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ABSTRACT

MARTINS, T. T. Studies of microscopic nonequilibrium stochastic dynamics
in optical tweezers. 2024. 128p. Thesis (Doctor in Science) - Instituto de Física de
São Carlos, Universidade de São Paulo, São Carlos, 2024.

This thesis addresses the development of studies on stochastic thermodynamics using op-
tical tweezers, ranging from classical to quantum regimes. Initially, the application of out-
of-equilibrium processes is explored with Brownian particles, and their thermodynamic
quantities are computed through trajectories obtained from an ensemble of realizations.
Microscopic thermodynamic laws and fluctuation theorems, such as Jarzynski’s equality
and Crooks’s relation, are checked by implementing compression and expansion protocols
via beam intensity control. The results show good agreement with theoretical expecta-
tions and our experimental system’s robustness. Subsequently, experimental verification
of optimal protocols (minimizing the average dissipated work) for trap compression and
simulations for moving potentials are demonstrated. The experiments revealed the best
energetic efficiency of optimal processes, i.e. they presented lower average work than linear
(suboptimal) ones, which is consistent with the analytical solution. Towards efficient pro-
tocols, a feedback system was implemented for converting information to energy inspired
by Maxwell’s demon idea. Despite experimental challenges, feedback protocols returned
lower average work values than those with no feedback, and efficiency can be explored by
altering the demon’s criteria. Finally, initial results are provided aiming at explorations
of stochastic thermodynamics at the classical-quantum interface through investigation of
trapped optically active particles (formed by quantum dots). The analysis of the particle
recoil revealed that Langevin dynamics must be extended to describe our system precisely.

Keywords: Stochastic thermodynamics. Optical tweezers. Optimal protocols. Feedback
optical traps. Classical-quantum interface.





RESUMO

MARTINS, T. T. Estudos da dinâmica estocástica microscópica fora do
equilíbrio em pinças ópticas. 2024. 128p. Tese (Doutorado em Ciências) - Instituto
de Física de São Carlos, Universidade de São Paulo, São Carlos, 2024.

Esta tese aborda o desenvolvimento de estudos sobre termodinâmica estocástica usando
pinças ópticas, abrangendo desde regimes clássicos até quânticos. Inicialmente, a aplicação
de processos fora do equilíbrio é explorada com partículas brownianas, e suas quantidades
termodinâmicas são computadas através de trajetórias obtidas a partir de um conjunto de
realizações. Leis termodinâmicas microscópicas e teoremas de flutuação, como a igualdade
de Jarzynski e a relação de Crooks, são verificados através da implementação de protoco-
los de compressão e expansão via controle de intensidade do feixe. Os resultados mostram
boa concordância com as expectativas teóricas e a robustez do nosso sistema experimen-
tal. Subsequentemente, é demonstrada a verificação experimental de protocolos ótimos
(minimizando o trabalho dissipado médio) para compressão de armadilha e simulações
para potenciais móveis. Os experimentos revelaram a melhor eficiência energética de pro-
cessos ótimos, ou seja, apresentaram trabalho médio inferior ao dos lineares (subótimos),
o que é consistente com a solução analítica. Em direção a protocolos eficientes, um sistema
de feedback foi implementado para converter informação em energia, inspirado na ideia
do demônio de Maxwell. Apesar dos desafios experimentais, os protocolos com feedback
retornaram valores de trabalho médio inferiores aos sem feedback, e a eficiência pode ser
explorada alterando os critérios do demônio. Finalmente, são fornecidos resultados iniciais
visando explorações da termodinâmica estocástica na interface clássico-quântico através
da investigação de partículas opticamente ativas presas (formadas por quantum dots). A
análise do recuo das partículas revelou que a dinâmica de Langevin deve ser estendida
para descrever nosso sistema com precisão.

Palavras-chave: Termodinâmica estocástica. Pinças ópticas. Protocolos ótimos. Armadil-
has ópticas de feedback. Interface clássico-quântica.
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1 INTRODUCTION

Thermodynamics is the scientific discipline that studies work, heat, and temper-
ature, establishing fundamental laws that rule all processes involving the exchange of
different forms of energy (1–3). Its extensive study has made contributions that range
from the development of macroscopic thermal machines, assisting the advent of the In-
dustrial Revolution, to the understanding of natural and artificial microscopic systems,
hence, the emergence of innovative technologies.

Nevertheless, many conceptual questions regarding smaller scales remain open. In
this regime, fluctuations of thermodynamic quantities become non-negligible and should
be taken into account, thus requiring the implementation of a statistical approach (4). In
this scenario, the so-called stochastic thermodynamics has emerged as the framework that
studies the thermodynamic behavior of microscopic systems towards answering several of
those issues (5–7).

Colloidal physics combined with optical tweezer technology enables the demon-
stration of numerous stochastic thermodynamics and statistical physics results (8–9).
Benefiting from its versatility, we have built an optical tweezer system to perform out-of-
equilibrium tasks on the mesoscopic scale in the classical regime and expand our investi-
gations to the classical-quantum interface for assessing the validity of classical stochastic
thermodynamics in this limit.

This thesis is structured as follows:

• Chapter 2 discusses general aspects of thermodynamics and stochastic thermody-
namics, providing a big picture in which this thesis is inserted. Specifically, the
focus is on the thermodynamic description of the system under study, namely, a
Brownian particle trapped in a harmonic potential. Understanding the dynamics of
such a system and how to extract thermodynamic quantities from its trajectories
are crucial for our subsequent analyses.

• Chapter 3 delves into our experimental apparatuses, detailing how to control the
parameters of the trap and acquire data. Essential calibrations for the characteri-
zation of the optical potential and tracking acquisition device are discussed, laying
the groundwork for our investigations into stochastic thermodynamics.

• Chapter 4 introduces compression and expansion finite-time protocols and their ex-
perimental implementation. The protocols are studied to validate our experimental
setup’s robustness by testing thermodynamic laws and fluctuation theorems, such
as Jarzynski’s equality and Crooks’s theorem.
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• Chapter 5 describes experiments exploring optimal control. First, it presents analyt-
ical solutions for minimizing mean work injected into the system for moving traps
and compressing protocols. Afterwards, numerical simulations of the first case and
experimental findings of the second one are discussed, comparing optimal curves
with linear (suboptimal) ones and verifying their consistency with Jarzynski equal-
ity.

• Chapter 6 focuses on the implementation of feedback control. Inspired by Maxwell’s
demon idea, the way information translates into generalized Jarzynski equality is
discussed and experimental results from protocols with and without feedback are
presented.

• Chapter 7 explores the classical-quantum interface by trapping optically active par-
ticles formed by quantum dots. It also outlines necessary experimental modifications
and theoretical expectations regarding optical effects present in the system. Then, it
is discussed the initial experimental findings related to the coupling between particle
recoil and expected quantum effects.

• Finally, Chapter 8 reflects on the challenges encountered and the significant results
achieved throughout this thesis while also proposing avenues for future research.
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2 CONTEXTUALIZATION

This chapter discusses general aspects of thermodynamics and stochastic thermo-
dynamics that are important for contextualizing the present research and provides the
thermodynamic description of the target system, i.e., a Brownian particle trapped in a
harmonic potential.

This chapter offers a comprehensive overview of the key principles of thermody-
namics and stochastic thermodynamics, which are crucial for understanding the context
of the present research. It delves into the thermodynamic behavior of the specific sys-
tem under study, namely a Brownian particle confined within a harmonic potential, and
provides a detailed theoretical framework for analyzing its dynamics.

2.1 Thermodynamics

Thermodynamics emerged in the 17th century as a phenomenological and empirical
field of study for describing and improving mechanical heat engines. Over the years, the
area has gained ground and evolved into one of the most successful and robust physical
theories in history (10).

Chronologically, the definitions start with the traditional macroscopic thermody-
namics (2, 11), which describes large systems whose internal structure can be neglected.
Here, the description is based on measurable macroscopic variables such as pressure (P),
volume (V), and temperature (T) and the system’s states are always in equilibrium or
near equilibrium, i.e., with fixed and well-defined thermodynamic quantities.

Once the state of equilibrium has been defined, the system can be taken from one
coordinate in the phase space to another in a near-equilibrium thermodynamic process.
Despite the change in the state perturbing the configuration, if the process is quasi-
statically performed, the system can be considered weakly disturbed by the infinitesimal
changes and remains in equilibrium. Such transformations and possible interactions of
the thermodynamic system with other objects and their surroundings are described and
constrained by the so-called Laws of Thermodynamics.

Since systems at different temperatures eventually reach thermal equilibrium, the
zeroth law states if two systems are individually in thermal equilibrium with a third, they
are all in thermal equilibrium. This first introductory statement also brings up the idea
of energy exchange between systems, and the First Law of Thermodynamics ensures the
conservation of that quantity.

For a more comprehensive understanding of the First Law, let us define the internal
energy E of the system, which is the energy contained in it and depends on its macroscopic
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variables. When the system changes from a state A to a state B, the variation of the state
function ∆E = EB − EA depends only on initial and final conditions. Therefore, for a
cyclic process, ∆E is zero and if the system is isolated, i.e., it does not interact with other
objects, the internal energy is kept constant.

The energy exchanges can be distinguished into two types, namely heat (Q) and
work (W ). The first one results from the system’s internal configuration change when two
bodies with different temperatures are in thermal contact and the second originates from
a disturbance applied when the thermodynamic coordinates are changed. In other words,
the complete relation for infinitesimal changes in energy dE is given by

dE = δQ + δW, (2.1)

where δ represents inexact differentials, since those variables are not state functions, i.e.,
they depend on the system’s trajectory. Therefore, a change in the system’s state through
two possible paths will result in different values for work and heat; however, the variation
in the internal energy will be the same. Such a relationship between infinitesimal work
(δW ) and heat (δQ) is the basis of the First Law of Thermodynamics.

Despite the possibility of transforming those two quantities into each other, the
Second Law of Thermodynamics states a conversion limit, basically restricting the amount
of heat that can be effectively converted into work and establishing the concepts of entropy
and irreversibility.

Clausius theorem (12) for cyclic and reversible (quasi-static) processes states,
∮ δQ

T
= 0, (2.2)

where T is the bath temperature. For Eq. 2.2 to be valid, the value δQ/T must be a state
function, where its integral does not depend on the path. Therefore, the quantity

dS ≡ δQ

T
(2.3)

is defined here as entropy. For a change from state A to state B, the variation in entropy
is given by (2)

∆S = SB − SA =
∫ B

A

δQ

T
. (2.4)

The sum of the entropy of the system ∆Ssystem and its surroundings ∆Sreservoir for a
given process is identified as the entropy of the universe, such that ∆Suniverse = ∑∆S =
∆Ssystem + ∆Sreservoir = 0.

However, the consideration of irreversible processes leads to the following general
inequalities

∆Ssystem ≥
∫ B

A

δQ

T
and ∆Suniverse ≥ 0, (2.5)
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i.e., the universe’s entropy never decreases – it either increases or remains fixed. This
quantity is closely related to the concept of the arrow of time, since all macroscopic
processes occurring in nature show a positive entropy production.

Given the Helmholtz free energy defined as F = U − TS for isothermal processes,
the second law can be expressed as

δW ≥ dF. (2.6)

That inequality states the minimum work performed - or maximum work received - is
lower bounded by the difference between the free energies of final and initial equilibrium
states.

Finally, the Third Law of Thermodynamics mathematically relates the entropy
value with temperature – as temperature decreases, reaching absolute zero, entropy con-
verges to a constant value even for different macroscopic quantities.

2.2 Stochastic Thermodynamics

Although macroscopic thermodynamics provides a robust description of nature, in-
vestigating the microscopic scale’s behavior in physical systems has been a natural path.
The development of statistical mechanics has provided a stronger basis for the thermody-
namic theory, and the proposal of the linear response regime has enabled the modelling
of processes slightly out of thermodynamic equilibrium. In this scenario, stochastic ther-
modynamics has emerged and progressed to studies of more general microscopic systems
and finite-time protocols.

On a mesoscopic scale, the energy exchanges are of the order of kBT , where kB is
the Boltzmann constant and T is the system’s absolute temperature. In this regime, the
thermodynamic quantities exhibit an inherent stochasticity that plays an important role
in the resulting dynamics.

Towards clarifying the source of those fluctuations, let us consider a box containing
an ideal monoatomic gas consisting of N particles in thermal contact with a bath of
temperature T . According to the equipartition theorem, the average energy of the gas is
given by ⟨U⟩ = 3NkBT/2∗. Moreover, the ratio between its average energy and variance
σ2

U is inversely proportional to the number of particles, i.e., ⟨U⟩ /σ2
U ∝ 1/N . Since N

typically reaches magnitudes of 1023 in macroscopic systems, whereas the average energy
is significantly large, the ratio tends towards zero. However, if N decreases considerably,
the energy distribution starts to widen for a set of systems, and such fluctuations must
be considered in thermodynamic analyses.

∗ In this thesis, ⟨.⟩ stands for the ensemble average.
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Therefore, for every single trajectory in the phase space for an ensemble of identical
systems (or a unique system performing a set of equal processes), the resulting work, heat,
and entropy values must be treated as stochastic variables. Fluctuation Theorems have
emerged in such a scenario, proposing mathematical relations between the probability
distributions of those quantities.

As an example, let us consider a system in thermal equilibrium at temperature T .
Applying a classical control parameter λ that takes the particle from the prepared state
equivalent to λi to the final one λf , work is given by (13)

W =
∫ λf

λi

∂H(λ, x)
∂λ

dλ, (2.7)

considering H(λ) the system’s parameterized Hamiltonian. The heat and internal energy
difference can also be defined as

Q =
∫ xf

xi

∂H(λ, x)
∂x

dx, (2.8)

∆E = H(λf , xf ) − H(λi, xi). (2.9)

From the work values for an ensemble of trajectories, the so-called Jarzynski equal-
ity (14), which is an important Fluctuation Theorem, states

e−∆F/kBT = ⟨e−W/kBT ⟩, (2.10)

where ∆F is the Helmholtz free energy difference between initial (λi) and final (λf )
equilibrium states. This equilibrium quantity is given by

∆F = Ff − Fi = −kBT (log Zf − log Zi), (2.11)

with Zi and Zf equal to initial and final partition functions.

Interestingly, the theorem relates a thermodynamic quantity that depends on the
particle’s trajectory in the phase space on the right side to a state function that depends
only on initial and final states on the left side. Such equality enables estimating the free
energy difference, an equilibrium property, from nonequilibrium measurements.

Using Jensen’s inequality (15), ⟨ex⟩ ≥ e⟨x⟩, one has

⟨W ⟩ ≥ ∆F, (2.12)

which is a generalization of Clausius inequality that considers work a stochastic variable.
Although the average value for work always obeys the Second Law of Thermodynamics,
individual trajectories can provide work values smaller than the free energy difference.
It is important to mention that when the system’s size increases, the work distributions
approximate a delta function, thus returning to the classical macroscopic behavior.
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Crooks proposed a relationship between forward and reverse protocols through
their work probability distributions. Considering probability PF for a protocol λi → λf

and PR for λf → λi, this second Fluctuation Theorem is given by (16):

PF (W )
PR(−W ) = e(W −∆F )/kBT . (2.13)

According to the theorem, the probability of observing work W in the forward process is
more likely than observing −W in the reverse one. However, if the process is performed
quasi-statically, work equals the free energy difference, and the probabilities are the same.

It is also natural that Jarzynski equality derives from Eq. 2.13:∫
dWPR(−W )e−W/kBT = e−∆F/kBT

∫
dWPF (W ) ⇒ e−∆F/kBT = ⟨e−W/kBT ⟩. (2.14)

Such a wide range of theoretical results and the constant technological advances,
which have encouraged studies of increasingly smaller systems, have led to the experi-
mental realization of several of the aforementioned proposals and a growing interest in
the area of stochastic thermodynamics (6,13,17–19). Using several types of platforms, the
first experimental realizations were made in classical and quantum systems of Maxwell’s
Demon (20–21), Szilard’s engine (22–23), Landauer’s Principle verification (24–26), and
tests of Fluctuation Theorems such as Jarzynski (27–30) and Crooks (31). On the other
hand, many questions are still open, especially regarding a regime of structures with
greater complexity, such as those of several biological systems (32–37), or when quan-
tum properties become relevant and should be considered in the field coined quantum
thermodynamics (38–40).

2.3 Thermodynamics of a trapped Brownian particle

After this brief contextualization of the big scenario in which this research is
immersed, this section addresses the thermodynamics of the specific system of interest,
consisting of a Brownian particle confined in an approximately harmonic potential.

2.3.1 The Langevin equation

A particle with mass mP immersed in a liquid at absolute temperature T under-
goes continuous random motion due to collisions with the fluid molecules, a phenomenon
known as Brownian motion (41). The one-dimensional dynamics of a particle in thermal
equilibrium with the fluid obeys the Langevin equation (42):

mP ẍ = −γẋ + Fth, (2.15)

where Fth is a Gaussian white noise present in the system due to its contact with the
thermal reservoir and γ = 6πηR is the particle friction coefficient, where η is the medium



30

viscosity and R is the particle radius. The thermal random noise has the following proper-
ties: ⟨Fth(t)⟩ = 0 and ⟨Fth(t)Fth(t′)⟩ = 2γkBTδ(t− t′), where δ is the Dirac delta function.

For a particle trapped in a harmonic potential, U(x) = κx2/2, with a force con-
stant, κ, Eq. 2.15 becomes:

mP ẍ = −γẋ − κx + Fth. (2.16)

Considering measurement interval times longer than the characteristic time τC = mP /γ,
the inertial term can be dropped, thus resulting in the overdamped Langevin Equation:

γẋ = −dU

dx
+ Fth = −κx + Fth. (2.17)

Although Eq. 2.17 is enough to describe small particles typically trapped in optical
tweezers, the modified Langevin Equation is considered in this thesis (43):

mpẍ(t) = −κx(t) −
∫ ∞

−∞
dt′γ(t − t′)ẋ(t′) + Fth(t), (2.18)

where −
∫∞

−∞ dt′γ(t − t′)ẋ(t′) is the retarded friction force that can take into account
hydrodynamic interaction. This description is required so that the dynamics of bigger
particles like the ones presented in Chapter 7 can be described.

Besides the particle dynamics in the time domain, the particle position must be
computed in the frequency domain, x̃(ω). Therefore, a Fourier transform of Langevin
Equation is performed (Eq. 2.18)† (43):

−ω2mpx̃(ω) = −κx̃(ω) − iωγ̃(ω)x̃(ω) + F̃th(ω)
x̃(ω) = χ̃(ω)F̃th(ω)

(2.19)

with susceptibility given by

χ̃(ω) = 1
κ − ω2mp + iωγ̃(ω) . (2.20)

A modification of Stoke’s force is used so that hydrodynamic effects are considered
and the correction in the frequency-dependent friction coefficient is given by (43):

γ̃(ω) = 6πηR(1 +
√

iωτf ) + iωmf/2. (2.21)

The vortex diffusion time, τf = R2ρf/η, considers a sphere of radius R that dislocates
a fluid with density ρf . The last term can be interpreted as effectively increasing the
particle’s mass by half the displaced fluid’s mass, mf = 4πR3ρf/3.

† Here, notation p̃(ω) =
∫

dteiωtp(t) is used.
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2.3.2 Fokker-Planck equation

Another way to describe the system dynamics is by considering the probability
density function P (x, t), which quantifies the probability of observing a particle in a
position x at an instant t. For conditions equivalent to Eq. 2.17, the Fokker-Plank equation
is given by

∂P (x, t)
∂t

= 1
γ

∂

∂x

[
dU(x)

dx
P (x, t) + kBT

∂P (x, t)
∂x

]
. (2.22)

A complete description of Eq. 2.22 can be found in (42).

2.3.3 Energetics of stochastic trajectories

From Eq. 2.17, the trajectory for a small dx is given by

− (−γẋ + Fth(t)) dx = ∂U(x)
∂x

dx. (2.23)

According to Sekimoto (44), Eq. 2.23 can be related to heat dQ = − (−γẋ + Fth(t)) dx,
resulting from the force exerted by the bath, and the internal energy difference of the
system (∂U(x)/∂x)dx.

If the bead is exposed to a time-dependent potential due to the application of an
external control parameter λ(t), as discussed previously, then

dQ = ∂U(x)
∂x

dx. (2.24)

Since dU = (∂U/∂x)dx + (∂U/∂λ)dλ, Eq. 2.24 becomes

dQ + dU = ∂U

∂λ
dλ. (2.25)

Therefore, by changing control parameter λ(t), the resulting stochastic work re-
ceived by the system along a trajectory x(t) is

W =
∫ t

0
dt′λ̇

∂U(x, λ)
∂λ

. (2.26)

and the stochastic heat dissipated by the system is

Q =
∫ t

0
dt′ [−(−γẋ + Fth(t))ẋ] . (2.27)

Alternatively, the heat can also be calculated by Eq. 2.8.

The present description enables the computation of the complete energetics of a
trapped Brownian particle exposed to a dynamic control parameter, which, for harmonic
potentials, can be the equilibrium position or the stiffness of the trap, for example. For
that, only the precise potential felt by the particle and its trajectories are necessary.
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3 OPTICAL TWEEZERS

As the name suggests, optical tweezers consist of an optical device that uses a light
source, typically a highly focused laser, capable of trapping and manipulating particles
on a micro or nanometric scale. Due to its numerous applications in biology (45–48),
chemistry (49–50), nanotechnology (51), and physics (52–55), its creator, Arthur Ashkin,
was laureated with the 2018 Nobel Prize nearly 50 years after having developed the first
prototypes (56–58).

Although the basic experimental setup can be simple, i.e., based on a laser source
coupled to a high numeral aperture lens, the theory behind the process can be very
complex depending on the target particle. Whereas the most general theory explains the
trapping force through a Mie scattering process (59), more humble approaches focus on
two size regimes, namely, geometric optics for particles bigger than the light wavelength
(8,56), and Rayleigh limit for smaller ones (60).

A complete description of the phenomenon can be found in (8); however, for larger
particles, it can be briefly explained with geometric optics considerations. Therefore, let
us consider a ray of light scattering in a particle with a refractive index, np, different from
the medium around it, nm. If the particle does not have absorption effects, the ray will
only reflect and refract (several times) on the particle surface, changing its trajectory in
space. Since the photons carry momentum, a force must act on the particle to ensure the
total conservation of the quantity, as schematically shown in Fig. 1.

For a set of light rays, reflection causes a push in the bead in the direction of the
beam’s propagation, known as radiation pressure, which is the base of the functioning of
the first traps with counterpropagating beams proposed by Ashkin in (57) and still in
use (61–62). However, refraction generates an attracting or repealing force to the region
with a bigger gradient of intensity, called gradient force. Regarding a focalized Gaussian
beam, the target region is the focus position and if np > nm, the force is attractive. For
small particle displacements, typical in the Brownian regime, one has an approximately
harmonical potential, like a mass-spring system, whose trap stiffness is related to particle
confinement. Besides the optical forces, since the bead has a mass, it will be affected by
gravity and the balance of the three forces will result in a 3D trapping of the bead around
an equilibrium position close to the laser focus (58).

Apart from simple trapping, a system that dynamically manipulates the particle
over time and extracts bead information is required for studies of stochastic thermody-
namics. Therefore, this chapter describes our experimental apparatuses, focusing on the
implementation of modulation and tracking systems, and presents the standard calibra-
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Figure 1 – Basic scheme of the beam’s trajectory (black lines) during reflection and re-
fraction and resulting forces, i.e., radiation pressure and trapping force, respec-
tively. Gravitational force, generally negligible, is also represented. The thicker
and thinner arrows indicate the position-dependent intensity of the Gaussian
beam.

Source: By the author.

tion techniques (8) and the final calibration curves fundamental for characterizing our
systems.

3.1 Experimental apparatuses

This research was developed with the collaboration of two laboratories: one at
Instituto de Física de São Carlos at the University of São Paulo (Setup IFSC-USP) and
the other at Laboratoire de Physique from École Normale Supérieure de Lyon (Setup
ENS-Lyon). The chapter presents both experimental systems and their particularities.
Although data were collected partially in the two setups, the same sample was used to
characterize the system and explore stochastic thermodynamics in Chapters 4, 5 and 6.
It consists of microsized spheres of silica of 2 µm diameter and 2 g/cm3 density immersed
in water. The concentration of the particle is very low for avoiding collisions so that only
one particle can be found in an area of approximately hundreds of squared micrometres.
The last Chapter 7 details a different sample that was studied.

3.1.1 Setup IFSC-USP

The Setup IFSC-USP is a homemade system built during the author´s Master’s
research (63), which has been improved over the last few years. Starting with the trapping
path, a Mephisto 2000NE 1064 nm infrared laser was collimated and size-reduced with
a two-lens telescope to approximately 1 mm diameter for increasing the efficiency of the
acoustic-optic modulator (AOM) that follows it. An AOM IntraAction ATM-901A2 fed
by a homemade voltage-controlled oscillator (VCO) circuit that generates and amplifies
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the input radiofrequency (RF) signal was used. The first order of diffraction is guided to
an Olympus UPlanFL (NA = 1.3) 100x oil immersion objective focusing on the sample.
A telescope is then placed between them to magnify and collimate the beam and fill the
objective entrance (6 mm diameter) benefitting from its high numerical aperture. Part
of the light is deviated and focalized in a homemade photodetector (PD) to monitor the
beam intensity and a high-pass filter is placed before it to avoid undesired light. Since
the distance between the PD and the AOM is sufficiently high, only the first order is
monitored.

After the exit of the objective, a sample holder coupled to a Thorlabs NanoMax
3003D nanopositioning stage controls the position of the sample, which fills a "U-type
cell" shown (inset) in Fig. 2. The cell consists of a slide sealed with a coverslip that uses a
Gene Frame to control the thickness of the chamber. The slide is glued to a glass cylinder
to decrease the height of the central region where the particle is trapped. This avoids
collisions of the trapped particle with other beads and enables long measurements with
no interruptions.

A Firefly MV USB CCD camera (bright field imaging) and a white LED are
used for the visualization of the particles of interest. Since high-speed particle tracking
is required, a Thorlabs PDQ80A quadrant photodiode detector (QPD) was added. A low
power 532 nm probe laser aligned in the optical path with the aid of a dichroic mirror
illuminates the particle in the acquisition system and a telescope collimates and decreases
the original beam to approximately 1 mm for minimising possible optical forces. The green
light passes through the objective and the outgoing light is collected by an Olympus Plan
N (NA = 0.25) 10x condenser and aligned in the centre of the QPD. A lens placed between
the condenser and the QPD controls the beam size and a filter blocks the trapping laser
light, allowing only the probe laser to reach the detection device.

A high-speed multi-function data acquisition (DAQ) board from National Instru-
ments, PCI6259, performs both AOM control and QPD and PD reading.

3.1.2 Setup ENS-Lyon

The Setup ENS-Lyon scheme, shown in Fig. 3, is similar to the previous one and
its subtle differences are described in what follows.

The FORTE 02163 1064-SLM (supply 93580 LD 3000 Laser Quantum) trap-
ping laser also has a 1064 nm wavelength; however, it passes through two perpendicular
acousto-optic deflectors (AODs). It is used here the Optoelectronic DTSXY model, which
is fed by two RF signals generated by the function generator Tektronix AFG3102. Its
external channels enable the control of the RF signal’s amplitude and frequency, which,
before entering the AODs, are amplified in a homemade circuit. The objective is a 63×
immersion Leica Germany HCX PL APO (NA = 1.32) and a Mikrotron MC 1310 cam-
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Figure 2 – Simplified description of the Setup IFSC-USP. The trapping system comprises
a 1064 nm infrared laser controlled by an AOM. A telescope decreases the beam
waist to increase the AOM efficiency, and another enlarges it again to fill the
objective entrance. A 532 nm probing laser is aligned with the trapping laser in
the detection system and a condenser collects the green scattered light, directs
it through a lens to reduce its size, and then sends it to the QPD. Additionally,
a white LED and a CCD camera are used for visualizations of the particle.
Mirrors and dichroic filters guide the beams. Inset is shown the type of cell
used in the experiment in order to acquire long measurements.

Source: By the author.

era and a homemade QPD are used for tracking system. For the QPD functioning, the
Thorlabs LP785 probe laser with 785 nm wavelength and the condenser Leica 521500
(NA = 0.53) are aligned in the optical path. A high-speed multi-function data acquisi-
tion (DAQ) board, PXI 4472, was employed to read and control the system. No extra
telescopes were necessary since lenses coupled in the laser optical fibre outputs collimate
and control the beam sizes. The dichroic mirror responsible for joining both lasers is a
low-pass filter, and an interferometric filter avoids trapping light from reaching the QPD.
A high-pass filter blocks the detection beam in the PD entrance.

The following sections detail the functioning and calibration of the modulation
and tracking systems. Since both experimental configurations are similar, the calibration
curves for Setup ENS-Lyon are shown to prevent redundancy.
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Figure 3 – Simplified description of the Setup ENS-Lyon. The trapping system comprises
a 1064 nm infrared laser connected to a set of two perpendicular AODs and a
telescope enlarges the beam waist and fills the objective entrance. A 785 nm
probing laser is aligned with the trapping laser in the detection system and a
condenser collects the red scattered light, directs it through a lens to reduce
its size, and then sends it to the QPD. A white LED and a CCD camera are
used for the visualization of the particle. Mirrors and dichroic filters guide the
beams.

Source: By the author.

3.1.3 Modulation system

As addressed in the previous section, an AOM is used in the Setup IFSC-USP,
and a set of two perpendicular AODs is employed in the Setup ENS-Lyon for modulating
the trapping laser beam. In such modulators, an RF signal feeds a piezoelectric actuator
coupled to a crystal, which induces the propagation of acoustic waves through the material
and the establishment of standing waves. When the laser light passes perpendicularly
through this device, it diffracts (64).

By controlling the modulator’s alignment in the optical path, one lets the biggest
intensity in the first order of diffraction (m = ±1) since this beam has the biggest energetic
efficiency and can be modulated by controlling the RF driver. Basically, its intensity can be
decreased through the control of the power output of the signal and its angular position can
be slightly deviated through the modulation of its frequency. Whereas AOD is designed
for a precise spatial control of the output beam, AOM focuses on a precise control of
the beam intensity. However, an AOM and an AOD are intrinsically the same, depending
only on how the RF driver is manipulated. In both experimental setups, the amplitude
and frequency of RF can be controlled and the response is approximately the same. The
main difference is that two AODs enable the control of the beam’s angular position in two
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directions, namely, x and y, whereas a single AOM has only one modulation direction, x.

To characterize the modulators’ response to the intensity control, a voltage is
applied in the amplitude channel of the RF, which feeds one of the AODs, and the PD
output is simultaneously acquired. Here, 10 ramps from −1 V to +1 V were applied in
the input for avoiding noisy curves∗. Fig. 4 was obtained from the average of those curves
and the data were normalized, i.e., the values were divided by their maximum. The beam
could (almost) continuously decrease its intensity until it had been completely turned off
in a sinusoidal curve. Therefore, the corresponding laser power (proportional to the PD
voltage) for a given input in the amplitude control of the RF can be estimated from a fit
without further calibrations.

Figure 4 – Normalized power of the infrared laser versus voltage applied on the amplitude
input control of RF driver. A ramp from −1 V to +1 V was applied in the
amplitude channel of the RF driver. Data obtained by Setup ENS-Lyon.

Source: By the author.

Since the angular deviation of the first-order beam changes the equilibrium position
of the trap, its response in the objective’s focal plane can be characterized by tracking a
trapped bead while an input signal is applied in the frequency of the RF driver that feeds
one of the AODs. A calibrated camera enables estimating the displacement of the particle
in the corresponding direction, as shown in Fig. 5†. Here, a triangular signal from −1 V to
+1 V, corresponding to −2 MHz to +2 MHz, instead of a ramp, was applied for avoiding
discontinuities in the trajectory. The signal was applied in low frequency, 0.1 Hz so that
the fluid viscosity would not affect the displacement. A linear regression was performed
from the resulting curve of half period of the triangular signal (Fig. 5), and averaging the
results for 10 trajectories, one has a calibration factor equal to 971.2 ± 0.4 nm/MHz.
∗ The modulating zone for the Setup IFSC-USP ranges from −2 V to −1 V.
† To calibrate the camera, we used a glass plate with a grating of 200 lines per millimetre

(200 lines/mm). Capturing an image of the central portion of the glass plate and analyzing
the distance between the lines in the image, we determined the calibration factor to be
109 nm/pixel.
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Figure 5 – Position of the trapped bead during the application of an input voltage from
−1 V to +1 V in the frequency of the RF driver that is equivalent to a deviation
from −2 MHz to +2 MHz. The frequency of modulation is 0.1 Hz. Since the
camera calibration is 109 nm/pixel, the calibration of the modulated laser
displacement is 971.2 ± 0.4 nm/MHz for 10 trajectories. A 2 µm trapped silica
was used. Data obtained by Setup ENS-Lyon.

Source: By the author.

3.1.4 Tracking system

Although a CCD camera is essential for viewing the sample and tracking the par-
ticle, its acquisition rate - in the range of hundreds of frames per second - is considerably
slow for stochastic thermodynamics experiments. Therefore, a QPD was implemented to
increase both time and spatial resolutions. This device acquires the particle’s position up
to 150 kHz‡.

As discussed previously, a second (probe) laser is aligned collinearly with the trap-
ping beam so that the QPD device, which is basically a set of four photodetectors, can
be used. Once the particle passes through the probe laser, it creates an interference pat-
tern dependent on its relative position to the spot, as shown in Fig. 6 (left). Therefore,
looking at the output signals from the four quadrants of the QPD - where Sul is the
up-left, Sur the up-right, Sdl the down-left, and Sdr the down-right - one can obtain the
following signals: xQP D = (Sul + Sdl) − (Sur + Sdr), yQP D = (Sul + Sur) − (Sdl + Sdr), and
SUMQP D = Sul + Sdl + Sur + Sdr. Whereas the Setup ENS-Lyon has four channel outputs
equivalent to each quadrant, the Setup IFSC-USP has three, which correspond to xQP D,
yQP D, and SUMQP D.

As addressed in the previous section, known displacements can be applied in the
trapping beam’s position for the characterization of the QPD response. However, here, we
look to the QPD output signals instead of tracking the particle with the camera. Again, a
‡ Due to DAQ board band limitation, data are usually acquired at 100 kHz.
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Figure 6 – Scheme of the QPD functioning (left) and QPD signal versus displacement of
the trapping beam position (right). An input voltage from −1 V to +1 V was
applied in the frequency of the RF driver, which is equivalent to a deviation
from −2 MHz to +2 MHz. The calibration result from the fit, in green, is
3.698 ± 0.007 V/µm for 10 trajectories. A 2 µm trapped silica was used. Data
obtained with Setup ENS-Lyon.

Source: By the author.

triangular signal is applied in the frequency of the RF driver with 0.1 Hz, corresponding
to −2 MHz to +2 MHz, and the QPD signals are simultaneously acquired at 100 kHz.
The modulation of the RF that feeds the AOD equivalent to the x direction leads to the
curve depicted in Fig 6 (right), which shows only one ramp (half of the triangular signal)
corresponding to a 3.9 µm beam displacement.

Due to the existence of an offset in the QPD output in function of electronics and a
possible misalignment between the trapping and the detection laser, for each file, average
value ⟨xQDP ⟩ is substracted for the original signal. According to Fig 6 (right), xQDP

shows a response approximately linear for displacements in the order of particle radius
(≈ 1 µm). Therefore, for small displacements around the probing laser spot, the position
of the particle in x corresponds to signal xQDP by a calibration factor§. Similar results
can be obtained for y direction and, depending on the experimental configuration, the
perpendicular position, z, can be acquired from the sum of the four quadrants, SUMQDP .
However, this is not the focus of this research.

Among the various techniques for the obtaining of the amplification factor, which
converts signal in volts to displacement in meters (8), it can be directly calculated from
linear regression in the curve shown in Fig. 6 (right). For the presented curve, the sensi-
tivity is equivalent to 3.698 ± 0.007 V/µm. However, this method can be sensible to the

§ Since the probe laser has good power stability over time, xQDP is directly used for the
obtaining of the particle’s position. However, the signal can be normalized by dividing it
by sum SUMQDP . Such normalization may add some noise to the data due to the particle
movement in z and will not be used.
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region chosen to be fitted. The following sections explore other calibration techniques for
obtaining the amplification factor and the trap stiffness of the optical potential.

3.2 Calibration techniques

Simple optical tweezers trap particles close to the laser’s focus in approximately
harmonic potentials and calculating the theoretical effective force requires the charac-
teristics of the experimental apparatus, e.g., the shape and power of the trapping laser,
objective settings, size and material of the sample, and medium where the particle is
immersed. However, the optical potential curve can be estimated directly from the mea-
sured position of a particle trapped in a static optical trap. This section details some of
the standard calibration techniques described in (8).

Although the trapped particle’s response depends on several parameters, one will
focus on characterising the potential felt by the particle by controlling the trapping beam
intensity. A trapped silica microsphere is tracked with the QPD for 30 s at 100 kHz
acquisition rate for different laser powers controlled by the amplitude modulation of the
RF driver. Data were collected at Setup ENS-Lyon and the results are presented in one
direction, x, to avoid redundancy. Similar measurements were performed for Setup IFSC-
USP.

3.2.1 Equipartition theorem of energy

Let us start with one of the simplest methods derived from the equipartition
theorem of energy. Assuming an optical trap has an approximately harmonic potential
with force constant κ, the equipartition theorem states (8),

⟨U(x)⟩ = 1
2κ⟨(x − xeq)2⟩ = 1

2kBT, (3.1)

where xeq is the equilibrium position of the trap, kB is the Boltzmann constant, and T

is temperature. The trap stiffness can be obtained from a time series of positions xj at
different instants j = 1, ..., N¶:

κEQ = kBT
1
N

∑N
l=1(xj − xeq)2 , (3.2)

where xeq = 1
N

∑N
j=1 xj, since the probability distribution is Gaussian. The method does

not require a high acquisition rate to estimate the force constant and can be applied even
¶ Note the sub-index in the experimental result of trap stiffness and amplification factor

corresponds to the results for each method, namely, equipartition theorem (κEQ), potential
analysis (κU ), mean squared displacement (κMSD and SMSD), autocorrelation function (κC

and SC), and power spectrum density analysis (κP SD and SP SD).
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with a simple camera. However, the amplification factor must be previously acquired for
the obtaining of x = xQP D/S from the QPD signal. The result from the least squares fit
of the linear region in Fig. 6 (right) was used.

Although simple, this method is not the most reliable since possible noise can
severely affect the value of ⟨x2⟩ and consequently the calculated trap stiffness. Moreover,
the potential was assumed harmonic. For general cases, the optical potential is estimated
from the probability distributions of the particle’s positions, as discussed in the next
section.

3.2.2 Position histrogram analysis

Under thermal equilibrium conditions, the probability distribution of the bead
follows a Maxwell-Boltzmann distribution, according to

ρ(x) = ρ0 exp
[

− U(x)
kBT

]
, (3.3)

where ρ0 is a normalization factor such that
∫

ρ(x)dx = 1. By solving Eq. 3.3, the potential
U(x) can be determined by

U(x) = −kBT log[ρ(x)] + U0, (3.4)

where U0 is an arbitrary additive constant.

Therefore, the estimation of the effective optical potential by the method requires
the obtaining of the probability distribution from the normalized histogram of positions
of a trapped particle‖, as shown in Fig 7 (left). Since a static trap has an approximately
harmonic potential, the probability distribution is expected to be Gaussian:

ρ(x) = ρ0 exp
[

− κx2/2
kBT

]
, (3.5)

and its width depends on the trap stiffness. The experimental results computed by Eq.
3.4 are shown in Fig 7 (right) for three different laser powers. The force constant, κU , can
be obtained by a quadratic regression

U(x) = κx2

2 . (3.6)

As expected, the particle confinement is bigger at higher intensities, resulting in a larger
trap stiffness.

Since, in principle, the analysis does not assume the potential is harmonic, it is
an interesting procedure to test the hypothesis of the harmonicity of the simple optical
‖ The amplification factor was obtained from the least squares fit of the linear region in Fig.

6 (right).
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Figure 7 – Position histograms from time series data (left) and resulting potentials (right)
corresponding to a 2 µm silica bead trapped with three different force constants
(κ1 > κ2 > κ3), from highest to lowest in blue, orange, and green, respectively.
The fit (solid line) results in κU = 21.54 ± 0.03, 12.69 ± 0.07 and 7.51 ±
0.07 pN/µm for the potential curve. Average curves of 10 acquisitions collected
at 100 kHz for 30 s are presented.

Source: By the author.

tweezers trapping and probe more complex potentials, such as double-wells (65), asym-
metric traps, among others. However, the method is also susceptible to noise and requires
a previous characterization of the QPD response. Other techniques are discussed in the
next section to estimate the trap stiffness and the amplification factor for a full character-
ization of the system. The particle behavior in a smaller time range enables studies of the
autocorrelation function (ACF) and the mean squared displacement (MSD) of a trapped
particle, as described in what follows.

3.2.3 Autocorrelation function and mean squared displacement analysis

The autocorrelation function (ACF) measures the correlations of the particle dis-
placement in different instants, i.e., the time necessary for the particle to "forget" its initial
position. It is given by (8)

C(τ) = ⟨x(t + τ)x(t)⟩ = kBT

κ
e

− |τ |
τexp , (3.7)

where τexp = γexp/κ is the decay time.

With a position time series xQP D,j, measured directly in volts∗∗ with a given sam-
pling frequency fs, the discrete ACF (8) must be used:

Ck = 1
N − k

N−k∑
j−1

xQP D,j+kxQP D,j, (3.8)

where τk = k∆t and ∆t = 1/fs. The ACF curves are shown in Fig. 8 (left) for three differ-
ent laser powers. The least squares fit provides the trap stiffness, κC , and the amplification
∗∗ The QPD signal requires no conversion to meters by previous calibration.
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factor, SC =
√

γ/γexp. Note the amplification factor is obtained from the experimental
value of the decay time.

In contrast, the mean squared displacement (MSD) quantifies the movement of a
particle from its initial position at a time τ given by (8),

MSD(τ) = ⟨
[
x(t + τ) − x(t)

]2
⟩ = 2kBT

κ

(
1 − e

− |τ |
τexp

)
. (3.9)

Discretizing Eq. 3.9 for the position time series also measured directly in volts,

MSDk = 1
N − k

N−k∑
j−1

[
xQP D,j+k − xQP D,j

]2
, (3.10)

leads to the results shown in Fig. 8 (right). The curve shows the transition from linear
growth due to free diffusion behavior for times shorter than the relaxation time to a
plateau due to the trapping force for longer times. Here, the trap stiffness, κMSD, obtained
by least squares, is inversely proportional to the height of the plateau. The amplification
factor SMSD can also be obtained from the exponential time, as described for the ACF
method.

Figure 8 – Autocorrelation (left) and mean squared displacement (right) corresponding to
a 2 µm silica bead trapped with three different force constants (κ1 > κ2 > κ3),
from highest to lowest in blue, orange, and green, respectively. The fit (solid
line) results in κC = 22.6±0.1, 13.08±0.02 and 7.170±0.003 pN/µm and SC =
3.659 ± 0.014, 3.510 ± 0.004 and 3.4656 ± 0.0011 V/µm for the autocorrelation
and κMSD = 22.379 ± 0.003, 13.048 ± 0.002 and 7.1711 ± 0.0014 pN/µm and
SMSD = 3.888±0.002, 3.6123±0.0011 and 3.5001±0.0011 V/µm for the mean
squared displacement. Average curves of 10 acquisitions collected at 100 kHz
for 30 s. Both graphs are rescaled considering the amplification factor obtained
for each curve.

Source: By the author.

Both methods require no previous calibration of the amplification factor. Never-
theless, they are still highly affected by noise present in data since one looks at the time
domain. To contour this situation, one discusses a last method that analyses the position
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after a Fourier transform, the power spectrum density (PSD) analysis (8). Afterwards, we
compare the results from all the different methods presented in this section.

3.2.4 Power spectrum density analysis

The basic procedure of the Power Spectrum Density (PSD) analysis is to convert
the position time series of a trapped particle, xQP D,j, to the frequency domain. Here,
xQP D,j = xQP D(tj), where tj = j∆t being j = 1, ..., N and ∆t = 1/fs, since data are
collected at a given sampling frequency fs for a total time Ts. A discrete Fourier transform
applied in the trajectory yields†† (8)

x̃k = ∆t
N∑

j=1
ei2πfktj xQP D,j, (3.11)

where fk = k/Ts and k = −N/2 + 1, ..., N/2. Then, the PSD, given by PSDk = |x̃k|2/Ts

(8), can be calculated.

Alternatively, PSD can be computed by the function scipy.signal.welch on Python.
As described in (66), Welch’s technique calculates an estimation of the power spectral
density through a process that involves segmenting the data with overlaps, generating
a modified periodogram for each segment, and subsequently averaging those individual
periodograms. The final result is shown in Fig. 9.

The simple theoretical curve for PSD is equivalent to (8):

PSD(f) = Dexp/(2π2)
f 2

c + f
, (3.12)

where Dexp is the experimental diffusion coefficient and fc = κ(2πγ)−1 is the corner
frequency. From the least squares fit, we can obtain the trap stiffness and the amplification
factor,

√
Dexp/D‡‡.

However, data around fc must be selected so that the fit can be performed. The
outgoing results are very sensitive to the chosen window and the expression starts to
be inefficient in characterizing bigger particles such as the ones reported in Chapter 7.
Therefore, a more general model that takes into account the memory effects and the
inertial term is used in this study. Reference (43) provides a complete description of this
model. According to (67), memory effect should be considered for trap calibration at
around 200 kHz sampling frequency and although one works with less time resolution,
this approach was implemented since one needs a very accurate calibration of the potential
felt by the particle.
†† The position in the frequency domain is denoted by x̃k; however, here x̃k ≡ x̃QP D,k. After

the amplification factor has been obtained, the curve is rescaled.
‡‡ Here, D = kBT/γ.
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Considering that the PSD, for ω = 2πf , is given by the fluctuation-dissipation
theorem (43):

PSD(ω) = 2kBT
Im(χ̃(ω))

ω
, (3.13)

where χ̃(ω) is presented in Eq. 2.20 and γ̃(ω) is provided in Eq. 2.21. Therefore,

PSD(ω) = S24kBT
γω

(−mpω2 + κ + γ
√

τf/2ω3/2)2 + (γωω)2
+ B. (3.14)

Here, γω = γ(1+
√

ωτf/2), S is the amplification factor (since the PSD is obtained for the
position signal in volts directly from the QPD), and B is the background that represents
the smallest detectable movement in the system and determines its spatial resolution.
Therefore, the amplification factor, SP SD, and trap stiffness, κP SD, are obtained directly
from the fit. The results are shown in Fig. 9.

Figure 9 – Power spectrum density analysis corresponding to a 2 µm silica bead trapped
for three different force constants (κ1 > κ2 > κ3), from highest to lowest in
blue, orange, and green, respectively. The fit (solid line) results in κP SD =
25.195, 12.589 and 6.710 pN/µm and SP SD = 4.029, 3.709 and 3.560 V/µm.
Average curves of 10 acquisition files collected at 100 kHz for 30 s each. The
length of the Fast Fourier Transform (FFT) is NF F T = 8 105. The graphs are
rescaled considering the amplification factor obtained for each curve.

Source: By the author.

3.2.5 Comparison between calibration techniques

As discussed previously, the intensity of the trapping laser affects the confinement
of the particle and a linear growth of the trap stiffness is expected as the intensity increases
(8). The results for several laser intensities (linearly proportional to PD readings by a
constant) are shown in Fig. 10 (left).

The relationship between the force constant obtained experimentally and the beam
power is approximately linear for the PSD analysis method; however, for other methods, a
deviation is observed as trap stiffness increases. Since the PSD theoretical model analyses
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Figure 10 – Calibration curves for trap stiffness (right) and amplification factor (left)
as a function of PD voltage, which is linearly proportional to the trapping
beam intensity. For trap stiffness curves, one has the equipartition method
in blue, potential analysis in orange, mean squared displacement in green,
autocorrelation function in red and power spectrum density in purple. For
the amplification factor, the mean squared displacement is blue, the auto-
correlation function is orange, and the power spectrum density is green. The
uncertainties are smaller than the dots.

Source: By the author.

the particle’s natural thermal fluctuations in a delimited frequency window and the noise
does not affect it directly, it can provide reliable results explaining the best value R2 for
the fit, which is the closest to one.

No significant noise was observed in the PSD spectrum in the data for the Setup
ENS-Lyon; however, even for noisier systems such as the Setup IFSC-USP, whose PSD is
provided in Appendix B, noise peaks can be easily identified and eliminated if necessary.

In addition to reliably characterizing the force constant, PSD offers less dispersed
points for the amplification coefficient calibration, which clearly depends on the beam
power. Such dependency can occur due to the increase in the radiation pressure when
the power increases; consequently, the particle is pushed up in the direction of the laser’s
propagation. When the z position changes, QPD can become more or less sensitive to the
bead’s movement, thus affecting the amplification factor.

Given such an extensive comparative analysis, the PSD method was used for all
calibrations in this research.
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4 ENERGETICS OF THERMODYNAMIC PROCESSES

As discussed in the previous section, a simple optical tweezer system enables the
trapping and manipulation of microscopic particles, thus being an ideal platform for stud-
ies of stochastic thermodynamics. Although, in general, the optical potential is approxi-
mately harmonic, the modulation of the trapping laser promotes the creation of various
trapping shapes, which range from the basic control of the trap stiffness or equilibrium
position to more complex configurations, such as double-wells (50), optical lattices (68)
among others.

This chapter focuses on a straightforward case of compression of the potential
via laser intensity control. The experimental application of this type of protocol enables
studies of energy exchanges between the particle and the surroundings towards exploring
the First Law of Thermodynamics and Fluctuation Theorems.

Firstly, the model of the protocol and its translation in our experimental apparatus
are introduced, followed by calculations of stochastic thermodynamic quantities, such as
work, heat, and internal energy. The experimental and theoretical expected values for
those quantities are then compared. Finally, the experimental verification of Jarzynski’s
equality and Crooks’s theorem is demonstrated and the conclusions are discussed∗.

4.1 Isothermal compression in optical tweezers

One of the most ubiquitous experiments in thermodynamics textbooks is the illus-
tration of piston compression and expansion (1). The problem involves a vessel containing
an ideal gas with a large number of particles. The container is closed with a movable fric-
tionless piston that slides up and down, as shown in Fig. 11. To decrease the container
volume from equilibrium, work must be injected into the system by pushing the piston
down; conversely, the system generates work during expansion. Therefore, in this model,
our control parameter, which can change the state of the particles in the vessel, is the
position of the piston.

Let us now consider a single particle gas in the container. In this regime, the work
associated with the compression and expansion of the piston will be subject to strong
fluctuations, as discussed in Sec. 2.2. By analogy, a possible way to analyze the problem
is by considering a single particle in a controllable confined potential, which is exactly the
∗ All data presented in what follows correspond to one dimension and were acquired with

Setup ENS-Lyon. The same experiments, with very similar results, were conducted at São
Carlos in two different setups. However, since mechanical noise in the first version and (most
likely) electronic high-frequency noise in the second made the noise figures and uncertainties
slightly higher, the best results are shown.
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Figure 11 – Scheme of a piston with two different volumes and analogy with a particle
trapped in a harmonic potential with two different trap stiffnesses.

Source: By the author.

model of an optical tweezer. On this scale, the bead is subject to thermal fluctuations from
the surroundings and its probability density function can be "compressed" or "expanded"
by changing, for example, the force constant of the trap (see Sec. 3.2). Then, here the
control parameter is λ(t) = κ(t) (see Chapter 3). Although different λ(t) curves can be
explored, this chapter focuses on one of the simplest protocols, the linear one, for testing
the main principles involved in this research.

4.1.1 Linear protocol description

In linear protocols, the particle starts in equilibrium state λ(0) = λi and goes to
λ(τP ) = λf , according to the following equation:

λ(t) = λi + ∆λ

τP

t, (4.1)

where ∆λ = λf −λi is the modulation amplitude and τP is the protocol time. For ∆λ > 0,
one has the compression protocol, and for ∆λ < 0, the expansion one. Since the optical
potential is harmonic, U = λx2/2, the time dependency of work, heat, and internal energy
difference can be written as (see Sec. 2.3.3)

W (t) = 1
2

∫ t

0
dt′ dλ(t′)

dt′ x(t′)2, (4.2)

Q(t) =
∫ t

0
dt′F

dx(t′)
dt′ , withF = −λ(t′)x(t′), (4.3)

∆E(t) = 1
2(λ(t)x(t)2 − λ(0)x(0)2). (4.4)
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Since the particle’s trajectory has a stochastic behavior, a given protocol λ(t) must
be applied several times and the distribution of values obtained for energetics - work, heat
and internal energy - can be computed. The following paragraphs present the theoretical
predictions of free energy difference and average values of energetics for their comparisons
with the experimental results.

For a harmonic potential, the partition function of a given state is given by

Z =
∫ +∞

−∞
dxe−U/kBT

=
∫ +∞

−∞
dxe−(λx2/2)/kBT

=
√

π

λ/2kBT
.

(4.5)

Therefore, the Helmholtz free energy associated with λ is

F = −kBT ln(Z(λ)), (4.6)

and the free energy difference between two equilibrium states, λi and λf , can be written
as

∆F = Ff − Fi = −kBT ln
√√√√ λi

λf

. (4.7)

The free energy difference is the minimum amount of energy necessary to take
the system from one state to the other and is reached in quasistatic processes. However,
to compute the average energy dissipated in a finite-time process, the trajectory of the
particle must be considered. According to (69), the average work for an ensemble of
trajectories of a linear protocol is given by

⟨W ⟩ =
∫ τP

0
dtλ̇⟨∂U(x, λ)

∂λ
⟩ = ∆λ

2τP

∫ τP

0
dt⟨x2⟩. (4.8)

The value of w ≡ ⟨x2⟩ =
∫+∞

−∞ dxP (x, t)x2 can be directly calculated by the Fokker-
Plank equation (Eq. 2.22):

dw

dt
= −2λ(t)

γ
w + 2kBT

γ
. (4.9)

The initial condition can be obtained from the equipartition theorem of energy,
w(0) = ⟨x2(0)⟩ = kBT/λi (Sec. 3.2.1). From the result of Eq. 4.9, which gives the time
evolution of ⟨x2⟩ depicted in Fig. 12, the average work can be obtained by integrating it
in Eq. 4.8.

The internal energy is given by Eq. 4.4; therefore, its mean value can be obtained
by

⟨∆E⟩ = 1
2(λ(t)⟨x(t)2⟩ − λ(0)⟨x(0)2⟩). (4.10)
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Figure 12 – Time evolution of w(t) for ∆λ = 10λi, λi = 1.5 pN/µm, and τP = 0.1τR,
where τR = γ/λi ≈ 12 ms is the relaxation time in the state λi.

Source: By the author.

Here, ⟨x2⟩ can also be obtained by Eq. 4.9. However, if the initial and final states are in
equilibrium, from the equipartition theorem, one has ⟨∆E⟩ = 0. The derivations of ⟨W ⟩
and ⟨∆E⟩, enable obtaining the expected value for the average of heat, ⟨Q⟩ = ⟨W ⟩−⟨∆E⟩,
considering the First Law of Thermodynamics (Eq. 2.1).

4.2 Protocol application

The first step, performed before any protocol application, is to characterize the
bead’s response to different laser powers. The methodology described in Sec. 3.2.4 is,
therefore, applied for each trapped particle. Using the PSD analysis, the trap stiffness,
κx, and amplification factor, Sx, are obtained, as presented in Fig. 13.

Besides the characterization of κx and Sx, the trapping beam response as a function
of PD voltage (linearly proportional to the trapping laser power) must be calibrated for
the RF driver’s amplitude channel control, addressed in Sec. 3.1.3. Then, applying a
general control parameter curve, λtheo(t), will be equivalent to acquiring an expected
response in the PD reading, VP D. The obtaining of such an expected PD output requires
the application of an input signal in the amplitude channel of the RF’s driver that feeds
one of the AODs, VAOD, as shown in Fig. 14. The example demonstrates the application
of two types of linear protocols, namely, compressing (forward), from λi to λf , followed
by the expanding (reverse) one, from λf to λi, where λi < λf .

Since the particle must be in thermal equilibrium at the beginning of each protocol,
during a time interval, τeq, longer than the relaxation time, τR = γ/λi, the laser power is
kept at a constant value equivalent to the initial state λi. The protocol is then applied,
thus changing the state to trap stiffness λf . After thermalization of the particle in λf , the
expanding protocol is run (see Fig. 14) and the loop finishes in the initial state, λi. The
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Figure 13 – Calibration curves for trap stiffness (left) and amplification factor (right) from
PSD fits as a function of PD voltage. The PD voltage is linearly proportional
to the trapping beam intensity. The slope is mT S = 24.89 ± 0.14 (pN/µm)/V
and y-intercept is bT S = 0.09 ± 0.04 pN/µm for the trap stiffness calibration.
The slope is mS = 1.17 ± 0.05 (V/µm)/V and y-intercept is bS = 3.333 ±
0.014 V/µm for the amplification factor calibration.

Source: By the author.

Figure 14 – Theoretical control parameter λtheo(t) (left) for a procedure with a compress-
ing (forward) protocol, in blue, followed by an expanding (reverse) one, in
orange, and corresponding voltage applied in the amplitude of RF’s driver
(right). Firstly, the particle is thermalized for an equilibrium time, τeq, in
green, and then the linear protocol is applied in a time duration τP , in red.
Here, τeq = 20 ms, λi = 1.5 pN/µm, ∆λ = 10λi, and τP = 2τR, where
τR = γ/λi ≈ 12 ms is the relaxation time in the state λi.

Source: By the author.

procedure is repeated ten thousand times for each set of parameters.

The simultaneous acquisition of the QPD output in one axis, xQP D, and the in-
frared PD signal, VP D, during the experiment enable obtaining the position of the centre
of mass and the control parameter. Here, x = VQP D/Sx, where the dependency of the
amplification factor on the laser intensity is Sfit,x = mSVP D + bS where mS and bS are
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the slope and y-intercept obtained from the linear fit in Fig. 13 (right). Since the particle
starts the protocol in the laser intensity corresponding to PD voltage ⟨VP D,eq⟩, i.e. the
average of the PD voltage during the equilibrium time, the initial amplification factor is
given by Sfit,x = mS⟨VP D,eq⟩ + bS. Although the particle can move in z direction due to
the radiation pressure dependency on the laser intensity, as discussed in 3.2.5, we consider
here that the particle remains with this amplification factor during all the protocol inter-
val. Additionally, the estimated trap stiffness is obtained from λ ≡ κexp = mT SVP D + bT S

where mT S and bT S are the slope and y-intercept obtained from the linear fit shown in
Fig. 13 (left).

Due to a delay between modulation and acquisition, an analysis of the PD signal
is performed for each file to detect the starting point of the loop sequence, as discussed
in Appendix A.

The experiment design enables the control of different parameters, such as modu-
lation amplitude and protocol time. Fig. 15 shows two compressing linear protocols, i.e.
λf > λi, with the same modulation amplitude, ∆λ = 10λi, and different protocol times:
one completely out of equilibrium with τP = 0.1τR (left) and the other closer to the equi-
librium regime with τP = 2τR (right). The particle trajectories clearly show the movement
of the particle being compressed when the laser is taken to a higher intensity, as in the
case of the piston experiment. This behavior is also depicted in Fig. 16, which shows the
position histograms of the particle at different instants. While the equilibrium state is
prepared, the probability distributions begin to broaden until thermalize (after approxi-
mately the relaxation time). Then, the protocol is applied, and the particle becomes more
confined again. The reconstructed experimental outputs, x and λ, can be used now in
calculations of quantities such as work, heat, and internal energy.

4.3 Experimental results

In the experiments, the data are usually acquired in a regular time interval ∆t =
10−5 s, enabling the discretization of the integrals of Eqs. 4.2 and 4.3. Therefore, the en-
ergetics during a protocol with duration τP = N∆t, where tj = j∆t and n = 0, 1, 2, ..., N

are

Wn = 1
2∆t

n−1∑
j=0

λj+1 − λj

∆t
x2

j = 1
2

n−1∑
j=0

(λj+1 − λj)x2
j , (4.11)

Qn = ∆t
n−1∑
j=0

(xj+1 − xj)
∆t

F (x̄) = −
n−1∑
j=0

(xj+1 − xj)λj
xj+1 + xj

2 = −1
2

n−1∑
j=0

λj(x2
j+1 − x2

j),

(4.12)
with F (x̄) = −λj(xj + xj+1)/2,

∆En = 1
2(λnx2

n − λ0x
2
0), (4.13)
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Figure 15 – Estimated trap stiffness (top) and 500 trajectories (bottom) for a compressing
linear protocol with τeq = 20 ms, λi = 1.5 pN/µm, ∆λ = 10λi and different
protocol times: τP = 0.1τR (left) and τP = 2τR (right), where τR = γ/λi ≈
12 ms is the relaxation time in the state λi.

Source: By the author.

where Stratonovich convention was applied to discretize the integral of heat†.

Besides xj and λj, the values of (x2
j+i − x2

j) and (λj+i − λj) are obtained for the
computation of W (t), Q(t) and ∆E(t). As shown in Fig. 17, the output data from the
PD voltage agree well with the input signal used to control the particle’s confinement.

The temporal evolution of the energetics during one realization of a compressing
protocol is displayed in Fig. 18 (left) for a short protocol and Fig. 18 (right) for a long
one. During the process, the derivative of the laser intensity, a deterministic variable,
substantially contributes to the shape of the work’s temporal evolution, which has a
smooth curve. On the other hand, the heat and internal energy difference has irregular
curves due to the contribution of the stochastic position, which is a nondeterministic
variable.

Considering the initial and final states are in equilibrium, the final values of
W (τP + 3γ/λf ) = W (τP ), Q(τP + 3γ/λf ), and ∆E(τP + 3γ/λf ) for each trajectory are
computed for an ensemble of 104 trajectories of the same protocol. Since the derivative
† The use of Stratonovich calculus is convenient for stochastic trajectories when the derivative

of a nondeterministic quantity, in this case x, must be computed. This approach is considered
an appropriate method according to references (13, 70, 71). For a given function g(f(t))
integrated into f(t) at time t, one has:∫

g(f(t)) ◦ df(t) = lim
∆t→0

∑
g(f̄(t))(f(t + ∆t) − f(t)) (4.14)

with f̄(t) = f(t)+f(t+∆t)
2 .
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Figure 16 – Position histograms at different instants of a compressing linear protocol:
t = −τeq (beginning of the equilibrium process) in blue, t = −τeq/2 (middle
of the equilibrium process) in orange, t = 0 ms (end of the equilibrium process
and beginning of the protocol) in green, and t = τP (end of the protocol).
The positions were obtained from 104 positions with τeq = 20 ms, τP = 0.1τR,
λi = 1.5 pN/µm, ∆λ = 10λi, where τR = γ/λi ≈ 12 ms is the relaxation time
in the state λi.

Source: By the author.

of the control parameter is zero after the end of the protocol, the trajectory for t > τP

does not contribute to the final work calculation. However, for heat and internal energy,
this is not true. The particle continues exchanging energy with the bath a longer time,
i.e., typically longer than the relaxation time in final state γ/λf is required for computing
those thermodynamic quantities‡.

The probability distributions of the energetics can be obtained from the normalized
histograms of those quantities and are shown in Fig. 19 for a case completely out of
equilibrium (τP = 0.1τR) and in Fig. 20 for a case closer to the equilibrium regime (τP =
2τR). For a compressing protocol, since x2 is always positive, the work (left) signal depends
only on the derivative of the trap stiffness and has positive values (the system absorbs
energy). Negative and positive values are observed for heat and internal energy difference
(right). Moreover, as discussed previously, the particle shows significant fluctuations of
the order of kBT in the thermodynamic quantities. However, the distributions become
narrower if the same process is run more slowly, converging to equilibrium, and the work
distribution should behave as a delta function in an ideal quasistatic regime, with τP → ∞.
Another interesting point is that, although the average value of work must be bigger than
the free energy difference, many individual events have a lower value.

‡ Here, it was considered three times longer than the relaxation time in the final state for
enabling particle thermalization.
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Figure 17 – Typical values for λj+1 − λj for linear protocols with τeq = 20 ms, λi =
1.5 pN/µm, ∆λ = 10λi and τP = 0.1τR, where τR = γ/λi ≈ 12 ms is the
relaxation time in the state λi.

Source: By the author.

Figure 18 – Temporal evolution of work in blue, heat in orange, and internal energy
difference in green during compressing linear protocols with τeq = 20 ms,
λi = 1.5 pN/µm, ∆λ = 10λi and different protocol times: τP = 0.1τR (left)
and τP = 2τR (right), where τR = γ/λi ≈ 12 ms is the relaxation time in the
state λi.

Source: By the author.

4.3.1 Verification of the First Law of Thermodynamics

The probability distributions of the final values of work, heat, and internal energy
difference enable obtaining their average values for different protocol times and modula-
tion amplitudes. Here, the experimental results for those parameters are compared to the
theoretical predictions discussed in Sec. 4.1.1§. As shown in Fig. 21, the agreements be-

§ Note the average of a quantity Y for N samples is given by ⟨Y ⟩ =
∑N

i=0 Yi/N . Here, it was
used the uncertainty given by standard error δ⟨Y ⟩ = σ⟨Y ⟩/

√
N , where σ⟨Y ⟩ is the standard
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Figure 19 – Probability distribution of work (left), heat, and internal energy difference
(right) for 104 trajectories of compressing linear protocols with τeq = 20 ms,
λi = 1.5 pN/µm, ∆λ = 10λi, and τP = 0.1τR, where τR = γ/λi ≈ 12 ms is
the relaxation time in the state λi. The black dashed line represents the free
energy difference.

Source: By the author.

Figure 20 – Probability distribution of work (left), heat, and internal energy difference
(right) for 104 trajectories of compressing linear protocols with τeq = 20 ms,
λi = 1.5 pN/µm, ∆λ = 10λi, and τP = 2τR, where τR = γ/λi ≈ 12 ms is
the relaxation time in the state λi. The black dashed line represents the free
energy difference.

Source: By the author.

tween experimental results and theoretical predictions are satisfactory for protocols with
a small modulation amplitude (∆λ = λi) (left) and a big one (∆λ = 10λi) (right). More-
over, the average work decreases as the protocol time increases, converging to the free
energy difference for longer protocol times, ∆F , as expected by the Clausius inequality
(72) (Second Law of Thermodynamics).

Fig. 22 displays the energetics dependency on the modulation amplitude for a
protocol with a fixed duration (τP = 0.145τR). Again, the experimental results are in good

deviation for N measurements.
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Figure 21 – Protocol time dependency of the average values of work, in blue, heat, in
orange, and internal energy difference, in green, for 104 trajectories of com-
pressing linear protocols with τeq = 20 ms, λi = 1.5 pN/µm and differ-
ent modulation amplitudes ∆λ = λi (left) and ∆λ = 10λi (right), where
τR = γ/λi ≈ 12 ms is the relaxation time in the state λi. The black dashed
line represents the free energy difference, solid lines denote theoretical predic-
tions, and dots correspond to experimental results. Note that here, the solid
curves for work and heat are the same, and the uncertainties are smaller than
the dots.

Source: By the author.

agreement with the theoretical predictions. Although the mean internal energy difference
remains unchanged, the mean work and heat grow as the modulation amplitude increases,
as expected.

Despite the difficulty in estimating the variance of the energetics quantities¶, σ2,
Fig. 23 shows the experimental results for different parameters. Here, the variance for
work and heat converges to zero when the protocols are performed more slowly, i.e.,
with a longer protocol time, as expected. The variance of free energy difference remains
approximately constant for the explored parameters with σ2

∆E ≈ (kBT )2.

Then, we can compute ⟨W ⟩ − ⟨Q⟩ − ⟨∆E⟩ dependency on the protocol time for
different modulation amplitudes, as shown in Fig. 24. Since this value is close to zero for
all parameters explored in this study, the First Law of Thermodynamics was also verified.

¶ The variance is given by

σ2
Y = 1

N − 1

N∑
l=1

(Yl − ⟨Y ⟩)2. (4.15)

The uncertainty of variance, δ[σ2
Y ], is obtained computing the variance for 10 groups with

1000 trajectories each, {σ2
Y }i=1,...,1000. The standard deviation of the results leads to the

uncertainty δ[σ2
Y ] = σ{σ2

Y }i=1,...,1000/
√

10.
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Figure 22 – Experimental (dots) and theoretical (solid lines) energetics dependency on
modulation amplitude obtained from 104 trajectories of linear protocols with
τeq = 20 ms, λi = 1.5 pN/µm and τP = 0.145τR, where τR = γ/λi ≈ 12 ms
is the relaxation time in the state λi. Average work in blue, heat in orange,
and internal energy difference in green. The uncertainties are smaller than
the dots.

Source: By the author.

Figure 23 – Protocol time dependency of energetics variance obtained from 104 trajec-
tories of linear protocols with τeq = 20 ms, λi = 1.5 pN/µm and differ-
ent modulation amplitudes ∆λ = λi (left) and ∆λ = 10λi (right), where
τR = γ/λi ≈ 12 ms is the relaxation time in the state λi. Variance of work in
blue, heat in orange, and internal energy difference in green. The uncertain-
ties are smaller than the dots.

Source: By the author.

4.3.2 Verification of Jarzynski equality

As discussed in Sec. 2.2, Jarzynski equality is one of the most important results
in stochastic thermodynamics due to its versatility in estimating an equilibrium quantity
from nonequilibrium measurements. Therefore, it can be used experimentally as a very
good estimator of the free energy difference between two equilibrium states whose theo-
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Figure 24 – Protocol time dependency of ⟨W ⟩ − ⟨Q⟩ − ⟨∆E⟩ for 104 trajectories of com-
pressing linear protocols with τeq = 20 ms, λi = 1.5 pN/µm and different
modulation amplitudes ∆λ = λi in blue, 3λi in orange, and 10λi in green,
where τR = γ/λi ≈ 12 ms is the relaxation time in the state λi. The solid
red line denotes the theoretical prediction, and the dots correspond to the
experimental results.

Source: By the author.

retical computation is challenging. In our case, the analytical solution for ∆F when the
confinement of the particle is changed from λi to λf is easily obtained, as shown in Eq.
4.7. Therefore, our proposal is to check the consistency of the results from the free energy
difference estimation with the ones from the work distributions.

From Eq. 4.7, the left-hand term of Eq. 2.10 can be computed by

e−∆F/KBT = Zf

Zi

=
√√√√ λi

λf

, (4.16)

where λi and λf are obtained from the PD signal during the equilibrium time. The use
of the average output value in both states leads to the estimated trap stiffness from the
calibration curve shown in Fig. 13‖.

The right-hand term of Eq. 2.10 is directly calculated from the work distributions.

‖ The uncertainty of e−∆F/KBT is given by

δ[e−∆F/KBT ] = 1
2
√

λi
λf

√√√√( 1
λf

δλi

)2

+
(

− λi

λ2
f

δλf

)2

. (4.17)

being δλ(t) =
√

(δmT SVP D(t))2 + (δVP D(t)mT S)2 + (δbT S)2 the uncertainties of trap stiff-
ness in initial (δλi) and final (δλf ) states.
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Figure 25 – On the left is the convergence of ⟨e−W/kBT ⟩ versus number of experimental
protocols run for ∆λ = λi and different protocol times, τP = 0.1τR, 0.45τR

and 2τR, in blue, orange, and green respectively. On the right are the final
results of ⟨e∆F −W/kBT ⟩ versus protocol time for different modulation ampli-
tudes: ∆λ = λi, 3λi, and 10λi in red, purple, and brown, respectively. Results
for compressing linear protocols with τeq = 20 ms, and λi = 1.5 pN/µm,
where τR = γ/λi ≈ 12 ms is the relaxation time in the state λi. The black
continuous line represents the expected value, and the dashed lines denote
the uncertainties.

Source: By the author.

For N trajectories, where l = 0, 1, 2...N , one has∗∗:

⟨e−W/kBT ⟩ = 1
N

N∑
l=0

e−Wl/kBT . (4.18)

Fig. 25 (left) shows the results of the computation of ⟨e−W/kBT ⟩ for different num-
bers of trajectories. It is notable that 104 repetitions are enough for the convergence of
the results obtained from the work distributions to the value of e−∆F/kBT .

The final results are displayed in Fig. 25 (right), which shows a comparison of
both sides of Eq. 2.10. A good agreement is reached for protocols with a small modulation
amplitude (∆λ = λi); however, some deviation starts to appear for bigger changes in the
bead’s confinement (∆λ = 3λi and δλ = 10λi), especially for slower protocols.

A possible explanation for such results is related to the amplification factor calibra-
tion displayed in Fig. 13. Since the protocol starts in a given laser power corresponding to
the initial state, the particle starts with the value of the amplification factor correspond-
ing to the PD average signal during the equilibrium position. However, when the intensity
of the beam is significantly changed (for ∆λ = 3λi and 10λi cases) and the particle has
enough time to move in z (on protocols with bigger τP ), the calibration is not accurate
∗∗ For the obtaining of the uncertainty of δ[exp(−W/kBT )], the value of

{exp(−W/kBT )}i=1,...,1000 is computed for 10 groups with 1000 trajectories each. The stan-
dard deviation of these results provides δ[exp(−W/kBT )] = σ{exp(−W/kBT )}i=1,...,1000/

√
10.
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Figure 26 – Probability distribution of work (left) and results from the testing of Jarzyn-
ski’s equality (right) for 104 trajectories of an expanding linear protocol.
Here, we see the convergence of ⟨e−W/kBT ⟩ versus number of protocols run
for ∆λ = 10λi, τP = 0.1τR, τeq = 20 ms, and λi = 1.5 pN/µm, where
τR = γ/λi ≈ 12 ms is the relaxation time in the state λi. The black contin-
uous line represents the expected value of ⟨e−∆F/kBT ⟩ and the dashed lines
denote the uncertainties.

Source: By the author.

and the position is overestimated. For an overestimation of x, the work is bigger than
expected and ⟨e∆F −W/kBT ⟩ becomes smaller than one.

Regarding expanding protocols, in which the particle changes its state from λf to
λi (λf > λi), the verification of Jarzynski equality is more difficult, as discussed in (69).
Since the work values become negative for this case (dλ/dt < 0 and ⟨x⟩2 > 0), the rare
events - corresponding to the tail of the probability distributions shown in Fig. 26 (left)
- have a significant contribution in the computation of the term ⟨e−W/kBT ⟩ and a bigger
number of protocols is required for accurate results. Fig. 26 (right) shows the convergence
of the exponential term for the same data set. In this case, small problems emerging
during experiments (e.g., a door opening in the room, temperature drift, among others)
can completely change the average of the exponential term values that are sensitive to
rare events. Therefore, our proposal is to investigate the expanding protocol using the
Crooks relation.

4.3.3 Verification of Crooks relation

Crooks proposed an even more general relation between the probabilities to obtain
a given value of work for a forward protocol and a reverse one, as discussed in Sec. 2.2.
The relation is given by (Eq. 2.13):

PF (W )
PR(−W ) = e(W −∆F )/kBT , (4.19)
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where PF (W ) is the probability distribution of W in the forward process (compressing)
and PR(−W ) is the probability distribution of −W in the reverse case (expanding)††.

As shown in Fig. 27, the forward processes always have positive values of work,
since the derivative of the control parameter is always positive, i.e. dλ/dt > 0, and the
reverse is always negative, since dλ/dt < 0. As expected, the work value of the crossing
point WC , PF (WC) − PR(−WC) = 0, is equal to the free energy difference. Such an
intersection occurs in a region still with a high number of events around WC ; thus, Crooks’s
theorem prediction can be verified with the proposed number of trajectories.

Taking the log of Eq. 2.13:

ln
[

PF (W )
PR(−W )

]
= (W − ∆F )/kBT, (4.20)

enables the exploration of the relation validity, as depicted in Fig. 28. The points are
distributed around the expected linear function W − ∆F = 0, especially at the beginning
of the curve, which is the region with more statistics. However, they start to spread in the
region with bigger work values, corresponding to the distributions’ tail (rare events). As
in Jarzysnki verification, the results are more accurate for small modulation amplitudes
and protocol times. The explanation is the same provided in Sec. 4.3.2.

4.4 Conclusions

This chapter addressed the implementation of a compressing and expansion pro-
tocol via modulation of the trapping beam intensity. Firstly, it described the calibrations
necessary for the preparation of the experiment and the way of controlling the optical po-
tential during the application of the protocol. The positions obtained with QPD and the
force constant estimated from the infrared PD monitoring signal enabled the experimental
calculation of work, heat, and internal energy difference for each trajectory.

The probability distributions of those stochastic quantities were calculated for an
ensemble of 104 experimental trajectories. As demonstrated, for short protocol times, the
work fluctuations become more pronounced, resulting in higher variance and mean value,
which converges to the free energy difference in slower protocols. Also, for long protocols,
the probability curves become narrower and a delta function centred at ⟨W ⟩ = ∆F is
expected in the quasistatic limit case.

In addition, a good agreement was observed between theoretical and experimental
values of ⟨W ⟩, ⟨Q⟩, and ⟨∆E⟩. The First Law of Thermodynamics, as well as Fluctuation
Theorems - Jarzynski’s equality and Crooks’ relation - were verified experimentally for
the explored set of parameters.
†† Here, PF (W ) is obtained from the histrogram of W in forward protocols and PR(−W ) is

obtained from the histrogram of −W in reverse ones.
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Figure 27 – Probability distributions of work PF (W ) in blue, PR(W ) in orange, and
PR(−W ) in green for different modulation amplitudes: ∆λ = λi (top) and
∆λ = 10λi (bottom). Results from 104 trajectories with τeq = 20 ms,
λi = 1.5 pN/µm, and τP = 0.1τR, where τR = γ/λi ≈ 12 ms is the re-
laxation time in the state λi. The free energy difference is represented by the
black dashed line.

Source: By the author.

Concerning Fluctuation Theorems, the experimental results are close to expected
values with minor deviations for protocols with higher modulation amplitudes and longer
protocol times. As discussed previously, such results possibly stemmed from changes in
the amplification factor when the trapping beam power was modulated. Ideally, this cali-
bration factor should have an approximately constant value; however, in our experiment,
it has an approximate linear dependence on VP D in the explored region.

In future work, the experiment can be repeated in a different setup, which might
include a detection laser counter-propagating to the trapping laser. The beam waist in z

would possibly be larger, increasing the stable zone of z around the focal position of the
detection beam so that the QPD response will be less sensitive to changes in the vertical
position of the particle.

The experiments proposed in this chapter were also explored in (70) and are nec-
essary to ensure confidence in experimental data and develop more complex and new
studies.
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Figure 28 – Verification of Crooks theorem for different modulation amplitudes: ∆λ = λi

(left) and ∆λ = 10λi (right). The results were calculated by Eq. 4.20 from
104 trajectories with τeq = 20 ms, λi = 1.5 pN/µm, and different protocol
times: τP = 0.1τR in blue, 0.45τR in orange, and 2τR in green, where τR =
γ/λi ≈ 12 ms is the relaxation time in the state λi.

Source: By the author.
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5 OPTIMAL PROCESSES

Fundamentally, the energy cost for performing work in a process depends on the
particle’s trajectory in the phase space. If the protocol time increases to larger time scales,
the work value converges to Helmholtz’s free energy difference, which is the minimal cost
(or maximum payout) in a reversible (infinitely slow) process. However, in targeting finite-
time protocols running out of thermodynamic equilibrium, the process that minimizes
the average work is called optimal protocol (73–74). Efforts to find optimized tasks for
different platforms may contribute to the understanding of the performance of different
biological systems and provide insights into the development of more efficient devices in
that regime.

Therefore, several studies have aimed to model such optimal protocols in differ-
ent platforms over the past few years. Among them, some analytical results (74–76) and
approximations for slowly varying processes and weak processes (77–80) have been dis-
cussed. In this scenario, this chapter is devoted to experimental tests of the analytical
formulas proposed by Schmiedl and Seifert (74) for a Brownian particle trapped in a har-
monic potential. Despite this work being extremely important in the context of process
optimization, to the best of our knowledge, no direct experimental verification of their
predictions has been conducted.

First, solutions for the optimal curves are presented in two cases, of which the
first considers a moving potential and the second involves a compressing trap. Since the
first case is more experimentally challenging, simulations of the stochastic trajectories were
performed and are discussed. Afterwards, one will focus on the experimental verification of
the second case using the Setup ENS-Lyon. For both conditions, the optimal curve results
were compared with linear (suboptimal) ones and the Jarzynski equality was verified as
a consistency check. Finally, the conclusions and next steps are presented.

5.1 Prediction for finite-time protocols

The model proposed in (74) considers a colloidal particle in the overdamped regime
that goes from one equilibrium state to another. If the particle is trapped in a harmonic
potential, U(x), subject to control parameter λ(t) for a time duration τP , the work is
given by Eq. 2.7 and its average value is

⟨W [λ(t)]⟩ =
∫ τP

0
dtλ̇⟨∂U(x, λ)

∂λ
⟩. (5.1)

Therefore, the protocol λ∗(t) that minimizes ⟨W [λ(t)]⟩ for a target finite-time is the
optimal one and will be implemented in the experimental system. Below is the solution
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of the minimization of Eq. 5.1 for the moving laser trap and the time-dependent trap
stiffness protocols. A complete description can be found in (74).

5.1.1 Moving laser trap

This first case focuses on a harmonic potential with a fixed trap stiffness κ and
variable equilibrium position, from λi = 0 to λf . The potential is given by

U(x, t) = κ(x − λ(t))2

2 , (5.2)

and the average work is obtained by

⟨W ⟩ =
∫ τP

0
dtκλ̇(λ − u), (5.3)

where u(t) ≡ ⟨x(t)⟩. Langevin equation (Eq. 2.17) leads to

u̇ = κ

γ
(λ − u) (5.4)

and consequently,

⟨W ⟩ =
∫ τP

0
dt

(
γ2

κ
ü + γu̇

)
u̇ = γ2

2κ
u̇2|τP

o + γ
∫ τP

0
dtu̇2. (5.5)

The minimization of Eq. 5.3 by Euler-Lagrange equation (81) results in ü = 0.
Therefore, u(t) = mt, where m is a scalar, since u(0) = 0. The boundary conditions for
Eq. 5.4 lead to u̇(0) = κ

γ
(λi − u(0)) = 0 and u̇(τP ) = κ

γ
(λf − mτP ). Substituting those

results in Eq. 5.5, one has

⟨W ⟩ = γm2τP + κ

2 (λf − mτP )2. (5.6)

The value of m that minimizes the previous equation is

m∗ = λf

2γ
κ

+ τP

, (5.7)

and the corresponding work is

⟨W ∗⟩ =
λ2

fγ

2γ
κ

+ τP

. (5.8)

Finally, the optimal protocol, obtained from Eq. 5.4, is given by

λ∗(t) = λf

2γ
κ

+ τP

(
t + γ

κ

)
. (5.9)

Fig. 29 show the resulting protocols with two symmetrical jumps at the beginning
and the end of the protocol∗:

∆λ ≡ λ(0)+ − λi = λf − λ(τP )− = λf

2 + τP
κ
γ

. (5.10)

The optimal curve converges to the linear protocol behavior for long processes, where
τP → ∞.
∗ Remember the protocol starts in λi = 0 and ends in λf , i.e., there are two discontinuities to

link both initial and final states to the protocol curve.
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Figure 29 – Optimal protocols for the moving laser trap case obtained for λf = 500 nm
and different protocol times. The black dashed line represents the linear pro-
tocol. Trap stiffness κ = 1 pN/µm was used for all curves.

Source: By the author.

5.1.2 Time-dependent trap stiffness

In the second case, the equilibrium position remains fixed, and the confinement of
the particle is dependent on time. The potential can be written as

U(x, t) = λ(t)x2

2 (5.11)

and the average work is given by

⟨W ⟩ = 1
2

∫ τP

0
dtλ̇⟨x2⟩, (5.12)

which, integrating by parts, leads to

⟨W ⟩ = 1
2

(
λ(t)⟨x2⟩|τP

0 −
∫ τP

0
dtλ(t) ˙⟨x2⟩

)
. (5.13)

The ⟨x2⟩ value is obtained from the Fokker-Plank equation (Eq. 2.22), such as
⟨x2⟩ =

∫+∞
−∞ dxP (x, t)x2. Considering

∫+∞
−∞ dxP (x, t) = 1, then

ẇ = 2
γ

[−λw + kBT ] , (5.14)

where w = ⟨x2⟩. Solving it for λ and substituting it in Eq. 5.13 result in

⟨W ⟩ = 1
2 (w(t)λ(t) − kBT log w(t)) |τP

0 + γ

4

∫ τP

0
dt

1
w

ẇ2. (5.15)

The minimization of the integral requires resorting to Euler-Lagrange equation for

ẇ2 − 2wẅ = 0, (5.16)
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where the solution depends on constants c1 and c2 and is given by

w(t) = c1(1 + c2t)2. (5.17)

Since the particle is in thermal equilibrium in state λi, its variance in the initial
instant is w(0) = kBT/λi and is equivalent to constant c1. Minimizing the total mean
work leads to

⟨W ∗⟩
kBT

= λf

2λi

(1 + τP c∗
2)2 + (τP c∗

2)2γ

λiτP

− 1
2 − ln(1 + c∗

2τP ), (5.18)

leading constant c2

c∗
2τP =

−γ − λfτP +
√

γ2 + 2λiτP γ + λfλiτ 2
P

2γ + λfτP

. (5.19)

Therefore, Eq. 5.14 provides the protocol that minimizes the average work:

λ∗(t) = λi − c∗
2γ(1 + c∗

2t)
(1 + c∗

2t)2 . (5.20)

As shown in Fig. 30, the protocol also implies discontinuities at the beginning and the
end of the protocol.

Figure 30 – Optimal protocols for the time-dependent trap stiffness case obtained for
different parameters. Here, ∆λ = (λf − λi) with λi = 1.5 pN/µm. The black
dashed line represents the linear protocol.

Source: By the author.

Considering the case of a process performed in a very short time, i.e. τP → 0, then
c2τP → 0 and the average work, from Eq. 5.18, converges to

lim
τP →0

⟨W ∗⟩ = 1
2

(
λf

λi

− 1
)

kBT, (5.21)
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which is the expected result for a step protocol discussed in Chapter 6.

For the opposite case, in the quasi-static limit, τP → ∞, hence, c2τP →
(√

λf/λi − 1
)

and
lim

τP →∞
⟨W ∗⟩ = 1

2 ln
(

λf

λi

)
kBT = ∆F, (5.22)

as expected.

5.2 Simulations for the moving potential

From an experimental point of view, the optimization of the moving trap case
can be challenging, since the modulation devices (AOM/AODs) lose efficiency when the
angular position is changed, i.e., when the frequency of the RF signal differs from the
optimal one. Besides the loss of efficiency, keeping the same optical potential on the trap
during the experiment is difficult due to the limited size of the objective entrance (the
beam begins to exit the objective lens at higher beam’s angular positions). Moreover,
precise tracking of the bead with QPD is limited to the region of linearity around the cen-
tral position (approximately the particle radius), and bigger displacements make it more
complex since the QPD’s response becomes non-linear. Therefore, this section explores
the moving potential using adapted simulations from references (63,82).

Since the time scale of our problem is considerably bigger than the bead’s inertial
time - associated with the collisions of the colloid with the molecules of the surroundings
- the inertial term of the Langevin equation can be dropped (Eq. 2.17). For harmonic
potentials with fixed trap stiffness, κ, and modulated equilibrium position, λ = xeq, the
one-dimensional dynamics is given by

0 = −γ
dx(t)

dt
− κ(x(t) − λ(t)) +

√
2kBTγΞ(t). (5.23)

Discretizing Eq. 5.23 leads to

0 = −γ
xj+1 − xj

∆t
− κ(xj − λj) +

√
2kBTγΞj, (5.24)

where xj is the bead’s position at instant t = j∆t, with ∆t the interval between points,
and Ξj = ξj/

√
∆t. ξj is a sequence of random numbers in a standard normal distribution,

thus satisfying the physical properties for stochastic terms: ⟨Ξ(t)⟩ = 0, and uncorrelated
Ξ(t1), i.e. ⟨Ξ(t)Ξ(t′)⟩ = δ(t − t′).

Therefore, the position of the particle for a discrete protocol is

xj+1 = xj − κ(xj − λj)∆t

γ
+
√

2kBT∆t

γ
ξj. (5.25)

Note that λj is given by Eq. 5.9:

λj = λf

2γ
κ

+ τP

(
(j∆t) + γ

κ

)
, (5.26)
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Figure 31 – Simulated probability distribution of work from 105 trajectories. Results for
linear protocols, in blue, and optimal ones, in orange, where T = 300 K,
∆t = 10−5 s, λf = 100 nm, κ = 1 pN/µm, τP = 0.5τR, and γ = 6πηR, being
η = 0.001 Nsm−2 and R = 1 µm.

Source: By the author.

for optimal protocols and λj = λf (j∆t)/τP for linear ones with duration τP . For both
cases, it starts in position 0 and ends in position λf . Since the simulated bead must be in
equilibrium at the beginning of the protocol, the initial position, x0, is obtained from the
equipartition theorem, i.e. from a random number with 0 mean and

√
kBT/κ standard

deviation.

Simulating the trajectory enables computing the work of each cycle with duration
τP = N∆t. The discretization of Eq. 2.7 for U = κ(x − λ)2/2 lead to

WN,prot = −∆t
N−1∑
j=0

κ(xj − λj)
λj+1 − λj

∆t
= −

N−1∑
j=0

κ(xj − λj)(λj+1 − λj). (5.27)

For linear protocols, WL = WN,prot, and for optimal ones, WO = Wjump1 +WN,prot+Wjump2 .
Here, the contributions of the jumps are

Wjump = κ(x+ − λ+)2

2 − κ(x− − λ−)2

2 . (5.28)

where the subindex "−" represents the point just before the jump and "+" the point just
after it. This means that, for the first jump one has λ− = λi and λ+ = λ(0) and for the
second one λ− = λ(τP ) and λ+ = λf .

Fig. 31 shows the probability distribution of work obtained from linear and optimal
protocols with λf = 100 nm for an ensemble of 105 trajectories. The distribution is
approximately Gaussian, and the average value of work is smaller in the optimal protocol
than in the linear one, as expected. Fig. 32 displays a comparison between average work
results for both cases at different final positions, λf (left), and protocol times, τP (right).

For all simulated trajectories, the results show the average work value of optimal
protocols is smaller than that of the linear case. However, a bigger difference between
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Figure 32 – Comparison of the simulated average work for linear protocols, in blue, and
optimal ones, in orange. The results refer to fixed τP = 0.5τR and differ-
ent values of λf (left) and fixed λf = 100 nm and different protocol times
τP (right). Here, 105 trajectories were simulated with the following param-
eters: T = 300 K, ∆t = 10−5 s, κ = 1 pN/µm, and γ = 6πηR, being
η = 0.001 Nsm−2 and R = 1 µm.

Source: By the author.

optimal and linear (suboptimal) protocols is expected for intermediated protocol times.
For quasistatic processes, where τP → ∞, the optimal protocol converges to the linear
case, and the difference between linear and optimal results decreases again, i.e., their
average work is basically the same.

As shown in Fig. 33, Jarzynski was also verified as a check. Since the partition
function of a potential U = κ(x − λ)2/2 is given by

Z =
∫ +∞

−∞
dxe−U/kBT

=
∫ +∞

−∞
dxe−(κ(x−λ)2/2)/kBT

=
√

π

κ/2kBT
,

(5.29)

the free energy difference is ∆F = 0 and Jarzynski term obtained from ∆F is e−∆F/kBT =
1.

The results show the best agreement between the terms of Jarzynski equality
for smaller values of λf , even for a large number of simulated trajectories (105). Since
negative work values can be obtained, rare events contribute to ⟨e−W/kBT ⟩. The behavior
of ⟨e−W/kBT ⟩ for a fixed λf and different protocol times shows a better agreement in slower
protocols.



74

Figure 33 – Jarzynski test. Comparison of simulated ⟨e−W/kBT ⟩ for linear protocols, in
blue, and optimal ones, in orange. Results refer to fixed τP = 0.5τR and
different values of λf (left) and fixed λf = 100 nm and different protocol
times τP (right). Here, 105 trajectories were simulated with the following
parameters: T = 300 K, ∆t = 10−5 s, κ = 1 pN/µm, and γ = 6πηR, being
η = 0.001 Nsm−2 and R = 1 µm. The black dashed line represents e−∆F/kBT =
1.

Source: By the author.

5.3 Experimental results for the compressing protocol

This section presents an experimental study of optimal protocols for the com-
pressing trap, as described in Sec. 4.2. Similarly to the linear protocol case, the particle
must be in thermal equilibrium at the beginning of the protocol in the state λi. After the
thermalization period, the protocol is applied and the loop finishes with the trap stiffness
equal to λf . While the linear protocol takes the particle from state λi to state λf linearly
over time, the optimal protocol follows Eq. 5.20.

As described in the previous chapter, the external modulation of the function
generator (Tektronix AFG3102) is used to control the RF signal that feeds the AOD.
However, due to the band response limitation, a discontinuity in the amplitude of the RF
signal has an around 100 µs time delay, as displayed in Fig. 34 (left). Consequently, the
derivative of the control parameter, λj+1 − λj, used to compute work is not similar to a
delta function, as the predicted optimal ones, but has an exponential decay, as shown in
Fig. 34 (right).

Similarly to linear protocols, Eq. 4.11 can be used to obtain the work values of each
trajectory. Fig. 35 shows the results from a set of 10 trajectories with the same parameters.
Here, the same modulation amplitude but different protocol times were applied: τP =
0.1τR (left) and τP = 2τR (right).

Similarly to Eq. 5.28, the work´s contributions of each jump are

Wjump = λ+x2
+

2 −
λ−x2

−
2 , (5.30)
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Figure 34 – Estimated trap stiffness (left), λj, and its derivative (right), λj+1 − λj,
(data from PD and input signal) for linear protocols with τeq = 20 ms,
λi = 1.5 pN/µm, ∆λ = 10λi and τP = 0.1τR for a single loop, where
τR = γ/λi ≈ 12 ms is the relaxation time in the state λi.

Source: By the author.

Figure 35 – Temporal evolution of work for 10 trajectories of optimal protocols with τeq =
20 ms, λi = 1.5 pN/µm, ∆λ = 10λi and different protocol times: τP = 0.1τR

(left) and τP = 2τR (right), where τR = γ/λi ≈ 12 ms is the relaxation time
in the state λi.

Source: By the author.

where the subindex "−" represents the point just before the jump, and "+" is the point
just after it, as in Eq. 5.30. However, if the interval between acquisitions is very small,
∆t → 0, then x+ ≈ x− and Eq. 4.11 keeps its validity. The resulting curves for the
temporal evolution of work have smoothened exponential growth instead of jumps and
this effect is more evident in short protocols, as depicted in Fig. 35 (left).

Then, the work probability distributions of the optimal protocols can be obtained
from the final value of W (τP ) for 104 trajectories. A comparison of the optimal results
with the linear ones (presented in Chapter 4) confirmed the best efficiency of the opti-
mal solution. Fig. 36 compares the probability distributions in both cases for different
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Figure 36 – Work probability distributions (solid lines) and their corresponding average
values (dashed lines) for different modulation amplitudes ∆λ = λi (top),
and ∆λ = 10λi (bottom). Results from 104 trajectories for linear protocols,
in blue, and optimal ones, in orange. Here, τeq = 20 ms, λi = 1.5 pN/µm,
τP = 0.1τR, where τR = γ/λi ≈ 12 ms is the relaxation time in the state λi.

Source: By the author.

modulation amplitudes ∆λ = λi (top), and ∆λ = 10λi (bottom) and fixed protocol time,
τP = 0.1τR, where τR is the relaxation time in the state λi.

Looking at the dependency of the average values of work on the protocol time
(Fig. 37) with different modulation amplitudes, ∆λ = λi (left) and ∆λ = 10λi (right), the
optimal protocols have a smaller value of mean work than the linear ones. However, such
a difference increases for intermediate protocol times. When the processes are performed
very quickly, the mean work value corresponds to the one expected in a simple jump. For
longer protocol times, closer to the equilibrium limit, the average work of both processes
converges to ∆F , independently of the protocol type, as discussed previously. Thus, in the
region between these two cases, a higher "efficiency" of the optimal curves in comparison
to the linear (suboptimal) ones is observed.

Using Eq. 5.18, predictions of the average work for optimal protocols can be com-
pared to experimental results, showing a good agreement (Fig. 37). Complementary to the
analysis of the dependency of the mean work value on the protocol time, Fig. 38 displays
the dependency on ∆λ/λi, and one has similar observations. Here, the difference between
optimal and suboptimal results increases as the trap is changed for larger values of λf ,
i.e., bigger modulation amplitudes.

As shown in Fig. 39, which displays the dependency of variance for different proto-
col times (left) and modulation amplitudes (right), the work variance of optimal protocols
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Figure 37 – Experimental measurements of the average (stochastic) work for an ensemble
of 104 trajectories in function of protocol time. Experimental results are repre-
sented by dots and theoretical predictions are denoted by solid lines. Values
obtained from linear protocols, in blue, and optimal ones, in orange, with
τeq = 20 ms, λi = 1.5 pN/µm and different modulation amplitudes ∆λ = λi

(left), and ∆λ = 10λi (right), where τR = γ/λi ≈ 12 ms is the relaxation
time in the state λi. The uncertainties are smaller than the dots.

Source: By the author.

is also lower than the linear ones. However, both decrease as we converge to a regime close
to equilibrium, i.e., for protocols performed slowly and with small trap stiffness change.

Jarzynski’s equality was also verified as an independent test. Fig. 40 shows that
the results for optimal protocols are similar to those for the linear case studied in Chapter
4, as expected. Since the free energy difference depends only on initial and final states, the
values of ⟨exp(−W/kBT )⟩ depend neither on the protocol time, as discussed previously,
nor on the path of the particle in the phase space, i.e. if it is optimal or not. Here, a
minor deviation was also observed for slower protocols with bigger modulation amplitudes,
probably due to the same issue with the amplification factor calibration discussed in
Chapter 4.

5.4 Conclusions

This chapter focused on the implementation of the optimization proposed by
Schmiedl and Seifert (74) for moving laser traps (simulation) and compressing protocols
(experiment).

Despite the experimental difficulties in maintaining a constant optical potential
shape and tracking the particle during the modulation of the trapping beam position, the
moving trap case was explored via numerical simulations, which are essential for gain-
ing insights for future experiments. Therefore, the parameters chosen for the simulation
correspond to those that work better for the Setup IFSC-USP requirements (low force
constant and small angle modulation of the trapping beam). The results show that the
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Figure 38 – Experimental measurements of the average (stochastic) work for an ensemble
of 104 trajectories in function of the modulation amplitude. Experimental
results are represented by dots and theoretical predictions are denoted by
solid lines. Values obtained from linear protocols, in blue, and optimal ones,
in orange, with τeq = 20 ms, λi = 1.5 pN/µm and τP = 0.145τR, where
τR = γ/λi ≈ 12 ms is the relaxation time in the state λi. The black dashed
line represents the free energy difference. The uncertainties are smaller than
the dots.

Source: By the author.

optimal protocols’ mean work value is smaller than that of linear (suboptimal) ones for
the available parameters. Besides, there exists a region concerning the protocol time where
the "efficiency" of the process is more significant, which is in the order of τR. On the other
hand, the slight difference between optimal and suboptimal in this parameter’s range
makes the experimental test challenging.

Although the mean value can be obtained for 105 trajectories, as shown in the
simulated results, verifying Jarzynski’s equality can generally be more complex in this
case. Since work may have negative values, the rare events contribute to ⟨e−W/kBT ⟩ and
a larger number of trajectories are necessary, making it even more challenging for an
experimental implementation.

However, the experimental verification for the compressing protocol case was suc-
cessfully implemented. As described in Chapter 4, the test was performed via modulation
of the trapping beam intensity. After the required calibrations, the optimal protocol was
applied for different protocol times and modulation amplitudes. The mean value from
work distributions, ⟨W ⟩, and ⟨e−W/kBT ⟩ were obtained for each group for ensembles of 104

trajectories. The results are consistent with the theoretical prediction for all cases, and,
again, minor deviations occurred for more extensive modulations of the trap stiffness and
shorter protocol times due, most likely due to difficulties with the amplification factor
calibration, as discussed previously.
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Figure 39 – Protocol time dependency of work variance for ∆λ = 10λi (left) and ampli-
tude modulation dependency of work variance for τP = 0.145τR (right). Values
obtained from linear protocols, in blue, and optimal ones, in orange, from 104

trajectories with τeq = 20 ms, λi = 1.5 pN/µm, where τR = γ/λi ≈ 12 ms
is the relaxation time in the state λi. The uncertainties are smaller than the
dots.

Source: By the author.

Figure 40 – Jarzynski verification for experiments with optimal protocols. Final results
of ⟨e∆F −W/kBT ⟩ for different protocol times and modulation amplitudes:
∆λ = λi, 3λi, and 10λi in red, purple, and brown, respectively. The black
continuous line represents the expected value. Results for τeq = 20 ms, and
λi = 1.5 pN/µm, where τR = γ/λi ≈ 12 ms is the relaxation time in the state
λi.

Source: By the author.

Besides a comparison of experiment and theory for the optimal process (74), the
work distributions of optimal and linear (suboptimal) processes were also compared†. As
expected, the optimal processes have smaller mean work than the linear ones and efficiency
increases for intermediate protocol times, such as the moving trap case.

† Data collected for both cases were obtained for the same trapped particle.
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Therefore, our experimental test generally confirms the predictions of Schmiedl
and Seifert (74) even in the presence of a relatively small delay in the implementation
of jumps in the control parameter (laser intensity modulation). According to (70), such
an effect adds a tiny correction to the results from protocols with discontinuities. The
difference between sharp and smoothened cases depends on the rising time of the curve
and can be considered negligible for our experimental parameters.

Towards further minimizing that effect, the experiments were repeated in the Setup
IFSC-USP to take advantage of its faster modulation response (around 10−6 s). Neverthe-
less, due to high-frequency noise, reliable results could not be obtained for the complete
set of parameters presented in this chapter. The optimal protocols were initially tested
in the first version of the IFSC-USP system for a smaller set of parameters and were
presented in (83). In late 2023, the experiment was repeated with the improved Setup
IFSC-USP, described in Chapter 3, and around the same time, we learned about similar
experiments conducted by Rosales-Cabara et al. (70, 84) in Strasbourg through slightly
different protocols.

To the best of our knowledge, this is the first systematic direct experimental test for
Schmiedl and Seifert’s predictions (74). In addition to such a contribution, the knowledge
gained from those studies provided our group with the ability to use optical tweezers
to control and measure stochastic thermodynamics variables precisely, opening doors for
future experiments in our laboratory, such as exploration of non-harmonic potentials
based on approximations, as proposed by (77,78,80), or even for more complex scenarios
involving feedback-control, as discussed in the next Chapter.
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6 INFORMATION-TO-ENERGY CONVERSION

The use of feedback in optical tweezer systems has proven an exciting possibility for
a variety of applications, such as the removal of drifts and noise through active feedback of
the stage position (85), generation of generic virtual potentials based on particle position
feedback (25), among others in the field of control.

In this scenario, this chapter addresses the implementation of a first feedback
protocol from our laboratory at IFSC-USP using optical tweezers. The motivation behind
it refers to the development of a series of new studies involving feedback and information-
to-energy conversion. The experiment was based on Maxwell’s demon idea, in which a
given change in the optical potential is applied according to the previous particle position
information.

Firstly, Maxwell’s demon and the way information translates into the generalized
Jarzynski equality are briefly discussed. Then, the feedback system, the calculations of
work values, and the experimental results for protocols with and without feedback explor-
ing different demon criteria are then presented. Finally, conclusions and next steps are
provided.

6.1 Maxwell’s demon

Maxwell’s demon (86) is an emblematic thought experiment in the history of ther-
modynamics, presented in 1867 in Theory of Heat (87). To understand it, let us imagine
a gas composed of a collection of molecules with different velocities. The kinetic temper-
ature related to the gas will be proportional to the mean-square velocity of the particles
that it is composed of (88). This gas is then divided into two thermally isolated chambers
initially at the same temperature and separated by a frictionless door that can quickly
open and close. The door is controlled by a demon capable of discerning which molecules
move faster and which move slower. When a particle with higher velocity approaches the
door, the demon opens it, allowing the particle to pass to the other side. After several
particles with higher velocity have passed to the other chamber, the average velocity of
the molecules on one side is higher than the other, leading to a difference in their kinetic
temperatures. Since the system consists of two thermal reservoirs, i.e., a hot one and
a cold one, a heat engine from which work could be extracted can be built, seemingly
violating the Second Law of Thermodynamics.

Following Maxwell’s idea, a second important thought experiment was suggested
by Leo Szilard, in 1929 (89). The proposed system has a single ideal gas particle and
an initially fixed piston between two chambers to replace the door of Maxwell’s demon
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experiment. When the demon sees the chamber where the particle is located, it decides to
place a mass on the piston on the left or right side – on the left if the particle is in the left
chamber and on the right if it is on the right side. Consequently, the particle expands the
chamber, pulling the piston so that the mass rises against gravitational force, performing
work. Since the particle in this system can be in two different positions, left or right, these
two states are analogous to one bit of information.

Despite such a new thought experiment and special attention on the subject, the
explanation for those anomalies was a dilemma for a long time. Almost a century later,
Landauer finally exorcised the demon, proposing the role of information in physical pro-
cesses (90). In Landauer’s prediction, the information is physical, and the minimum energy
necessary to erase one bit is kBT ln 2 (91).

To understand the minimum value for energy, let us return to the Szilard engine
scenario. Considering the particle has a probability pi = 1/2 of being in one of the two
states, Gibbs entropy is given by (92)

S = −kB

∑
i

pi ln pi. (6.1)

Therefore, the entropy of one bit of information is kB ln 2. Since the Second Law of ther-
modynamics states (Eq. 2.4)

δS >
δQ

T
, (6.2)

where Q is heat and T is bath temperature, the minimum energy required for erasing one
bit of information will be kBT ln 2, which is called Landauer’s principle (91).

After that exciting proposal, the first experimental verifications of one bit’s partial
(24) and full (25) erasure were made using double wells in optical tweezers and several
proposals have emerged towards converting information into useful energy (22,28,93).

In this scenario, as a possible way to estimate the efficiency in information-to-
energy conversion for a given process, the Jarzynski equality was proposed (94):

⟨e( ∆F −W
kBT

)⟩ = α, (6.3)

where α indicates the degree of control in the experiment. When α = 1, no information
on the system is provided, and the results are the same as the usual Jarzynski’s equality
(Eq. 2.10). However, adding feedback to the system leads to α > 1. The following sections
will explore implementing a simple feedback system to compute the generalized Jarzynski
equality for our experimental apparatus.

6.2 Proposed feedback protocol

A possible system capable of converting information to energy can be developed
through the implemention of a feedback control of the optical potential. Similarly to
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the aforementioned experiments, the stiffness of the trap will continue to be modulated
(compressing protocol). However, both initial and final state changes will be discontinuous
in a step protocol, i.e. the protocol time is approximately zero, as discussed in (69).

In this system, the instant at which the trapping laser intensity is increased de-
pends on the real-time data acquisition of the particle’s position. If it satisfies the demon’s
criterion, which in our case corresponds to being within a spatial region around the trap’s
equilibrium position, the change occurs. Otherwise, nothing happens.

The scheme in Fig. 41 was used for the implementation of the demon. The particle
starts in a state λi and is kept in it towards equilibrating for a time longer than the
relaxation time τeq > τR. Then, the particle’s position, x, starts being monitored. If |x| is
smaller than a defined threshold, here denoted as xS, the demon switches the potential,
taking the particle to a final state λf > λi, as shown in Fig. 42. Otherwise, the tracking
continues until the condition has been satisfied. After the particle has thermalized in the
state λf , the system is reset by switching back to λi and the process repeats.

Figure 41 – Scheme of the feedback implementation. It starts with the preparation of the
particle in state λi for an equilibrium time τeq and the bead’s position is then
acquired for switching the state to λf when |x| < xS.

Source: By the author.

Figure 42 – Scheme of the switch in the particle’s state when |x| < xS. The initial state,
λi, is represented by the solid line and the final state, λf , is denoted by the
black dashed line.

Source: By the author.
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6.3 Work calculation and time delay

For a protocol that consists of an immediate jump from λi to λf , the work (Eq.
2.7) is given by (69):

W = ∆λ

2 x2, (6.4)

and its average value is
⟨W ⟩ = ∆λ

2 ⟨x2⟩, (6.5)

where ⟨x2⟩ = kBT/λi comes from the equipartition theorem (see Sec. 3.2.1). Then, the
expected variation in trap stiffness ∆λ and the bead’s position at the switch’s instant are
enough to obtain the work values for each trajectory.

In an ideal system, the switch would occur immediately after the demon has known
the particle’s position is in the interval of interest. However, in an actual physical system,
due to limitations in processing, a delay time interval, tdelay, must be considered between
the position reading and the real potential change. During tdelay, the position evolves
according to the solution of the Fokker-Plank equation (Eq. 2.22), decreasing the efficiency
of the demon, as discussed in (69).

For our experimental configuration, due to a lack of equipment capable of pro-
cessing commands in hardware time, a Python code that reads the position, makes the
decision, and applies the switch in software time was implemented. Therefore, the par-
ticle’s position is tracked at instant t0 and there is a delay δtP for the processing of the
input signal, i.e. for testing if the particle is located in the region of interest. If |x| < xS,
the switch signal is sent to the modulator at the instant t1 = t0 + δtP and there is another
delay due to the AOM response, δtm ∼ 10−6 s. Immediately after that, the change in the
potential is implemented and another position is acquired at t2 = t0 + ∆t, where ∆t is
the interval between the acquisitions.

Although the scenario enables no computation of the values of x at the instant at
which the optical potential is switched, the following work values can be defined:

W− = ∆λ

2 x2
−, (6.6)

W+ = ∆λ

2 x2
+, (6.7)

where x− = x(t0) corresponds to the case in which there is no delay in the experiment, i.e.
δp+δtm → 0, and x+ = x(t2) corresponds to the worst case scenario, where δp+δtm → ∆t.

Although the bead’s position must be acquired only after thermalization, it was
collected simultaneously with the PD signal throughout the experiment. The detection of
the switch instant is reported in the Appendix A.

Since the delay time is not fixed, estimating the mean interval between measure-
ments is important and depends on the computer’s processing time. After all computer
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settings have been optimized, the following distribution of ∆t is established for the ap-
plication of a set of 3 · 104 protocols. As shown in Fig. 43, the events with ∆t ≈ 1 ms are
mostly likely, but much faster acquisitions are also performed. Therefore, the delay time
is kept as short as possible and the region of interest is controlled with the use of different
threshold values, xS.

Figure 43 – Histogram of the time interval between acquisitions, ∆t, for 1000 protocols.
The histogram has 100 bins.

Source: By the author.

6.4 Protocol application and experimental results

The application of the feedback protocols requires the system to be characterized,
as described in the previous sections. Therefore, the PSD curves were obtained from the
position time-series of one trapped silica microsphere (see Sec. 3.2.4). The dependency of
κx for different laser powers is κ = mT SVP D + bT S, where mT S = 2.41 ± 0.03 (pN/µm)/V
and bT S = 0.08 ± 0.04 pN/µm.

The amplification factor, which converts the voltage output signal from QPD to
meters, was obtained in a different way. Since the experiment required the position of the
particle relative to the equilibrium position, x = (xQP D−xoffset)/Sx, prior to each protocol
application, the position time series of the particle in state λi was collected for 100 s at
100 kHz. Besides xoffset = ⟨xQP D⟩∗, PSD was computed and Sx = 0.705 ± 0.003 µm/V
was obtained for all measurements presented in what follows†.

∗ Note the equilibrium position has the contributions of QPD offset due to the circuit config-
uration and possible misalignment between trapping and detection lasers.

† Since N = 30 position time series of 100 s each at 100 kHz were acquired, 30 different results
for Sx obtained from each PSD curve are provided. Therefore, the mean of these values and
the uncertainty, δS = σS/

√
N , obtained from the standard deviation, σS , were considered.
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After the system has been characterized, the protocols can be applied to different
thresholds, xS, as shown in Fig. 44. In this chapter, all protocols initiate in λi = 1 pN/µm
for τeq = 40 ms ≈ 2τR and switch to λf = 2 pN/µm. As discussed in (69), due to the
presence of the demon, a larger number of protocols is required for the computation of
⟨exp (∆F −W

kBT
)⟩. Therefore, 3 · 104 protocols were performed for each threshold.

Fig. 44 shows the particle’s position during the feedback protocol for different
values of xS. Notably, the switch is activated at the exact instant of the narrowing of
the waist of the positions and the width of such waist will depend on the threshold xS.
However, the time delay for the detection of the change (used here to identify the starting
point of the protocol) depends on the acquisition rate, as previously addressed.

Figure 44 – Trajectories for 100 protocols with different threshold values xS = 107, 53,
21 nm (from top to bottom). The black dashed line corresponds to the laser’s
detection moment of the switch.

Source: By the author.

Therefore, computing the values of work, W− and W+, for an ensemble of trajec-
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tories leads to the probability distributions of the quantities, as shown in Fig. 45. Besides
the protocol with feedback, the simple step protocol, in which the switch is performed
just after the thermalization period with no information on the bead’s position, was also
studied.

Figure 45 – Probability distributions of work and their average values (vertical solid lines)
for the step protocol without feedback (A) and with feedback - W− (B) and
W+ (C). The protocols with feedback were applied for different threshold val-
ues: xS = 107, 64 and 21 nm in blue, orange and green, respectively. The Black
dashed line represents the free energy difference. The original histograms have
1000 bins obtained from 3 · 104 trajectories. Here λi = 1 pN/µm, λf = 2λi

and τeq = 40 ms.
Source: By the author.

The work distribution of the simple step protocol has a long tail, as displayed in
Fig. 45 (A) and the average work value depends on ⟨x(0)2⟩ at the initial instant. According
to Eq. 6.5, the theoretical value is expected to be ⟨W ⟩ = 0.5 kBT and the experimental
result for the average work is ⟨W ⟩ = 0.723 ± 0.006 kBT‡. The coefficient α, from Eq. 6.3,
can be computed by ⟨exp (∆F −W

kBT
)⟩ = 0.90±0.02 and, in case of no feedback, theoretically,

it should be equal to 1. Therefore, a small deviation between experiment and theory is
observed and occurs due to the noise present in the system at higher frequencies, as
described in Appendix B.

‡ The uncertainties were obtained in the way described in Sec. 4.
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Here, we collected data at a reduced acquisition frequency, f = 1/∆t ≈ 1 kHz,
due to the limitation of the software time (Fig. 43). Consequently, no low-pass filter§ can
be applied in the particle’s position during data analysis, thus clearly affecting ⟨x2⟩. If x2

is bigger than expected due to the noise contribution, the average work is overestimated
and ⟨exp (∆F −W

kBT
)⟩ is underestimated. Despite this small deviation, the protocols’ results

can be compared with the feedback activated for different thresholds.

Fig. 45 (B) shows the work probabilities from W− (Eq. 6.6), which is an ideal
scenario since it is considered the application of the switch immediately after the particle’s
detection in the position of interest. The tail has an abrupt cutoff at work values bigger
than ∆λx2

S/2, causing the average work and variance values to decrease as xS decreases.

The tail becomes smoother in the other extreme case, W+ (Eq. 6.7), due to the
bead’s position evolving from that moment onwards, as depicted in Fig. 45 (C). Between
the detection instant and the actual switch of the potential, it evolves in the trap cor-
responding to λi, after which it evolves with the trap corresponding to λf . Due to the
difficulty in modelling the particle’s behavior for those different contributions to be taken
into account, the actual work, W , associated with the feedback protocol in the present
system is considered to lie within ⟨W−⟩ < ⟨W ⟩ < ⟨W+⟩.

Fig. 46 displays the average work values from conditions W− (Eq. 6.6) and W+

(Eq. 6.7) for all explored thresholds. Almost all of them are smaller than ∆F and tend to
zero as xS decreases in an approximately linear dependency. Although such results seem
an apparent violation of the Second Law of Thermodynamics, that is not the case, since
the role of information and the use of feedback must be considered to do the information-
to-energy conversion.

The convergence of term ⟨exp (∆F −W
kBT

)⟩ can be examined for different numbers
of trajectories under the same protocol for studies of the generalized Jarzynski equality.
Although (69) predicts many repetitions for Jarzynski convergence, Fig. 47 (left) shows
approximately 5000 protocols seem sufficient. Moreover, as the threshold decreases, the
convergence occurs more rapidly.

The results for different threshold values show the dependency of efficiency, α, is
inversely proportional to threshold xS, as depicted in Fig. 47 (right). Again, the true value
of α lies between those calculated from W− and W+, which are closer for large xS and
start to diverge for small xS.

§ To filter the high-frequency noise on data, as discussed in Appendix B, a low-pass filter with
cutting frequency in 3 kHz must be applied. However, if the acquisition frequency is smaller
than this value, applying this filtering process is not possible.
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Figure 46 – Average work for W−, in blue, and W+, in orange, for different threshold
values. Each point corresponds to the average of 3 · 104 trajectories. Here,
λi = 1 pN/µm, λf = 2λi and τeq = 40 ms. The black dashed line represents
the free energy difference. The uncertainties are smaller than the dots.

Source: By the author.

Figure 47 – Convergence of Jarzynski equality for different thresholds xS = 107, 64 and
21 nm in blue, orange, and green, respectively (left). Points represent val-
ues obtained from ⟨exp (∆F −W−

kBT
)⟩ and crosses from ⟨exp (∆F −W+

kBT
)⟩. Depen-

dency of α in the threshold xS (right) obtained from 3 · 104 trajectories for
⟨exp (∆F −W−

kBT
)⟩ in blue and ⟨exp (∆F −W+

kBT
)⟩ in orange.

Source: By the author.

6.5 Conclusions

This chapter addresses the implementation of a simple feedback system in which
the particle’s potential is altered from a less confined state to a more confined one when
the particle’s position is observed in a region of interest. Summarizing, a Python code
prepares the system at λi while keeping the potential fixed for a time τeq. Then, the
particle’s position starts to be checked and if |x| < xS, a switch to λf state is performed.
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After reaching equilibrium, the system returns to λi and the process repeats.

Since the system was implemented with no regular data acquisition and the time
between collections was limited by the software loop (corresponding to approximately
∆t ≈ 1 ms), no verification of the particle’s exact position when the laser power changes
was possible. Therefore, the work values from Eq. 6.4 were analyzed considering x− (col-
lected position that satisfies |x| < xS) and x+ (next collected position after a time interval
∆t). Therefore, the actual result should lie within the W− < W < W+ interval for the
feedback protocols.

Apart from protocols with feedback, data for a simple step protocol were also
acquired. Comparing the work probability distributions, it is notable that the feedback
increases work efficiency compared to the simple step case. The average work values ob-
tained in feedback protocols for the studied parameter set were lower than the free energy
difference, justified by the information-to-energy conversion. The dependency of mean
work on the threshold is approximately linear, with it tending to zero as the threshold de-
creases. As expected, for the generalized Jarzynski, the α value obtained increases as the
threshold decreases. Therefore, information is used here to apply less work in the system
to change its state, and the results presented in this chapter illustrate the correspondence
between information and energy for compressing traps.

Despite the current hardware limitation for the demon’s implementation, the ex-
periment was a first step towards experimental explorations of feedback control in our
group, thus opening possibilities for new and more complex protocols, such as creation
of virtual potentials via feedback and other experiments aiming at information-to-energy
conversion. The next steps include the addition of field-programmable gate arrays (FP-
GAs) for faster criterion-based actions, enabling more sophisticated implementations.
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7 STUDY OF OPTICALLY ACTIVE SUPER-CRYSTALS IN A TRAP

Until now, our research has focused on the classical regime, in which stochastic
thermodynamics was studied through different types of protocols using trapped micro-
scopic particles with no quantum effects involved. However, this chapter proposes transi-
tioning towards the classical-quantum interface, exploring trapped colloidal super-crystals
of quantum dots.

Quantum dots are nanometric structures composed of semiconductors with no-
table quantum properties, such as single photon emission, originating from the quantum
confinement of electrical charges. In general, semiconductor materials exhibit a significant
gap (absence of energy levels or bands) between the valence band, where electrons are
bound to atoms, and the conduction band, where electrons roam within the crystal. A
minimum energy, often via heat or light, is required so that electrons can transition from
the valence to the conduction band, leaving a hole in their original positions.

In bulk semiconductors, the energy levels between bands are continuous. However,
when the size of the material decreases to the order of the nanometric scale, the levels be-
come discrete due to the confinement of the charge carriers in all three dimensions. Such a
quantum behavior, allied to the versatility of controlling absorption and emission spectra
via material engineering, enables studies of different quantum phenomena using these ob-
jects. Consequently, there are numerous applications of systems with quantum dots, such
as construction of displays (95–96), development of light sources (97) and photovoltaic
cells (98–99), scientific advancements in imaging biological systems (100), quantum com-
puting (101–103), and information processing (104–107), among other studies. This vast
array of applications culminated in the 2023 Nobel Prize in Chemistry for the discovery
and synthesis of this material (108–110).

This research focuses specifically on super-crystals formed by spherical quantum
wells (SQWs) (111). Such structures have controllable arrangements and sizes - of the
order of micrometres - making them easier to be trapped and manipulated with an optical
tweezers system. Besides, when an ensemble of quantum objects is combined, collective
quantum effects originating from the particle synchronization may be expected.

Particularly, one expects that the target particles present the so-called superradi-
ance effect (112–113). This phenomenon occurs when a massive number of emitters inter-
act with a common excitation source. When the distance between the emitters is smaller
than the light wavelength, the emitters interact collectively, generating a high-intensity
pulse coherently and directionally. This effect amplifies the emitted radiation intensity
compared to uncorrelated photon emission and can be the differentiator in a system with
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significantly higher thermal energies, like room-temperature optical tweezers. This effect
was recently observed in three-dimensional superlattices of quantum dots (114) and in a
room temperature system (115). Therefore, observing possible mechanical signatures of
that collective quantum phenomenon was the initial motivation for this research.

Thus, through an adapted optical tweezer setup that enables the trapping and ex-
citation of the material of interest, our aim was to understand the interplay between those
optically active microstructures’ mechanical and optical properties. In particular, looking
at the particle movement confined within a trap, our expectation was to detect quantum
features inherent to this system and measure their effects on the particle dynamics.

First, the colloids of quantum dots used are presented and a general description
of the particle dynamics is provided. Modifications performed in the experimental system
necessary for the exploration of quantum properties and characterization of the optical
potential felt by the particle are shown and the first experimental results, the preliminary
conclusions, and future plans are reported.

7.1 CdS/CdSe/CdS quantum dots colloids

Quantum dots can contain various base elements such as cadmium, lead, and
indium and, depending on their material and structure, they can be applied for different
purposes. Here, our focus is on SQWs formed by Cadmium Selenide (CdSe) and Cadmium
Sulfide (CdS) with the CdS/CdSe/CdS structure and synthesed according to (111), as
depicted in Fig. 48 (inset). As detailed in (116), this material is an exceptional source
of single photons with complex decay dynamics characterized by excitons (electron-hole
pairs) and defects emission. The SQWs used were synthesized by Zhu Meng and Benoït
Maller at Institut Lumière Matière.

Figure 48 – TEM image for super-crystals of many SQWs of different sizes and scheme of
a single SQW structure (inset). Here, the CdS is in blue, and the CdSe is in
orange, and typically r = 1.3 nm, l = 1.7 nm and R = 3.4 nm.

Source: By the author.

The super-crystal colloids are composed of SQWs arranged in a face-centred cubic
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packing and can have different sizes, from tens of nanometers to micrometers. They were
constructed in collaboration with Chiara Moretti and Benjamin Abécassis at Laboratoire
de Chimie ENS de Lyon. Their basic synthetization consists of a self-assembly process -
more details can be found in (114). Basically, droplets of SQWs formed by shaking the
sample are slowly evaporated, constructing self-arranged super-crystals. The number of
quantum dots is approximately NSQW ≈ 108 for a micrometric sphere, typically used in
this research.

Fig. 48 shows the image obtained with Transmission Electron Microscopy (TEM)
for super-crystals of different sizes and Fig. 49 displays the absorption and emission spec-
tra, revealing a broad absorption band and an emission peak around 650 nm∗

Figure 49 – Absorption and emission spectra of super-crystals formed by SQWs
(CdS/CdSe/CdS).

Source: By the author.

7.2 Mechanical dynamics in the trap

This research aims to investigate the coupling between colloids’ mechanical and
optical properties. Therefore, a pulsed laser was used to excite the trapped particles while
observing the response in the bead’s centre of mass movement. Thus, this chapter describes
the dynamics of our system and the expected results.

In general, when a photon of light is shone onto an optically active material, three
phenomena can occur: reflection, refraction, and absorption/emission. Since photons carry
momentum, as discussed in Chapter 3, a recoil force is generated in the material for each
incident photon with altered direction or energy.
∗ Complementary measurements of the colloid’s lifetime were performed by confocal mi-

croscopy in collaboration with Julien Laverdant and Florian Kulzer from Institut Lumière
Matière. The analysis is in progress.
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First, let us consider the simplest case in which Np photons with wavevector k⃗

propagate in a plane wave. The momentum of each photon will be p⃗ = h̄k⃗, where h̄ is
the reduced Plank’s constant. Therefore, the amplitude of the optical force related to the
absorption of Np photons in a time duration τ is given by NP h̄k⃗/τ .

Since computing the exact force can be challenging for absorption/emission, the
extreme scenario, where all photons are absorbed when the particle is illuminated with
a quasi-resonant pulsed laser source, represented in Fig. 50, is considered. For this case,
if the average beam power is defined as Pmean, the repetition frequency 1/T , and the
pulse duration τ , the approximate number of photons of each pulse is given by Nppp =
PmeanT/Ep, where Ep = hc/λ is the energy of a single photon and c is the speed of light
in vacuum.

Figure 50 – Diagram of the pulsed laser temporal profile showing the periods when the
laser is on and off. Here, T is the repetition time and τ is the pulse duration.

Source: By the author.

The pulsed laser can be described by Dirac comb of period T :

combT (t) = 1
T

∞∑
n=−∞

exp (2iπnt/T ), (7.1)

and its width τ is well represented by a rectangle function

rectτ =

1, if |t| < τ/2

0, otherwise
. (7.2)

Therefore, the optical force due to absorption can be defined as†:

Fopt(t) = Fp rectτ (t) ∗ combT (t), (7.3)

being
Fp = Nppp

h̄k

τ
= Nppp

h

λτ
= T

τ

Pmean

c
, (7.4)

† Here, ∗ represents the convolution product (f ∗ g)(x) =
∫+∞

−∞ f(x − t)g(t)dt.
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the amplitude of the force. On the other hand, considering a perfectly reflecting surface,
the highest force achievable is double the absorbed force.

In order to have a comparative measurement during colloid excitation, a modula-
tion in trapping beam position, ∆xeq, was also performed at frequency fm, as described
in Sec. 3.1.3. The resulting force is given by:

Fmod(t) = Fm sin (2πfmt) (7.5)

where Fm = κ∆xeq is the amplitude of the force and κ is the trap stiffness of the optical
potential.

Considering a trapped particle immersed in water, its dynamics can be described
by the modified Langevin equation (Eq. 2.18). However, due to optical forces from the
absorption, Fopt, and the modulation force, Fmod, then

mpẍ(t) = −κx(t) −
∫ ∞

−∞
dt′γ(t − t′)ẋ(t′) + Fth(t) + Fmod(t) + Fopt(t). (7.6)

For a measured time Texp of the particle position, PSD can be estimated by

PSD(f) = < |x̃Texp(f)|2 >

Texp
, (7.7)

as discussed in Sec. 3.2.4. Besides its importance for optical potential calibration, the
particle’s response due to external forces can be estimated using that quantity, which
measures the way the power of a signal is distributed across different frequencies.

Computing the Fourier transform of Eq. 7.6, the resulting one-sided spectrum is
given by

PSDexp(f) = 4|χ(f)|2kBTRe (γ̃(f))

+ Texp
F 2

m

2 |χ(fm)|21I(fe)(f)

+ Texp
2F 2

p τ 2

T 2

+∞∑
n=0

|χ(fn)|2sinc2
π(nfn)1I(fm)(f).

(7.8)

with

1I(f0)(f) =

1, if f ∈ I(f0) = [f0 − 1/(2Texp), f0 + 1/(2Texp)]

0, otherwise
. (7.9)

The first term is a consequence of stochastic force due to the contact with the
bath at temperature T , the second term results from the modulation of the equilibrium
position of the trap, and the third originates from the optical force due to excitation. The
theoretical analysis was developed by Benjamin Besga and is detailed in the Appendix C.

To make the link with the experimental data, one can integrate Eq. 7.8 from −∞
to ∞ to end with the power spectrum in meters squared. Thus, the modulation has the
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computing force: ∫ ∞

−∞
dωTexp

F 2
m

2 |χ(fm)|21I(fm) = F 2
m

2 |χ(fm)|2, (7.10)

since
∫∞

−∞ dω1I(fm) = 1/Texp, and the excitation:

∫ ∞

−∞
dωTexp

2F 2
p τ 2

T 2 |χ(fn)|2sinc2
π(nfn)1I(fn) =

2F 2
p τ 2

T 2 |χ(fm)|2 ≤ 2P 2
mean
c2 |χ(fm)|2. (7.11)

7.3 Experimental system and sample preparation

Towards taking advantage of the quantum properties of those super-crystals, a
new laser source was added to the experiment (presented in Sec. 3.1.2), a red-pulsed laser
of 640 nm wavelength (Thorlabs NPL64B), as shown in Fig. 51. This laser allows us to
control the pulse duration within the range of 5 ± 1 ns to 39 ± 3 ns, and by using the
trigger, we can modulate it with arbitrary frequencies‡.

A set of optical densities (ODs) was aligned in the laser’s output to control the
beam’s intensity. The fine-tuning was conducted through the addition of a polarizer with
a controllable rotational angle around the propagation axis.

To increase the spot of the pulsed laser in the trapping plane and cover the entire
super-crystal region, one also incorporated a high focal length lens to diverge the beam in
the objective’s entrance. Basically, a non-collimated beam has a focal position in z that
is different from a collimated one, which is closer to the objective output for convergent
beams and more distant for divergent ones. Therefore, in the position where the particle
is trapped with the IR laser (that enters collimated), the diameter of the exciting beam
will be larger than its focal waist. This allowed us to increase the diameter of the spot
from 3 µm to approximately 7 µm while using a 400 mm lens.

It is worth mentioning that the trapping and detection lasers are aligned to be
as coaxial as possible in the sample region. However, the excitation beam is slightly
misaligned in the objective’s entrance, intentionally creating a small angular deviation
in relation to the others, as shown (inset) in Fig. 51. Such a choice was made since it is
expected to have a bigger effect on the bead’s movement due to absorption in the beam
propagation direction. However, our experimental system is not built to properly acquire
particle movement in z. Therefore, creating a small angular deviation in the exciting beam
allowed that part of the effect manifests in the x − y plan.

For this, after a rough initial alignment of the pulsed laser in the path, a super-
crystal is trapped and the beam is moved to illuminate the bead’s area. The angular
deviation can be visualized by scattering the pulsed light in the glass plate with the aid
of the CCD camera.
‡ A function generator was used to create the square wave to trigger the laser.
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Figure 51 – Simplified description of the experimental setup described in Sec. 3.1.2, with
the addition of the 640nm pulsed laser. A high focal length lens increases the
beam’s diameter in the trapping position and a set of ODs and one polarizer
control the pulsed laser power. The inset shows the scheme of the beams’
alignment after the objective with the trapping laser in orange, the probe
laser in dark red, and the excitation laser in fuchsia.

Source: By the author.

Since the sample exhibits a highly diverse size distribution and our target is big-
ger particles to decrease the effect of pushing (due to the radiation pressure and mostly
absorption), trapping the colloid more stably, the larger particles of the sample are sep-
arated. The process involves several steps, including centrifugation and sedimentation,
for the removal of the lighter particles from the sample. After a substantial dilution so
that only one particle can be found in an area of approximately hundreds of squared
micrometres, one bead of the size of the order of micrometers is manually selected. For
each particle, the size must be estimated and the optical trap must be characterized, as
discussed in the next section.

7.4 Characterization of the optical trap

Since super-crystal colloids have different possible sizes, calculating the particle
radius is the first step. For that, we employ a procedure involving binarizing the image of
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the chosen bead close to its focus and analyzing its contours, as demonstrated in Fig. 52.
Using the minimum enclosing circle function and prior camera calibration, the diameter
of each colloid can be estimated.

Figure 52 – Image of the microscopic super-crystal formed by SQWs and its contour. The
resulting radius is approximately 2.4 µm.

Source: By the author.

To determine the trap stiffness of the bead, κx,y, and the amplification factor of
the QPD, Sx,y, the PSD analysis method described in Sec. 3.2.4 was employed. The PSD
curves (right) for x and y axis and the position histograms (left) of the same trajectories
are depicted in Fig. 53.

During the experiments reported in this chapter (more specifically in the following
section), approximately fifty position time series with 100 s each were acquired at 100 kHz.
The mean trap stiffness is κx = 1.58 ± 0.02 pN/µm for x direction and κy = 1.52 ±
0.04 pN/µm for y direction; and the mean amplification factor results are Sx = 4.60 ±
0.16 V/µm and Sy = 3.61 ± 0.13 V/µm. Therefore, stable trapping with no changes in
the optical potential is achieved during long measurement acquisitions.

To compute the expected modulation force, it is also necessary to characterize
the beam’s displacement during the modulation. The same method presented in Sec.
3.1.3 was applied for a trapped super-crystal, and the result is a calibration factor of
978 ± 7 nm/MHz.

7.5 Experimental Results

The pulsed laser is tuned in a given excitation frequency fe and the modulation
frequency is chosen to be close to the excitation one, fm = fe −10 Hz so that the particle’s
response can be computed. In all measurements, the deviation in the equilibrium position
is ∆yeq = 195 ± 2 nm in the y direction. Therefore, the following analyses are conducted
on that axis.
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Figure 53 – Position histogram (left) and PSD (right) for x and y directions. The trap
stiffnesses are κx = 1.5 pN/µm and κy = 1.6 pN/µm. Results from measure-
ments of the time series position of a trapped particle with 2.4 µm radius for
t = 100 s with a f = 100 kHz acquisition rate.

Source: By the author.

As an example, Fig. 53 (right) displays the complete spectra of a super-crystal
trapped when fe = 16.1 kHz and fm = 16.09 kHz and Fig. 54 (left) shows a zoom in the
window of interest, where the responses due to modulation and excitation are displayed as
peaks in the spectra§. Towards estimating the frequency of the resulting peaks, first, PSD
is zoomed into a sufficiently small interval, such that the Brownian noise is approximately
constant, fe − 100 Hz < f < fe + 100 Hz. Then, the frequency corresponding to the
maximum PSD value is obtained looking into an even smaller interval, fe − 5 Hz < f <

fe+5 Hz for the excitation and fm−5 Hz < f < fm+5 Hz for the modulation. Additionally,
the thermal noise, ⟨F 2

th⟩, is acquired by averaging the points out of the regions containing
the peaks.

Since the peaks can be considerably sharp, longer measurements (100 s) were
performed towards a bigger frequency resolution. The discrete integral was computed at
f = fk∆f frequency, where ∆f = fs/NF F T , fs is the sampling frequency, and NF F T is
the length of the Fast Fourier Transform (FFT), as follows:

I =
∫ f+δf

f−δf
(PSDk − ⟨F 2

th⟩) df ′ = ∆f
k=ki∑

k=−ki

PSDk − ⟨F 2
th⟩. (7.12)

Here, the window δf = (k −ki)∆f ≈ 0.2 Hz is small enough to compute the contributions
of excitation and modulation, and the thermal noise is subtracted, as shown in Fig. 54
(right). The image shows the frequency range used in the integration for both contributions
around the frequency of excitation and the frequency of modulation. The peaks have a
shift around 0.15 Hz from the expected (input frequency) due to the accuracy of the
generator.
§ The peaks are negligible in x direction due to the chosen pulsed laser alignment and are not

shown here.
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Figure 54 – PSD in y direction. First, the region fe −100 Hz < f < fe +100 Hz is zoomed
to obtain the peaks and the thermal noise (left). The peaks region is then
zoomed in the frequency range used in the integration, I (Eq. 7.12), around
the frequency of excitation in blue, fe = 16.1 kHz, and frequency of modula-
tion in orange, fm = 16.09 kHz. The black dashed line represents the thermal
noise, ⟨F 2

th⟩. Here, the pulsed laser operates at a 16.1 kHz frequency (excita-
tion) and the trapping laser position is controlled at a 16.09 kHz frequency
(modulation). Data were collected at 100 kHz for 100 s and NF F T = 107.

Source: By the author.

The force of each contribution is given by

F =
√

2 I

|χ|2
, (7.13)

where I is shown in Eq. 7.12 and χ is presented in Eq. 2.20, as described in the Appendix
C. Therefore, the force can be estimated from experimental data and compared with
theoretical predictions depicted in Eq. 7.10 for modulation and Eq. 7.11 for excitation.

To extract the type of dependency in each explored curve, we consider the loglog
scale of optical force versus average power. The resulting angular coefficient is equivalent
to the degree α. For α = 0, the dependency is constant; for α = 1, the behaviour is linear;
for α = 2 is quadratic etc.

Since the beam’s displacement is kept the same, the modulation force should be
constant in all measurements, i.e. αtheo = 0. However, as presented in Eq. 7.11, the optical
force has a linear dependency on the average power of the pulsed laser, i.e. αtheo = 1.
Experimentally, Pmean can be controlled by changing the frequency fe = 1/T , the width
τ or the rotation angle of the polarizer¶ and the Langevin dynamics depends only on
the average power regardless of 1/T , τ or peak power. Figs. 55, 56, and 57 display a
¶ The calibration curve for the frequency control is Pmean = 0.131f +0.033, and for the width

control is Pmean = 0.060τ + 0.04. Here, the average power is in microwatts, the frequency is
in kilohertz, and the width is in nanoseconds.
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comparison between theoretical and experimental results for different parameters of the
exciting beam.

Figure 55 – Frequency control. Average power dependency of optical force (left) and mod-
ulation force (right) from fe = 16.1 kHz to 45.1 kHz and fm = fe − 10 Hz.
Experimental values (dots) and linear fit on loglog scale (solid lines) in blue
and theoretical predictions in orange.

Source: By the author.

Figure 56 – Width control. Average power dependency of optical force (left) and modu-
lation force (right) from τ = 5 ns to 39 ns. Experimental values (dots) and
linear fit on loglog scale (solid lines) in blue and theoretical predictions in
orange.

Source: By the author.

For all the cases, the obtained amplitude of the modulation force is close to the
theoretical prediction Fm = 0.30 pN, as shown in Figs 55, 56, and 57 (right). However,
the value of αexp deviates from the case of width control, showing a subtle growth of the
particle response over time (αexp = 0.28 ± 0.03).
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Figure 57 – Polarizer control. Average power dependency of optical force (left) and mod-
ulation force (right) for different polarizer’s angular positions. Experimental
values (dots) and linear fit on loglog scale (solid lines) in blue and theoretical
predictions in orange.

Source: By the author.

Interestingly, the optical force computed from experimental data is considerably
bigger than the expected value, even with the extrapolation that all photons are absorbed
and the force is applied in the measured direction y. Moreover, according to Fig. 55
(left), the optical force has almost a quadratic dependency on the average power (αexp =
1.83 ± 0.06). For the width control, shown in Fig. 56 (left), the experimental degree is
close to the theoretical one, although a magnitude Fexp ≈ 7.5Ftheo is observed. Regarding
the power dependency directly controlled by the polarizer’s angular position, shown in
Fig. 57 (left), again, the amplitude is larger; however, the dependency is smaller than the
expected (αexp = 0.77 ± 0.04).

Therefore, the theoretical underestimation of the resulting optical force shows
that the physical model based on Langevin dynamics must be revised to better describe
the particle’s motion. Although the amplitude of the experimental force is considerably
larger than expected, no explanation could be inferred for the average power dependencies
discrepancies αexp while different pulsed laser parameters were being changed. Indeed we
expect the same dependency with the mean power regardless of frequency, pulse width or
pulse power using this Langevin description (see Eq. 7.11).

7.6 Conclusions

This last chapter proposed extending studies, initially focused on a classical de-
scription, to investigate the validity of stochastic thermodynamics at the classical-quantum
interface. To achieve this, the super-crystals formed by quantum dots were trapped with
optical tweezers, and the effects of an external pulsed excitation source on their mechan-
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ical dynamics were explored. In addition to the optical force, a modulation in the beam
position was also applied for complementary measurements.

The trajectory of the trapped bead was used for the computation of the Power
Spectral Density (PSD), revealing resonant peaks at the expected frequencies. Therefore,
the experimental optical and modulation forces for various pulsed laser parameters were
calculated from those curves. In particular, one focused on studying the bead’s response
while altering the excitation source’s average power. Such a control was performed by
controlling the polarizer’s angular position and adjusting the pulsed laser’s frequency and
width.

As a complementary measurement, a modulation in the beam position was applied
with a constant trapping beam displacement throughout the experiment. In this case,
the resulting force should remain constant and close to its theoretical prediction for all
measurements. The experimental results showed a good agreement with the theory, with
minor deviations while controlling the width of the pulsed laser possibly attributed to
trapping instabilities.

However, the resulting magnitudes of the optical forces notably surpassed the
theoretical predictions. It is worth noting that the model adopted assumed an extreme
scenario where all particles were absorbed, resulting in recoil along the measured axis.
Since measurements were not performed along the laser propagation direction, z, only
the projection of that effect in the y direction was taken into account, suggesting the
discrepancies are even larger. Regarding the dependency of force on average power, several
α values were obtained, although the theory expects linear growth. Further investigations
on both theory and experiment must be conducted to elucidate the resulting particle
behavior.

Therefore, the first important result is absorption/emission phenomena can be
mechanically measured with the use of adapted optical tweezers at room temperature.
Although the position in the z direction could not be tracked for our experimental con-
figuration, the effects on the plan x − y were strong enough to be detected. Furthermore,
our most significant finding is that the particle dynamics differ from what is expected by
the Langevin description, implying the model must be improved to incorporate previously
unconsidered phenomena.

Besides the possible gaps in the theoretical description, our results can deviate
from the expected due to some experimental complexities. Challenges include maintain-
ing a stable trap, given the non-homogeneous nature of the particle compared to the
commercial ones, a slight misalignment in the position of the beam when the polarizer
angle is varied, and difficulty in avoiding potential photodegradation of the colloid (116).
Despite adjusting the pulsed laser power to minimize possible undesired effects, they do
not vanish and can affect the results.
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One possibility is that absorption is insufficient to explain the experimental results,
and collective effects, such as superradiance, are the primary drivers of the observed
recoil in the colloid. Furthermore, due to the temporally localized excitation, the particle
is subjected to impulses in a very short time duration, and the viscosity behavior in
this regime may deviate significantly from the typical predictions of Langevin dynamics
(117). When rapid pulses are applied to a Brownian particle, the effective viscosity can be
temporarily reduced, resulting in a bigger displacement due to the particle’s rapid response
to external changes, masking the influence of the fluid viscosity in which the particle is
immersed. Such an effect may explain the difference between the absolute values predicted
for the optical force and those experimentally verified.

Overall, these results have triggered new experiments performed in Lyon in order
to minimize the undesired effects and pave the way for a series of experiments explor-
ing the classical-quantum interface, such as understanding possible collective effects in
these structures, developing hydrodynamics studies at short time, and investigating the
extension of stochastic thermodynamics in this regime.
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8 THESIS EVOLUTION AND CONCLUSIONS

In summary, this doctoral thesis comprehended experimental studies on stochastic
thermodynamics as its primary scope. The first steps involved building and characterizing
a homemade experimental system, which progressed to the application of the first pro-
tocols in the classical regime. Then, through collaboration, efforts were made to explore
thermodynamics in the classical-quantum interface. This section reports the advances and
challenges encountered during the elaboration of the thesis, chronologically, as well as the
main results and possible future studies.

The assembly of the optical tweezers apparatus in the IFSC-USP laboratory began
in 2017 - more details can be found in the author´s Master’s dissertation (63). Despite
the existence of a functional optical tweezer setup capable of trapping and manipulating
micro-particles, the first step towards nanothermodynamics was the implementation of
the QPD device for tracking the bead position at a higher acquisition frequency than
that of the camera used up to that point. Its inclusion enabled characterizing the system
through different methods, as described in Chapter 3, and started a series of experiments
described in what follows.

The first project aimed to explore time-averaged optical potentials, particularly
creating double-well traps by switching the laser between two nearby positions. The mo-
tivation stemmed from its various applications, such as Kramers’ theory and Landauer’s
principle (24–25), making this type of double-well optical potential a good starting point.
The first experimental tests led to the creation of multiple traps and the initial results are
provided in (65). Despite good control of the beam’s position, the condition for bistable
operation (Krammer’s transitions) could not be easily achieved; therefore, the research
path was eventually changed.

It is important to mention that the world faced the coronavirus pandemic dur-
ing that period. Consequently, laboratory activities were suspended for many months,
and returning to normality took years. In this scenario, we started exploring stochastic
thermodynamics using harmonic potentials. This decision was further reinforced by the
fact that one of the fundamental works of optimization of processes in nonequilibrium
regime (74), focusing on Brownian particles trapped in harmonic potentials, apparently
needed to be tested experimentally. The work developed by Schimield and Seifert pro-
posed analytical solutions for two study cases: changing the trap’s equilibrium position
and the force constant. Still under the lockdown imposed by the pandemic, those optimal
protocols started to be explored computationally by adapting the simulations presented
in (82) in collaboration with Lucas Kamizaki, a Master’s student in our lab (69,80,83).
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According to the simulations and considering the characteristics of our experimen-
tal apparatus, we concluded that it would be simpler to experimentally start with the
compressing trap protocol, in which the bead is equilibrated in an initial confinement
state and the protocol is then applied by increasing the trapping laser intensity. The first
experimental applications of compressing protocols were conducted in the setup when
in-person activities were resumed. Jarzynski’s equality was used as an independent test
for the calibrations and in addition to verifying it, the results for the optimal protocols
were compared with those from linear (suboptimal) ones. The first findings are provided
in (83).

Overall, the average work obtained for optimal control was lower in comparison
to the linear case for all explored sets of parameters and Jarzynski’s equality was also
verified. However, due to mechanical resonances, our system had significant low-frequency
noise, around 30 Hz, requiring post-acquisition data processing with a digital notch filter
centered at the noise resonance. We also suspected a possible heating effect of the water
(reservoir) near the laser focus (118) during the protocols (at larger laser intensities),
since a 980 nm laser near a significant absorption line of water molecules was used.

Around that time, a collaboration with a well-established laboratory at ENS-
Lyon, which has produced many pioneering experiments in stochastic thermodynamics,
started. During the research stage in Lyon, the optimal protocols continued to be tested in
conjunction with the development of the main project proposed for the exchange period
(involving quantum dots). The experiments were repeated for a more extensive set of
parameters, and expansion protocols were applied to test Crook’s relation.

A comprehensive study on linear protocols is provided in Chapter 4, showing the
experimental methodology and the resulting energetics distributions for thousands of tra-
jectories. The set of chosen parameters includes different switching times and modulation
amplitudes. The mean values of work, heat, and internal energy difference were obtained,
enabling verification of the First Law of Thermodynamics and comparison with their the-
oretical predictions. It was verified that the mean values for heat and work converged to
the free energy difference value for slower protocols, as expected by Clausius’ theorem
(Second Law of Thermodynamics), and the variance went to zero. Jarzynski’s equality
was verified for compressing protocols and due to the difficulty in obtaining those results
for expansion cases, Crooks’s theorem was also tested.

Although consistent with the theory, minor deviations were observed for protocols
when greater modulation amplitudes were applied during longer protocol times. The origin
of such uncertainty lies in the imprecision of the amplification factor calibration, which is
responsible for converting the tracking signal from volts to meters. Due to the radiation
pressure change as the trapping beam power is modulated, the particle is expected to
move in the beam propagation axis. Even a small displacement can subtly change the
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QPD response in x and y axes, and modelling its behavior can be complex.

Concerning optimal protocols, data were collected jointly with linear ones to keep
the same trapped particle in both processes. The results are provided in Chapter 5 and
show that optimal protocols have lower average work than the linear case, and the exper-
imental values are consistent with the expected theoretical ones. Besides, the difference
between optimal and suboptimal cases depends on the protocol time and an increase in
the optimization efficiency can be observed for intermediate durations. Since in the limit
in which the protocol time tends to zero, i.e., the step protocol, the work depends only on
the initial value ⟨x(0)2⟩, and for more extended protocols, the average work converges to
the free energy difference, in the intermediate zones it is visible a bigger difference between
linear and optimal protocols. Complementarly, the Jarzynski equality was also verified for
the work distributions obtained from optimal processes, since this result depends only on
the initial and final states regardless of the particle’s path in the phase space.

Since the moving trap case could not be experimentally tested during the available
time, the simulation results are also provided towards guiding future experiments. Due to
the significant contributions of rare events in the Jarzysnki equation when negative work
values are expected, a very large number of trajectories must be collected. Additionally,
the optimal protocols clearly showed lower average work than linear ones, as expected,
and again, a higher efficiency was observed for intermediate protocol times.

In recent years, process optimization across different platforms has drawn signif-
icant attention. Therefore, our findings are expected to contribute to both the under-
standing of the energetics of nonequilibrium finite-time processes in small systems and
future developments in the field, especially for general (non-harmonic) trapping poten-
tials. Upcoming experiments in our group will continue exploring optimal control in dif-
ferent optical potentials, including those for which no analytical solutions are available
(77,78,80).

Concomitantly with studies of classical tasks in silica micro-particles, initial inves-
tigations aiming at the quantum regime were explored in the setup of ENS-Lyon. More
specifically, the aim was to study the coupling between optical and mechanical properties
of optically active particles within a trap. Despite the target particles being super-crystals
of quantum dots, the first steps were taken using silica beads to make the needed experi-
mental changes and calibrations for the study.

Initially, detection and excitation lasers were added to the optical path, and the
first tests with silica beads were performed. Interestingly, although a clear response was
observed in the power spectrum density when the trapping beam position was modulated,
no recoil due to excitation was verified. This result shows that the contributions due to the
excitation laser’s scattering were negligible compared to thermal noise, since no absorption
effects of silica at the wavelength of the pulsed laser were expected. After those initial
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tests, the first super-crystals of quantum dots were trapped.

Due to the considerable contribution of absorption and radiation pressure in those
particles, experiments with microscopic (larger) colloids were performed and a small trap-
ping laser’s intensity was chosen towards a more stable trap. Surprisingly, the particle’s
response from the excitation was easily observed from the first measurement and was very
high in the PSD, with peaks much larger than the thermal noise. However, after some
excitation time, the colloids began to show significant instability and their physical shape
was altered. The quantum dots were possibly undergoing bleaching and the pulsed laser
intensity was then reduced for minimizing such an undesired effect.

From that point on, the particle was fully characterized and its behavior was stud-
ied regarding various excitation beam parameters, such as controlling width, frequency,
and power. The results are provided in Chapter 7. Essentially, the expected optical force
arising from the absorption effect depends primarily on the average power of the pulsed
laser, and a linear dependence is anticipated. Experimental findings showed that the com-
puted optical force dependence on the average power varies in function of the controlled
parameter (frequency, width or direct power), requiring further theoretical investigation
to understand the behavior of the experimental results.

However, it is evident that the amplitude of the force obtained is significantly
greater than theoretically expected, even considering an extreme scenario where all pho-
tons are absorbed, producing the bead’s recoil in the beam propagation direction. A
possible explanation for such discrepancies is the existence of collective phenomena in the
quantum dots composing the colloid, especially the presence of the superradiance effect.
Additionally, the hydrodynamics model may differ due to the short time duration of the
optical force. If viscosity vanishes in that limit, a more significant response in the bead’s
movement is expected in the colloid, explaining the resulting experimental forces. These
findings are preliminary observations and further experiments are necessary for confirm-
ing the predictions. Nevertheless, they can contribute to future developments in collective
effects at room temperature and open doors for new investigations into the extension of
stochastic thermodynamics in the quantum limit.

After the exchange period, pertinent changes were implemented in our experimen-
tal system at IFSC-USP to improve the apparatus’ noise behavior. Firstly, the components
were rearranged to decrease their height on the optical table, which was enough to make
the low-frequency noise disappear. The trapping laser was also replaced with a more sta-
ble 1064 nm laser. However, as discussed in Appendix B, significant high-frequency noises
remained in the system despite the attempts to remove them (e.g., working at different
probe laser intensities, performing changes to the QPD amplification circuit, replacing
power supplies, among others). Therefore, a low-pass filter was implemented in the ac-
quired data to reduce noise at high frequencies.
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The procedure enabled characterizing the optical tweezers and the behavior of the
results was very close to that described in Chapter 3 for the calibration curves. However,
high-frequency noise becomes a significant difficulty for delicate experiments like those
in stochastic thermodynamics studies. Therefore, compressing and expanding protocols
were reapplied to test the system’s reliability. Experimental results were compared with
the theoretical predictions for the average work of linear and optimal protocols and the
test of Jarzynski’s equality, revealing a good agreement between experiment and theory
for short protocols (with protocol times around tenths of the relaxation time). On the
other hand, for longer ones, the filtering procedure was insufficient to eliminate devia-
tions, and the remaining noise contributed to the apparent displacement of the particle,
which overestimated the average work. Therefore, removing high-frequency noise from the
acquired signals by changing the electronics or developing better data processing is one
of the current challenges to overcome for the exploration of more complex experiments.

Finally, despite dealing with the undesired noise, one of the group’s main interests
was to explore the information-to-energy conversion. From an idea proposed in the Mas-
ter’s dissertation of Lucas Kamizaki (69) and inspired by the previous work (28), a first
attempt to apply Maxwell’s demon was made with the use of the available system. This
simple experiment proposed changing the trap force constant in a step protocol by using
the information about the particle’s position. Its implementation with results is discussed
in Chapter 6.

Exploring work distributions for thousands of trajectories revealed significant dif-
ferences between protocols with and without feedback. Due to information-to-energy con-
version, the feedback increases the energetic efficiency and the resulting mean average
work is proportional to the threshold applied, i.e., the region where the particle must
be detected for the step protocol to be triggered. Moreover, as expected, Jarzynski’s
generalized equality showed a degree of control of the system inversely proportional to
the threshold chosen. In the near future, the next step is to implement dedicated (fast-
response) hardware to decrease the delay time in the experiment and target more complex
experiments.

In conclusion, this thesis addressed the development and challenges of studies of
stochastic thermodynamics in optical tweezers from classical to quantum regime. These
findings can contribute to further explorations of small systems and indicate a broad open
path with several exciting avenues yet to be explored.
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APPENDIX A – PROTOCOL’S STARTING POINT

To apply the protocols described in Chapters 4, 5, and 6, one controls the trapping
laser intensity, as shown in Fig. 58. However, when a given output signal is applied in the
RF driver, the control and the reading of the QPD and PD show a delay between them.
Consequently, the data acquisition does not start at the beginning of a given protocol.
The identification of the starting point requires analyses of the trapping laser’s PD voltage
signal, VP D,j, for j = 0, 1, 2, . . . , N where N is the number of data acquisition points in a
file.

Figure 58 – Typical PD voltage signal (original one in blue and filtered one in orange) as a
function of the sample number for linear (left) and optimal (right) protocols
with τeq = 20 ms, λi = 1.5 pN/µm, ∆λ = 10λi and τP = 0.1τR, where
τR = γ/λi ≈ 12 ms is the relaxation time in the state λi.

Source: By the author.

The procedure consists of the application of a filter∗ to make the signal less noisy,
as shown in Fig. 58, and the computation of the differential value of the PD voltage signal
given by VP D,j+1−VP D,j. The peaks shown in Fig. 59 represent the linear protocols’ middle
points and the optimal protocols’ starting points. Positive peaks are related to forward
processes (compressing) and negative ones refer to reverse processes (expansion).

∗ It was used the Python function scipy.signal.savgol filter.
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Figure 59 – Typical differential of the PD voltage signal for linear (left) and optimal
(right) protocols as a function of sample number, with τeq = 20 ms, λi =
1.5 pN/µm, ∆λ = 10λi and τP = 0.1τR, where τR = γ/λi ≈ 12 ms is the
relaxation time in the state λi. The peaks corresponding to the identification
of the forward process are crossed in orange, and the reverse processes are
crossed in green.

Source: By the author.
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APPENDIX B – CHARACTERIZATION OF THE SYSTEM’S NOISE

The setup IFSC-USP has undergone several improvements over the years, as de-
scribed in more detail in Chapter 8. Despite the efforts to minimise high-frequency noise,
it has not been eliminated. Towards using the system in spite of unwanted effects, a digital
low-pass filter was implemented in the outputs of the QPD at a 3 kHz cutoff frequency∗.
Figure 60 (left) shows the original and the filtered PSDs for xQP D, demonstrating data
below the cutoff frequency remain unchanged. Despite its simplicity, the measure is effi-
cient and makes the signal cleaner, minimizing contributions from noise in the apparent
displacement of the particle, as depicted in the histograms of Fig. 60 (right).

Figure 60 – Typical PSD (left) and position histogram with 1000 bins (right) for original
data in blue and filtered data in orange. Measuring time is t = 30 s and data
were acquired at a f = 100 kHz acquisition rate for a 2 µm silica trapped
particle.

Source: By the author.

Since that noise is far from the corner frequency, the calibration of the optical
potential is not affected and a linear dependence of the force constant on the PD reading
(proportional to the trapping laser’s intensity) is observed, as shown in Fig. 61 (left)
and discussed in Sec. 3.2.4. However, the resulting curve for the amplification factor,
depicted in Fig. 61 (right), is different from the one presented in Sec. 3.2.5, possibly due
to differences in the alignment of the detection laser relative to the trapping one.

∗ The filter was implemented during the post-acquisition processing by the scipy.signal.butter
function in Python.
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Figure 61 – Calibration curves for trap stiffness (right) and amplification factor (left)
from PSD fits. The angular coefficient is mT S = 2.60 ± 0.03 (pN/µm)/V and
y-intercept is bT S = 0.01 ± 0.04 pN/µm for the trap stiffness calibration.
The average of 10 files was calculated from PSD curves, and the interval
0 Hz < f < 2 kHz was used for the fit.

Source: By the author.
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APPENDIX C – MECHANICAL DISPLACEMENT IN THE TRAP

The two-sided∗ power spectrum density (PSD) for displacement x is calculated as
follows:

PSDx(ω) = lim
Tm→+∞

⟨|x̃Tm(ω)|2⟩
Tm

, (C.1)

where Tm represents theoretical measurement time and x̃Tm is the Fourier transform of
xTm(t) = x(t)rect(2t/Tm), with

rect(2t/Tm) =

1, if |t| < Tm/2

0, otherwise
. (C.2)

Computing the Fourier transform of the particle position on ω = 2πf , here denoted
as FT[f ](ω) =

∫+∞
−∞ dtf(t)e−iωt, gives

x̃Tm(ω) = FT [x(t)rect(2t/Tm)] (ω) = 1
2π

(
x̃(ω) ∗ Tmsincπ(ωTm

2π
)
)

. (C.3)

Now, computing the Fourier transform of the Langevin equation (Eq. 7.6) results
in

−ω2mpx̃(ω) = −kx̃(ω) − iωγ̃(ω)x̃(ω) + F̃th(ω) + F̃mod(ω) + F̃opt(ω) (C.4)
x̃(ω) = χ(ω)

(
F̃th(ω) + F̃mod(ω) + F̃opt(ω)

)
, (C.5)

where the susceptibility is given by Eq. 2.20.

For the calibration force, one has:

F̃mod(ω) = Fm

∫ +∞

−∞
dt sin (2πfmt)e−iωt = −iπFm (δ(ω − 2πfm) − δ(ω + 2πfm)) , (C.6)

and for the optical force,

F̃opt(ω) = Fp FT [rectτ ] (ω) FT [combT ] (ω) = Fpτsincπ

(
ωτ

2π

) 2π

T
comb 2π

T
(ω). (C.7)

Therefore, x̃Tm(ω) can be expressed as the sum of three terms:

x̃Tm(ω) = A + B + C, (C.8)

where A is the contribution of the stochastic force:

A = χ(ω)F̃th(ω) ∗ Tm

2π
sincπ(ωTm

2π
), (C.9)

∗ A two-sided PSD has both positive and negative frequencies and exhibits equal energy on
each side.
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B is the contribution of the modulation force:

B = χ(ω)F̃mod(ω) ∗ Tm

2π
sincπ(ωTm

2π
)

= −iFmTm

2

(
χ(ωm)sincπ((ω − ωm)Tm

4π
) − χ(−ωm)sincπ((ω + ωm)Tm

4π
)
)

,
(C.10)

and C the optical force:

C = χ(ω)F̃opt(ω) ∗ Tm

2π
sincπ(ωTm

2π
)

= FpτTm

T

+∞∑
n=−∞

χ(n2π/T )sincπ(nτ

T
)sincπ(ωTm

2π
− n

Tm

T
).

(C.11)

The computation of the mean square displacement in the frequency domain is
given by

⟨|x̃Tm(ω)|2⟩ = ⟨|A|2⟩ + |B|2 + |C|2 + 2Re(BC∗) (C.12)

since ⟨A⟩ = 0 and the terms B and C are associated with deterministic forces.

Therefore, let us compute each term of Eq. C.12, starting with the first ⟨|A|2⟩:

⟨|A(ω)|2⟩ = ⟨|
∫ +∞

−∞
dω′χ(ω′ − ω)F̃th(ω′ − ω)Tm

2π
sincπ(ω′Tm

2π
)|2⟩. (C.13)

Since sincπ goes to 0 for big values of ω′, the main contribution to the integral is given for
ω′ ≪ 2π/Tm, which represents the resolution in the frequency domain for a measurement
time Tm. Therefore, in the limit where Tm → +∞, the following approximation is valid:

⟨|A(ω)|2⟩
Tm

≈ 1
Tm

|χ(ω)|2⟨|F̃th(ω)|2⟩
∣∣∣∣∣Tm

2π

∫ +∞

−∞
dω′sincπ(ω′Tm

2π
)
∣∣∣∣∣
2

= 1
Tm

|χ(ω)|2⟨|F̃th(ω)|2⟩.
(C.14)

Considering the particle is in equilibrium in the trap at temperature T and the
excitation and modulation forces are initially zero, then

PSDeq
x (ω) = −2kBT

ω
Im (χ̃(ω)) (C.15)

from the fluctuation-dissipation theorem (Eq. 3.13). Looking in the limit case where Tm →
+∞,

lim
Tm→+∞

⟨|F̃th(ω)|2⟩
Tm

= 2kBTRe (γ̃(ω)) , (C.16)

hence, Eq. C.15 becomes

PSDeq
x (ω) = 2kBT |χ(ω)|2Re (γ̃(ω)) . (C.17)

The second term of Eq. C.12 gives
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|B|2

Tm

= F 2
mTm

4

[
|χ̃(ωm)|2sinc2

π((ω − ωm)Tm

2π
) + |χ̃(−ωm)|2sinc2

π((ω + ωm)Tm

2π
)

− 2Re(χ̃(ωm)χ̃∗(−ωm)) sincπ((ω − ωm)Tm

2π
) sincπ((ω + ωm)Tm

2π
)
]
.

(C.18)

Neglecting the last term, since the overlap of the sincπ functions is insignificant
and focusing on the resonance, ω = ωm, then

|B|2

Tm

= F 2
mTm

4 |χ̃(ωm)|2. (C.19)

The third term of Eq. C.12 is given by

|C|2

Tm

≈
F 2

p τ 2Tm

T 2

+∞∑
n=−∞

|χ(n2π/T )|2sinc2
π(nτ

T
)sinc2

π(ωTm

2π
− n

Tm

T
). (C.20)

Here, the product of sincπ functions related to frequencies different than ωn = n2π
T

was
neglected. Looking specifically to the first resonance, ω1 = 2π/T , we have:

|C|2

Tm

≈
F 2

p τ 2Tm

T 2 |χ(2π/T )|2sinc2
π( τ

T
). (C.21)

The last term of Eq. C.12 can be neglected as long as the modulation and excitation
frequencies are distant, i.e. ∀n |ωm − ωn| ≫ 2π/Tm.

Finally, PSD can be expressed as

PSDx(ω) ≈ 2|χ(ω)|2kBTRe (γ̃(ω))

+ lim
Tm→+∞

F 2
mTm

4 (|χ̃(ωm)|2sinc2
π((ω − ωm)Tm

2π
) + |χ̃(−ωm)|2sinc2

π((ω + ωm)Tm

2π
))

+
F 2

p τ 2Tm

T 2

+∞∑
n=−∞

|χ(n2π/T )|2sinc2
π(nτ

T
)sinc2

π(ωTm

2π
− n

Tm

T
)
.

(C.22)

Passing Eq. C.22 to frequency dependecy and computing the averaged value of the
PSD over the measured interval I(f) = [f −1/(2Texp), f +1/(2Texp)] lead to the one-sided
spectrum:

PSDexp
x (f) =

∫
I

df ′PSDx(f ′)Texp

= 4|χ(f)|2kBTRe (γ̃(f))

+ Texp
F 2

m

2 |χ(fm)|21I(fm)

+ Texp
2F 2

p τ 2

T 2

+∞∑
n=0

|χ(fn)|2sinc2
π(nfn)1I(fn).

(C.23)
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since ∫
I

df ′ lim
Tm→+∞

Tmsinc2
π(f ′Tm) = 1, (C.24)

and
lim

Tm→+∞

Tm

2π
sinc2

π((ω − ωm)Tm

2π
) = δ(ω − ωm) = 1

2π
δ(f − fm) (C.25)

for long measurements.


