mal, i.e., ⟨µ|ν⟩ = δµν , then requiring that |ψ⟩ be unit length translates to

∑
µ

|aµ|2 = 1. (C.1.2)

Furthermore, given a basis, the identity operator, Î, can be expressed as (56)

Î =
∑
µ

|µ⟩⟨µ|, (C.1.3)

while the trace operator, Tr(·), is given by

Tr(Â) =
∑
µ

⟨µ|Â|µ⟩, (C.1.4)

where Â is an arbitrary operator.

A state that can be written as in eq. C.1.1 is known as a pure state. All physically
significant properties (such as expectation values and probabilities) of a pure state can be
easily evaluated from the form given by eq. C.1.1 simply by acting operators and states
on it. Still, all of this information can be also be analyzed through the lens of its density
operator, given by

ρ̂ = |ψ⟩⟨ψ|. (C.1.5)

Evidently, the density operator of a pure state is precisely the projector operator associated
with the state, which is clearly hermitian, i.e.,

ρ̂† = ρ̂, (C.1.6)

idempotent,
ρ̂2 = |ψ⟩⟨ψ|ψ⟩⟨ψ| = |ψ⟩⟨ψ| = ρ̂, (C.1.7)

1 The lower greek index is merely a label of the complex coefficient, i.e., it is not an abstract
index.
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as per normalization of |ψ⟩, and also respects

Tr(ρ̂) =
∑
µ

⟨µ|ψ⟩⟨ψ|µ⟩ =
∑
µ

|aµ|2 = 1. (C.1.8)

In particular, expectation values for an arbitrary operator, Â, can be evaluated by

⟨ψ|Â|ψ⟩ =
∑
µ,ν

⟨ψ|µ⟩⟨µ|Â|ν⟩⟨ν|ψ⟩

=
∑
µ,ν

⟨ν|ψ⟩⟨ψ|µ⟩⟨µ|Â|ν⟩

=
∑
µ,ν

⟨ν|ρ̂|µ⟩⟨µ|Â|ν⟩

=
∑
ν

⟨ν|ρ̂Â|ν⟩

= Tr
(
ρ̂Â
)
, (C.1.9)

where the identity operator, eq. C.1.3 was applied twice in the first line. Similarly, prob-
abilities for an arbitrary state, |ψ′⟩, read

|⟨ψ′|ψ⟩|2 = ⟨ψ′|ψ⟩⟨ψ|ψ′⟩

=
∑
µ

⟨ψ′|µ⟩⟨µ|ψ⟩⟨ψ|ψ′⟩

=
∑
µ

⟨ψ′|µ⟩⟨µ|ρ̂|ψ′⟩

=
∑
µ

⟨µ|ρ̂|ψ′⟩⟨ψ′|µ⟩

= Tr (ρ̂|ψ′⟩⟨ψ′|) . (C.1.10)

Lastly, unitary dynamical evolution of the state, |ψ⟩, of a closed system reads

|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩, (C.1.11)

where Û(t0, t0) = Î and Û †(t, t0)Û(t, t0) = Î, which translates to

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0). (C.1.12)

Evidently, eqs. C.1.11 and C.1.12 do not correspond to the Heisenberg picture (56), in
which one would have dynamical evolution of observables rather than states. Nonetheless,
one can use eqs. C.1.9 and C.1.10 to effectively act Û(t, t0) on observables rather than |ψ⟩,
providing a completely equivalent formulation of the dynamics of the system. Because of
this, one can refer to the dynamical evolution of a system by the evolution of the states
or by the evolution of observables.

A simple reason to understand why density operators are a more interesting rep-
resentation of states is that they are a unique representation, as opposed to a ket, which
can have an arbitrary phase, eiθ. Furthermore, density operators can be used to study
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more general states that cannot be simply represented by a ket. Such states are known
as mixed states, which can be interpreted as representing an ensemble of pure states. In
particular, the density operator of a more general state can be written as

ρ̂ =
N∑
µ

pµ|ψµ⟩⟨ψµ|, (C.1.13)

where {|ψµ⟩} is a set of normalized pure states, not necessarily orthogonal, so that the
number N is not limited by d. Namely, given a basis, for each element of {|ψµ⟩}, i.e., for
a fixed µ, one has

|ψµ⟩ =
∑
ν

aµν |ν⟩, (C.1.14)

and normalization of each of them yields∑
ν

|aµν |2 = 1. (C.1.15)

Additionally, the N real numbers, pµ, obey

0 < pµ ≤ 1,
N∑
µ

pµ = 1. (C.1.16)

Evidently, this more general density operator is hermitian (see eq. C.1.6) and respects

Tr(ρ̂) =
∑
ν

N∑
µ

pµ⟨ν|ψµ⟩⟨ψµ|ν⟩ =
N∑
µ

pµ
∑
ν

|aµν |2 = 1. (C.1.17)

In this manner, the physically significant properties of a more general state whose density
operator is given by eq. C.1.13 follow from the same developments of eqs. C.1.9 and C.1.10,
from which one can see that the numbers pµ act as “weights” for each of the individual
properties of the pure states in the set {|ψµ⟩}. Finally, comparison with eq. C.1.5 indicates
that a density operator will describe a pure state if and only if N = 1, and thus, p1 = 1.

Given a density operator, one can readily verify if it describes a pure or a mixed
state. More specifically, since a density operator is always hermitian, it can be diagonalized
(56), i.e., written in the form

ρ̂ =
∑
µ

λµ|µ⟩⟨µ|, (C.1.18)

where {|µ⟩} is a basis and
0 ≤ λµ ≤ 1,

∑
µ

λµ = 1, (C.1.19)

are simply its eigenvalues. Now, from the fact that the density operator of a pure state is
idempotent and has a unit trace, one must have

Tr(ρ̂2) = 1. (C.1.20)

However, since the trace is independent of choice of basis, this equality will only be
respected if one of the eigenvalues of the density operator equals 1 while all the others
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vanish. In contrast, if the density operator is of a mixed state, then none of its eigenvalues
can be 1, since this would mean that it could be written in the form of eq. C.1.5. Hence,
the density operator of a mixed state must obey

Tr(ρ̂2) < 1, (C.1.21)

which means that
ρ̂2 ̸= ρ̂. (C.1.22)

Consequently, one can use the trace of a squared density operator (or simply the
squared density operator) to evaluate if it describes a pure or a mixed state. In particular,
Tr(ρ̂2) is known as the purity of a state, and may take any value in the interval [1/d, 1],
with the density operator describing a pure state if and only if it equals the upper limit.
Evidently, for the trace of a squared density operator to obey the lower limit, the density
operator must be proportional to the identity operator, i.e.,

ρ̂ = Î

d
, (C.1.23)

which is said to describe a maximally mixed state. Also, note that unitary evolution does
not affect the eigenvalues of an operator, as

det(ρ̂(t)− Îλ) = det(Û(t, t0)ρ̂(t0)Û †(t, t0)− Û(t, t0)Û †(t, t0)Îλ)
= det(Û(t, t0)[ρ̂(t0)− Îλ]Û †(t, t0))
= det([ρ̂(t0)− Îλ]Û †(t, t0)Û(t, t0))
= det(ρ̂(t0)− Îλ)det(Û †(t, t0)Û(t, t0))
= det(ρ̂(t0)− Îλ). (C.1.24)

Therefore, unitary evolution of a closed system does not change the nature of the state.
In other words, the purity of a state is unaffected by such dynamical evolution.

Perhaps the most notable example of a mixed state is the one describing a system
in thermal equilibrium (183), for instance, thermal radiation, whose density operator reads

ρ̂ = e−βĤ

Z
, (C.1.25)

where Z = Tr(e−βĤ), β = kBT , T is the temperature of the system and Ĥ its Hamiltonian.
One can verify that this density operator describes a mixed state by writing it in terms
of a basis of eigenvalues of Ĥ, {|µ⟩}, i.e.,

Ĥ|µ⟩ = Eµ|µ⟩, (C.1.26)

so that it takes the form
ρ̂ = 1

Z

∑
µ

e−βEµ |µ⟩⟨µ|. (C.1.27)
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Comparison with eq. C.1.18 then shows that it describes a mixed state.

Physically, a mixed state can be completely described by the way one “prepares”
the ensemble it represents. For example, consider a system which has a probability 1/2 to
be in the state |ψ⟩ and probability 1/2 to be in the state |ψ′⟩. The mixture described by
this system is completely characterized by this statement, which, by eq. C.1.13, translates
to

ρ̂ = 1
2(|ψ⟩⟨ψ|+ |ψ′⟩⟨ψ′|). (C.1.28)

It is not difficult to see that this density operator does not equal the one describing a
superposition of the states |ψ⟩ and |ψ′⟩ with equal amplitude. Indeed, such a density
operator would be associated with the pure state1

|ψ⟩ = 1√
2

(|ψ⟩+ |ψ′⟩) , (C.1.29)

which from eq. C.1.5, would read

ρ̂ = 1
2(|ψ⟩⟨ψ|+ |ψ⟩⟨ψ′|+ |ψ′⟩⟨ψ|+ |ψ′⟩⟨ψ′|). (C.1.30)

At this point, it is clear that there is a fundamental difference between a superposi-
tion of states and a mixture. In a superposition, there is a definite phase relation between
the possible states, which allows one to write the joint state of the system in the form of
eq. C.1.1. However, for a mixture, one only has access to the probabilities to prepare a
given state. The lack of a definite phase relation between the states, i.e., information only
about fractional populations and not the complex numbers themselves, is precisely what
makes it so that it is not possible to write a mixture as a single ket. Indeed, when dealing
with a system in which one does not have complete information about the relative phase
between the possible states, one refers to it as an incoherent mixture2.

C.2 Von Neumann entropy

The argument presented above points to the important idea that mixed states
are states in which one does not have all the possible information regarding the state
of a system. This concept can be quantified similarly as one quantifies the uncertainty
of a random variable through the Shannon entropy (121). The Shannon entropy can be
generalized to density operators by the Von Neumann entropy, which is given by

S(ρ̂) = −Tr(ρ̂ log2 ρ̂), (C.2.1)

where log2 means that the Von Neumann entropy is measured in bits. To evaluate the Von
Neumann entropy associated with a density operator, one writes it in a diagonal form,
1 Up to a phase, eiθ.
2 This terminology is justified when one considers a polarized and an unpolarized beam of light

(see (56) for a detailed discussion).
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which allows one to deduce that

S(ρ̂) = −
∑
µ

λµ log2 λµ. (C.2.2)

From the properties of a density operator of pure and mixed states, and adopting

lim
x→0+

x log2 x = 0, (C.2.3)

one then finds
S(ρ̂) = 0 for a pure state, (C.2.4)

log2 d ≥ S(ρ̂) > 0 for a mixed state. (C.2.5)

From this, it is evident that the interpretation of the Von Neumann entropy is
that it measures the “missing” information of a state described by ρ̂. For instance, a pure
state has no missing information, as it corresponds to the maximum possible information
one can have regarding a quantum system. Of course, in such case one still does not
have the maximum degree of certainty of values of all observables, but a pure state can
be interpreted as the maximum amount of knowledge quantum mechanics allows one to
have. In contrast, in a mixed state there is not only this fundamental lack of certainty as
a consequence of quantum mechanics, but also, there is the lack of knowledge regarding
the state of the system.

C.3 Entanglement

Given these definitions and properties, it is natural to analyze how they generalize
to composite systems. Let |ψ⟩ ∈ HA ⊗HB denote a pure state of a composite system,
comprised of subsystems A and B. Let {|µ⟩A} and {|µ⟩B} denote orthonormal bases for
the subsystems A and B, respectively, so that |ψ⟩ can be written as

|ψ⟩ =
∑
µ,ν

aµν |µ⟩A|ν⟩B, (C.3.1)

where the sum is over d×d′, with d = dim(HA) and d′ = dim(HB), and |µA⟩|νB⟩ denotes
|µA⟩| ⊗ |νB⟩. Normalization of |ψ⟩ translates to

∑
µ,ν

|aµν |2 = 1. (C.3.2)

The density matrix for |ψ⟩ reads

ρ̂AB =
∑
µ,ν,σ,ϵ

aµνa
∗
σϵ|µ⟩A⟨ν| ⊗ |σ⟩B⟨ϵ|. (C.3.3)

Now, one can find an adequate operator to evaluate physically significant quantities
in one of the subsystems by taking the trace of the density operator of the composite
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system over the other, which yields the reduced density operator. For example, the reduced
density operator for the system A reads

ρ̂A =
∑
µ

ÎA ⊗ B⟨µ|ρ̂AB|µ⟩B ⊗ ÎA = TrB(ρ̂AB), (C.3.4)

where ÎA is the identity operator of the system A. The density operator ρ̂A then al-
lows one to evaluate physically significant quantities of the subsystem A using eqs. C.1.9
and C.1.10. Mathematically, the procedure to obtain ρ̂A from ρ̂AB can be thought of as
“tracing-out” the subsystem B (see (121) for details). Physically, this would correspond to
“ignoring” information regarding the subsystem B, which is useful when such a subsystem
is irrelevant or inaccessible.

Consider a state, |ψ⟩ ∈HA ⊗HB, that can be written in the form

|ψ⟩ = |ψ⟩A|ψ⟩B, (C.3.5)

where A⟨ψ|ψ⟩A = B⟨ψ|ψ⟩B = 1. The reduced density operator for the system A, ρ̂A, reads

ρ̂A =
∑
µ

ÎA ⊗ B⟨µ|ρ̂AB|µ⟩B ⊗ ÎA = |ψ⟩A⟨ψ|
∑
µ

B⟨µ|ψ⟩B⟨ψ|µ⟩B = |ψ⟩A⟨ψ|, (C.3.6)

in which the normalization of |ψ⟩B was used. Evidently, ρ̂A describes a pure state, and an
analogous development for system B leads one to the conclusion that ρ̂B also describes
a pure state. Indeed, this is a consequence of the fact that since |ψ⟩ can be written in
the form of eq. C.3.5, measurements made on one system do not affect measurements on
the other. In other words, action of an operator on system A does not affect expectation
values of the action of an operator on system B.

In contrast, if the state |ψ⟩ cannot be written in the form of eq. C.3.5, then
the systems A and B are said to be entangled, and the state of the systems A and B

each are individually mixed. More precisely, the reduced density matrices, ρ̂A and ρ̂B,
will individually describe a mixed state with the same purity, as a consequence of the
Schmidt decomposition (121). That is, although the total state of the composite system
is completely known (i.e., it is described by a pure state), each individual subsystem has
the same degree of “lack of information”. This is a consequence of the fact that entangled
systems are not irrelevant to each other in the process of measurement. For example, if
two systems are entangled, it is possible to find an observable for system A, Â, and one
for system B, B̂, such that (40)

⟨ψ|Â⊗ B̂|ψ⟩ ≠ ⟨ψ|Â⊗ ÎB|ψ⟩⟨ψ|ÎA ⊗ B̂|ψ⟩. (C.3.7)

Physically, this means that there are non trivial correlations between measurements made
on both systems.
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Although entanglement may seem like an exotic feature arising from concepts of
quantum mechanics (see (184) for an extensive review), it is an intrinsic feature that was
derived from the theory alone. In fact, in Schrödinger’s words (185):

“I would not call [entanglement] one but rather the characteristic trait of quantum me-
chanics, the one that enforces its entire departure from classical lines of thought.”

Nowadays, experimental evidence of entanglement is undeniable, with many appli-
cations to quantum information theory and quantum communication technology, perhaps
the most notable application being quantum teleportation (see, e.g., (186, 187)). The
fundamental relevance of entanglement in the context of quantum field theory will be
exemplified by the line of reasoning presented in § 4.4.


	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Contents
	Introduction
	Spacetime and general relativity
	Symmetries
	Causal structure
	Energy conditions
	Null geodesic congruences
	Conjugate points
	Singularities
	Asymptotic flatness

	Classical aspects of black holes
	Schwarzschild spacetime
	Black holes
	Event horizon
	Surface gravity
	Stationary black holes

	Semiclassical aspects of black holes
	Quantum field theory in curved spacetime
	Effective particle creation by black holes
	Black holes and thermodynamics
	Energy-momentum expectation values and Hadamard states

	Black hole information problem
	Consequences of particle creation by black holes
	Alternatives to information loss
	Nature of the black hole information problem

	Conclusions and perspectives
	Hawking effect and information in Hawking radiation
	Degrees of freedom in black holes
	Thermodynamic aspects of gravitation
	Quantum gravity and black hole information problem
	Concluding words

	References
	Appendix
	Manifolds
	Topological spaces
	Tensor fields
	Derivative operators
	Curvature
	Integration

	Kerr spacetime
	Inverse metric and Christoffel symbols
	Neighboring Kerr black holes
	Principal null congruences

	Information
	Density operators
	Von Neumann entropy
	Entanglement



