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ABSTRACT

LEAL JUNIOR, J. M. The lattice quark propagator at finite temperature. 2024.
166p. Thesis (Doctor in Science) - Instituto de Física de São Carlos, Universidade de São
Paulo, São Carlos, 2024.

Quantum Chromodynamics (QCD) is the theory currently used to describe the strong
interaction between quarks and gluons. One of the characteristic features of the theory is its
behavior at high energies, where the small coupling between the particles allows for the safe
application of traditional quantum field theory techniques, such as perturbative expansions.
Conversely, at low energies, the coupling grows and perturbative methods break down. The
defining features in the low-energy regime are confinement and spontaneous chiral symmetry
breaking. A satisfactory theoretical explanation of these infrared phenomena is still lacking,
although a consensus has formed that the use of non-perturbative tools is imperative in
their study. An interesting laboratory to explore confinement and chiral symmetry breaking
is the environment described by QCD at high temperatures, as the theory is found to
undergo chiral symmetry restoration and also a transition to a quark-gluon plasma. In this
plasma the fundamental particles are found to be deconfined but strongly interacting. The
Green’s functions (also called N-point functions or correlators) of the theory encapsulate
information relevant to the description of the aforementioned non-perturbative low-energy
phenomena. The primary objective of this thesis was the calculation of a particular
correlator, the quark propagator, in the vacuum and at finite temperatures. To this end,
we have performed numerical simulations using the non-perturbative framework of Lattice
Quantum Chromodynamics, which presents a discretized and Euclidean version of QCD,
preserving the internal SU(3) gauge symmetry of the theory exactly. We have used the
quenched approximation and produced ensembles of gauge configurations for several lattice
volumes and temperatures. The quark propagator was computed in the vacuum and
at temperatures above the deconfinement transition. A necessary step in the study of
correlators in general, and propagators in particular, is setting up a gauge fixing scheme.
As a valuable by-product of this project, we have refined and optimized algorithms for
SU(3) gauge fixing to Landau gauge on the lattice. In this thesis, we present the approach
of Lattice Quantum Chromodynamics, including the introduction of fermions on the lattice
and the algorithms employed in the simulations. Our findings encompass the thermal effects
on the quark propagator, as well as the results of the Landau gauge fixing optimizations.

Keywords: QCD. Lattice QCD. Quark Propagator. QCD at Finite Temperature. Landau
Gauge-Fixing.





RESUMO

LEAL JUNIOR, J. M. O propagador de quark na rede a temperatura finita. 2024.
166p. Tese (Doutorado em Ciências) - Instituto de Física de São Carlos, Universidade de
São Paulo, São Carlos, 2024.

A cromodinâmica quântica (QCD) é a teoria utilizada para descrever a interação forte
entre quarks e glúons. Uma das características da teoria é seu comportamento a altas
energias, em que o acoplamento pequeno entre as partículas permite o uso de técnicas
tradicionais de teoria quântica de campos, como expansões perturbativas. Por outro lado,
no regime de baixas energias, o acoplamento cresce e métodos perturbativos não funcionam.
As características mais notáveis da teoria para baixas energias são o confinamento e a
presença de quebra espontânea da simetria quiral. Uma explicação teórica satisfatória
desses fenômenos do infravermelho ainda está por vir, apesar de se ter formado um consenso
de que o uso de ferramentas não-perturbativas é obrigatório para o estudo dos mesmos.
Um laboratório interessante para a exploração do confinamento e da quebra de simetria
quiral é fornecido pelo ambiente descrito pela QCD a altas temperaturas, sob as quais
a teoria realiza a restauração da simetria quiral e também a transição para um estado
da matéria chamado plasma de quarks e glúons. No plasma, as partículas fundamentais
se encontram desconfinadas, apesar de serem ainda fortemente interagentes. As funções
de Green (também chamadas funções de N pontos ou correlatores) da teoria guardam
informações relevantes para a descrição dos fenômenos não-perturbativos mencionados. O
objetivo principal desta tese era o cálculo de um correlator em particular, o propagador do
quark, no vácuo e a temperatura finita. Para esse fim, executamos simulações numéricas
usando o arcabouço não-perturbativo da Cromodinâmica Quântica na Rede, no qual é
utilizada uma versão discretizada e euclidiana da QCD que preserva a simetria interna de
calibre SU(3) da teoria exatamente. Utilizamos a aproximação quenched e produzimos
configurações de calibre para diferentes volumes e temperaturas. O propagador do quark
foi computado no vácuo e a temperaturas acima da transição de desconfinamento. Um
passo necessário para o cálculo de correlatores em geral, e propagadores em particular,
é estabelecer um esquema para fixação do calibre. Um valioso subproduto desse projeto
foi o refinamento e otimização de algoritmos de fixação de calibre SU(3) para o calibre
de Landau na rede. Nesta tese, apresentamos a abordagem da Cromodinâmica Quântica
na Rede, incluindo a introdução de férmions na rede e os algoritmos empregados nas
simulações. Nossos resultados abarcam os efeitos térmicos no propagador de quark, assim
como os resultados das otimizações da fixação de calibre de Landau.

Palavras-chave: QCD. QCD na Rede. Propagador do Quark. QCD a Temperatura Finita.
Fixação de Calibre de Landau.
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1 INTRODUCTION

The established description of the universe in terms of particles is done using
the framework of quantum field theory (1–4). This includes three of the four known
fundamental interactions, comprising the Standard Model of particle physics.∗ Particles are
seen as excitation of fields that permeate the universe, which carry certain characteristic
quantities known as quantum numbers. The Standard Model generally provides very
accurate theoretical predictions for comparison with experiment, but there are still some
challenges, markedly regarding its strong sector. Among these challenges is the description
of matter under extreme conditions, e.g. the high-temperature limit, related to the expected
conditions in the early universe and experimentally accessible nowadays in heavy-ion
colliders.

Quantum chromodynamics, in short QCD, is the quantum field theory currently
used to describe the strong interactions between quarks and gluons, the color-charged
particles (5, 6). Its success is immense, ranging from describing correctly the behavior
of scatterings between protons and electrons at high-energy, to hadron masses in the
low-energy regime, with the help of non-perturbative approaches. These are necessary due
to some unique features of QCD. Indeed, just like the other sectors of the Standard Model,
the theory is based on a local gauge symmetry, but for QCD the gauge group is more
restrictive, which introduces some major differences in behavior.

One of the characteristics of gauge field theories is that there is a universal coupling
g, which controls the intensity of the interaction between the fundamental fields of quarks
and gluons, which carry color charges. A result of the renormalization of quantum field
theories is that the coupling is in general not constant, but changes with the energy scale. In
particular, for non-Abelian gauge theories like QCD, it has been shown by Gross, Wilczek
and Politzer (7, 8) that the coupling goes to zero for high energies for a sufficiently low
number of quark flavors. This is asymptotic freedom, and it justifies the use of perturbation
theory for calculations of high-energy phenomena, such as deep inelastic scatterings, which
are studied experimentally at particle colliders. Conversely, the coupling grows, and, close
to an infrared scale Λ, perturbation theory results are no longer convergent or reliable.
For the case of quantum electrodynamics, a typical value for ΛQCD is 200MeV and the
corresponding length scale 1/ΛQCD is in the femtometer range, which is a typical size scale
for light hadrons (1).

For the infrared regime, where the coupling is large, analytic calculations based
solely on the QCD Lagrangian are impossible to perform, and one has to resort to non-

∗ The gravitational interaction is the exception, and its quantum mechanical treatment is still
unsatisfactory.
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pertubative tools. Such methods are based on other assumptions, expansions and/or
modelings of the theory. Some examples of non-pertubative methods are lattice field
theory, Schwinger-Dyson equations, QCD sum rules, Nambu-Jona-Lasinio models, chiral
perturbation theory, the functional renormalization group, the framework of the large Nc

limit and methods based on the AdS/CFT correspondence, such as holography.

Lattice QCD, which is our framework of choice for the thesis, is one of the most
successful non-perturbative methods used to study QCD. It is based on the Euclidean
discretized version of the theory for a 4-dimensional space-time lattice. This framework is
well-suited for computer simulations with Monte Carlo methods and it has the advantage
that the extension to study the high-temperature regime is straightforward. The lattice
formulation allows the regularization of the theory, while keeping gauge symmetry intact.
The same is not true for other symmetries, though, which are recovered as the continuum
limit is taken, in a controlled way. Indeed, the lattice QCD approach has been extremely
successful at calculating the physical ground-state spectrum of hadrons (9), hadronic
contributions to electroweak processes (10), besides other observables such as hadronic
form factors (11), and also non-perturbative determinations of the running coupling
constant of QCD with errors at the sub-percent level (12). It has also been used to
investigate the vacuum structure of QCD, beyond-standard-model theories and further
aspects of new physics, even quantum gravity.

In addition to the phenomenologically interesting properties just mentioned, it is
expected that QCD should, eventually, provide a first-principles theoretical explanation
for the emergent phenomena observed in the hadronic world. Two of these are spontaneous
chiral symmetry breaking and confinement, which are important themes of discussions
in the strong-interaction community. Chiral symmetry breaking is responsible for the
dynamically generated mass of hadrons and a non-vanishing value for the quark condensate
⟨qq⟩. Informally, the “confinement” of color charges is the observation that quarks and
gluons are not detected outside of their bound states. These two features of QCD have
eluded a satisfactory detailed theoretical explanation since the 1970s, whilst it has become
clear that the origin of both phenomena cannot be perturbative. Their sources must lie
intrinsically in the low-energy non-perturbative realm of the theory.

Confinement is phenomenologically characterized by the absence of colored particles
in the asymptotic states that reach detectors at the experimental facilities. The spectrum
of the strong interaction contains only particles that are color singlets. The best known
of these are the 2- and 3-valence quark bound states (the minimal number of quark
fields to make up a color singlet), which produce the plethora of identified hadrons and
mesons. There are also exotic states, which do not fit easily within the classical valence-
quark-model scheme, such as the relatively recently discovered tetra- and pentaquarks or
the gluon bound states, called glueballs, which have still to be unambiguously identified



23

experimentally. In fact, in their “Free Quark Searches” section, the authors of the Particle
Data Group 2018 paper say

Experiments show that it is at best difficult to “unglue” quarks. Accelerator
searches at increasing energies have produced no evidence for free quarks, while
only a few cosmic-ray and matter searches have produced uncorroborated
events.

That color charge seems not to manifest itself at macroscopic scales is in stark contrast to
regular electric charge. In QED, which is formally similar to QCD, the electromagnetic
interactions have infinite range. This is due to the masslessness of the photon, which is the
force carrier of electromagnetism. The internal symmetry group of QED is the Abelian
group U(1), which is the group of complex phases. This internal symmetry, by means
of the Ward identity, in fact forbids the photon from acquiring a mass to all orders in
perturbation theory. The source of the different behaviors of QED and QCD with regard to
their starkly different phenomenology is thought to lie in the different internal symmetry
groups. In particular, the non-Abelian character of the SU(3) group of QCD produces a
screening of the color charge due to the self-interactions of the carriers of the strong force,
supporting the picture of asymptotic freedom at short distances, or high energies. In turn,
at larger distances, or lower energies, the theory would predict an increased intensity for
the interaction, sometimes referred to as infrared slavery.

The search for a more precise description of confinement has led to the formulation
of the Kugo-Ojima (13) and Coulomb (14) confinement criteria, which are based on the
absence of spontaneous breaking of a remnant gauge symmetry that is left after gauge fixing
to Landau and Coulomb gauge, respectively. Other confinement criteria are formulated
in the Gribov-Zwanziger formalism (15,16), which are based on restrictions on the path
integral to remove Gribov copies. Like the Kugo-Ojima formulation, the Gribov-Zwanziger
scenario predicts a characteristic behavior for the propagators of gluons and of Faddeev-
Popov ghosts in the infrared limit, which is confirmed by lattice simulations. More precisely
(17), lattice results show that the gluon (resp., ghost) propagator attains a finite value
(resp., has a free-field behavior) in the infrared limit, supporting the massive or decoupling
picture for confinement predicted in the Gribov-Zwanziger formalism. Lattice results also
show that the gluon spectral function violates positivity, which may be a further signal for
confinement, since for a deconfined particle with a proper Källén-Lehmann representation,
positivity must hold. For a more in-depth discussion of the scenarios and predictions of
these frameworks, one can consult, for example, (18,19).

In general, we can say that, no matter the framework, the effects of confinement
and chiral symmetry breaking must be detectable in the correlators of the theory, as was
the case for the propagators or 2-point functions in the aforementioned Gribov-Zwanziger
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scenario. This must necessarily be the case, since the correlators encode all the information
of a quantum field theory.

Many mechanisms have been proposed to explain confinement for non-Abelian gauge
theories. Since it is a low-energy phenomenon, the mechanism should be non-perturbative
in nature, as we pointed out before. Topologically non-trivial classical solutions of the
field equations, which should contribute with a high weight in the path integral, present
some candidates, such as monopoles (20–22), vortices (23, 24) and perhaps instantons
(25–28). The issue remains, however, as an open problem (with a million dollar prize by
the Clay Mathematics Institute for solving the mathematically related problem of a mass
gap in Yang-Mills theories (29)) and hopefully a better understanding will come from
investigating QCD propagators in extreme conditions, which bring about deconfinement
and restoration of chiral symmetry

Indeed, it is compelling to believe that, in order to have a complete understanding
of the inner workings of confinement and chiral symmetry breaking in QCD, the study of
the behavior of the theory at high temperatures and/or densities will be helpful and may
lead to insights on the underlying mechanisms. This is so because, in this regime, there
occurs a transition to a state called “quark-gluon plasma”, in which the particles of the
theory are not confined to their bound states, the hadrons. Restoration of chiral symmetry
in QCD is also expected to take place at high temperatures. Therefore, field theory in
extreme conditions has become a “hot” topic in the community recently. This includes
studies of the aforementioned systems at high temperature and high density, but also high
electromagnetic fields, high chiral imbalance, and other conditions that may be important
to account for phenomena in heavy-ion collisions and astrophysical systems. In the case
of QCD, this is partly due to the interest arisen from the experimental observation of
the “quark-gluon plasma” at the LHC and RHIC facilities, where some of these extreme
conditions are met for fractions of a second in heavy-ion collisions. Furthermore, recent
measurements became available on characteristics of the early universe and on the structure
of compact stars, whose equation of state is now being restricted by observations from
LIGO, Virgo, and KAGRA (30). These results also helped to catch the attention of
physicists to the research area of quantum field theory in extreme environments.

Clearly, as we increase the temperature, the confinement scenario changes. In fact,
there are indications (both theoretical and experimental) that a quark-gluon plasma may
form under extreme conditions. The quark-gluon plasma is the state of matter where
quarks and gluons are not confined to the interior of hadrons, but are instead quasiparticles
in a hot medium. The extreme conditions that make possible the formation of such a
phase are attained in high-energy collisions and should also have been present at the
beginning of the universe for fractions of a second. Theoretically, the idea of a deconfinement
transition of QCD at high temperature were already present in the 1970s (31,32) and even
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before (references therein). Even though there are now complex calculations of the critical
transition temperature based on various methods, a pretty good value may be obtained
from a simple estimate based on the bag model of QCD and the counting the degrees of
freedom at the deconfined and confined phases. Indeed, the procedure produces a value
for the transition of around Tc ≈ 150 MeV, which is close to the value obtained in lattice
simulations, although details such as the order of the transition differ (33). This suggests
that counting the number of degrees of freedom plays an important role in the transition
between a hadronic phase and a quark-gluon plasma (33). For the quenched case (see Sect.
3.1), theoretical results show that a first-order transition takes place at a temperature of
Tc, quenched ≈ 270 MeV.

On the experimental side of the research on (de)confinement, we may cite the
efforts at the LHC (34) and RHIC (35) facilities, in Europe and the United States
respectively. Experiments conducted at these facilities have provided indications that a
strongly interacting quark-gluon-plasma is indeed formed when colliding heavy ions with
each other. As examples of quantities used as signatures of quark-gluon plasma formation,
we may cite collective anisotropies in high multiplicity pA and pp collisions (36), the
cumulants of the net multiplicity distributions (37), J/ψ suppression (25,38), as well as
the theoretical suppression of the ρ and φ peaks in the dilepton channel, which were in
agreement with experimental trends (33).

A most interesting question is the relation between the deconfinement and chiral
restoration transitions. In particular, another expectation from QCD at high-temperatures
is that the vacuum of QCD passes through a transition and chiral symmetry becomes
restored. In this phase, chiral symmetry will manifest itself in the Weyl-Wigner mode, with
a vanishing of the chiral condensate order parameter, and constituent quarks becoming
massless (33).

For the transition temperature, recent full dynamical lattice results quote a value of
Tc = 156.5±1.5 MeV (39) and Tc = 155±1±8 MeV (40). A Dyson-Schwinger study quotes
Tc = 156.7 MeV (41) and a functional renormalization group result is Tc = 156.3 MeV (42).
Of course, it is an abuse to use the word “critical” temperature for this chiral transition,
as there is no transition, strictly speaking. Today it is well established theoretically that a
cross-over happens between the two phases and no divergences in the susceptibilities of the
chiral order parameter, which would mark a second order transition, actually take place.
The pseudocritical temperatures, quoted above, all refer to a peak of the susceptibility
of the order parameter and other proxies for the cross-over. For example, in the context
of the linear sigma model (see Sect. 2.1), the consequences of the restoration of chiral
symmetry are that the π mesons become massive and degenerate with the σ meson, and
the mass difference between baryon parity doublets vanishes (33).

There is an ongoing debate as to how (and if) the chiral and deconfinement transi-
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tions are related. Despite some early indications that their (pseudo)critical temperatures
roughly coincided (33,43), there are now studies in which criticisms of the identification of
the chiral transition with the deconfinement transition have been raised, for example in
(44), where it is claimed that deconfinement would only happen at temperatures as high as
3 times the chiral transition temperature. An older study (45) cites a milder disagreement
of 25 MeV between the chiral transition from the chiral condensate and the deconfinement
transition as measured with Polyakov loops. The issue is not easily resolved, since the order
parameter for confinement in pure-gauge theories, the Polyakov loop, is not a proper order
parameter in full-QCD simulations, as the introduction of dynamical fermions breaks the
associated global center symmetry explicitly. Although there have been some suggestions
for alternative order parameters, none is widely accepted.

The remainder of this thesis is structured as follows: in Chapter 2 we provide
the essentials of the theoretical framework of QCD and discuss a few phenomenological
implications of chiral symmetry. Chapter 3 is devoted to the formulation of lattice QCD
in the vacuum and at finite temperature. The subject of gauge fixing in the continuum
and on the lattice is the focus of Chapter 4. In Chapter 5, we review how chiral symmetry
is treated on the lattice and give an introduction to the main fermion discretizations used
in propagator studies. We then present, in Chapter 6, the algorithms used to generate
configurations, perform the gauge-fixing and the operator inversion necessary for the
computation of the quark propagator. A review of the literature on quark propagators on
the lattice is the subject of Chapter 7. Finally our own results are showcased in Chapter 8,
after which we give our conclusions in Chapter 9.
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2 QCD ESSENTIALS

Usually, a quantum field theory is given in terms of a Lagrangian density, which
is a scalar function of the space-time coordinates that describes what are the degrees of
freedom of a theory as well as its local and global internal symmetries, while keeping the
space-time Lorentz symmetry invariance manifest (1, 5, 46). For QCD, the fermionic part
of the QCD Lagrangian is given by

LF =
∑
f

ψ
(f)
αa(x)

[
(γµ)αβ(δab∂µ + iAµ(x)ab) +m(f)δαβδab

]
ψ

(f)
β b (x), (2.1)

where m(f) is the bare quark mass of quark flavor f , δab denotes a Kronecker delta and γµ
is the Dirac matrix associated with the Lorentz index µ. In our conventions, the Dirac
gamma matrices γµ are

γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , γ3 =


0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

 , γ4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


and γ−µ = −γµ.

The bosonic part is given by

LG = 1
2g2 tr[Fµν(x)F µν(x)], (2.2)

where
Fµν, ab(x) = ∂µAν, ab(x)− ∂νAµ, ab(x) + i [Aµ(x), Aν(x)]ab (2.3)

and g is the bare coupling constant. The trace is taken in color space, since the Aµ(x)
fields are matrices. There is a metric tensor, that determines how indices are lowered
(gµν) and raised (gµν). Since, as will be explained shortly, we are mostly concerned with
Euclidean space, which has a trivial metric gµν = δµν , we will sometimes take the liberty
of writing contracted indices at the same level (high or low). The complete Lagragian is
L = LF + LG.

As written above, we can identify the degrees of freedom of the theory as the fields
ψ(x), ψ(x) and Aµ(x). The first two are spinor fields associated to the spin-1/2 fermions
of the theory: the quarks. They carry indices for Dirac space α, β and color indices a, b,
for the fundamental representation of SU(3), besides the spatial coordinate x. There is
also an index (f) for the quark flavor: up, down, strange, charm, bottom, top in order of
ascending mass m(f).
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The gluons, which are bosons and the carriers of the strong interaction, are
excitations of the Aµ(x) fields, and have a spin of 1. The gauge fields Aµ(x) are matrices
in the algebra of SU(3), and can thus be written in terms of components

Aµ(x) =
8∑
i=1

A(i)
µ (x)Ti, (2.4)

where the Ti form a basis for the 3× 3 Hermitian traceless matrices, and can be taken, for
example, as the Gell-Mann matrices. The A(i)

µ (x) are real valued fields.

The bare coupling g controls the strength of the interaction. Let us note that the
most familiar form for the QCD Lagrangian usually has the coupling appearing whenever
there is a product of fields, thus making it clear that g is a universal coupling controlling
the interaction between quarks and gluons and the gluons themselves. This more familiar
format can be obtained by the substitution

Aµ(x)
g
→ Aµ(x), (2.5)

which is just a rescaling. We prefer the form above because it is what is usually adopted
for QCD on the lattice, which is the framework for this thesis.

The parametersm(f) are interpreted as the bare quark masses. After renormalization,
these would be identified with the physical quark masses at a particular renormalization
scale. The fact that quarks are confined complicates the definition of a mass, since they
present no asymptotic states. We will briefly comment on these complications later in Sect.
2.1.

Besides being invariant with respect to Poincaré transformations (translations,
rotations, boosts), from which Lorentz transformations are a subset, the QCD Lagrangian
is exactly invariant under local SU(3) gauge transformations

ψ(x)→ ψ
′(x) =ψ′(x)g†(x) (2.6)

ψ(x)→ ψ′(x) =g(x)ψ′(x), (2.7)

provided that the field Aµ(x) transforms as

Aµ(x)→ A′
µ(x) = g(x)Aµ(x)g†(x) + i(∂µg(x))g†(x). (2.8)

The QCD Lagrangian is formally similar to its quantum electrodynamics (in short
QED) counterpart. The fundamental difference is in the underlying internal symmetry
group: in the electrodynamics case, this is U(1), the group of complex phases, which is
Abelian, whereas the strong interactions are described by the non-Abelian group SU(3).
Due to the non-Abelianity of SU(3), the commutators of Aµ gauge fields do not vanish.
This causes 2.2 to contain, besides a kinetical term also present in QED, products of gauge
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fields, which are associated to interaction vertices. Thus, for non-Abelian theories, the
gauge field has self-interactions, which make the theory highly non-trivial even without
fermions.

An alternative complete description of a quantum field theory can be given in
terms of its correlation functions, also called Green’s functions or N-point functions.

Sn(x1, . . . , xN) = ⟨ϕ(x1) . . . ϕ(xN)⟩, (2.9)

where ⟨⟩ means the expectation value of the combination of ϕ fields in the vacuum of the
theory, and ϕ stands generically for the ψ, ψ and Aµ degrees of freedom. A convenient way
to express these correlators is by taking functional derivatives of a generating functional,
which resembles a partition functional from statistical mechanics

Z[J ] =
∫
Dϕ eiS[ϕ,J ], (2.10)

where S[ϕ] is the action, given by

S[ϕ, J ] =
∫
d4x [L(x) + J(x)ϕ(x)] , (2.11)

in which we included a term with a source J(x). Again, we stress that ϕ stands here for a
generic field, and in actuality for each field of the theory there will be a corresponding
source function. The integration of 2.10 is performed for all possible configurations of the
field. This is called a path-integral representation of the quantum field theory. The Dϕ is
an integration measure

Dϕ =
∏
x

dϕ(x). (2.12)

The correlators can be obtained by

⟨ϕ(x1) . . . ϕ(xN)⟩ =
(

1
Z[J ]

δ

iδJ(x1)
. . .

δ

iδJ(xN)Z[J ]
)
J=0

. (2.13)

The equivalence between the path-integral formulation and standard perturbative
techniques of the canonical formalism has been demonstrated by Freeman Dyson, and
is one of the milestones of quantum field theory. The derivation of this equivalence can
be found in the modern quantum field theory textbooks, such as (1). This makes the
path-integral formalism an alternative quantization prescription.

The lattice framework (described in detail in the Chap. 3) is based on discretizing
the QCD Lagrangian in Euclidean (i.e., imaginary-time) space-time. The need for the
Euclidean version of the theory in the lattice framework is the following: the Minkowski (i.e.,
real-time) formulation of QCD provided by the generating functional 2.10 is unfortunately
not suitable for lattice simulations. In these simulations, configurations of fields are
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generated in a stochastic fashion. The “weight” of the configurations provided by the
Minkowski Lagrangian is

dP [ϕ] = eiS[ϕ]

Z
, (2.14)

which is in general complex due to the exponential, and thus not a proper statistical
weight. We perform a transformation called a Wick rotation t→ iτ , and transform the
action correspondingly to an Euclidean action iS[ϕ]→ −SE[ϕ]. The metric for performing
contractions is now trivial gµν = δµν , and the fields will be defined in an Euclidean space.
The Wick rotation prevents us from performing “real-time” simulations, and we are thus
forced to focus on energy levels and matrix elements of operators of the quantum field
theories. For example, it can be shown that, when calculating Euclidean correlators between
two operators, one gets (46)

⟨O2(τ)O1(0)⟩ =
∑
n

⟨0|O2|n⟩⟨n|O1|0⟩e−τEn , (2.15)

where En are the energy levels, |0⟩ is the vacuum state and |n⟩ are the states of energy En
that have a non-zero overlap with the operators O1 and O2. The energy levels can then be
extracted from this formula and from them the masses of hadronic states.

The relationship between Euclidean correlators, also called Schwinger functions,
and the the Minkowski ones, called Wightmann functions, is an analytical continuation.
The Osterwalder–Schrader reconstruction clarifies the relation between the two groups
of correlators, as long as the Euclidean ones satisfy a set of axioms (47–49). In general,
Euclidean correlators obey simpler properties and are easier to manipulate than their
Minkowski counterparts (50), in part because the causal structure is absent for the
Euclidean formulation.

Another advantage of the lattice formulation is that the lattice spacing between the
discretized space-time points provides an ultraviolet regulator to the theory and, because of
this, no infinities appear. One studies how the discretized theory approaches the continuum
by taking the lattice spacing to zero, while having only to deal with finite numbers at all
times.

2.1 Chiral symmetry

Another important aspect of the QCD Lagrangian that, to a great extent, determines
the spectrum of light hadrons, is the approximate chiral symmetry of the theory. Let us
begin our discussion of chiral symmetry for one flavor of quark coupled to a Yang-Mills
gluonic sector. The Lagrangian density function is then given by

L(ψ, ψ,A) = ψ [γµ (∂µ + iAµ) + 1m]ψ = ψMψ, (2.16)
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where the spatial dependence of the ψ and ψ fields has been suppressed to reduce cluttering.
A chiral transformation is a global transformation given by

ψ → ψ′ = eiαγ5ψ, ψ → ψ
′ = ψeiαγ5 . (2.17)

The constant α is real and the Dirac-space matrix γ5 = γ1γ2γ3γ4 anti-commutes with all
other γµ. If the chiral transformation is applied to the fermionic Lagrangian, we obtain

ψ
[
eiαγ5e−iαγ5γµ (∂µ + iAµ) + eiαγ5eiαγ5m

]
ψ = ψ

[
γµ (∂µ + iAµ) + e2iαγ5m

]
ψ, (2.18)

which shows that, unless m = 0, the chiral transformation does not represent a symmetry
of this Lagrangian. We notice that the fact that the first term is invariant under chiral
transformations boils down to its anti-commutativity with γ5. Thus, we can condense the
condition to decide whether or not a particular fermionic operator M is chiral symmetric
in a simple equation

{M, γ5} = 0. (2.19)

Even though the up- and down-quark mass parameters in the QCD fermionic La-
grangian do not vanish, they have values of 2.16+0.49

−0.26 MeV for the up quark and 4.67+0.48
−0.17 MeV

for the down quark in nature (51). These values are small in comparison to, for example,
ΛQCD ≈ 200 MeV, a scale which we alluded to already, and is commonly used to define the
limits of perturbation theory in QCD. Even the strange-quark, with a mass of 93+11

−5 MeV,
may be considered relatively light by this argument. These masses can be extracted, for
example from the hadronic invariant mass spectrum in semihadronic τ decay, normalized
to the leptonic τ decay rate(51)

dRτ

ds
= dΓ/ds(τ− → hadrons + ντ (γ))

Γ(τ− → e−νeντ (γ)) , (2.20)

where s = q2 is the invariant hadronic mass. The experimental results are matched to
theoretical predictions done at a particular renormalization scheme, usually MS, which
then allows the values of QCD parameters to be extracted at a particular renormalization
scale, which, for the numbers presented above, is µ = 2 GeV.

Given the relatively small values of quark mass, we should expect an approximate
version of chiral symmetry to be manifest in reality. The Noether current associated to
the chiral transformation is given by

j5µ(x) = ψ(x)γµγ5ψ(x), (2.21)

which is conserved for exact chiral symmetry

∂µj5µ = 0. (2.22)

The associated charge is obtained in the usual way

Q5 =
∫
d3xj5 0(x). (2.23)
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When adding a flavor structure on top of the approximate chiral symmetry of the QCD
Lagrangian, one obtains a rich pattern of possible states and different ways of breaking
the symmetry explicitly, by having each flavor have its own non-vanishing mass, all
the same mass or all massless fermions. This also introduces global “rotations” among
different flavors, which gives rise to the symmetries of the “eightfold way”, a systematic
classification scheme proposed by Ne’eman and Gell-Mann to explain the symmetries
observed experimentally for the plethora of hadrons detected (52,53). This classification,
and the associated patterns, can be derived from the representations of the SU(3) flavor
group, which extends the isospin SU(2) group of pions and nucleons.

The “eightfold way” classification later developed into the idea of a quark model
in which the hadrons are described as bound states of constituent quarks. These in turn,
as understood today, are the bare current quarks that one would obtain in a free theory,
with well-defined quantum numbers, dressed by all the complicated non-perturbative QCD
dynamics, as seen at low energy. This model works well for the low-lying QCD spectrum
and its success is one of the pillars of the interpretation of the hadronic world in terms of
the QCD degrees of freedom. Lattice QCD, for example, usually follows the quark model in
hadron spectrum calculations by using correlators with minimal quark content combining
into color singlets and with the correct quantum numbers of the hadron to be studied.

One feature of the phenomenology of QCD is that the bound states of its spectrum
are heavy in comparison to the ΛQCD scale that we used as a standard to declare that
quark masses are light. In fact, the word hadron comes from the Ancient Greek word
“ἁδρός”, which means “stout”. For the case of the proton, for example, there is then a
naïve disagreement with the experimental observations, which portray the up and down
quarks as light and the quark model, which portray the proton as a bound state of the
said quarks. It has been believed since the 1970s that the key to this puzzle is the kind of
“dressing” that the constituent quarks receive from the QCD interactions.

To reconcile the (approximate) chiral symmetry of the Lagrangian with the ex-
perimental observations, we must understand the manifestations of symmetries in nature.
There are two modes that the chiral symmetry of a theory could manifest itself: the
Wigner-Weyl and Nambu-Goldstone modes. The Wigner-Weyl mode assumes that the
vacuum state is annihilated by the chiral charge operator (54)

Q5|0⟩ = 0, (2.24)

and it says that, when applied to a state in the spectrum of the theory, the chiral charge
operator, which is a pseudoscalar object, should produce another state with the same mass
and spin, but opposite parity

Q5|m, s, p,+⟩ = −|m, s, p,−⟩. (2.25)
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Thus we should observe a mass degeneracy in the form of parity doublets for the massive
states of the spectrum. This is not the case when examining the hadronic spectrum. Let
us take the example of the nucleon, which has a mass of around 940 MeV. The closest
candidate in the spectrum for a would-be chiral partner, N∗, has a mass of 1535 MeV, which
cannot be considered degenerate with the nucleon in any possible way. This difference is
just too big also to be attributed to the small breaking caused by explicit quark masses.
The alternative mode of realization of chiral symmetry is the Nambu-Goldstone mode,
which postulates that the vacuum state or ground state is not a symmetric state with
respect to the chiral charge. It is said to be spontaneously broken

Q5|0⟩ ≠ 0. (2.26)

Although the mechanism behind this breaking is not completely understood,
somehow the fields, parameters and symmetries of the non-Abelian SU(3) gauge theory
combine in such a way that the breaking eventually occurs: even though chiral symmetry
is approximately respected by the QCD Lagrangian, the vacuum of the theory does not
respect it at all. As a result, the constituent up and down quarks obtain dynamically
generated masses of the order of mN/3, where mN is the nucleon mass, in such a way that
the masses add up to the full mass of the proton or neutron.

One could hope that chiral symmetry breaking can somehow be explained and its
effects taken into account by using standard perturbative quantum field theory techniques.
However, this is not the case, and this is an intrinsic low-energy non-perturbative effect
in QCD. One of the hints to its non-perturbative nature are that the mass corrections
which come from higher-order perturbative calculations are always proportional to the
mass itself. If one starts with a massless fermion theory, the perturbative corrections will
not generate masses, as is expected to happen in QCD.

One framework which shows how the dynamical generation of mass might come
about is the linear sigma model, proposed by Gell-Mann and Lévy, (55). This can be
viewed as an effective model, or, in order words, a model that may be expected to hold
for sufficiently low energies and that could be, in principle, derived from another more
fundamental theory by integrating out the high-energy degrees of freedom. A simplified
version is given by the Lagrangian

L = 1
2(∂µσ)2 + 1

2(∂µπ⃗)2 + µ2

2 (σ2 + π⃗2)− λ

4 (σ2 + π⃗2)2, (2.27)

where π⃗ = (π1, π2, π3) are an SU(2) isospin triplet and σ is an isospin singlet field. The
parameters µ and λ can have values such that a minimum of the potential develops which
is different from the trivial vacuum (π⃗ = 0 , σ = 0). This is the famous “Mexican hat”
potential. In fact, the σ field develops a non-vanishing vacuum expectation value

σ → σ + v, (2.28)
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with v = µ/
√
λ. When this is the case, we also get that the σ particles, associated to that

field, develop a mass mσ =
√

2µ2, whereas the π fields remain massless.

This model is analogous to the Higgs mechanism, which gives mass to the elementary
particles of the standard model. Both are instances of Goldstone’s theorem, which states
that, to each continuous symmetry that is broken spontaneously, there corresponds a
massless particle, called a Goldstone boson (56). In the case of QCD with up and down
quarks, these bosons are identified with the three pions, which have masses much lower
than ΛQCD, and in particular much lower than those of the nucleons. In the same fashion
as the Higgs model, one may add a coupling between the σ field and nucleon fields ψN , in
such a way that these particles now obtain a dynamically generated mass.

The pion states would be created from the vacuum by the pseudoscalar chiral
charge operator

Q5|0⟩ = |π,−⟩, (2.29)

as the pions have the same quantum numbers as the operator object. As the charge
commutes with the Hamiltonian of QCD, they do not cost energy to be generated, which
is particular to massless particles. The small but non-vanishing observed mass of the pions
is expected to come from the fact that chiral symmetry is in fact explicitly, albeit mildly,
broken by the up and down quark mass terms in the Lagrangian. These effects can also
be included in the sigma model as well. In nature, the ±π masses are 139.57061(20) MeV,
whereas the neutral pion has a mass of 134.9768(5) MeV, the difference coming from the
electroweak coupling only.

The sigma particle itself has never been observed unambiguously, however a can-
didate for it is the f0(500) particle, with a mass given in the PDG of between 450 and
600 MeV. The reason for the large uncertainty is the extremely quick decay, which takes
place through the strong interaction. This particle decays into two pions predominantly
and has a huge width, estimated to be between 400 and 700 MeV by the PDG collaboration
(57).

The vacuum expectation value v of the linear sigma model may be interpreted
using the degrees of freedom of QCD as a quark condensate ⟨qq⟩, meaning that the
true interacting lowest energy state of QCD is not a true vacuum in the strict sense of
being completely empty, but has instead quark pairs populating it. A quark condensate
transforms like a mass term, which means that it breaks chiral symmetry. If ⟨qq⟩ acquires
a non-vanishing value, this is an indication that chiral symmetry is spontaneously broken.
It is thus used as an order parameter for this symmetry breaking, and is important when
discussing QCD at non-zero temperatures, as chiral symmetry is expected to be recovered
for sufficiently extreme thermal conditions.

The actual value for the condensate can be estimated via the phenomenological
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Gell-Mann-Oakes-Renner relation

f 2
πm

2
π = −2 ⟨qq⟩ (mu +md), (2.30)

or by other means, such as the trace of the quark propagator for zero quark mass. It can
also be expressed from the partition function of theory, in which case it is expressed as

⟨qq⟩ = 1
V

∂ lnZ
∂m

, (2.31)

where Z is the partition function, V is the volume and m the corresponding quark mass.
A second derivative gives the susceptibility of the condensate. This last definition is
particularly well suited for a thermodynamical setting.

As for the actual value of the condensate at zero temperature, the authors of (6) cite
mq ⟨qq⟩ ≈ −(100MeV)4 from a QCD Sum Rules fit, and, if the average PDG masses for the
up and down quark are used for mq, one gets ⟨qq⟩ ≈ −(310 MeV)3. This may be compared
with a quenched lattice result of ⟨qq⟩ ≈ −(270 Mev)3, by (58), whereas an unquenched
calculation (59) quotes ⟨qq⟩ ≈ −(255 Mev)3 and another (60) ⟨qq⟩ ≈ −(234 MeV)3, the
three of which use the MS renormalization scheme at renormalization scale µ = 2 GeV.
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3 LATTICE QCD

Our presentation in this chapter is based largely on (25, 46, 50). We start our
discussion of the lattice QCD formulation by supposing that we have a discretized Eu-
clidean four-dimensional space-time, which for simplicity we assume, in order to maintain
hypercubic symmetries: that is, we have sites with coordinates that are multiples of some
lattice constant a, which has dimensions of a length and measures the distance between
consecutive sites

xµ = anµ, nµ = 0, 1, ..., Nµ − 1, (3.1)

where µ is a Lorentz index that labels the dimensions of the problem. Henceforth we
will use the index n to refer to lattice sites, where the four Euclidean components are
understood. In the notation we have also added the restriction that our lattice will have a
finite volume. If we succeed in crafting a sensible theory on this lattice structure, we can
ask ourselves what is its behavior as the volume is increased to ∞ in all directions, and
what is its behavior as the lattice constant a is made to vanish.

As mentioned before, the building principle of lattice field theory is to maintain
exact invariance under the internal gauge transformations, even when breaking most of
the space-time symmetries of the theory. In the case of QCD, we want to maintain the
internal SU(3) local gauge symmetry of the continuum Lagrangian. Wilson proposed a
way to do this in (61), and the key element of this formalism is the link variable, which we
may think of as the parallel-transport operator acting on the gauge-field vector between
two sites of the lattice, as we soon show. For now, let us worry about pure-gauge theory,
without the fermions, which add many more complications, and which will be explored
later, in Chap. 5.

A link variable Uµ(n) is defined for each site n and direction µ, and one can thus
think of it as being defined on the edges between the sites. Their name comes from them
linking two neighboring sites. The link variables are taken to be elements of the symmetry
group under consideration in the fundamental representation, so each link variable is a
3× 3 complex matrix, with determinant 1 and whose inverse is its Hermitian conjugate.

The gauge transformations we are interested in are local, which means that, at
each site, we may allow for a different gauge transformation element g(n). The gauge
transformations are also given by elements of SU(3). The link variables will transform
according to

Uµ(n)→ U ′
µ(n) = g(n)Uµ(n)g†(n+ µ̂), (3.2)

where µ̂ is the unit vector in the µ direction, which implies that n+ µ̂ is the neighboring
site in that direction. Since all matrices in the right-hand side of Eq. 3.2 are elements of
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SU(3), by the definition of the group, U ′
µ(n) is also a member of SU(3). We also define a

backward link connecting a site to its neighbor at position n− µ̂ by

U−µ(n) ≡ U †
µ(n− µ̂), (3.3)

which is also a member of SU(3), since the Hermitian conjugation operation is equivalent
to taking the inverse of the group element, and all inverses of the elements must also be
part of the group. A gauge transformation will act accordingly as

U ′
−µ(n) = (g(n− µ̂)Uµ(n− µ̂)g†(n))†

= g(n)U †
µ(n− µ̂)g†(n− µ̂) = g(n)U−µ(n)g†(n− µ̂). (3.4)

If we want a Lagrangian, and consequently an action, that exhibits exact gauge-symmetry,
we need to create combinations of link variables that are invariant under gauge transfor-
mations. One way of doing this is by considering closed paths, since the transformation
at the “head” of the link variable will cancel the one at the “tail” of the next link down
the path, until we get back where we started. The simplest non-trivial closed path on the
lattice is the plaquette, which winds around with the shortest possible route

Uµν(n) ≡ Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂). (3.5)

We can see explicitly what a gauge transformation does to a plaquette

U ′
µν(n) =U ′

µ(n)U ′
ν(n+ µ̂)U ′

−µ(n+ µ̂+ ν̂)U ′
−ν(n+ ν̂)

= g(n)Uµ(n)g†(n+ µ̂)g(n+ µ̂)Uν(n+ µ̂)g†(n+ µ̂+ ν̂)

g(n+ µ̂+ ν̂)U−µ(n+ µ̂+ ν̂)g†(n+ ν̂)g(n+ ν̂)U−ν(n+ ν̂)g†(n)

= g(n)Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)g†(n) = g(n)Uµν(n)g†(n). (3.6)

By taking the trace we have then an invariant under gauge transformations

tr
[
U ′
µν(n)

]
= tr

[
g(n)Uµν(n)g†(n)

]
= tr [Uµν(n)] , (3.7)

due to the cyclic property of the trace.

There is a continuum object related to the link variables, the so-called Wilson line

UP (x, y;A) = P
{
e
i
∫

Cxy
A·dz

}
= P

{
e−i

∫ 1
0

dzµ

ds
Aµ(z(s)) ds

}
. (3.8)

The path Cxy, between continuum points x and y, has coordinates z(s), where s is a
parameter running from 0 to 1, with z(0) = x and z(1) = y. The path-ordering operator
is there to ensure that the product of group elements is performed properly, with the
elements ordered by the corresponding value of s.
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To elucidate the relationship between the link variable and the Wilson line, we can
perform a gauge transformation in the relativistic four-potential Aµ(z) and calculate the
corresponding gauge transformation of UP (x, y). First we note that the Wilson line obeys
the first order differential equation

dUP (x(s), y;A)
ds

=
[
−idx(s)µ

ds
Aµ(x(s))

]
UP (x(s), y;A) , (3.9)

where we now write x in terms of a parameter s. This may be rewritten by noticing that

d

ds
=
(
dxµ(s)
ds

)
∂

∂xµ
, (3.10)

which leads to(
dxµ(s)
ds

)
∂UP (x(s), y;A)

∂xµ
+
[
i

(
dx(s)µ
ds

)
Aµ(x(s))

]
UP (x(s), y;A) = 0, (3.11)

where we can identify the covariant derivative as Dµ(A) = ∂µ + iAµ(x) and write(
dxµ(s)
ds

)
Dµ(A)UP (x(s), y;A) = 0. (3.12)

We are emphasizing the Aµ(x) dependence of the covariant derivative because this will be
important in what follows. Eq. 3.12 must hold for any field Aµ(x): in particular, it must
hold for a gauge-transformed field A′

µ(x) as well(
dxµ(s)
ds

)
Dµ(A′)UP (x(s), y;A′) = 0. (3.13)

Let us now calculate (
dxµ(s)
ds

)
Dµ(A′)g(x)UP (x(s), y;A) g†(y), (3.14)

where g is the gauge transformation which transforms between A and A′ (see Eq. 2.8)

A′
µ(x) = g(x)Aµ(x)g†(x) + i [∂µg(x)] g†(x), (3.15)

The corresponding transformation for the covariant derivative is

Dµ(A′) = g(x)Dµ(A)g†(x)→ Dµ(A′)g(x) = g(x)Dµ(A), (3.16)

where we used the unitarity of g(x). This allows us to rewrite the expression in 3.14 as
(
dxµ(s)
ds

)
g(x)Dµ(A)UP (x(s), y;A) g†(y) =

g(x)
[(
dxµ(s)
ds

)
Dµ(A)UP (x(s), y;A)

]
g†(y), (3.17)
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but the expression in square brackets is 0 because of Eq. 3.12. So, we conclude that
g(x)UP (x(s), y;A) g†(y) is a solution to Eq. 3.13, as well as UP (x(s), y;A′), by definition.
Now, since this is a first-order differential equation, it has a single solution if the boundary
conditions are fixed, as is the case here. Thus, we can state that

UP (x(s), y;A′) = g(x)UP (x(s), y;A) g†(y), (3.18)

which is the gauge transformation of the Wilson line that we were seeking. If we choose
x = an and y = x+ aµ̂ and take the path between them as a straight segment, we can
approximate Eq. 3.8 as

UP (an, a(n+ µ̂);A) = eiaAµ(n). (3.19)

By looking at this relation, it is tempting to identify the link variable as this elementary
Wilson line

Uµ(n) ≡ eiaAµ(n). (3.20)

By these arguments, we are thus led to write the lattice action in terms of the
smallest closed loop (i.e. the plaquette Uµν in Eq. 3.5) obtained from links around a point
n, which is guaranteed to be gauge-invariant. The actual gauge action that was proposed
by Wilson has some extra terms, which are there to ensure that we get to the correct
result in the continuum limit

SG[U ] = β
∑
n∈Λ

∑
µ<ν

Re tr[1− Uµν(n)] = β
∑
n∈Λ

∑
µ<ν

tr
{

1− 1
2
[
Uµν(n) + U †

µν(n)
]}
, (3.21)

where the last form shows that clockwise and anticlockwise plaquettes are included
symmetrically. In order to see what we obtain in a naïve continuum limit from this action,
we can use Eq. 3.20. Let us first express the plaquette Uµν(n) in terms of the A field. In
order to do this we need to use the Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]+terms with powers higher than 2. (3.22)

We omit the higher-order terms, because we are interested in the small-a behavior of the
expression, and those terms would contain higher powers of a, which we neglect. Applying
the formula to the case of the plaquette, one obtains

Uµν(n) = exp
{
ia
[
Aµ(n) + Aν(n+ µ̂)− Aµ(n+ ν̂)− Aν(n)

]
+ a2

2
[
− [Aµ(n), Aν(n+ µ̂)]− [Aµ(n+ ν̂), Aν(n)] + [Aµ(n), Aµ(n+ ν̂)]

+ [Aµ(n), Aν(n)] + [Aν(n+ µ̂), Aµ(n+ ν̂)] + [Aν(n+ µ̂), Aν(n)]
]}
. (3.23)

We assume the fields are smooth and one can perform a Taylor series in order to deal with
the A’s evaluated at different sites

Aν(n+ µ̂) = Aν(n) + a ∂µAν(n) +O(a2). (3.24)
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Terms in the first row of Eq. 3.23 evaluate to

Aµ(n) +Aν(n) + a∂µAν(n)−Aµ(n)− a∂νAµ(n)−Aν(n) = a∂µAν(n)− a∂νAµ(n) (3.25)

and the terms involving commutators become

a2

2
[
− [Aµ(n), Aν(n)]− [Aµ(n), Aν(n)] + [Aµ(n), Aµ(n)]

+ [Aµ(n), Aν(n)] + [Aν(n), Aµ(n)] + [Aν(n), Aν(n)]
]

= −a
2

2 2 [Aµ(n), Aν(n)] = −a2[Aµ(n), Aν(n)], (3.26)

by keeping the lowest powers of a that arise in the expansion. We arrive then at

Uµν(n) ≈ exp(ia2(∂µAν(n)− ∂νAµ(n) + i[Aµ(n), Aν(n)])), (3.27)

and can recognize the field-strength tensor in the exponent (see Eq. 2.3)

Fµν(n) = ∂µAν(n)− ∂νAµ(n) + i[Aµ(n), Aν(n)]. (3.28)

Expanding Eq. 3.27 in powers of a2, we get

Uµν(n) ≈ 1 + ia2Fµν(n)− a4

2 Fµν(n)Fµν(n), (3.29)

which implies that

tr Re[1− Uµν(n)] = a4

2 tr[Fµν(n)Fµν(n)], (3.30)

where we used that Fµν(n) = ∑
i F

(i)
µν (n)Ti is in the algebra of SU(3), which implies

that it is traceless and the components F (i)
µν (n) are real. We also notice that the lattice

spacing factors together with the sum over lattice sites is a discretization of the space-time
integration

a4 ∑
n∈Λ
→
∫
d4x, (3.31)

so that, for the Wilson gauge action, Eq. 3.21, we end up with

SG[A] =
∫
d4x

β

4
∑
µν

tr [Fµν(x)Fµν(x)] . (3.32)

The constant β can then be fixed to match the continuum expression correctly. Its value
needs to be

β = 2Nc

g2 = 6
g2 , (3.33)

where g is the continuum bare coupling and Nc = 3 is the number of colors in the theory.

Note that one may include larger loops in the action to further reduce lattice
artifacts and thus obtain results closer to the continuum limit with the same lattice
spacing. This is the philosophy of improvements to the lattice action. One can, for example,
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include, besides the plaquettes, which have length 4, loops of length 6, such as rectangles,
and obtain the Lüscher-Weisz gauge action (62). This new formulation would have the
same continuum limit as the previous one, and would thus be part of the same class of
universality, from a statistical mechanics point of view.

Since the Wilson pure-gauge action (with plaquettes only) is already correct to
order O(a2), improvements are not as critical. Improvement is much more decisive when
dealing with fermions, especially when a particular kind of fermionic discretization is used,
called Wilson fermions, which contain errors of O(a). We will explore this theme further
when we introduce fermions on the lattice in Chap. 5.

Since in simulations we will be constrained to a finite volume, we have to decide
what to do at the borders of the lattice. We will implement periodic boundary conditions,
since this simplifies the theoretical analysis and reduces finite-volume effects by maintaining
the discrete translation symmetry of the lattice. For the direction µ = 1, corresponding to
extent N1, one has

U1(n1 = N1, n2, n3, n4) = U1(n1 = 0, n2, n3, n4), (3.34)

and likewise for all other directions.

Up to now we have described one way to construct a pure-gauge theory on the
lattice. We may add fermions to the theory, but on the lattice the construction of a
fermionic action is a delicate business and will be explored in more depth in Chap. 5. For
now, we only say that fermion actions have the following form

SF [ψ, ψ, U ] =
∑

m,n∈Λ
ψ(m)M(m,n;U)ψ(n) = a4ψM[U ]ψ, (3.35)

in which the operator M is the inverse of the fermion propagator M−1 = S, ψ and ψ

are Grassmann valued anticommuting fields. The path-integral representation of the full
partition function in terms of the Euclidean action is given by

Z =
∫
DUDψDψ e−(SG[U ]+SF [ψ,ψ,U ]). (3.36)

The measures of integration are: the Haar measure for the link variables

DU =
∏
n∈Λ

∏
µ

dUµ(n), (3.37)

which implements the integration over the group manifold of SU(3) for each discretized
site, and for the Grassmann fields

DψDψ =
∏
n∈Λ

∏
α,c

dψα, c(n)dψα, c(n). (3.38)

The integration over the fermionic fields can be performed exactly, using standard formulas
for Grassmann-variable integration (1,46). We obtain for Z

Z =
∫
DU

[
e−SG[U ]

∫
DψDψe−ψM[U ]ψ

]
=
∫
DU

[
e−SG[U ]det[M[U ]]

]
. (3.39)
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Expectation values are calculated as

⟨O⟩ = 1
Z

∫
DUDψDψ e−(SG[U ]+SF [ψ,ψ,U ])O[ψ, ψ, U ]. (3.40)

We assume that the operator whose expectation value is being calculated is expressed in
terms of products of quark bilinears

Ok
[
ψ(mk), ψ(nk)

]
= ψαk

(mk)Γk, αkβk
ψβk

(nk),

where Γ is a Dirac-space matrix. Then, one can use Wick’s theorem when integrating over
the fermionic fields to obtain〈

n∏
k=1
Ok
〉

=
∫
DU e−SG[U ] detM[U ]

Z
×(−1)n

 ∑
P (1,2,...,n)

sign(P )
∏
k

(Smk,nPk
[U ])αkβPk

∏
k′

Γk′,αk′ ,βk′

, (3.41)

where the sum runs over all permutations of the numbers (1, 2, . . . , n), sign(P ) gives
the sign of the permutation and Sn,m[U ] is the quark propagator for a particular field
configuration

Sn,m[U ] = 1
detM[U ]

∫
DψDψ e−ψM[U ]ψψ(n)ψ(m) =M−1

nm[U ]. (3.42)

3.1 Quenched approximation

In a lattice setting, the exact calculation of det[M[U ]] in 3.39 is an expensive
operation. The operator M has (4× 3× Volume)2 complex entries, which for a lattice of
size 324, for example, would give approximately 158 trillion complex numbers. This is a
naïve counting, since M is sparse for most Dirac operators used in practice, because only
entries corresponding to nearest neighbors are included. But, even taking into account
the sparsity of the matrix, the task of calculating the determinant in exact closed form is
unthinkable. In fact, a simulation in lattice gauge theory usually consists in producing
configurations of link variables and evaluating expectation values by sampling, as will be
explained further in 6.1. The determinant of M influences the evolution of the algorithms
to generate the configurations, and, conversely, it needs to be calculated for every single
gauge configuration at each step of the generation algorithm, since it depends itself on U .

There are nowadays specialized algorithms to take this fermion determinant into
account in simulations exactly. When performing a numerical lattice calculation using
these methods, one speaks of a dynamical fermion simulation. These simulations, which
are much more expensive than pure-gauge simulations, take into account all the effects
coming from the fermionic degrees of freedom and are absolutely necessary for precision
physics and if one wishes to obtain agreement with experimental values at the sub-percent
level.
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An alternative to this problem is to neglect the effects of the determinant, in the
hope that the fermionic dynamics is not essential to the physics that one is looking at.
This is the so-called “quenched approximation”, where one takes det[M] = 1. In the past,
most simulations had to be done in this approximation or they would not have been done
at all. Nowadays, the quenched approximation is still in use, for example, for exploratory
studies or studies that envisage a conceptual breakthrough, rather than precision.

Moreover, there is some theoretical basis for the quenched approximation. The
simplest argument is based on counting the degrees of freedom of the theory. QCD contains
a larger amount of gluonic degrees of freedom than fermionic ones. There is also the OZI
rule and the approximate linearity of Regge trajectories, which indicate that quark loops
would only contribute a small effect to some observables (50). Perhaps more convincing is
the argument given a posteriori, based on the success of the approximation to produce the
light hadron spectrum in good agreement with the experimental data (63), indicating that
at least a part of the effects of quenching can be reabsorbed in the definition of the gauge
coupling g.

One known drawback of the quenched approximation is that, since quarks are not
taken into account in the action, the axial anomaly is absent, making the η′ an extra
Goldstone boson, where in reality is has a mass larger than the nucleon (33, 46). The
quenched approximation is also undesirable when studying aspects of the phase transition
in QCD thermodynamics, as mentioned in the Introduction.

When calculating propagators in a quenched approximation, what is effectively
being done is to separate the valence quark masses from the external propagators from
the sea quark masses of the determinant. The sea quark masses are taken to infinity, in
such a way that they decouple from the theory. One then evaluates the valence quark
propagators in a pure-gluon background.

3.2 Scale setting

In pure-gauge theory on the lattice we just have one parameter to vary: the inverse
coupling β. One may wonder how to determine the lattice spacing in physical units, since
everything on the lattice is written in terms of dimensionless quantities. The way to
proceed to is to numerically calculate some observable that can be related to experimental
results. Then one obtains the lattice spacing by matching. Of course, this will only give
reliable results if the lattice spacing is sufficiently small, because, for large lattice spacings,
one should expect lattice artifacts to dominate.

We must notice first that there is only hope of obtaining a continuum limit for
a lattice quantum field theory if the associated statistical mechanical partition function,
given by the integral over the Boltzmann exponential of the lattice action, contains a
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second-order phase transition. These transitions are characterized by the divergence of
correlation lengths. In fact, the largest correlation length will have the following relationship
with the smallest mass of the spectrum of the theory (25)

ξ = 1
m
. (3.43)

If the smallest mass in the spectrum of the theory is to have a finite value, the corresponding
value in lattice units m̂ = am must vanish as we approach the continuum limit a → 0.
Conversely, the associated correlation length in lattice units ξ̂ = ξ

a
will diverge. If the

statistical mechanical system does not contain any region in the space of the action
coefficients where criticality is achieved, then there is no hope that a continuum limit will
be realized. Conversely, if the continuum limit exists, all lattice lengths will tend to infinity
(and masses tend to 0, respectively) as it is approached.

More precisely, if a physical observable Θ has mass dimension dΘ, then we should
be able to write it as

Θ(g, a) =
(1
a

)dΘ

Θ̂(g), (3.44)

where Θ̂ denotes the lattice equivalent of the said observable, which can be obtained
numerically. In order to obtain the continuum limit, we must drive the couplings, here
represented by g, to their critical values g∗, so that the physical value of Θ will be

Θ(g, a) =
(1
a

)dΘ

Θ̂(g) a→0, g→g∗
−→ Θphysical. (3.45)

The framework to understand changes in the ultraviolet cutoff a with the corre-
sponding changes in the coupling is the renormalization-group. We aim at obtaining a
relationship of the type g(a) or β(a) in this formalism. This relationship expresses how
the coupling runs as the ultraviolet regulator (the lattice spacing) changes, in such a way
as to keep physical observables unchanged, which should be true sufficiently close to the
continuum limit. The invariance of the observables with respect to changes in the lattice
spacing is expressed in the following renormalization group equation (25,46)

dΘ(g(a), a)
d ln(a) =

(
∂

∂ ln(a) − β(g) ∂
∂g

)
Θ(g, a) = 0, (3.46)

where the β-function∗ was defined by

β(g) ≡ − ∂g

∂ ln(a) . (3.47)

One can interpret the renormalization-group equation on the lattice as saying that we
need to fine-tune the couplings (and, in general, all Lagrangian parameters), as we change
∗ It is unfortunate that the inverse temperature, the inverse coupling and the β-function are

all written with the same Greek letter, however this is quite standard notation, so we feel
compelled to stick to it. We hope that throughout this text it will be clear which one is
meant.
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the spacing, so as to keep physics constant. For a broader presentation of renormalization
as pertaining to lattice field theories, one can consult Sects. 1.6 and 1.7 of (50).

In order to determine the β-function on the lattice, we may calculate, for example,
the potential between a static (that is, infinitely heavy) quark and static antiquark in
lattice perturbation theory as powers of g. The potential has the following form (25,64,65)

V (R, g, a) ≈ −g
2(a)

4πR C1

{
1 + g2(a)

(4π)2
11Nc

3

[
ln
(
R2

a2

)
+ C2

]}
, (3.48)

where C1 and C2 are constants, and R is the separation between the quark and the
antiquark. By using this for Θ(g, a) in Eq. 3.46, we may obtain an approximation to the
β-function for small g

β(g) ≈ −β0g
3, (3.49)

where
β0 = 1

(4π)2

(11Nc

3

)
. (3.50)

One could, in principle, improve on this by calculating expressions with a higher
number of loops in lattice perturbation theory. This approach is, however, extremely
cumbersome due to the complicated structure of the Feynman rules on the lattice. One
may resort to the universality or renormalization scheme independence of the first two
coefficients of the beta function expansion (5,25,64),

β(g) = −β0g
3 − β1g

5 +O(g7), (3.51)

meaning that their values are the same both on the lattice and in regular continuum per-
turbation theory. In fact, 3.50 is the same result obtained in usual continuum perturbation
theory (1). The next coefficient is

β1 = 1
(4π)4

(
34N2

c

3

)
, (3.52)

for SU(Nc) without dynamical quarks. Universality also entails that the use of the potential
between static quarks was merely illustrative and another observable would have given
the same coefficients. Integrating out the β-function to obtain the relationship between
the lattice spacing and the coupling results in

a(g) ≡ 1
ΛL

R(g), R(g) = (β0g
2)

− β1
2β2

0 e
− 1

2β0g2 (1 +O(g2)). (3.53)

The lattice dimensionful integration constant ΛL can be used to set the scale, by fixing a
value for g at some a. This constant is renormalization-scheme-dependent† and different
from the continuum ΛQCD, but both are related, as clarified by lattice perturbation theory
† One can check (64) for the same argument but using other quantities, such as the string

tension and glueball masses.
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(25, 66). The fact that the formula for a(g) contains a term of the form e−1/g2 is seen as a
hint that non-perturbative contributions are included in the result (25,64), since such a
term does not have a Taylor series in g.

There are also mean-field improved renormalization schemes that extend the
convergence of the lattice perturbation theory for weak-coupling expansion presented above
by removing tadpole diagrams (67,68). A non-perturbative scheme has been proposed by
integrating the two- or three-loop renormalization equation numerically (64, 69). More on
this subject can be found in (70).

We can derive from 3.53 that the critical value for the gauge coupling is g → 0, or
conversely β →∞, and the continuum limit is obtained for large β (see Eq. 3.33). This
is a lattice version of asymptotic freedom: as one delves into smaller and smaller lattice
spacings, one is able to probe the finer details of the ultraviolet regime of the theory, and
the gauge coupling is correspondingly found to vanish in this limit, tending to a free theory.
The value g = 0 is also a root of the β-function and is thus a fixed point in the space of
the renormalization-group couplings.

With 3.53 in mind, we can now substitute the relationship between the spacing and
the coupling in Eq 3.45, to derive that, close to the continuum limit, the lattice version of
a physical quantity should obey

Θ̂(g)
g→0
≈ ĈΘ R

dΘ(g). (3.54)

This is the asymptotic-scaling relationship for the observable Θ, from which one can obtain
ĈΘ from the known R(g). Moreover, the physical value of the observable is found to be

Θphysical = ĈΘ ΛdΘ
L , (3.55)

and one sees that the mass scale ΛL provides a way to express dimensionful quantities from
the lattice. Even though ΛL is undetermined without input from the world external to a
lattice QCD simulation, one can obtain ratios of observables from the simulation alone. If
the continuum limit is close, so that the relation 3.54 is valid for a pair of observables, we
obtain that two observables with the same mass dimension are going to obey

Θ1,physical

Θ2,physical
= ĈΘ1

ĈΘ2

. (3.56)

When performing a numeric calculation on available computers, we have to worry
about other issues. If we want to study a system at constant physics, we should preferably
keep the lattice volume unchanged, especially since we do not know a priori what are the
finite-size effects. The physical volume in a finite-volume lattice simulation is given by

V = a4N3
spatialNtemporal. (3.57)
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If we decrease the lattice spacing, as mandated in order to obtain the continuum limit,
but keep the same number of lattice points, we will also be decreasing the physical volume.
In order to keep the physical volume constant for a decreasing lattice spacing, we must
increase the number of lattice points. This can only be done up to a certain point, since
more lattice points require more computational power, and the available resources are
finite. For a given lattice volume, the correlation length will not be able to grow to be
larger than the available memory and this restricts the values of β for which the behavior
in 3.54 will be verified. One is thus constrained to a “scaling window”, where the relation
is obeyed.

One more issue that has to be taken into consideration in practice is “critical
slowing down”. Many algorithms for generating configurations in lattice field theory suffer
from a difficulty of convergence as one approaches the continuum limit, because their
convergence is tied in one way or another to the correlation lengths of the system, which
diverge as we have discussed at the start of this section. This causes the correlation between
subsequent configurations in a Monte Carlo simulation, for example, to become very large
and one needs to discard more configurations when measuring numerically expensive
quantities on the lattice, which leads to a reduction of the statistics and consequently to
an increase of the errors. The simulation cost is expected to quickly grow with a power of
the lattice size. In fact, the slowing down is also present for gauge-fixing algorithms (71)
and algorithms that deal with the inversion of the Dirac operator, due to the small values
of the associated eigenvalues close to the continuum limit. This phenomenon contributes
in further restricting the accessible scaling window.

The renormalization-group discussion provides the background for understanding
the relationship between the Lagrangian parameters and the lattice spacing. In practice,
however, the values of coupling that are used for numeric simulations in the SU(3) pure-
gauge (or quenched) case, β ≈ 6.0, g ≈ 1, preclude one from using the actual formulas
presented above without caution. A procedure that is better tailored for the range used in
practice is the Necco-Sommer scheme, which is also based on obtaining the lattice spacing
from the static potential between a quark and antiquark, but giving more emphasis to
non-relativistic quantum knowledge (72). It is well established that heavy quarkonia can be
studied using non-relativistic potentials and the Schrödinger equation in regular quantum
mechanics. From these studies, one obtains that the force between quarks in the limit that
they are infinitely heavy is given by

F (r0) r2
0 = 1.65, (3.58)

when r0 ≈ 0.5 fm. We can model the interaction between these quarks with a potential of
the form

V (r) = A+ B

r
+ σr. (3.59)
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Using that F (r) = dV (r)/dr gives

F (r0) r2
0 = −B + σr2

0 = 1.65, (3.60)

which can be solved for r0 to yield

r0

a
= 0.5 fm

a
=
√

1.65 +B

a2σ
→ a = 0.5 fm

√
a2σ

1.65 +B
. (3.61)

The dimensionless constants B and a2σ can be determined numerically from a lattice
calculation of the correlators of two Polyakov loops, which will be defined later on in Sect.
3.3.1. One then fits the potential to the form

aV (an) = aA+ B

n
+ a2σn, (3.62)

thus obtaining the constants, which can be inserted back into Eq. 3.61. In this way, a can
be read off.

By varying β in the simulation, we can find out how the spacing will change with
the coupling. The authors of (73), along the lines of the procedure above, produced the
following parameterization for a(β), valid for SU(3) quenched/pure-gauge theory in the
range 5.7 < β < 6.92

a(β) = r0e
f(β), (3.63)

with

f(β) ≡ −1.6804− 1.7331(β − 6.0) + 0.7849(β − 6.0)2 − 0.4428(β − 6.0)3. (3.64)

We choose to work with this scheme, given in 3.63, since it is better suited for the
coupling values used in practice by us.

3.3 QCD at finite temperature on the lattice

In studies of finite-temperature systems, the partition function plays a pivotal role.
For quantum systems, in particular, it is defined as

Z(T ) = tr
[
e−βH

]
(3.65)

and it admits a path-integral representation as

Z(T ) =
∫
D[Φ]e−Sβ

E [Φ], (3.66)

where SβE[Φ] is the finite-temperature Euclidean action and Φ represents the collection of
all fields that make up the degrees of freedom of the theory. The Euclidean action is the
integral of the Euclidean Lagrangian density, and the temperature is given as the inverse of
a finite “imaginary-time” extent β = 1

T
(with kB = 1 in natural units) for this integration

SE[Φ] =
∫ β

0

∫
Volume

d3xLE[Φ(x)]. (3.67)
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The bosonic gluon fields, moreover, are required to obey periodic boundary conditions,
which comes from the trace in Eq. 3.65.

Naïvely, for sufficiently high temperatures, one might think that non-perturbative
effects should be absent in QCD, since the typical energy scales are also high and this
would allow perturbation theory to be applicable. In fact, however, this is not necessarily
so. One instance of the failure of perturbation theory for high temperatures is the Linde
problem, which states that perturbative quantum field theory at finite temperature breaks
down due to infrared divergences from order g6 onward, since, above this, all orders of
perturbation theory start to contribute equally (74, 75). Actually, as evidenced by the fact
that the quark-gluon plasma appears to behave as a nearly perfect liquid, QCD seems to
be strongly coupled at least up to temperatures as high as 450 MeV. The upshot is that,
in order to have a correct picture of the deconfinement and chiral-restoration transitions
and a description of the quark-gluon plasma, one must include non-perturbative effects.
These arguments support the use of lattice QCD as the ideal tool to research this topic.
Lattice simulations show, in particular, that a convergence to the Stefan-Boltzmann limit
(when the particles can be considered free) for QCD matter is slow and is attained only for
extremely high temperatures≫ 600 MeV (76), thus justifying the need for non-perturbative
techniques a posteriori.

In the continuum, one usually takes the volume to∞, but, in the lattice simulations,
we are always restricted to finite volume. The “imaginary-time direction” on the lattice is
also always finite, and if zero-temperature results are needed, one has to take β to be large
together with the volume. If, on the other hand, one is interested in finite-temperature
physics, one fixes β as one allows the volume to grow. The inverse temperature on the
lattice is then given by

β = aNT , (3.68)

where a is again the lattice spacing and NT the number of sites in the T direction. From
this, one sees that one has two options when trying to control the temperature on the
lattice: either change the spacing or change the number of points in the T direction. The
first option gives us the ability to change the temperature continuously, albeit with the
disadvantage that changes in the volume will also result ‡. The second option, keeping a
fixed and changing NT , will allow us to change the temperature by discrete amounts only.

‡ Unless one uses anisotropic lattices, with different temporal and spatial spacings, which is a
rather clumsy formalism which we will not explore in this work



51

3.3.1 Center symmetry and Polyakov loops

One important quantity to describe confinement on the lattice will be the Polyakov
loop. It is given by

L(m⃗) = tr
Nt−1∏
j=0

Ut(m⃗, t)
 , (3.69)

which means that it is a closed circuit of links along the temporal direction for a given
spatial position m⃗. Since it is a closed loop due to the periodic boundary conditions, it is
automatically gauge-invariant.

The importance of it is linked to a calculation of the excess free energy of a single
static-quark test charge in the surrounding gluon medium. The partition function of a
static quark at spatial position m⃗ for a pure-gauge theory is given by (18,77,78)

ZQ =trq(m⃗)e
−βH =

∑
n

〈
ψn(1 quark, m⃗)|e−βH |ψn(1 quark, m⃗)

〉
(3.70)

=
∫
DU tr [L(m⃗)] e−S[U ]. (3.71)

From this, it follows that the expectation value of the trace of the Polyakov loop is related
to the free-energy difference between a scenario with and without a static quark

⟨L(m⃗)⟩ = ⟨L⟩ = 1
Z

∫
DU L(m⃗)e−S[U ] = ZQ

Z
= e−

FQ−F0
T , (3.72)

where

L =
∑
m⃗ L(m⃗)
Vspatial

, (3.73)

and the first equality follows from translation invariance.

For a theory that is confined at zero temperature, as is the case with QCD, it would
cost infinite energy to remove a static quark to infinity, FQ =∞ and consequently ⟨L⟩ = 0.
If quarks are liberated at some regime, then, correspondingly, we will have ⟨L⟩ ≠ 0. In
this framework, the trace of the Polyakov loop will serve as an order parameter for the
deconfinement transition. The order of the transition can be obtained by integrating out
all the degrees of freedom besides the Polyakov loops. The resulting three-dimensional
Z3 spin system describes the critical behavior at the transition. In particular, for SU(3),
this correctly predicts the first-order transition to the deconfined phase (79), which is
corroborated by lattice simulations.

One can also consider the correlation function of two Polyakov loops ⟨L(m⃗)L†(n⃗)⟩,
from which one derives the following relation (78)

⟨L(m⃗)L†(n⃗)⟩ = 1
Z

∑
n

e− E
qq
n (|m⃗−n⃗|)

T , (3.74)



52

where the sum goes over all energy levels and Eqq
n (r) are the eigenvalues of the Hamiltonian

of QCD in the presence of a qq pair. In the zero-temperature limit, we can calculate

lim
T→0

∑
n e

− E
qq
n
T∑

n e
− En

T

= lim
T→0

e−
(E

qq
0 −E0)

T
1 + e−

E
qq
1 −E

qq
0

T + . . .

1 + e− E1−E0
T + . . .

→ e
−Vqq(|m⃗−n⃗|)

T , (3.75)

and identify in the last equality the static potential as the energy of a qq pair above the
vacuum. The sub-leading contributions are suppressed in the zero-temperature limit. At a
finite temperature, one has

⟨L(m⃗)L†(n⃗)⟩ = e−
Fqq(|m⃗−n⃗)|

T . (3.76)

The free-energy of a qq pair is Fqq, which can be thought of as a temperature dependent
potential and shows screening above a critical temperature. In the deconfined phase, it
has the form (78)

Fqq(r)
T

= −c(T )e−m(T )r

(rT )d , (3.77)

which is in contrast to the expected behavior in the confining phase of a Coulomb + string
potential for the zero-temperature case

Vqq(r) = B

r
+ σr. (3.78)

The susceptibility for the Polyakov loop can be defined by

χP = N3
(
⟨L2⟩ − ⟨L⟩2

)
, (3.79)

and one studies the behavior of this quantity to determine the order of the transition and
the eventual critical temperature.

As with chiral symmetry, the confinement transition in the pure-gauge case is
associated to the breaking of a symmetry. We first identify the corresponding symmetry of
the lattice action. We begin by defining a center transformation. For a given time slice
t = t0, we perform the product of the temporal links for all spatial positions by an element
of the center of the internal symmetry group z,

Ut(n⃗, t0)→ z Ut(n⃗, t0). (3.80)

The center of the group is composed by all elements that commute with all group elements.
For SU(3), all elements of the center are proportional to the identity matrix with a phase
(1, 1e2π/3, 1e−2π/3). These elements make up a Z(3) finite subgroup inside of SU(3).

The center transformation is a global symmetry of the pure-gauge Wilson lattice
action. It leaves all spatial plaquettes untouched, whereas the temporal plaquettes are
invariant, because they include links in the positive and negative temporal directions

tr[Uµ(n⃗, t0)Ut(n⃗+ µ̂, t0)U †
µ(n⃗, t0 + 1)U †

t (n⃗, t0)] (3.81)

→ tr[zUµ(n⃗, t0)Ut(n⃗+ µ̂, t0)U †
µ(n⃗, t0 + 1)U †

t (n⃗, t0)z†] (3.82)

= tr[z†zUµ(n⃗, t0)Ut(n⃗+ µ̂, t0)U †
µ(n⃗, t0 + 1)U †

t (n⃗, t0)], (3.83)
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where we used the cyclic property of the trace and the fact that the center elements are
unitary and commute with any other element of the group. The Polyakov loop, however,
is not invariant with respect to center transformations, since there is only one link in the
temporal direction and nothing else to cancel the center element z

L→ z L. (3.84)

We already established that the center transformation is a symmetry of the lattice action.
If the ground state is also symmetric with respect to this symmetry, then we can average
over all elements of the center in the expectation value of the Polyakov loop to obtain

⟨L⟩ = 1
3⟨L+ zL+ z2L⟩ = 1

3
(
1 + ei2π/3 + e−i2π/3

)
⟨L⟩

= 1
3

(
1− 1

2 +
√

3
2 −

1
2 −
√

3
2

)
⟨L⟩ = 0. (3.85)

This shows that the expectation value of the Polyakov loop must vanish if the ground
state is symmetric with respect to center transformations. Conversely, a non-vanishing
value of the Polyakov loop indicates that center symmetry is spontaneously broken. But
we already linked the value of the Polyakov loop to confinement, via the static potential.
We are thus led to the conclusion that the spontaneous breaking of center symmetry is
connected to confinement.

As mentioned in the Introduction, the action with the inclusion of quarks is not
symmetric with respect to center transformations to start with. Physically, we can interpret
this as coming from a “string breaking” in the potential due to the formation of quark-
antiquark pairs, which screen the confining potential. The Polyakov loop is not an order
parameter in this situation and ⟨L⟩ ≠ 0 for all temperatures. However, it is still considered
important, as it should still retain some information on the deconfinement transition. In
practice, its value is found to increase monotonically with increasing temperature in lattice
studies (80).
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4 GAUGE FIXING

By their very nature, gauge theories inherently contain a large redundancy in the
definitions of the fields. Since gauge transformations are symmetries in these theories,
any fields related by one such transformation actually share identical physical content∗.
Observables measured in a laboratory are oblivious to any ambiguity caused by local
gauge symmetries, because they are necessarily gauge-independent. This means that, even
though the theory contains an excess of degrees of freedom, in a calculation to be compared
with experimental results the redundancy present in several terms must cancel out.

The redundancy in the theoretical formulation of physical phenomena is not
unique to quantum field theories. In fact, we can observe this sort of redundancy even in
electrostatics, as the electrostatic potential is defined up to an overall constant. In regular
classical electrodynamics, the redundancy is larger. The potentials A⃗′ and V ′ will carry the
same physical information as two other potentials A⃗ and V , as long as they are related by

A⃗′ = A⃗+∇λ, (4.1)

V ′ = V − ∂λ

∂t
, (4.2)

where λ(r⃗, t) is an arbitrary scalar function. In this setting, this gauge variance of the
potentials can be explored to simplify some calculations, which can become easier to
perform in Coulomb or Lorenz gauge, for example.

The manifestly Lorentz-invariant formulation of gauge quantum field theories in the
continuum is also defined in terms of the gauge field Aµ(x) instead of the physical electric
and magnetic fields. In the case of QED, for example, one can see that a quantization
of Aµ(x) will necessarily need to deal with redundancy, since it contains four real time
components but the photon is known to have only two physical polarizations.

The canonical quantization of theories with gauge freedom is complicated by the
impossibility of imposing commutation relations between the fields and their canonical
momenta in the Lagrangian. Take the Lagrangian for electrodynamics,

L(x) = −1
4Fµν(x)F µν(x), Fµν(x) = ∂µAν(x)− ∂νAµ(x). (4.3)

One may try to naïvely compute the associated momenta to the Aµ fields, given by

πµ = ∂L
∂(∂0Aµ) = F µ0, (4.4)

but π0 = F 00 = 0, and the field component A0 has no canonical momentum associated. In
order to fix this issue in the canonical quantization formulation, the equation π0 = 0 has
∗ For this Chapter our main sources are (1,19,46,50).
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to be considered a constraint. A presentation of the formalism for canonical quantization
with constraints by Dirac is found in (81).

The issue can also be formulated in terms of the classical equations of motion. The
Lagrangian 4.3 can be rewritten, using integration by parts, as

L = −1
2Aµ(x)KµνAν(x), (4.5)

where the kinetic operator is
Kµν = gµν∂

2 − ∂µ∂ν . (4.6)

The operator however contains pure-gauge modes with zero eigenvalue. Take an arbitrary
function λ(x), and consider ∂νλ(x). It is easy to see that this is an eigenvector with zero
eigenvalue, i.e. a zero-mode of the kinetic operator, because

Kµν ∂
νλ(x) = (∂µ∂2 − ∂µ∂2)λ(x) = 0. (4.7)

One can derive from the Lagrangian, using Euler-Lagrange equations, the classical equations
of motion,

KµνAν(x) = 0. (4.8)

The consequence of this is that, if two fields Aµ(x) and A′
µ(x) obeying the equations of

motion are related by
A′
µ(x) = Aµ(x) + ∂µλ(x), (4.9)

then the physical contents are the same, and the decision to use one or the other is
arbitrary. This is in fact the same issue that was already discussed above for classical
electrodynamics. Eq. 4.9 is simply the Abelian version of Eq. 2.8.

The gauge-freedom also has consequences for the free photon propagator, which
will be needed for perturbative calculations. The propagator of the photon would be the
inverse of the kinetic operator in momentum space. However, the operator, as shown above,
contains pure-gauge modes with zero eigenvalue and is therefore not invertible, making
the propagator ill-defined as a result.

In the path-integral formulation of gauge quantum field theories, the gauge-
redundancy problem arises in the guise of infinities when calculating matrix elements or
correlators. These infinities can be made to factor out and cancel away through the Fadeev-
Popov method, which includes a term in the path integral to constrain the integration†.
The constraint aims at taking only one sample for each physically distinct gauge orbit,
where each orbit is defined by the set of physically nonequivalent field configurations. In
other words, one is choosing a particular gauge, picking a particular Aµ to represent each
† This is standard content of modern quantum field theory textbooks, for example (1). For a

lattice gauge-theory version of this procedure, check Sect. 3.3 of (50). The method is also
shown in detail in the Chapter 2 of (82) (in Portuguese).



57

distinct physical configuration. The term that is included is a clever way of writing the
number 1,

|detM[A]|
∫

G
Dg δ (G[Ag]) = 1, M = δG[Ag](x)

δg(y)

∣∣∣∣∣∣
G[Ag ]=0

, (4.10)

where Ag is the gauge transformed version of A by the gauge transformation g. The
integral is performed over the whole space of possible gauge transformations G and the
delta distribution implements G[Ag] = 0, which is the gauge condition to concretely enforce
the constraint and determine which gauge configuration is being taken from the orbit. One
may take, for example,

G[Ag] = 0 = ∂µA
g µ(x), (4.11)

which is called Landau or Lorenz gauge condition, and is specially suitable for the
Lagrangian formalism by being explicitly Lorentz invariant. A generalization of this
condition is used customarily in the Fadeev-Popov method, which presents a continuous
class of gauges

G[Ag] = ∂µA
g µ(x) = ξ, (4.12)

where ξ is a real parameter.

The Fadeev-Popov method for non-Abelian gauge theories leaves a few traces in
the final quantization. Firstly, there is the inclusion of Feynman rules for unphysical
ghost particles that must be added in computations with Feynman diagrams. This ensures
unitarity by canceling terms that come from non-physical polarizations of the gauge bosons.
Secondly, the method also the kinetic term of the gauge boson, analogous to 4.6, in such a
way that it becomes invertible. The free propagator for a gluon, for the class of ξ gauges
in Minkowski continuum space, is given by

Dµν, ab(k) = −i
k2 + iε

(
gµν − (1− ξ)kµkν

k2

)
δab. (4.13)

The parameter ξ is an arbitrary constant that disappears from the final results when
calculating physical observables. In practice, one often gives it a value from the start to
simplify the calculations. Common choices are ξ = 1, the Feynman-’t Hooft gauge, and
ξ = 0, the Landau gauge. Choosing a particular gauge is referred to as “gauge-fixing”.

In more general terms, one can say that the correlators of the fundamental fields of
a gauge theory are gauge-dependent, meaning that they are not completely defined unless
a gauge-fixing scheme is in place. When trying to calculate gauge-dependent quantities
without gauge-fixing, the result will vanish, as a corollary of Elitzur’s theorem (83), which
states that local gauge symmetry cannot be broken spontaneously.

Even though we emphasize the need to perform gauge-fixing in order to study
correlation functions of gauge theories, there are also other reasons to do so. In some
non-perturbative renormalization schemes, for example, matrix elements are calculated in
a particular gauge to renormalize composite operators (46,84,85).
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4.1 Landau Gauge-Fixing on the Lattice

The lattice formulation presented in Chap. 3 was actually born out of the desire
to explicitly maintain local gauge symmetry in the action, which means maintaining the
overabundance of degrees of freedom. However, if we want to study propagators, as we do
in this work, then we must provide a gauge-fixing scheme.

The matricial Landau gauge condition in Eq. 4.11 is equivalent to the extremization
of the functional

W [A] =
∑
µ

∫
d4x tr [Aµ(x)Aµ(x)] (4.14)

with respect to gauge transformations of the non-Abelian gluon field Aµ, given by 2.8.
Here we are using the Euclidean metric, so that Lorentz indices may be brought up or
down without consequence.

That the quadridivergence and the functional conditions are equivalent in the
continuum formulation can be shown as follows: first, we remind ourselves that Aµ(x) is in
the algebra of SU(3), whereas g(x) is an element of the group. We can then write g(x) as

g(x) = eiεH(x), (4.15)

where H(x) is in the algebra, and thus is traceless and Hermitian, which implies that

g†(x) = e−iεH(x). (4.16)

In terms of H(x), the gauge transformation of Aµ(x), Eq. 2.8, then becomes

Aµ(x)→ Agµ(x) = eiεH(x)Aµ(x)e−iεH(x) + i(iε)∂µH(x). (4.17)

If we take ε to be small, we can expand the exponentials and obtain

Agµ(x) = [1 + iεH(x)]Aµ(x) [1− iεH(x)]− ε∂µH(x)

= Aµ(x) + iε[H(x), Aµ(x)]− ε∂µH(x)

= Aµ(x) + ε {i[H(x), Aµ(x)]− ∂µH(x)} (4.18)

keeping only terms up to first order in ε. We can now check what is the variation of the
functional in Eq. 4.14 as we do this infinitesimal gauge transformation

W [A]→ W [Ag] =
∑
µ

∫
d4x tr

{
{Aµ(x) + ε [i[H(x), Aµ(x)]− ∂µH(x)]}

{Aµ(x) + ε [i[H(x), Aµ(x)]− ∂µH(x)]}
}
. (4.19)

Expanding the terms we get

W [Ag] = W [A] + ε
∑
µ

∫
d4x tr

{
i {Aµ(x)[H(x), Aµ(x)] + [H(x), Aµ(x)]Aµ(x)}

− Aµ(x)∂µH(x)− ∂µH(x)Aµ(x)
}
. (4.20)
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The terms in the commutators cancel each other, as can be seen by expanding the products

Aµ(x)[H(x), Aµ(x)] + [H(x), Aµ(x)]Aµ(x) =

Aµ(x)[H(x)Aµ(x)− Aµ(x)H(x)] + [H(x)Aµ(x)− Aµ(x)H(x)]Aµ(x) =

Aµ(x)H(x)Aµ(x)− Aµ(x)Aµ(x)H(x) +H(x)Aµ(x)Aµ(x)− Aµ(x)H(x)Aµ(x) =

H(x)Aµ(x)Aµ(x)− Aµ(x)Aµ(x)H(x),

and, after taking the trace, one sees that

tr[H(x)Aµ(x)Aµ(x)− Aµ(x)Aµ(x)H(x)] = 0,

using the cyclic property. We are left with

W [Ag] = W [A]− 2ε
∑
µ

∫
d4x tr [Aµ(x)∂µH(x)] . (4.21)

We now suppose that H(x) goes to zero as we move far away from the origin, so that we
can integrate by parts without having to worry about a surface term, in order to get

W [Ag] = W [A] + 2ε
∫
d4x tr

[
H(x)

∑
µ

∂µAµ(x)
]
. (4.22)

But, apart from the constraint that H(x) should go to a 0 as xµ →∞, H(x) is arbitrary. If
we suppose that Aµ(x) is such that W [A] is at an extreme, then an infinitesimal variation
around that particular field should vanish. The only way that this is true for any H(x)
is if ∑µ ∂µAµ(x) vanishes, which is the Landau gauge condition. Therefore, extremizing
W [A] is equivalent to fixing to Landau gauge.

For our use in this work, we need a version of the functional of Eq. 4.14 suitable
for the lattice formulation, in terms of the link variables Uµ(n). We take the following
expression

E [U ; g] ≡ 1− 1
dNc|Λ|

∑
µ

∑
n∈Λ

Re tr
[
U g
µ(n)

]
, (4.23)

where U g
µ(n) ≡ g(n)Uµ(n)g†(n+ µ̂), that is, a gauge-transformed link variable. The set of

lattice sites is denoted by Λ, |Λ| is the total number of sites, also called the volume on
the lattice, µ is the index for the Euclidean space-time directions, µ̂ is the versor in the µ
direction and d is the space-time dimension of the problem.

That Eq. 4.23 is a version of the continuum functional can be seen by first noting
that

Re tr
[
U g
µ(n)

]
= 1

2tr
[
U g
µ(n) + U g †

µ (n)
]
, (4.24)
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and then by expanding Uµ(n) = eiaAµ(n) for small lattice spacings

Uµ(n) ≈ 1 + iaAµ(n)− a2

2 A
2
µ(n) +O(a3) (4.25)

U †
µ(n) ≈ 1− iaAµ(n)− a2

2 A
2
µ(n) +O(a3), (4.26)

which results in Uµ(n) + U †
µ(n) = 2 1− a2A2

µ(n). When plugged back into Eq. 4.23, this
gives

E [U ; g] ≡ 1− 1
2dNc|Λ|

∑
µ

∑
n∈Λ

tr
[
2 1− a2A2

µ(n)
]

= a2

2dNc|Λ|
∑
µ

∑
n∈Λ

tr
[
A2
µ(n)

]
, (4.27)

which is clearly a version of 4.14, apart from the irrelevant normalization constant, which
will not affect the extremization (71). Thus, given a link configuration {Uµ(n)}, in order
to fix to Landau gauge in a SU(Nc) gauge theory on the lattice, we must find, among all
the possible gauge-transformations, one that extremizes the functional in Eq. 4.23. If we
find an extremum of the functional with respect to G, keeping {U(n)} fixed, we have that
a discretized version of the Landau gauge condition is satisfied

∂µA
b
µ(n) =

d∑
µ=1

[
Abµ(n)− Abµ(n− µ̂)

]
= 0, (4.28)

for all sites n, in which b is the color index and

Aµ(n) =
[
Uµ(n)− U †

µ(n)
2i

]
− 1
Nc

tr
[
Uµ(n)− U †

µ(n)
2i

]
(4.29)

is the gauge field, which can be decomposed in components

Abµ(n) = tr[Aµ(n)T b]
2 , (4.30)

where T b are the group generators.

We stress that the procedure described for the extremization of the functional W [A]
presented above is completely non-perturbative. The actual algorithms used in practice
for gauge-fixing on the lattice will be presented in Sect. 6.2.

4.2 Gribov copies

It can be shown that the Landau gauge condition is not ideal (19). This means
that the condition is not sufficient to select a single configuration from each gauge orbit.
We can rewrite 4.18 in terms of the components as

Ag aµ (x) = Aaµ(x)−
[
∂µH

a(x) + fabcAcµ(x)Hb(x)
]

= Aaµ(x)−Dab
µ H

b(x), (4.31)

where Dab
µ = ∂µδ

ab + fabcAcµ(x) is the adjoint covariant derivative, with fabc the structure
constants. If two fields Aµ(x) and A′

µ(x) related by an infinitesimal gauge-transformation
obey the Landau gauge condition, then we must have that

∂µA
g a
µ (x) = ∂µA

a
µ(x)− ∂µDab

µ H
b(x) = 0. (4.32)
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The question then is if there are Hb(x) such that

−∂µDab
µ H

b(x) = 0, (4.33)

or, in other words, does the −∂µDab
µ = −∂µ(∂µδab + fabcAcµ(x)) operator have zero eigen-

values? The answer for non-abelian theories is yes (16, 19, 86). Configurations with the
same physical content and which obey the same gauge condition are referred to as Gribov
copies, and the resulting uncertainty in quantities evaluated for these configurations has
the name of Gribov noise. In the functional approach of extremizing W [A], 4.14, Gribov
copies will appear as different local minima.
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5 FERMIONS ON THE LATTICE

The presentation in this chapter is based on the expositions found in (25,46,50,64,
87).

5.1 The doubling problem and Wilson fermions

To start, let us consider a single free Dirac fermion field without a mass term. In
the continuum, the fermionic action for such a field is given simply by

SF,free,massless = ψ(x)/∂ψ(x) = ψ(x)γµ∂µψ(x). (5.1)

The simplest and most naïve way of adapting the fermionic action to be put on a
lattice is by discretizing the derivative that appears in Eq. 5.1,

∂µψ(x)→ 1
2a(ψ(n+ µ̂)− ψ(n− µ̂)). (5.2)

A symmetric discretization is used in order to try and reduce lattice artifacts, since

f(x+ ε)− f(x)
ε

= f(x) + εf ′(x) +O(ε2)− f(x)
ε

= f ′(x) +O(ε), (5.3)

whereas

f(x+ ε)− f(x− ε)
2ε

= 1
2ε

[(
f(x) + εf ′(x) + ε2

2 f
′′(x) +O(ε3)

)
−
(
f(x)− εf ′(x) + ε2

2 f
′′(x) +O(ε3)

)]
=f ′(x) +O(ε2).

We can write Eq. 5.2 as a matricial operator acting on a vector

∂̂µψ = ∂̂µnmψm, (5.4)

where
∂̂µnm = δn+µ̂,m − δn−µ̂,m

2a , (5.5)

and we notice that this is an anti-symmetric (or anti-Hermitian) matrix, since

∂̂µmn = δm+µ̂,n − δm−µ̂,n

2a = δm,n−µ̂ − δm,n+µ̂

2a = −δn+µ̂,m − δn−µ̂,m

2a = −∂̂µnm. (5.6)

Although not obvious at first sight, this discretization has one serious flaw: it introduces
many more fermions species than the one we wanted to describe. To see this, we can go to
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momentum space, as the Fourier transformation will diagonalize the derivative term. The
Fourier-transformed fields are defined by

ψ(m) = 1√
Λ
∑
p∈Λ̃

ψ(p) eip·am, ψ(n) = 1√
Λ
∑
q∈Λ̃

ψ(q) eiq·an, (5.7)

where, to simplify the notation, we will differentiate between the configuration-space and
momentum-space ψ and ψ by their arguments only. We will not dwell on which momenta
are included in Λ̃ for now, but will come back to it later in Sect. 5.3. The lattice fermionic
action turns into

∑
n,m∈Λ

ψ(n)
[∑
µ

γµ∂µnm

]
ψ(m)

=
∑
n,m

ψ(n)
[∑
µ

γµ

(
δn+µ̂,m − δn−µ̂,m

2a

)]
ψ(m)

= 1
Λ
∑
p,q∈Λ̃

∑
n,m

(
ψ(q)eiq·an

) [∑
µ

γµ

(
δn+µ̂,m − δn−µ̂,m

2a

)] (
ψ(p)eip·am

)

= 1
Λ
∑
p,q

∑
m

ψ(q)
[∑
µ

γµ

(
eiq·a(m−µ̂) − eiq·a(m+µ̂)

2a

)] (
ψ(p)eip·am

)

=
∑
p,q

ψ(q)
∑
m e

i(q+p)·am

Λ

[∑
µ

γµ

(
e−iaqµ − eiaqµ

2a

)]
ψ(p)

=
∑
p,q

ψ(q)δ(p+ q)
[∑
µ

γµ

(
e−iaqµ − eiaqµ

2a

)]
ψ(p)

=
∑
p

ψ(−p)
[∑
µ

γµ

(
eiapµ − eiapµ

2a

)]
ψ(p)

=
∑
p

ψ(−p)
[∑
µ

iγµ sin(apµ)
a

]
ψ(p) ≡

∑
p

ψ(−p)M(p)ψ(p),

where we used properties of the Kronecker delta and its discrete Fourier representation

δ(p′ − p) =
∑
m e

i(p′−p)·am

Λ . (5.8)

The components of the momentum are pµ = p · µ̂.

The inverse of M will give us the propagator for the fermion. This inverse is given
by

M−1(p) =
−∑µ iγµ

sin(apµ)
a∑

µ
sin2(apµ)

a2

. (5.9)
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In checking that this is indeed the inverse we use, in Einstein’s notation,

γµKµγνKν = 1
2 ({γµ, γν}+ [γµ, γν ])KµKν

= 1
2{γµ, γν}KµKν = 1

2 (2δµν)KµKν = K21, (5.10)

where Kµ is a generic four-vector and we used the symmetry of KµKν to get rid of the
commutator, and the anti-commutation relation for the γ-matrices, so that

M ·M−1 =
∑
µ

iγµ sin(apµ)
a

·
−∑ν iγν

sin(apν)
a∑

λ
sin2(apλ)

a2

=
1
∑
µ

sin2(apµ)
a2∑

λ
sin2(apλ)

a2

= 1. (5.11)

We can see that this propagator has more poles than the continuum propagator. The
continuum propagator for a single massless free fermion

Scont.(p) =
−i∑µ γµpµ

p2 (5.12)

has a single pole when the components pµ = 0 for all µ. In Eq. 5.9, there are in fact other
poles, because

sin(x) = 0 (5.13)

has solutions x = 0, but also x = π in the first Brillouin zone, where the momenta are
restricted to lie. This means that we have a pole for all combinations of momentum
components being either 0 or π/a: 16 in total, from which 15 are spurious artifacts of the
discretization.

Actually, the source of these doublers’ contributions is the discretization of the
derivative in Eq. 5.2. We could use a another derivative operator such as

∂̂(+)
µnm = δn+µ̂,m − δn,m

a
(5.14)

or
∂̂(−)
µnm = δn,m − δn−µ̂,m

a
. (5.15)

In fact, these are related, since

(
∂̂(+)
µnm

)T
= δm+µ̂,n − δm,n

a

= δm,n−µ̂ − δm,n
a

= δn−µ̂,m − δn,m
a

= −∂̂(−)
µnm. (5.16)

We can decompose ∂̂(+)
µnm into symmetric and anti-symmetric parts by

∂̂(+)
µnm = 1

2

[
∂̂(+)
µnm +

(
∂̂(+)
µnm

)T ]
+ 1

2

[
∂̂(+)
µnm −

(
∂̂(+)
µnm

)T ]
. (5.17)



66

The anti-symmetric part is exactly ∂̂µnm, because

1
2

[
∂̂(+)
µnm −

(
∂̂(+)
µnm

)T ]
= 1

2

[
∂̂(+)
µnm +

(
∂̂(−)
µnm

)T ]
= δn+µ̂,m − δn,m

2a + δn,m − δn−µ̂,m

2a = δn+µ̂,m − δn−µ̂,m

2a = ∂̂µnm. (5.18)

The symmetric part is proportional to a discretization of the Laplacian operator ∇2

1
2

[
∂̂(+)
µnm +

(
∂̂(+)
µnm

)T ]
= 1

2

[
∂̂(+)
µnm −

(
∂̂(−)
µnm

)T ]

= δn+µ̂,m − δn,m
2a − δn,m − δn−µ̂,m

2a = δn+µ̂,m − 2δn,m + δn−µ̂,m

2a .

We can see, by expanding

f(x+ ε)− 2f(x) + f(x− ε) =

f(x) + εf ′(x) + ε2

2 f
′′(x)− 2f(x) + f(x)− εf ′(x) + ε2

2 f
′′(x) = ε2f ′′(x) (5.19)

up to order O(ε3), that ∑
µ

1
a

[
∂̂(+)
µnm +

(
∂̂(+)
µnm

)T ]
= ∇2

nm. (5.20)

Using the derivative in Eq. 5.14 causes other problems, though. For the case of
QED, the authors of (88) show that this gives rise to non-covariant contributions to the
fermion self-energy and vertex-function (25).

The way that Wilson chose to solve the doubler problem is by including a term
in the action, instead of modifying the derivative. This term vanishes in the continuum
limit and raises the doubler masses, which vanish in Eq. 5.9, to high values, so that the
doublers decouple from the theory at small spacings. This extra term, moreover, should
not modify the pole at p = (0, 0, 0, 0), which is the one we want to keep in place. The term
Wilson proposed in momentum space is

δMWilson(p) = 1
∑
µ

1− cos(apµ)
a

= 1
∑
µ

1
a
2

sin2
(
apµ
2

)
, (5.21)

which is to be included in Eq. 5.9. The complete Wilson free fermion propagator can be
obtained by the inversion of this extended M operator

MWilson(p) =
∑
µ

iγµ sin(apµ)
a

+
1
[
sin2

(
apµ

2

)]
a
2

. (5.22)

The inverse is

M−1
Wilson(p) =

∑
µ

−iγµ sin(apµ)
a

+ 1[sin2[ apµ
2 ]]

a
2∑

µ

(
sin(apµ)

a

)2
+
[

sin2(apµ
2 )

a
2

]2 , (5.23)
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which can be checked by using the same identities that were used to check Eq. 5.9. We see
that, for p = (0, 0, 0, 0), the Wilson term in Eq. 5.21 vanishes, because sin(0) = 0. For the
pole positions previously associated to the doublers, if l components of the momentum are
π/a and the rest are 0, the Wilson term becomes

1
2l
a
, (5.24)

because sin(π/2) = 1 for each of these components. This means that the doubler gets a
contribution which acts like a mass term, since it is proportional to 1. In the continuum
limit, when a→ 0, the extra mass contribution diverges and the doubler decouples from
the theory.

We need to know what is the expression for the extra Wilson term in configuration
space. In order to do this, we perform the inverse Fourier transform

1
aΛ

∑
p∈Λ̃

∑
µ

1− cos(apµ)eiap(n−m) =

1
aΛ

∑
p∈Λ̃

∑
µ

[
1− eiap·µ̂ + e−iap·µ̂

2 eiap(n−m)
]

=

1
aΛ

∑
p∈Λ̃

∑
µ

[
eiap(n−m) − eiap·(n−m+µ̂) + eiap·(n−m−µ̂)

2

]
=

∑
µ

2δ(n−m)− δ(n−m+ µ̂)− δ(n−m− µ̂)
2a =

− a
∑
µ

δn+µ̂,m − 2δn,m + δn−µ̂,m

2a2

and comparing to Eq. 5.19, we see that this is proportional to the Laplacian discretization,
i. e. δMnm,Wilson = −(a/2)∇2

nm. The Wilson Dirac operator for a free massless fermion is
then given by

Mnm,Wilson, free, massless =
∑
µ

γµ

(
δn+µ̂,m − δn−µ̂,m

2a

)
− 1

δn+µ̂,m − 2δn,m + δn−µ̂,m

2a

=4
a

1δn,m −
1
2a
∑
µ

[(1− γµ)δn+µ̂,m + (1 + γµ)δn−µ̂,m] . (5.25)

The addition of a mass term presents no difficulty. Since it is diagonal in both Dirac and
configuration space, we can simply include it in the first term to get

Mnm,Wilson, free =
(
m+ 4

a

)
1δn,m −

1
2a
∑
µ

[(1− γµ)δn+µ̂,m + (1 + γµ)δn−µ̂,m] . (5.26)

Interactions can also be included, and here, again, as in the pure-gauge-theory construction
of Chap. 3, the guiding principle is gauge-invariance. The terms with δn+µ̂,m in ψ(n)Mψ(m)
will give rise to ψ(n)ψ(n+ µ̂), which is not invariant with respect to gauge transformations

ψ(n)→ ψ(n)′ = g(n)ψ(n), (5.27)

ψ(n)→ ψ
′(n) = ψ(n)g†(n). (5.28)
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In fact, a term with the product of ψ and ψ in two neighboring positions transforms as

ψ(n)ψ(n+ µ̂)→ ψ(n)g†(n)g(n+ µ̂)ψ(n+ µ̂). (5.29)

What needs to be included between the fermionic fields to remove the unwanted gauge
variance is something that transforms as

something(n, µ)→ g(n) something(n, µ) g†(n+ µ̂). (5.30)

The simplest choice is to make something(n, µ) = Uµ(n), which is the link variable. Likewise,
the terms with δn−µ̂ will need U−µ(n), defined in Eq. 3.3, to make it gauge-invariant. The
interacting massive Wilson fermion is thus described by the operator

Mnm,Wilson =
(
m+ 4

a

)
1 1cδn,m

− 1
2a
∑
µ

[(1− γµ)Uµ(n)δn+µ̂,m + (1 + γµ)U−µ(n)δn−µ̂,m] (5.31)

=
(
m+ 4

a

)
1 1cδn,m −

1
2a
∑
±µ

(1− γµ)Uµ(n)δn+µ̂,m (5.32)

=1
a

(am+ 4) 1 1cδn,m −
1
2
∑
±µ

(1− γµ)Uµ(n)δn+µ̂,m

 , (5.33)

where the first term gets a color identity matrix 1c, since it is also trivial in color space.
Here we introduced the notation γ−µ = −γµ in order to get a more condensed expression.
This lattice expression is equivalent to the minimal coupling of continuum gauge theories
in the limit that the lattice spacing goes to 0. To see this, we can expand Uµ(n) for small
a as in Eq. 4.26 and perform the Taylor expansion in the ψ(n± µ̂) fields for ψMWilsonψ.
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We get(
m+ 4

a

)
1ψ(n)ψ(n)− ψ(n)

2a
∑
µ

{
[1− γµ][1c + iaAµ(n)]ψ(n+ µ̂)

+ [1 + γµ][1c − iaAµ(n)]ψ(n− µ̂)
}

≈
(
m+ 4

a

)
1ψ(n)ψ(n)− ψ(n)

2a
∑
µ

{
[1− γµ][1c + iaAµ(n)][ψ(n) + a∂µψ(n)]

+ [1 + γµ][1c − iaAµ(n)][ψ(n)− a∂µψ(n)]
}

≈
(
m+ 4

a

)
1ψ(n)ψ(n)− ψ(n)

2a
∑
µ

{
1
[
ψ(n) + a∂µψ(n) + iaAµ(n)ψ(n)

+ ψ(n)− a∂µψ(n)− iaAµ(n)ψ(n)
]

− γµ
[
ψ(n) + a∂µψ(n) + iaAµ(n)ψ(n)

− ψ(n) + a∂µψ(n) + iaAµ(n)ψ(n))
]}

≈
(
m+ 4

a

)
1ψ(n)ψ(n)− ψ(n)

a

∑
µ

{
1
[
ψ(n)

]
− γµ

[
a∂µψ(n) + iaAµ(n)ψ(n)

]}
.

The first term in the summand cancels the (4/a)1 after the sum over the 4 directions is
performed and the last line becomes

= mψ(n)ψ(n)1 + ψ(n)
∑
µ

γµ[∂µ + iAµ(n)]ψ(n)

= ψ(n)[m+ /D]ψ(n), (5.34)

where we identified the covariant derivative Dµ = ∂µ + iAµ(n). In the derivation above it is
important to have in mind that we are keeping only the lowest order in a in the expressions,
and each line is approximately equal to the others to this order. The expression in Eq.
5.33, shows only the space-time indices. The equivalent expression with all indices explicit
is

Mnmαβ ab,Wilson = 1
a

(am+ 4) δα,βδa,bδn,m −
1
2
∑
±µ

(1− γµ)α,β[Uµ(n)]a,b δn+µ̂,m

 . (5.35)

5.2 γ5-Hermiticity

There is a rather abstract symmetry that the Dirac Wilson operator obeys, called
γ5-Hermiticity. A lattice fermion operator is said to obey this symmetry if

(γ5M)† = γ5M, or equivalently if M† = γ5Mγ5. (5.36)

In fact, not only the Wilson operator obeys it, as will be shown in a moment, but most
of the popular discretizations of lattice fermions also do (with the notable exception of
twisted-mass fermions).



70

To prove that the Wilson operator, given in 5.33, is γ5-Hermitian, we first note
that the first term is diagonal in Dirac-space, so this part is trivial. For the term that
contains the link variables, remembering that {γ5, γµ} = 0, we have that

∑
±µ

[γ5(1− γµ)γ5]αβ [Uµ(n)]ab δn+µ̂,m =
∑
±µ

(1 + γµ)αβ [Uµ(n)]ab δn+µ̂,m =
∑
∓µ

[1 + (γ−µ)]αβ [U−µ(n)]ab δn−µ̂,m =
∑
±µ

(1− γµ)αβ
[
U †
µ(n− µ̂)

]
ab
δn−µ̂,m =

∑
±µ

(1− γµ)αβ
[
U †
µ(m)

]
ab
δm+µ̂,n,

and since γ†
µ = γµ, in Euclidean space, this indeed corresponds to taking the Hermitian

conjugate of the M operator: by comparing the last line with the first, we see that the
positions m and n have been exchanged and Uµ has been substituted by U †

µ.

One important consequence of this symmetry is that it implies that the eigenvalues
are either real or come in complex-conjugate pairs. To show this, we can calculate the
characteristic polynomial of such an operator

P (λ) = det[M− λ1] = det[γ2
5(M− λ1)] = det[γ5(M− λ1)γ5] = det[γ5Mγ5 − λ1] =

= det[M† − λ1] = (det[M− λ∗1])∗ = P ∗(λ∗), (5.37)

where we used that γ2
5 = 1, the fact that the determinant of a product of matrices is the

product of the determinants, and that det[A†] = det[A]∗, for A = M− λ1 . Since the
eigenvalues of the operator M are the roots of the characteristic polynomial, we see that,
if λ is a root, so is λ∗. This means that, either both are actually the same and it is real,
or at least that they come in complex-conjugate pairs, and the spectrum of the Dirac
operator is mirror-symmetric about the real axis. This also implies that the determinant,
as the product of the eigenvalues, is real.

The spectrum of the Wilson operator in a free theory can in fact be calculated
explicitly, by diagonalizing the operator in momentum space in Eq. 5.22. The result is

λ = a−1

∑
µ

2 sin2
(
apµ
2

)
± i

√∑
µ

sin2(apµ)
 . (5.38)

5.3 Allowed momenta for the fermion on the lattice

As was the case with the gluonic fields, we must decide what to do with the fermions
at the borders of the lattice. In other words, boundary conditions must be implemented.
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A common choice for fermions is as following. In the spatial µ directions, we have
periodic boundary conditions and, for µ = t, anti-periodic conditions

ψ(n)|nt=−1 = −ψ(n)|nt=Nt−1, (5.39)

ψ(n)|nt=Nt = −ψ(n)|nt=0. (5.40)

In fact, fermions are required to obey anti-periodic boundary conditions in the
temporal direction because of the formal reconstruction of the Hilbert space by Osterwalder
and Schrader (47). It appears automatically when representing the fermionic partition
function in terms of a transfer operator, or calculating traces over fermionic bilinear
operators using a basis of Grassmannian coherent states. In the continuum this is the
usual minus sign appearing when one calculates closed fermion loops (50,64).

For the quarks, the anti-periodic boundary condition is implemented by multiplying
the hopping term (the second term in Eq. 5.33), which are the terms connecting different
sites, by −1 when µ = +4 and n4 = N4, or µ = −4 and n4 = 0.

The boundary conditions determine the set Λ̃ of allowed momenta. Functions on
the lattice must obey

f(n+ µ̂Nµ) = ei2πθµf(n), (5.41)

where the temporal direction corresponds to θt = 1/2 and the spatial ones to θi = 0.
In order to have plane waves that obey the aforementioned boundary conditions, the
momenta on the lattice must be

api = 2π
Ni

(
ni −

Ni

2

)
, ap4 = 2π

N4

(
n4 −

1
2 −

N4

2

)
, (5.42)

in which Nµ is the lattice extent in the direction µ and nµ can take values between 1 and
Nµ for the respective direction.

5.4 Chiral symmetry on the lattice

On the lattice, the situation with regard to chiral symmetry is more subtle than in
the continuum. In fact, in lattice field theory, it is impossible to implement the continuum
condition 2.19 and remove all the doublers, as stated by the fundamental Nielsen-Ninomyia
no-go theorem (89). The theorem assumes very few conditions on the Hamiltonian of the
system, which one would expect to hold in reasonable theories. These are

• translation invariance;

• locality, meaning that the Hamiltonian vanishes sufficiently fast for large distances,
so that its Fourier transform has all derivatives;

• Hermiticity.
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It is further assumed that the system has locally defined charges that are quantized
(quantum numbers) and are bilinear in the fermion fields. In any lattice theory obeying
the above conditions, the theorem says that the number of doublers must be even, and
furthermore that they can be divided into two groups based on their chirality, such that
the net chirality is 0 when all doublers are counted. A sketch of a proof of the theorem
involving topology is given in (90). It is possible to obtain models with a minimal number
of 2 doublers (50,91). All known models of this kind, however, break the isotropy of the
lattice by introducing different terms associated to the time and spatial directions for
the Dirac operator, which complicates the tuning of the parameters in the action, the
renormalization and consequently the analysis of the results in simulations (50,90).

To clarify what is needed to overcome the consequences of this theorem in an
elegant way, we follow the presentation of (46). Instead of Eq. 2.19, Ginsparg and Wilson
proposed a replacement (92)

{M, γ5} = aMγ5M. (5.43)

The Ginsparg-Wilson equation is a particular case of a general theory for how to map
continuum symmetries on the lattice. Suppose we have continuum fermionic fields ϕ and
ϕ, which, for some transformation implemented by C and C, behave as

ϕ→ ϕ′ = eiεCϕ, ϕ→ ϕ
′ = ϕeiεC , (5.44)

and we want to know what is the corresponding transformation for the lattice version of
the fields ψ and ψ

ψ′ = eiεLψ, ψ
′ = ψeiεL, (5.45)

which are, moreover, suitably discretized with a lattice action

SF,lattice[ψ, ψ] = ψMψ. (5.46)

One way to obtain the relationship between both sets of transformations is by blocking
the continuum theory, in the style of real-space renormalization-group transformations
(for more details, see Chapt. 9 of (46)). It can be shown that this procedure leads to the
following relations

L = C
(

1− aM
2

)
, L =

(
1− aM

2

)
C. (5.47)

For chiral symmetry in particular, where we have C = C = γ5, this means

L = γ5

(
1− aM

2

)
, L =

(
1− aM

2

)
γ5. (5.48)

The fact that the generic lattice transformation Eq. 5.45, should be a symmetry can be
written as

ψ
′Mψ′ = ψeiεLMeiεL

!= ψMψ, (5.49)
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which for infinitesimal ε implies that

ψ(1 + iεL)M(1 + iεL)ψ = ψ(1 + iεLM+ iεML)ψ != ψMψ → LM+ML = 0. (5.50)

For chiral symmetry, with L and L given in Eq. 5.48, this turns into(
1− aM

2

)
γ5M+Mγ5

(
1− aM

2

)
= 0, (5.51)

i. e.

γ5M+Mγ5 = aMγ5M→ {γ5,M} = aMγ5M, (5.52)

which is the Ginsparg-Wilson equation.

Eq. 5.43 implements chiral symmetry for a discrete spacetime. In the continuum
limit, when a → 0, the right-hand side goes to 0 and one recovers Eq. 2.19. Another
way of seeing the modification of the chiral condition with respect to the continuum can
be derived by noting that, performing the product with the quark propagator, that is
M−1 = S, on both sides of Eq. 5.43, one has∑

n,m

M−1
rnMnmγ5M−1

ms +M−1
rn γ5MnmM−1

ms = a
∑
n,m,l

M−1
rnMnlγ5MlmM−1

ms (5.53)

∑
m

δrmγ5M−1
ms +

∑
n

M−1
rn γ5δns = a

∑
l

δrlγ5δls (5.54)

γ5M−1
rs +M−1

rs γ5 = aγ5δrs (5.55)

or, renaming the indices,

γ5Snm + Snmγ5 = aγ5δ(n−m), (5.56)

which means that the anti-commutator of the fermion propagator S with γ5 is modified
by a contact term. The only fact used was the definition of the inverse MnlM−1

lm =
M−1

nlMlm = δnm = δ(n−m) and properties of the Kronecker delta.

As already stated, one needs to redefine the chiral transformations on the lat-
tice to match the chiral symmetry condition. Instead of Eq. 2.17, one uses the lattice
transformations in Eq. 5.47

ψ → ψ′ = exp
[
iαγ5

(
1− a

2M
)]
ψ, ψ → ψ

′ = ψ exp
[
iα
(

1− a

2M
)
γ5

]
, (5.57)

so that

L
(
ψ′, ψ

′) = ψ
′Mψ′

= ψ exp
[
iα
(

1− a

2M
)
γ5

]
M exp

[
iαγ5

(
1− a

2M
)]
ψ

= ψ exp
[
iα
(

1− a

2M
)
γ5

]
exp

[
−iαγ5

(
1− a

2M
)]
Mψ

= ψMψ = L
(
ψ, ψ

)
,
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where we used the alternative version of the Wilson-Ginsparg equation, given in Eq. 5.51.

Another common assumption regarding lattice fermionic operators M is that they
obey γ5-Hermiticity

γ5Mγ5 =M†, (5.58)

as we already explored in Sect. 5.2.

The Ginsparg-Wilson equation 5.43 has a number of consequences. The first of
them is that ifM obeys it and is at the same time γ5-Hermitian, then it commutes with its
Hermitian conjugate, in other words, it is a normal operator. To see this, we can multiply
the equation on either side by γ5. In one case one gets

γ5Mγ5 + γ5γ5M = aγ5Mγ5M (5.59)

M† +M = aM†M, (5.60)

and in the other

γ5γ5M+ γ5Mγ5 = aMγ5Mγ5 (5.61)

M+M† = aMM†. (5.62)

But, since the left-hand side is equal in both cases, this means thatMM† =M†M, which
is the normal operator condition [M,M†] = 0. A normal operator has a complete set of
orthonormal eigenvectors, and can thus be represented via a spectral decomposition as

M =
∑
λ

λ vλvλ
†, (5.63)

where the sum runs over the eigenvalues λ. By multiplying Eq. 5.60 by a particular vλ†

from the left and by vλ† from the right, we obtain, after using the spectral decomposition

λ∗ + λ = aλ∗λ. (5.64)

Taking λ = x+ iy, we get

(x− iy) + (x+ iy) =a(x2 + y2)(
x2 − 2x

a

)
+ y2 =0(

x− 1
a

)2
− 1
a2 + y2 =0(

x− 1
a

)2
+ y2 = 1

a2 . (5.65)

This shows that the eigenvalues of a fermion operator M that is γ5-Hermitian and obeys
the Wilson-Ginsparg equation are located on a circumference in the complex plane centered
at x0 = 1/a with radius 1/a.
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5.4.1 Overlap fermions

One solution of the Ginsparg-Wilson equation is given by the overlap operator

Moverlap = 1
a

(1 + γ5 sign[H]) , H = γ5A, (5.66)

where A is a kernel, that is required to be γ5-Hermitian, and can be chosen, for example, as
the Wilson-Dirac operator. The γ5-Hermiticity of A implies that H is Hermitian, because

H† = (γ5A)† = A†γ†
5 = A†γ5 = γ5Aγ5γ5 = γ5A = H, (5.67)

where we used γ†
5 = γ5, and γ2

5 = 1. We can now show that the overlap operator obeys Eq.
5.43, because

aMoverlapM†
overlap =1

a
(1 + γ5 sign[H]) (1 + sign[H]γ5)

=1
a

(1 + γ5 sign[H] + sign[H]γ5 + 1) =Moverlap +M†
overlap (5.68)

where we used sign[H]2 = 1 and sign[H]† = sign[H], which comes from the Hermiticity of
H shown above. The sign matrix is the tricky part, even though it is well defined through
the spectral representation of H

sign[H] =
∑
λ

sign(λ)vλvλ†, (5.69)

where sign(x) is now the usual sign function. The problem is that the explicit calculation of
the spectral representation through exact diagonalization is numerically very costly, which
renders this discretization impractical for full dynamical fermion calculations. With the
help of a few tricks, though, one can calculate the overlap propagator for either quenched
configurations or configurations generated with lattice fermions of other kinds, such as
Wilson or staggered fermions (46).

5.4.2 Chirally improved fermions

Chirally improved fermions follow a different philosophy to try to obtain an
approximate solution to the Ginsparg-Wilson equation (93). One considers the most
general Dirac operator to have the form

MCIxy =
16∑
i=1

c(i)
xy(U)Γi +m01, (5.70)

with the sum running over all elements of the Clifford algebra. The constants are constructed
from paths of link variables connecting the sites x and y. This Ansatz can be inserted into
the Ginsparg-Wilson condition, Eq. 5.43, and one imposes also that the other symmetries
expected from the lattice Dirac operator, such as γ5-Hermiticity, are obeyed. From this
results a system of coupled quadratic equations for the constants c(i)

xy(U), which can be
truncated and solved numerically. The operator obtained in this way can then be inverted
for the calculation of the fermion propagator.
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5.4.3 Staggered fermions

Staggered fermions are a different discretization that preserves (a remnant of) chiral
symmetry in a conceptually somewhat more convoluted way. One takes the naïve fermion
action Eq. 5.9 and performs a staggered transformation in the fields, which mix Dirac and
position indices,

ψ(n) = γn1
1 γn2

2 γn3
3 γn4

4 ψ′(n). (5.71)

One then ends up with four copies of a different fermion action, which after adding
interactions in the standard way (by inserting link variables to force gauge-invariance)
turns into

Sstag.[χ, χ] = a4 ∑
n,m∈Λ

χ(m)
[∑
µ

ηµ(m)
Uµ(m)δn,m+µ̂ − U †

µ(n)δn,m−µ̂

2a

]
χ(n). (5.72)

The staggered sign functions η1(n) = 1, η2(n) = (−1)n1 , η3(n) = (−1)n1+n2 , and η4(n) =
(−1)n1+n2+n3 play the roles of the γ matrices in the regular fermion actions. The χ fields
have no Dirac structure anymore, as it has been removed by the staggered transformation.
This reduces the computational costs of inverting the fermionic operator, which is one
of the characteristics that make staggered fermions attractive for simulations. Another
desirable property is that the staggered operator is anti-Hermitian, as the Dirac operator
in the continuum. The chiral matrix γ5 is substituted by η5(n) = (−1)n1+n2+n3+n4 , and
the staggered chiral transformation is given by

χ(n)→ eiαη5(n)χ(n), χ(n)→ χ(n)eiαη5(n), (5.73)

which is a symmetry of the staggered massless fermion action, Eq. 5.72, because, as the
staggered action couples nearest neighbors only, the position dependent η5 will differ
between them by a minus sign, which will then be canceled among the exponentials. A
mass term can be added as usual by δmSstag[χ, χ] = a4∑

n∈Λ mχ(n)χ(n), and this will
break the staggered chiral symmetry explicitly, as it should, since the sign cancellation
will not happen for fields on the same site.

Another way of looking at staggered fermions is through the spectrum doubling
symmetry, a symmetry of the naïve fermion discretization that exchanges the corners
of the Brillouin zone (50). The fermion species associated to the doublers bring about
a representation of the spectrum doubling symmetry group that is reducible. Staggered
fermions are seen in this framework as the results of a particular way of reducing the
representation (50, 94, 95). The Wilson discretization of fermions break the symmetry
explicitly by the introduction of the Wilson term.

The doubler problem is, however, not completely solved by the staggered framework.
One has four independent copies of the χ fields, each of which carry 4 of the original 16
doublers. A detailed study shows that these doubler degrees of freedom turn into tastes of
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staggered fermions, which are scattered over hypercubes of side equals to two units of the
lattice around the original n site.

5.5 Chiral symmetry with Wilson fermions

If one wishes to study QCD, chiral symmetry has to be taken into account. Massless
Wilson fermions, however, obey neither the continuum chiral symmetry condition 2.19
nor the lattice one 5.43 (46). One of the consequences of this is that the fermion mass
gets an additive renormalization (50, 90). The less elegant and more pragmatic way of
enforcing chiral symmetry when using Wilson fermions is the following: one writes the
Wilson operator as

Mnmαβ ab,Wilson = (am0 + 4)
a

δα,βδa,bδn,m − κ∑
±µ

(1− γµ)α,β [Uµ(n)]a,b δn+µ̂,m

 , (5.74)

where κ = 1
2(am0+4) , or equivalently

am0 = 1
2κ −

1
2
(

1
8

) . (5.75)

One can then numerically calculate the pion mass for ensembles with different values of
κ and extrapolate to the limit where the pion mass vanishes. This value of κ for which
the pion mass vanishes is named κc, where the c stands for critical. In the absence of
interactions, that is if Uµ(n) = 1 for all n, the pion mass will vanish when the quark mass
vanishes, which means that κc = 1/8 for the free theory. When the interactions are turned
on, one performs the procedure described above using the pion masses. In the interacting
theory, one defines the subtracted quark mass as

am = am0 − amc = 1
2κ −

1
2κc

. (5.76)

The value of the critical mass amc can be seen as a fine-tuning correction, needed to
ensure that the pion mass vanishes when the quark mass vanishes, as predicted by chiral
symmetry. The values for κc have been computed and can be found in tables, but they
depend, of course, on the action used and will vary with the value of the coupling β and
other parameters.

Determinations of κc based on lattice perturbation theory have been tried. One
calculates the perturbative estimate for κc that corresponds to zero renormalized quark
mass, and consequently to zero pion mass. The results of this procedure are not reliable,
though, as it is suspected that non-perturbative terms behaving like e1/g2 , which do not
have a power expansion, may contribute (50). For the quenched case, a non-perturbative
determination of κc can be found in (96).
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5.6 Improvements

In order to reduce lattice artifacts one can systematically include more terms to
the action with suitable coefficients, in such a way as to eliminate contributions at some
order in the lattice spacing a. This is the Symanzik improvement program. As mentioned
in Chap. 3, this is particularly important for Wilson fermions. We start with an effective
action

Seff =
∫
d4x

(
L(0)(x) + aL(1)(x)

)
, (5.77)

where L(0)(x) is the continuum QCD action, which contains all terms up to dimension
5 that respect the symmetries imposed by the theory. We then introduce L(1)(x), which
contain terms of mass dimension 5 (for dimensional reasons, as we have introduced the
lattice spacing in the action). These terms will necessarily contain high derivatives or
powers of the quark mass. It has been shown (46) that there are 5 such operators for the
fermionic Wilson action

L
(1)
1 = ψ(x)σµνFµνψ(x) (5.78)

L
(1)
2 = ψ(x)D⃗µ(x)D⃗µψ(x) + ψ(x) ⃗Dµ(x) ⃗Dµψ(x) (5.79)

L
(1)
3 = m tr [Fµν(x)Fµν(x)] (5.80)

L
(1)
4 = m

(
ψ(x)γµD⃗µψ(x)− ψ(x)γµ ⃗Dµψ(x)

)
(5.81)

L
(1)
5 = m2ψ(x)ψ(x), (5.82)

where σµν = [γµ, γν ]/2i and D⃗µ(x) and ⃗Dµ(x) are the covariant derivatives acting to the
right and to the left respectively .

The terms L(1)
5 and L

(3)
5 can be absorbed into a redefinition of the mass and the

coupling. The improvements brought by terms proportional to L(1)
2 and L(1)

4 can be traded
for an improvement on the fermionic fields when calculating correlators

ψ′ = (1 + bqam)(1− cqa /D)ψ + cn/∂ψ, (5.83)

where bq, cq and cn are constants to be determined. These will be taken into account when
we calculate the quark propagator.

Thus, we are left with the L(1)
1 term only for the actual fermionic action improvement.

The Symanzik program then postulates that we must find a suitable discretization of the
continuum term that must be added to the action. For L(1)

1 , the most commonly used
discretization is the so called Sheikholeslami-Wohlert term. The lattice improved action
for Wilson fermions is then given by

SSW-improved = SWilson + a4 ∑
n∈Λ

cSW ψ(n)
a∑µ<ν σµνF̂µν(n)

2

ψ(n). (5.84)
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The discretized field-strength tensor F̂µν(n) is obtained using the clover discretization

F̂µν(n) = −i8a2 (Qµν(n)−Qνµ(n)) , (5.85)

where
Qµν(n) = Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n), (5.86)

in which Uµν(n) is the product of four link variables making up a plaquette

Uµ,ν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂). (5.87)

The lattice fermions described by the action SSW-improved are also called clover fermions,
due to the fact that the term involves four plaquettes in a configuration which resembles a
cloverleaf. With this addition, the fermionic operator now reads

Mnmαβ ab,Clover[U ] = 1
a

[
(am0 + 4) δαβδabδnm −

1
2
∑
±µ

(1− γµ)αβ(Uµ(n))abδn+µ̂m

+ cSWa
2 ∑
µ<ν

1
2σµν,αβF̂µν, ab(n)δn,m

]
. (5.88)

The SW-term is diagonal in configuration space, the color indices are carried by F̂µν , and
the Dirac indices are carried by σµν . Another observation is that, for free fermions, the
SW-term vanishes, since, in this case, the links are all equal to 1, which implies that
Qµν = Qνµ → F̂µν = 0. As a consequence, the free propagator for clover fermions is the
same as for Wilson fermions.

One needs to determine the constant cSW in order to remove O(a) artifacts. It
can be computed through a non-perturbative procedure, where one tries to reduce the
lattice corrections to the PCAC relation by tuning the values of the coefficient (70, 96) for
different β. The resulting values are well approximated by a ratio polynomials on g =

√
6
β
,

cSW = 1− 0.656g2 − 0.152g4 − 0.054g6

1− 0.922g2 , 0 ≤ g ≤ 1. (5.89)

Perturbatively determined and mean-field improved formulas for cSW also exist, but the
non-perturbative determination has been shown to be preferable.

5.7 Free Dirac-Wilson propagator

The plain quark propagator for the interacting theory is defined in terms of the
inverse of the Dirac-Wilson operator with the addition of the clover term, by

Snm,Clover, plain ≡ ⟨Snm,Clover, plain[U ]⟩U , Snm,Clover, plain[U ] = (MClover)−1
nm[U ], (5.90)

where the angle brackets ⟨ ⟩U , mean the evaluation over an ensemble of generated gauge
link configurations. For each gauge configuration one must invert the Dirac-Wilson-Clover
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operator and then obtain the expectation value over the ensemble, together with the
accompanying statistical errors, from a statistical analysis (for example, using the Statistical
Bootstrap method, (46)). We will not dwell here on the techniques and algorithms to
invert the M operator, but rather defer this exposition to Sect. 6.3. Here we simply take
it for granted that somehow it has been inverted.

We can write the Dirac-Wilson operator as in Eq. 5.88 or defining κ = 1
2(am0+4) , as

done previously, and passing the constant to the other side, so that we have an dimensionless
equation,

aMnm,Clover[U ]
am0 + 4 = δn,m − κ

∑
±µ

(1− γµ)Uµ(n)δn+µ̂,m + κ cSWa
2 ∑
µ<ν

σµνa
2F̂µνδn,m. (5.91)

The bare lattice fermion mass, m0, is given in terms of κ by Eq. 5.75. The action parameters
are κ and cSW . These, together with a given a configuration of link variables {U} that
was obtained for a given β, completely define the operator to be inverted. By performing
the inversion of the right hand side of 5.91, we will have the inverse of Mnm, by dividing
the result by (am0 + 4)/a.

It is usual to study propagators in momentum space, where they are expected to
acquire a simpler form. Since we have a discretized and finite space, we perform a Discrete
Fourier Transform

Sp,Clover, plain[U ] = 1√
|Λ|

∑
n∈Λ

Sn0,Clover, plain[U ]e−iap·n, (5.92)

where we have fixed m to be at the origin, and used the fact that the propagator is expected
to be translationally invariant and only depend on n−m just to simplify, although this is
strictly true only after the evaluation over an ensemble of configurations, which we will
perform afterwards anyway. In practice, one can average over different positions m to
increase statistics and thus reduce the error. The set of allowed momenta on the lattice Λ̃
is discussed in Sect. 5.3.

In the free case, when Uµ(n) = 1 for all n, one can invert the clover operator in
closed form in momentum space. In fact, since F̂µν = 0 for the free theory anyway, the
clover propagator is the same as the Wilson propagator, given in Eq. 5.23 for the massless
case. If one introduces a mass term, then the propagator becomes

Sp, plain, free = a
−ia /K(p) + 1

[
am0 + (aQ(p))2

2

]
[aK(p)]2 +

[
am0 + (aQ(p))2

2

]2 . (5.93)

We have here used the notation aKµ(p) ≡ sin(apµ) and aQµ(p) ≡ 2 sin(apµ

2 ) for the lattice
momenta. We also notice that the functions Kµ(p) and Qµ(p) become approximately pµ
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in the continuum limit as

Kµ(p) = sin(apµ)
a

= pµ −
a2p3

µ

6 +O(a4), (5.94)

Qµ(p) =
sin(apµ

2 )
a
2

= pµ −
a2p3

µ

24 +O(a4). (5.95)

One remark, which is in place here, is that the free propagator is the same independently
of the choice of gauge. Since all links are set to the identity, it incidentally automatically
and trivially satisfies the Landau gauge condition of ∑µ ∂µAµ(n) = 0, because Aµ(n) = 0.

Another remark is that this lattice free propagator for Wilson fermions is indeed
quite different from the continuum propagator. To understand this better, we remind
ourselves that, in the continuum, the most general formula for the fermion propagator
that respects Lorentz and CPT symmetries is given by

S(p) ≡ 1
i/pA(p) + 1B(p) ≡

Z(p)
i/p+ 1M(p) = Z(p)

−i/p+ 1M(p)
p2 +M(p)2 , (5.96)

or equivalently
(S(p))−1 = 1

Z(p) [i/p+M(p)1], (5.97)

where A(p) and B(p) are so-called form factors. One can, alternatively, use the quark
renormalization function Z(p) = 1

A(p) and the mass function M(p) = B(p)/A(p) to describe
the propagator. In particular, for a free fermion theory in the continuum Zfree(p) = 1 and
Mfree(p) = m0, where m0 is the bare mass present in the Lagrangian.

When comparing Eq. 5.96 with Eq. 5.93, one notices that instead of /p one has /K

in the lattice formula. This is not new to fermion propagators, and indeed is a lattice
artifact that appears for the gluon and ghost propagators as well: the lattice momenta
is not the Fourier-momentum variable. In light of Eqs. 5.95, we see that the difference
between pµ and Kµ is of O(a2) and thus decreases as one decreases the lattice spacing.
More concerning, though, is the mass function. On the lattice, for Wilson fermions it has
the form

Mp, plain, free =
am0 + (aQ(p))2

2
a

= m0 + a
Q2(p)

2 , (5.98)

which differs from the continuum value in O(a). The source of this discrepancy is the
Wilson term, Eq. 5.21, which was added to get rid of the doublers: so this is a feature of
Wilson and clover fermions. In momentum space these differences will manifest themselves
in the high-momentum region, which probes the microscopic structure of the lattice.

As mentioned in Sect. 5.5, since the discretized Dirac-Wilson operator does not
respect chiral symmetry as the Dirac continuum operator does, it is necessary to introduce
a κ critical, which forces the pion mass to be zero when the quark mass is zero in the
interacting theory. This subtracted mass is the correct quark mass that must be considered
in the interacting theory.
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The functions A(p) e B(p) can be obtained from traces of the propagator, as follows.
First, we define

A(p) = i

4Nc(aK)2 tr
(
a/k
S(p)
a

)
, (5.99)

B(p) = 1
4Nc

tr
(
S(p)
a

)
, (5.100)

with traces taken in color and Dirac-space. From these functions, we get

A(p) = A(p)
(aK)2A2(p) + B2(p) (5.101)

B(p) = B(p)
(aK)2A2(p) + B2(p) , (5.102)

and from these the M(p) and Z(p) form factors.

5.8 Improved propagator

The improved propagator, used to reduce the lattice artifacts, is defined by using
the improved fields as in 5.83. The coefficients used here are those used in (87,97), which
are b′

q = c′
q = 1/4 e cn = 0. We get

SI(x, y) ≡
〈
ψ′(x)ψ′(y)

〉
=
〈

(1 + bqam)2(1− cqa /D(x,w))Splain(w, z;U)(1 + cqa
←−
/D(z, y))

〉
, (5.103)

in which /D is defined by

a /D(x, y) = 1
2
∑
µ

γµ
(
Uµ(x)δx+µ̂,y − U †

µ(y)δx−µ̂,y
)

(5.104)

and
←−
/D is given by

a
←−
/Dxy = 1

2
∑
µ

γµ
(
U †
µ(y)δx−µ̂,y − Uµ(x)δx+µ̂,y

)
= −a /D(x, y). (5.105)

In the free theory, we can also obtain analytic expressions for the improved propa-
gator, Eq. 5.103. In momentum space, its expression becomes

Sfree
I (ap) = 1c

(
1 + am

2

)(
1s −

ia /K(ap)
4

)
Sfree

plain(ap)
(

1s −
ia /K(ap)

4

)
. (5.106)

Expanding the product of the terms we arrive at the expression

Sfree
I (ap) = 1c

1 + am
2

Den(ap)
(
−ia /K(ap)A′

I(ap) + 1sB
′
I(ap)

)
, (5.107)
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where

A′
I(ap) =1 + am

2 + 3
16(aK)2 + (aQ)2 − (aK)2

4 , (5.108)

B′
I(ap) =am

[
1− (aK)2

16

]
+ (aQ)2 − (aK)2

2 − (aK)2 (aQ)2

32 , (5.109)

Den(ap) =(aK)2 +
[
am+ (aQ)2

2

]2

. (5.110)

The traces of the propagator give

tr
[
Sfree
I (ap) ia

/K

(ak)2

]
= 4Nc

(1 + am
2 )

Den(ap)A
′
I(ap), (5.111)

tr
[
Sfree
I (ap)

]
= 4Nc

(1 + am
2 )

Den(ap)B
′
I(ap). (5.112)

Inverting Eq. 5.107, we arrive at

(Sfree
I (ap))−1 = 1c

Den(ap)
(1 + am/2)DenI(ap)

[
ia /KA′

I(ap) +B′
I(ap)1s

]
, (5.113)

where DenI(ap) = (ak(ap))2A′
I(ap)2 +B′

I(ap)2. Comparing with Eq. 5.97, with the substi-
tution /p→ /K, which was already discussed for the unimproved propagator, we get that
the form factors are

Z free
I (ap) = 1

Afree
I (ap) , (5.114)

M free
I (ap) =B

free
I (ap)

Afree
I (ap) , (5.115)

with

Afree
I (ap) = Den(ap)

DenI(ap)(1 + am
2 )A

′
I(ap), (5.116)

Bfree
I (ap) = Den(ap)

DenI(ap)(1 + am
2 )B

′
I(ap). (5.117)

5.9 Renormalization of the quark propagator

From symmetry arguments, the renormalized Euclidean-space quark propagator in
the continuum must have the form

S(µ; p) = Z(µ; p2)
i/p+M(µ; p2) ≡

1
i/pA(µ; p2) +B(µ; p2) , (5.118)

where µ is the renormalization point.

The renormalizability of QCD implies a relationship between a regularized quark
propagator and the renormalized quark propagator (87),

Sregularized(a; p) = Z2(µ; a)S(µ; p), (5.119)
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where Z2(µ, a) is the quark wave-function renormalization. The regularized propagator
may be, for example, the quark propagator calculated on the lattice for finite spacing
a, which is what we are most interested in. This relationship between regularized and
renormalized propagators will only be verified if the regularized theory is, in some sense,
close to the continuum theory. For a lattice regularization, this means that we have small
spacings and are in the scaling region, discussed in Sect. 3.2. When the relationship holds,
we may derive how renormalized propagators for two distinct renormalization points. Since
5.119 is independent of µ on the left hand side, the product of Z2 by S must also be
independent on the right-hand side. So

Z2(µ′; a)S(µ′; p) = Z2(µ; a)S(µ; p)→ S(µ′; p) = Z2(µ; a)
Z2(µ′; a)S(µ; p), (5.120)

that is, two renormalized propagators are related by a multiplicative constant that is
independent of the momentum. In particular, from the structure of the quark propagator
in 5.118, it follows that

Z(µ′; p2) = Z2(µ; a)
Z2(µ′; a)Z(µ; p2), M(µ′; p2) = M(µ; p2) ≡M(p2), (5.121)

which means that a change in renormalization is just a rescaling of Z by a momentum-
independent constant and the mass function is renormalization point independent.

The non-perturbative renormalization scheme that we use here, called “momen-
tum subtraction scheme” (46, 50, 87, 98), or MOM in short, is defined by the following
renormalization conditions for the Landau-gauge quark propagator form factors

Z(µ;µ2) = 1, M(µ;µ2) = m(µ). (5.122)

For sufficiently high values of µ, we can argue from the asymptotic freedom of QCD that
m(µ) is the usual running mass calculated in perturbation theory.

The regularized form factors coming from the lattice, are

Zregularized(a, p2) ≡ Z2(µ; a)Z(µ; p2), Mregularized(a, p2) ≡M(p2). (5.123)

The constant Z2(µ; a) is determined from the lattice data by imposing the renormalization
condition Z(µ;µ2) = 1 at a specified normalization point µ,

Z2(µ; a) = Zregularized(a, µ2), (5.124)

and the mass form factor should be independent of a for small enough a, as discussed
previously.

Evaluating the left equation in 5.121 for p2 = µ′2, we obtain the scaling constant
that relates Z at two renormalization points

Z(µ′;µ′2) = Z2(µ; a)
Z2(µ′; a)Z(µ;µ′2)→ Z2(µ; a)

Z2(µ′; a) = Z(µ′;µ′2)
Z(µ;µ′2) . (5.125)



85

The MOM renormalization scheme, sometimes called RI-MOM (46) or simply RI
scheme, has been related to the modified minimal subtraction MS scheme, more commonly
used in the particle physics community (99,100), via continuum perturbation theory.
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6 ALGORITHMS

6.1 Pure-gauge configuration generation

When performing quenched simulations, most often the goal is to calculate expec-
tation values of quantities on the euclidean lattice by

⟨O⟩ =
∫
DU O[U ]e−SE [U ]. (6.1)

The configurations U are collections of the link variables {Uµ(n)}, introduced in Chap. 3
that represents the gluon field on the lattice. We remark here that the number of degrees of
freedom, even for modest lattice sizes, is very large. Take, for example a four-dimensional
lattice of size 324. This will contain 324 × 4 links. Each link can be parametrized by 8 real
values Aaµ(n) as

Uµ(n) = exp
(
i

8∑
a=1

Aaµ(n)T a
)
, (6.2)

where a is the adjunt color index and T a are the generators of the SU(3) algebra, for
example, the Gell-Mann matrices. This corresponds to approximately 33.5 million continu-
ous real values which need to be integrated over. The functional form, which involves an
exponential of a sum of plaquettes, which are themselves sums over products of links, is also
not particularly encouraging for an analytical evaluation in general. Analytical integration
is sometimes possible in some limits, though, such as when the inverse coupling β is small.
This is called a strong coupling expansion. Then, a calculation of some quantities, such as
the Wilson loop, for example, can be performed. This is done via the expansion of the
exponential in powers of the β and the use of integration identities which can be derived
from properties of the Haar measure (46).

Another approach, known as lattice perturbation theory, is possible when β is
large, which implies that the coupling g is small (25,50). One can then expand the links in
terms of the quadrivector potential in the Lagrangian, go to momentum space and obtain
Feynman rules for the lattice theory. As in the continuum limit, one needs to worry about
gauge-fixing and the Fadeev-Popov determinants at some point. The Feynman rules of
lattice perturbation theory are also rather clumsy and involve vertices with no continuum
analog such as the 2 gluon - 2 quark vertex and the 2 gluon - 2 ghost vertices, and their
expressions contain trigonometric functions of the momenta involved, which come about
due to the subjacent lattice structure. This approach has been rather important in the
understanding of renormalization on the lattice and also quantum anomalies and scaling
violations, but its awkward nature, together with a restricted range of validity makes it
impractical for several applications.
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These expansions break down for values of β which correspond to moderately small
a, which are usually in the range 5.8 < β < 6.3 for pure gauge theory, and/or cannot be
performed if O does not have a suitable form. We need to substitute these expansions by
something more pragmatic and which has a more general scope.

The solution used most frequently in numeric lattice studies is to evaluate Eq. 6.1
numerically by Monte Carlo importance sampling from the space of all possible gauge
field configurations (46). Of course, in practice, this ensemble of samples will contain a
finite number of configurations, which gives rise to a statistical error associated with the
procedure. The error from virtually all Monte Carlo sampling techniques goes as O(1/

√
N),

which is a consequence of the central limit theorem (101). The number of samples can
be increased to reduce this error, which is referred to as “increasing the statistics”, and
although this is rather inefficient, we are stuck with this method for the large number of
degrees of freedom which characterizes lattice QCD simulations.

In the Monte Carlo approach, one choose (pseudo)random configurations based on
the probability distribution

dP [U ] = DU e−SE [U ]∫
DU e−SE [U ] , (6.3)

and approximate Eq. 6.1 by

⟨O⟩ ≈
∑N
i=1 O[Ui]
N

(6.4)

where the configurations Ui are chosen randomly following the probability distribution
in Eq. 6.3. Configurations with lower values for the action will contribute with a higher
probability, since the exponential with a minus sign implies that they have a higher weight.
In fact, we can intuitively guess that most configurations will have a rather rough “shape”
which will cause them to contribute less by having a low statistical weight. Configurations
with the highest possible weights are the ones with the lowest action values, which should
correspond to solutions of the classical equations of motion. Quantum fluctuations are
naturally generated by allowing other configurations to give some contribution to the
evaluation of the expectation values.

We therefore need algorithms that are capable of generating random configurations
that follow the probability distribution of Eq. 6.3. These were available before the advent
of lattice field theory and were used to study statistical mechanics models, such as the
Ising model. The Metropolis algorithm is one such method. It is based on the idea of a
particular kind of stochsatic process called a Markov chain. We want to use the markovian
stochastic process to generate the probability distribution in Eq. 6.3 in the equilibrium. In
order to do this, we need to place some restrictions on the transition probabilities. To see
how this goes, we must first characterize the Markov process more rigorously.

A Markov chain is a stochastic process characterized by a space of different states,
an initial probability distribution of being in any of the possible states, and a conditional
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probability to transition between them (102). The transition probability for a Markov
process can depend only on the two states that are involved in the transition and not on
which step we are on the chain: the process has no memory. The transition probability
T (S ′, S) of transitioning to state S ′ from the state S has to obey restrictions, stemming
from the mere fact that it is a probability

0 ≤ T (S ′, S) ≤ 1,
∑
S′
T (S ′, S) = 1. (6.5)

We may also interpret T (S ′, S) as a transition matrix. We define the probability of being
in a given state S at step t by

Pt(S) =
∑
S′
T (S, S ′)Pt−1(S ′), (6.6)

or in matrix notation
Pt = TPt−1, (6.7)

where we are associating each entry of the probability vector Pt with a particular state.
We can iterate this equation to get that

Pt = T tP0, (6.8)

where P0 is the initial probability vector of being in any particular state at the start of
the chain. What we want is that

lim
t→∞

Pt = P, (6.9)

where P is the equilibrium probability of Eq. 6.3. Furthermore, we must have that

TP = P, (6.10)

which means that P is a stationary distribution and is the one that the chain converges to
as the number of steps increases. We may see this as stating that P is an eigenvector of T
with eigenvalue λ = 1. We also want to make sure that all states are reachable in principle,
which, in the language of the importance sampling that we are after, means that each
configuration will have a chance of contributing to the sum. In the matrix language, this
is equivalent to requiring that T must be irreducible: if it is reducible, it will get trapped
into some absorbing subset of states with no chance of getting out. A matrix is called
reducible if it can be put in the form X Z

0 Y

 , (6.11)

by a permutation of indices, where 0 is a null rectangular matrix. Among the irreducible
matrices, we restrict ourselves to the acyclic ones: some stochastic matrices produce
systems that alternate between states in a periodic fashion, which is not what is required
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for our application. Matrices which are irreducible and acyclic are called regular. The
regularity condition is guaranteed if, for some power l, T l has all entries being strictly
positive.

The Perron-Frobenius theorem guarantees that for irreducible matrices the eigen-
value λ = 1 is non-degenerate and P is thus the unique equilibrium probability distribution,
with all its entries being strictly positive real numbers. Moreover, if T is acyclic, as we re-
quire, then |λ| < 1 for all other eigenvectors. We thus have that P is reached independently
of the initial distribution P0.

Eq. 6.10 for the stationary solution can be written as

P (S) =
∑
S′
T (S, S ′)P (S ′), (6.12)

but using the fact that∑S′ T (S ′, S) = 1 from the normalization of the transition probability,
we may write ∑

S′
T (S ′, S)P (S) =

∑
S′
T (S, S ′)P (S ′), (6.13)

which is called the global balance equation and is equivalent to the stationary solution
equation for T . The right-hand side is the probability of getting into state S if we were
previously in state S ′, summed over all possible states S ′: this is the probability of jumping
into state S, regardless of the previous state. The left-hand side contains the probability of
jumping out of S, which is the probability of being in the state S to start with and then the
transition probability of jumping out of it regardless of the final state. In conclusion, the
global balance equation indicates that these two probabilities are the same: the probability
of hopping into and out of a given state must be the same at equilibrium. But we know
P already, which is the distribution we want to generate states with. We basically need
to reverse engineer T such that the condition given by Eq. 6.13 is obeyed. The most
straightforward way of doing this is by requiring a more restrictive sufficient condition
called detailed balance

T (S ′, S)P (S) = T (S, S ′)P (S ′), (6.14)

or in other words, requiring that the balance equation holds term by term in the sum of
Eq. 6.13.

6.1.1 Metropolis Algorithm

The Metropolis algorithm uses detailed balance to generate configurations with
probability

P [U ] = e−S[U ]

Z
, Z =

∫
DUe−S[U ]. (6.15)

First, we must define a neighborhood for the states. This neighborhood is such that all
states within the neighborhood are reachable within one step of the algorithm. The states
out of the neighborhood will be reachable only within multiple steps. We also must make
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sure that if U ′ is in the neighborhood of U , then the reverse must also be true. More
precisely, when transitioning from a configuration U to U ′

T (U ′, U) = 0 ifU /∈ neighborhood of U,

T (U ′, U) ̸= 0 ifU ∈ neighborhood of U.

We call N the number of configurations in the neighborhood of a given state, and to simplify
we have chosen all neighborhoods to have the same number of states. The Metropolis
transition probability for two states in the same neighborhood is given by

T (U ′, U) = 1
N
e−(S[U ′]−S[U ]), ifS[U ′] > S[U ],

T (U ′, U) = 1
N
, ifS[U ′] ≤ S[U ], (6.16)

T (U,U) = 1−
∑
U ′ ̸=U

T (U ′, U).

That detailed balance is obeyed can be seen by taking two states U1 and U2. For definiteness
we take S[U1] > S[U2], then

T (U1, U2) = 1
N

exp (−(S[U1]− S[U2])) , T (U2, U1) = 1
N
, (6.17)

so that
T (U1, U2)
T (U2, U1)

= exp (−(S[U1]− S[U2])) = exp (−S[U1])
exp (−S[U2])

= P [U1]
P [U2]

, (6.18)

which is the detailed balance equation. We notice that the normalization factor Z does
not need to be known.

The algorithm that implements the transition probability in Eqs. 6.16 is the
following: We start with any configuration. We then randomly choose a configuration
in the neighborhood of the previous one with uniform probability. If the action change
∆S ≤ 0, we accept the new configuration. If, however ∆S > 0, we accept it with probability
exp(−∆S), that is, we generate a random number ξ in the interval [0, 1]. If ξ is less or
equal than exp(−∆S), we accept the new configuration, otherwise we keep the same
configuration as before. We iterate this over and over again. Eventually we reach the
equilibrium and we can start using the sampled configurations to evaluate expectation
values. It is remarkable that this rather simple procedure, in the equilibrium, samples the
configurations with the exactly correct distribution.

In practice the Metropolis algorithm is used in a link per link basis. That is, we
sweep through the lattice for all sites n and spacetime directions µ and update the link
variable Uµ(n) by

U ′
µ(n) = XUµ(n), (6.19)

where X is a SU(3) group element close to the identity, so that U ′
µ(n) is in the neighborhood

of Uµ(n). The spread around the identity can be controlled in order to have an acceptance
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around 50%, which ensures that one is walking in the space of all possible configurations
quickly while also reducing the correlation between subsequent configurations, which we
will deal with later. A variation is called multihit Metropolis: one takes advantage of
the fact that the numerically costly action change is already calculated to perform more
updates on the same site. The number of hits can also be tuned for efficiency.

Some remarks are in place here. Firstly, the generation of pseudo-random numbers
is a highly sensitive matter in lattice gauge theory simulations. This is because the amount
of pseudo-random numbers needed is huge, which means that one needs a generator with a
likewise huge orbit. The ranlux generator (103), is a rather renowned high-quality generator
that is commonly used in lattice QCD simulations and is part of the GNU scientific library.

As we already stated, the algorithms based on Markov chains need some steps until
the distribution reaches a state of equilibrium. In order to monitor this, one can begin a
simulation with different starting points and check when some observable converges to
the same region, which should eventually happen independent of the initial start. One
can choose all links to be the identity matrix, for example, which is referred to as a cold
start, or all random matrices, which is called a hot start. Considering, for definiteness, the
value of the action, we can mark the first step that the values for the observable cross for
different starts and, just to be on the safe side, take 10 times that step as the number of
steps to reach equilibrium.

6.1.2 Heat Bath algorithm

Another Monte Carlo algorithm is the heat bath. Instead of looking at the proba-
bility for the whole configuration, one looks at what is the probability density for a single
link variable in the heat bath of all other links kept fixed. The Wilson gauge action is
given by Eq. 3.21. From the point of view of a single link, its contribution to the action is
given by

Slocal[Uµ(n)] = β

Nc

6∑
i=1

Re tr[1− Uµ(n)Staplei(n, µ)] = β

Nc

Re tr[1− Uµ(n)A(n, µ)], (6.20)

where A(n, µ) is the sum of staples, which are simply the plaquettes with the Uµ(n) link
that is under consideration removed, and which have the format of a paper staple

A(n, µ) =
6∑
i=1

Staplei(n, µ) =
∑
ν ̸=µ

(
Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)

+ U−ν(n+ µ̂)U−µ(n+ µ̂− ν̂)Uν(n− ν̂)
)
. (6.21)

The probability distribution for the whole configuration can be written as
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dP [U ] = 1
Z

exp
{
− β

Nc

∑
n,µ

Re tr[1− Uµ(n)A(n, µ)]
}
DU (6.22)

= 1
Z ′ exp

{
β

Nc

∑
n,µ

Re tr[Uµ(n)A(n, µ)]
}
DU. (6.23)

The local probability for a single link is given thus by

dP [Uµ(n)] = 1
Z ′′ exp

{
β

Nc

Re tr[Uµ(n)A(n, µ)]
}
dUµ(n), (6.24)

and the Z ′′ constant is irrelevant in what follows, so we might as well set it to 1.

6.1.2.1 Heat Bath Algorithm for SU(2)

We will first show the Heat Bath algorithm for SU(2) gauge theory, which is a
building block for SU(3). The important mathematical fact for SU(2) is that the matrix
A, which is a sum of group elements, is proportional to an SU(2) group element. The
most general SU(2) group element u can be written as

u =
 u0 + iu3 u2 + iu1

−u2 + iu1 u0 − iu3

 (6.25)

or more succinctly
u = u01 + iu⃗ · σ⃗, (6.26)

where σ are the Pauli sigma matrices, u0 and ui are real parameters. It is easy to see that
det[u] = ∑3

i=0 u
2
i . In order for this to be an SU(2), element we need to add the condition

that the sum of the squares of the real parameters have to add up to 1.

When we add SU(2) elements u and v, we get

u+ v = (u0 + v0)1 + i(u⃗+ v⃗) · σ⃗. (6.27)

We want to show that u+ v is proportional to an SU(2) element. For a SU(2) element,
one should have that its Hermitian conjugate is equal to the inverse. Let us calculate the
Hermitian conjugate of the sum

(u+ v)† = (u0 + v0)1− i(u⃗+ v⃗) · σ⃗, (6.28)

where we have used that the identity and the Pauli σ matrices are Hermitian. Here we
note that the determinant is real, and thus det[(u+ v)†] = det[u+ v], since it is the sum
of the square of the real components and the inverted sign does not change the result of
this calculation. We can then perform the product

(u+ v)(u+ v)† = (u0 + v0)1 +
∑
j,k

(uj + vj)(uk + vk)σjσk, (6.29)
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where the cross terms cancel. But we know that σjσk = 1
2 ({σj, σk}+ [σj, σk]). The

commutator part will not contribute, as it is contracted with a symmetric term, and
{σj, σk} = 2δjk1, so

(u+ v)(u+ v)† = ((u0 + v0)2 + (u⃗+ v⃗)2)1 = det[u+ v]1. (6.30)

From this we claim that (u+ v)/
√

det[u+ v] is an SU(2) element, since

u+ v√
det[u+ v]

(u+ v)†√
det[(u+ v)†]

= 1 (6.31)

and

det
 u+ v√

det[u+ v]

 = (u0 + v0)2 + (u⃗+ v⃗)2

det[u+ v] = 1. (6.32)

The sum of staples can then be written as A = aASU(2), where ASU(2) is an SU(2) element
and a =

√
det[A]. We rewrite Eq. 6.24 for SU(2) as

dP [U ] = exp
[
aβ

2 Re tr[UASU(2)]
]
dU, (6.33)

or writing X = UASU(2), and using the property of the Haar measure that dU = dX, since
X and U are related by the constant matrix ASU(2),

dP [X] = exp
[
aβ

2 Re tr[X]
]
dX. (6.34)

We will need to express the abstract Haar measure in terms of the parametrization
of Eq. 6.26. The Haar measure must be normalized∫

dX = 1. (6.35)

We can express it as
dX = X d4x δ(x2

0 + |x⃗|2 − 1), (6.36)

where we are explicitly enforcing that the determinant of X has to be 1 with the delta
function, and X is a normalization constant, which can be calculated to normalize the
Haar measure

X
∫
d4x δ(x2

0 + |x⃗|2 − 1) = X
∫
dx0 d

2Ω d|x⃗| |x⃗|2
δ
(
|x⃗| −

√
1− x2

0

)
+ δ

(
|x⃗|+

√
1− x2

0

)
2
√

1− x2
0

(6.37)
where we used that

δ(f(s)) =
∑
s0

δ(s− s0)
|f ′(s)|s0

. (6.38)
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The value of x0 is restricted to the [−1, 1] interval, where the square root in the delta
function is real. The second delta function in fact does not contribute, as |x⃗| is positive, so
we are left with

4πX
∫
dx0

(√
1− x2

0

)2

2
√

1− x2
0

= 2πX
∫ 1

−1
dx0

√
1− x2

0, (6.39)

and the integral can be solved by elementary methods∫ 1

−1
dx0

√
1− x2

0 =
∫ π

0
dy sin(y)

√
1− cos2(y) =

∫ π

0
dy sin2(y) =

∫ π

0
dy

1− cos(2y)
2 = π

2 .
(6.40)

The integral of the Haar measure
∫
dX = Xπ2, and so, to normalize it, X = 1/π2. In

terms of the parameters xi the differential probability in Eq. 6.34 is then

dP [X] =

√
1− x2

0

2π2 exp [a β x0] d2Ω dx0, (6.41)

where we have used that tr[X] = 2x0, which can be deduced from the parametrization
in Eq. 6.26, and we fixed that |x⃗| =

√
1− x2

0. We need to choose x0 randomly respecting
the distribution 6.41 and the xi uniformly on the surface of a sphere. Following (104), we
define a variable λ2 = 1−x0

2 with the range λ ∈ [0, 1], so that

dx0

√
1− x2

0 exp(a β x0) ∝ dλ λ2√1− λ2 exp(−2 a β λ2). (6.42)

We proceed in the generation of numbers following this distribution in two steps. Firstly
we generate λ with the distribution

p1(λ) = λ2 exp(−2 a β λ2). (6.43)

Since random number generators usually produce numbers uniformly in the interval [0, 1),
we need to express the new distribution in terms of such numbers instead. This can
be accomplished by choosing a triplet of random numbers uniformly distributed in the
aforementioned interval and combining them as

λ2 = − 1
2 a β

(
ln(1− r1) + cos2(2π(1− r2)) ln(1− r3)

)
, (6.44)

and we will have that λ follows distribution 6.43. To correct for the square root in 6.42,
we take one more uniformly distributed random number r and accept λ only if it obeys

r2 ≤ 1− λ2. (6.45)

If this inequality does not hold, one starts over again by repeting the procedure of drawing
numbers r1, r2 and r3 from the random number generator and calculating λ. Having λ, we
calculate x0 = 1− 2λ2. For the xi, which need to be uniformly distributed on the surface of
a sphere of radius

√
1− x2

0, we simply draw three uniformly distributed random numbers
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in the interval [0, 1), and make them be in the interval [−1, 1) by multiplying by 2 and
subtracting 1. We accept the numbers if the sum of their squares is less than 1. We then
normalize x⃗ to the desired length. Finally, having now X = x01 + iσ⃗ · x⃗ = UASU(2), we
obtain the link variable U by

U = XA†
SU(2) = X

A†√
det[A]

, (6.46)

where A is the sum of staples and we have used the unitarity of ASU(2).

6.1.2.2 (Pseudo) Heat Bath Algorithm for SU(3)

The local probability density for a link U in the heat bath of the fixed surrounding
links for SU(3), similarly as for SU(2), is

dP (U) = exp
(
β

3 Re tr[UA]
)
dU. (6.47)

For SU(3) the sum of staples is not proportional to an element of SU(3) as was the case
for SU(2). Because of this, we need a few tricks to make the heat bath scheme work for
SU(3) (105,106).

We may rewrite the heat bath step in terms of an update to the link which is
already in place currently. Let us say we have a link Uold an we want to find what is the
update V given by the heat bath, so that afterwards we will end up with Unew = V Uold .
The probability distribution for V is given by

dP (V ) = exp
(
β

3 Re tr[V UoldA]
)
d(V Uold) = exp

(
β

3 Re tr[VW ]
)
dV, (6.48)

where we have used the property of the Haar measure that it is invariant under products
by group elements dV = d(V Uold), and defined W = UoldA. We will use now the Cabbibo-
Marinari trick (107) and write the update matrix as V = R, where R is a SU(2) matrix
embedded in a SU(3) matrix

R =


r0 + ir3 r2 + ir1 0
−r2 + ir1 r0 − ir3 0

0 0 1

 . (6.49)

In this way, we are finding the heat bath update corresponding to this SU(2) subgroup of
SU(3). We can now calculate the expression in the exponent of the probability distribution

Re tr[RW ] = r0Re (w11 + w22)− r1Im (w12 + w21)−

r2Re (w12 − w21)− r3Im (w11 − w22) + Re (w33) (6.50)

where wij corresponds to the entry of the W matrix at the i-th row and j-th column.
The last term in this expression has no dependence on r and can thus be absorbed in
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the normalization of the probability distribution. The other terms are what would have
been obtained if we had taken the real part of the trace of the product of the 2× 2 SU(2)
submatrix of R, which we call RSU(2), by a 2× 2 matrix W2×2 in the format of Eq. 6.25
with

(w2×2)0 = Re(w11 + w22)
2 , (6.51)

(w2×2)1 = Im (w12 + w21)
2 , (6.52)

(w2×2)2 = Re (w12 − w21)
2 , (6.53)

(w2×2)3 = Im(w11 − w22)
2 . (6.54)

We have thus established that Re tr[RW ] = Re tr[RSU(2)W2×2] + irrelevant constant. The
matrix W2×2 by virtue of being written in the form of Eq. 6.25 is proportional to an SU(2)
matrix. We have thus arrived at a problem analogous to the SU(2) heat bath, with a
probability density given by

dP (RSU(2)) = exp
(
β

3 Re tr[RSU(2)W2×2]
)
dRSU(2). (6.55)

After determining RSU(2), we need to update W ′ = RUoldA = RW , and repeat the
procedure with an update matrix

S =


s0 + is3 0 s2 + is1

0 1 0
−s2 + is1 0 s0 − is3

 , (6.56)

all steps will be analogous, with W ′
2×2 given by

(w′
2×2)0 = Re(w11 + w33)

2 , (6.57)

(w′
2×2)1 = Im (w13 + w31)

2 , (6.58)

(w′
2×2)2 = Re (w13 − w31)

2 , (6.59)

(w′
2×2)3 = Im(w11 − w33)

2 . (6.60)

Updating again W ′′ = SW ′, and repeating the procedure with the update matrix

T =


1 0 0
0 t0 + it3 t2 + it1

0 −t2 + it1 t0 − it3

 , (6.61)
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we will have that W ′′
2×2 will be

(w′′
2×2)0 = Re(w22 + w33)

2 , (6.62)

(w′′
2×2)1 = Im (w23 + w32)

2 , (6.63)

(w′′
2×2)2 = Re (w23 − w32)

2 , (6.64)

(w′′
2×2)3 = Im(w22 − w33)

2 . (6.65)

After calculating R, S and T in this fashion, one gets the new updated link as Unew =
TSRUold. One must then iterate the algorithm for all links on the lattice.

Due to the accumulation of numerical errors in the matrix products needed to
update the configurations, one needs to project the links periodically to SU(3) when
generating the configurations. In the case of SU(3) this can be done in the following
manner (46): We write the link U as

U =


u

v

z


where u,v and z are complex vectors with three components. In order to perform the
projection we take

USU(3) =


unew

vnew

u∗
new × v∗

new

 (6.66)

where unew = u/|u| and vnew = v′/|v′| and v′ is obtained using Gram-Schmidt orthogonal-
ization from v, that is, v′ = v − unew(v · u∗

new). That this form indeed describes an SU(3)
matrix can be seen by calculating det[USU(3)] and USU(3) · U †

SU(3). For the determinant we
can use the formula in terms of the Levi-Civita symbol

det[USU(3)] =
∑
ijk

εijkuivj(u∗ × v∗)k

=
∑
ijklm

εijkεlmkuivju
∗
l v

∗
m (6.67)

=
∑
ijlm

(δilδjm − δimδjl)uivju∗
l v

∗
m

= (u · u∗)(v · v∗)− (u · v∗)(v · u∗) = 1,

where the last equality follows by noting that u and v are normalized and orthogonal by
construction and from the second to the third line, we used the property of Levi-Civita
symbols that ∑k εijkεlmk = (δilδjm − δimδjl). We dropped the subscript “new” to reduce
cluttering.
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The Hermitian conjugate is given by

U †
SU(3) =

(
(u∗)T (v∗)T (u× v)T

)
, (6.68)

so that USU(3) · U †
SU(3) is


u

v

u∗ × v∗

 · ((u∗)T (v∗)T (u× v)T
)

= (6.69)

=


u · u∗ u · v∗ u · (u× v)
v.u∗ v · v∗ v · (u× v)

(u∗ × v∗) · u∗ (u∗ × v∗) · v∗ (u∗ × v∗) · (u× v)

 = 1, (6.70)

which is evident if one notices again that u and v are normalized and orthogonal to each
other and that x · (x× y) = y · (x× y) = (x× y) · x = (x× y) · y = 0 for any x and y. The
term (u∗× v∗) · (u× v) actually calculates the determinant, which is 1 as we have already
shown, because

(u∗ × v∗) · (u× v) =
∑
ijklm

εijkεlmkuivju
∗
l v

∗
m = det[USU(3)] = 1, (6.71)

as a comparison with the second line of 6.67 shows.

6.1.3 Statistical treatment of the data

Some quantities are not costly to calculate, such as the average plaquette or the
Polyakov loop, and they can be evaluated “on the fly” for every single sweep of the
configuration generation algorithm. Others quantities, like the quark propagator are very
expensive and have to be evaluated for a fraction of the total number of configurations
generated on the simulation. Another reason for not evaluating quantities for all generated
configurations is that subsequent sweeps produce configurations which are very close
to each other, i. e. they are highly correlated. Performing calculations on correlated
configurations is wasteful, since they will contain mostly redundant information.

Correlation also complicates the error determination, because the naïve formulas
for the standard deviation of the mean for an observable O with mean Ô with N samples,
for example,

σ2
O =

N∑
i=1

(Oi − Ō)2

N(N − 1) , (6.72)

presuppose that the data points are independent. The correct formula for correlated data
would be (46)

σ2
O =

N∑
i=1

(Oi − Ō)2

N(N − 1)2τO,int, (6.73)
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where τO,int is the integrated autocorrelation time, given by

τO,int = 1
2

∞∑
t=−∞

ΓO(t), (6.74)

in which ΓO(t) is the normalized autocorrelation function, defined by

ΓO(t) ≡ CO(t)
CO(0) , (6.75)

and the correlation function is CO(t) = ⟨OiOi+t⟩ − ⟨Oi⟩⟨Oi+t⟩ (101).

Although this calculation is certainly possible for numerically cheap observables, it
is not worth it to evaluate the errors like this for the quark propagators or quantities derived
from it. In particular, one notices that all quantities related to autocorrelation depend on
the quantity that is under consideration. Moreover, a high number of measurements is
needed in order to estimate the autocorrelation realiably.

The usual practice is to create an ensemble of uncorrelated configurations by
saving configurations spaced by a number of sweeps. The spacing between uncorrelated
configurations can be estimated from the autocorrelation length for Polyakov loops or the
average plaquette, and one multiplies this by 10 to be on the safe side. By proceeding in
this way, one is effectively decoupling the configuration generation from the numerical
measurement process: one makes an effort to generate several uncorrelated configurations
which can then be stored and used to calculate quantities later. In fact, another advantage
of this approach is that one does not need to know beforehand what are the quantities
one is interested, as would be the case if all evaluations were made “on the fly”. Most
collaborations nowadays, if not all, generate ensembles which are then kept for years, while
the members decide which quantities of interest they want to extract from them. This
is specially true when dealing with configurations with dynamical fermions, which are
considerably more expensive to generate than quenched, as discussed in 3.1. Our approach
is to proceed this way and evaluate quark propagators only on uncorrelated configurations.

Another issue related to correlation arises when one tries to evaluate quantities
which depend on the various degrees of freedom of the configuration in complicated ways.
We will use the quark propagator again as an example. The procedure employed here is
to obtain the propagator in configuration space by inverting the Dirac operator, which
is already a non-trivial function of the configurations, then transform the propagator
to momentum space and extract the form factors by taking traces. These form factors
are then combined to obtain more easily interpretable mass and quark renormalization
functions, which can then be fitted or further manipulated. It is hopeless to try to perform
any sort of error propagation to reliably obtain the uncertainties associated to the final
figures. There are however techniques to determine the errors reliably. We will rely and
present one specific resampling technique called “statistical boostrap”.
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Suppose we have a set of N data and we want to estimate a quantity θ, which
is a complicated function of this data. The statistical bootstrap prescribes that we can
resample the original set by taking N randomly chosen data from the original set K times.
Since they are chosen randomly, the same data will sometimes be drawn more than once.
At this point we will have K sets each with N data. For each of the sets, one computes
the quantity θk. The estimates for the expectation value and the errors are given by

θ̄ = 1
K

K∑
k=1

θk, σ2
θ̄ = 1

K

K∑
k=1

(θk − θ̄)2, (6.76)

and one quotes ⟨θ⟩ = θ̄ ± σθ̄.

6.2 Gauge-fixing

The gauge-fixing procedure is, in practice, done in an iterative fashion through
the use of numeric algorithms, which implies that for a configuration to be considered
gauge-fixed to Landau gauge, the quadridivergence of A(n) (or some proxy of it) must be
less than a given level of tolerance.

6.2.1 The Los Alamos algorithm for SU(2)

The Los Alamos algorithm is a local algorithm. In order to explain its principle,
we can define a local version of the functional E of Eq. 4.23, which exhibits the local
dependence of a specific site n

E [g(n)] ≡ 1
dNc|Λ|

tr[g(n)h(n)] ≡ − 1
dNc|Λ|

tr[w(n)], (6.77)

with
h(n) =

d∑
µ=1

[
Uµ(n)g†(n+ µ̂) + U †

µ(n− µ̂)g†(n− µ̂)
]
. (6.78)

In the Los Alamos algorithm for SU(2), we do “sweeps” over all sites of the lattice
and at each site extremize the expression of Eq. 6.77. To achieve this, we take advantage
of the fact that, for this group, h(n), being the sum of a product of SU(2) matrices,
is proportional to an element of the group, with a proportionality constant given by√

deth(n). We can then define a projection to the SU(2) group by

PSU(2) [h(n)] = h(n)√
deth(n)

. (6.79)

The matrix g(n) which extremizes Eq. 6.77 is PSU(2)
[
h†(n)

]
, as will be shown in

the next section by using Lagrange multipliers.

Another way of writing this, is as an update to the previous gauge-transformation

gnew(n) = A(n)gold(n), (6.80)
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which for the SU(2) Los Alamos algorithm is

ALA(n) = PSU(2)
[
h†(n)gold†(n)

]
= PSU(2)

[
wold†(n)

]
, (6.81)

with w(n) defined by Eq. 6.77.

We sweep the lattice then, multiple times, updating the values of g(n) by the ones
which extremizes the local functional, and at the end of each sweep, we measure a quantity
indicative of how close we are to the gauge-fixing condition. One possible indicator of this
is

e2 = 1
V

∑
n∈Λ

N2
c −1∑
b=1

(
∂µA

b
µ(n)

)2
, (6.82)

and we consider a configuration to be gauge-fixed when this quantity is below 10−16.

6.2.2 (Pseudo) Los Alamos algorithm for SU(3)

Ideally, we would like to put E [g(n)] at an extreme at each update of g(n), just
like we do with SU(2), i. e. we want to find an update of gold(n) in such a way that
Re tr[gnew(n)h(n)] = Re tr[wnew(n)] was extremized.

By using the procedure described below, based on the Cabbibo-Marinari (107)
trick, we will only have that Re tr[wnew(n)] > Re tr[wold(n)], in principle, a less effective
update. However, since the final goal is not the local extremization but the global one,
and the global maximum will not respect the local individual maxima, we hope this will
not be as big of an issue.

The limiting property of the SU(3) Los Alamos algorithm is that w(n) is not
proportional to a group element, as was the case for SU(2). In our current understanding,
the best one can do is, taking advantage of the logic of the SU(2) algorithm, subdivide the
h(n) matrix into submatrices, as in the Cabbibo-Marinari trick for the heatbath algorithm
for configuration generation, and perform an update

g(new)(n) = A(n)g(old)(n), (6.83)

in which A(n) = T (n)S(n)R(n), and R, S and T are SU(2) matrices embedded in a SU(3)
matrix:

R(n) =


r0 + ir3 r2 + ir1 0
−r2 + ir1 r0 − ir3 0

0 0 1

 , (6.84)

S(n) =


s0 + is3 0 s2 + is1

0 1 0
−s2 + is1 0 s0 − is3

 , (6.85)

T (n) =


1 0 0
0 t0 + it3 t2 + it1

0 −t2 + it1 t0 − it3

 , (6.86)



103

where ∑3
i=0 r

2
i = ∑3

i=0 s
2
i = ∑3

i=0 t
2
i = 1. The matrices R, S and T will be calculated from

w(n). In general, we have for w(n)

w(n) =


w00 w01 w02

w10 w11 w12

w20 w21 w22

 , (6.87)

where wij is a complex number. Firstly, we can set S(n) = T (n) = 1 and update g(n)
with the R(n) matrix. In this case, we can ask ourselves what is the values that r0, r1, r2

and r3 need to have for Re tr[R(n)w(n)] to be extremized, given a fixed w(n), with the
constraint that ∑i r

2
i = 1. This is a extremization with constraints problem, which can be

solve, for example, with the method of Lagrange multipliers. This results in

r0 = Re[w00 + w11]
λR

r1 = −Im[w01 + w10]
λR

r2 = −Re[w01 − w10]
λR

r3 = −Im[w00 − w11]
λR

,

(6.88)

with λR =
√

Re [w00 + w11]2 + Im [w01 + w10]2 + Re [w01 − w10]2 + Im [w00 − w11]2. This is
equivalent to an SU(2) update, Eq. 6.81, in the case that the submatrix of w(n) relevant
to the calculation is proportional to a SU(2) matrix. In an iterative fashion, we can then
use the matrix w′(n) = R(n)w(n), with the R(n) update as calculated above, and use this
for the following update with the submatrix associated to S(n). The result for the si is

s0 = Re[w′
00 + w′

22]
λS

s1 = −Im[w′
02 + w′

20]
λS

s2 = −Re[w′
02 − w′

20]
λS

s3 = −Im[w′
00 − w′

22]
λS

,

(6.89)

and as with the R update, λS needs to obey ∑4
i s

2
i = 1. Analogously, for T (n)

t0 = Re[w′′
11 + w′′

22]
λT

t1 = −Im[w′′
12 + w′′

21]
λT

t2 = −Re[w′′
12 − w′′

21]
λT

t3 = −Im[w′′
11 − w′′

22]
λT

,

(6.90)
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where w′′(n) = S(n)w′(n). In the end we have the complete update A(n) = T (n)S(n)R(n).

We emphasize here once more the fact that the A(n) matrix build this way is not
the matrix which extremizes Re tr[A(n)wold(n)]. But since each step is guaranteed to
increase the real part of the trace of w(n), as the number of “hits” of this algorithm grows,
we asymptotically approach the maximum. However, the extra work (and time to perform
it) may not translate into an actual time improvement to attain the gauge-fixing condition,
so that an efficiency study is needed to find out how much is it worth it to go the extra
mile. This is presented in sections 8.1.1 and 8.1.2.

In order to obtain the SU(3) matrix which extremizes E[g(n)] = Re tr[A(n)wold(n)]
in an analytical closed form, one can, in principle, try also a procedure of extremization with
constraints. Parametryzing again A(n) = T (n)S(n)R(n), with the T , S and R matrices
given by Eqs. 6.84-6.86 and a fixed w(n), we can treat E[g(n)] as a function of the ri, si
and ti, under the constraint that ∑i r

2
i = ∑

i s
2
i = ∑

i t
2
i = 1. However, when one tries to

apply the Langrange multiplier method in this case one generates an intricate system of
non-linear coupled equations between the variables and the multipliers. Unfortunately we
could not find the solution to this system, even with the help of symbolic manipulation
software.

6.2.3 Stochastic overrelaxation

Inspired also by SU(2) methods (71), we can propose stochastic updates, with the
aim of avoiding regions with little variation in the global functional, Eq. 4.23. In SU(2),
what one does is update the gauge transformation as

ASOR(n) =

 ALA(n) with probability 1− p,(
ALA(n)

)2
with probability p,

(6.91)

in which ALA(n) is the Los Alamos update, given by Eq. 6.81. What this does is that
with probability 1 − p the functional goes to its maximum and with probability p the
value of the functional does not change, but we do jump to another region in the space
of gauge-transformations, improving our exploration and reducing the chance of getting
trapped in regions where the functional does not change significantly. In order to show
that the functional does not change if we perform the

(
ALA(n)

)2
update in the SU(2)

case, we can notice that, since h(n) is proportional to an SU(2) matrix,

Re tr[(ALA)2goldh] = Re tr[PSU(2)(h†gold†h†gold†)goldh]

= Re tr
 h†√

det(h)
gold† h†√

det(h)
gold†goldh


= Re tr[gold†h†]

= Re tr[goldh],
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where we have used the cyclic property of the trace, the unitarity of g(n) and that h†h =
det(h). The last equality follows if we remember that, also for SU(2), g(n) = g01 + ig⃗.σ⃗

and similarly for h(n).

In SU(3), since h is not proportional to an element of the group, we do not have that
Re tr[(ALA)2goldh] = Re tr[goldh]. In fact, we can verify that this equality is not satisfied
when performing the updates during the gauge-fixing. However, we also verified that, in
practice, the fixing with the same scheme as in Eq. 6.91 for SU(3) is still considerably
more efficient: occasional increases in the value of the global functional are more than
compensated by the higher mobility in the space of gauge transformations, as will be
demonstrated in section 8.1.1.

6.2.4 Overrelaxation

Another way of accelerating the process of convergence for the Landau gauge
condition is using the usual overrelaxation method (108). It turns out, that for SU(3) this
was the fastest option, as will be seen in Sect. 8.1.1. In this method, one uses a fixed power
ω of the update matrix, ALA(n)ω, instead of ALA(n). The exponent must be such that
1 ≤ ω ≤ 2, where, of course for ω = 1 we have the usual Los Alamos algorithm, which
corresponded to p = 0 for the stochastic overrelaxation and ω = 2 corresponds to p = 1.
The update ALA(n) is calculated with the iterative procedure described in 6.2.2, and here
the optimal amount of hits is also a parameter to be fixed, besides the optimal ω. We
verified, however, that just like for the stochastic overrelaxation method, here the best
value for the amount of hits is 2, taking into account the number of sweeps and the time
of execution of the algorithm, and due to this we will concentrate on showing the results
for the optimization of ω only.

To evaluate the ω power of the matrix ALA(n), we use the following formula

Aω =
∞∑
m=0

am(ω)
m! (A− 1)m, (6.92)

where

am(ω) = Γ(ω + 1)
Γ(ω + 1−m) . (6.93)

In practice we truncate the series in its second term and project to SU(3), since as the
gauge-fixing proceeds, the updates quickly get closer to the unity matrix, which justifies
this approximation. The projection to SU(3) is done via the formula 6.66.
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6.3 Fermion operator inversion

The inversion of fermionic operators is a major problem in lattice gauge-theories,
and algorithmic developments in this field have been very important in the last decades,
and vital to ensure that unquenched simulations with low pion masses are now feasible
with relatively moderate computational resources.

In principle the inversion is a linear algebra problem of trying to find the vector x,
which solves

Ax = b (6.94)

for a particular source b, where A is a matricial operator. We can obtain the j-th column
of the inverse matrix A−1 by setting bi = δij and solving the system. If we want multiple
columns of the matrix, we just need to vary j.

In order to invert the fermionic matrix numerically, we use the BiConjugate Gradient
- Stabilized, in short Bi-CGSTAB (46,109). It is part of a family of Krylov solver conjugate
gradient algorithms (50, 110,111). The idea behind these algorithms is to firstly transform
the linear algebra problem in 6.94 into an extremization problem. The algorithm then
goes on to create search vectors pi at each iteration. These vectors are perpendicular to all
previous Apj , thus creating a vector space called a Krylov subspace. The solution is given
as a linear combination of an initial guess vector and the search direction vectors. For
these algorithms, one does not need to store the A matrix in memory, but only vectors.
The algorithm involves matrix-vector products and vector-vector products only.

For the case of the Dirac operator inversion, A is a sparse matrix having entries
which correspond to the diagonal elements and the nearest neighbors in position space. The
matrix-vector product is performed by having a function or procedure which implements
the action of the matrix on the vector, without actually performing the product row by
row, since this would be wasteful, as most of the time we would be calculating products
with 0.

At the moment of the convergence, the x vector will contain an approximation to

x = A−1b, (6.95)

which is a column of A−1 if b is the point source. Thus, if we perform the product with a
matrix R to the point source biδij before the inversion, and use this transformed source
Rb instead, x will turn out to be

x = A−1Rb = (A−1R)b, (6.96)

which is a column of (A−1R).

The pseudocode for the BiConjugate Gradient algorithm is presented in the Algo-
rithm Table 1.
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Algorithm 1 BiCG-Stab
1: r(0) = b− Ax(0)

2: r̃ = r(0)

3: i = 1
4: while converged=False do:
5: ρi−1 = r̃† · r(i−1)

6: if ρi−1 == 0 then
7: Method fails.
8: break
9: if i == 1 then

10: p(1) = r(0)

11: else
12: βi−1 = αi−1 ρi−1/(ωi−1 ρi−2)
13: p(i) = r(i−1) + βi−1

(
p(i−1) − ωi−1 v(i−1)

)
14: v(i) = Ap(i)

15: αi = ρi−1/(r̃† · v(i))
16: s = r(i−1) − αi v(i)

17: if s† · s < tolerance then
18: x(i) = x(i−1) + αi p(i)

19: converged=true
20: break
21: else
22: t = A s
23: ωi = t† · s/(t† · t)
24: r(i) = s− ωi t
25: x(i) = x(i−1) + αi p(i) + ωi s
26: i = i+ 1

6.3.1 Tests on the inversion of Dirac operator

The most obvious test to an implementation of the inversion algorithm is to test
if the resulting x is indeed a column of the inverse. This can be done by performing the
operation Ax and checking the result to see if it is approximately equal to the point
source. By reducing the tolerance both should get closer. Another test can be performed
by noticing that the initial guess vector x(0) is not specified. Different x(0) should converge
to the same x within numeric precision.

If the inverse matrix is known analytically in some limit, this can also be used to
test the algorithm. This is the case for the Wilson-Dirac operator. For the free case, an
analytical formula is available in momentum space. One can then obtain the inverse of A
through the algorithm, perform a Fourier transformation and compare with the analytical
formulas.

For the interacting case, when the Dirac operator is not known analytically in closed
form, one can also perform a few tests. One of them is to calculate hadronic correlators,
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which are gauge-invariant. For the pion, the hadronic correlator is given by

Cπ±(nt) =
∑
n⃗∈Λ3

∑
α,β,a,b

∣∣∣∣(M−1
)
αβ, ab

(n|0)
∣∣∣∣2 . (6.97)

One calculates the pion correlator for the same configuration with different random gauge
transformations and compare the results. A difference between hadronic correlators would
signal a bug in the code.

For a small enough lattice, say a lattice with 44 = 256 lattice points, some more
explicit tests can be performed. One can check that the implementation of the matrix A
as the operator that acts on a vector v and returns Av gives the same result as the explicit
matrix form of A. This can be done, for example in a symbolic manipulation software, such
as Mathematica. Also, for small lattices, the interacting A can be inverted in Mathematica
for a few configurations, and the result can be compared with the inversion performed by
the production C code.

All the tests described above were performed on the program used to invert the
Wilson-Dirac fermion operator numerically.

6.4 Code

The latest version of the code used for the configuration generation, gauge fixing
and operator inversion can be found in the Github repository (112) under a GPLv3 license.

For the transformation to momentum space, we use the fast Fourier transform
implementation of the fftw3 library (113).
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7 LITERATURE REVIEW OF QUARK PROPAGATORS ON THE LATTICE

There has been a considerable progress in obtaining and analyzing data from lattice
quark propagators. Much of this is motivated by the desire to understand the confinement
and dynamic chiral symmetry breaking mechanisms of QCD. These studies are usually
part of programs of obtaining other Green’s functions of QCD, such as the gluon and
ghost propagators, and sometimes vertices.

We can divide the articles published on this subject in many different ways. One of
them is by groups and collaborations. We decided to give an overview of the studies based
on this criterion, although this is not so clear cut sometimes, because it allows us to follow
the methodologies as they developed over the years.

We have focus solely on quark propagator studies with the SU(3) gauge group on
the lattice.

7.1 American collaboration

The first paper on the literature on the quark propagator on the lattice is by
Professors Claude W. Bernard and Amarjit Soni, and by Drs. Kenton K. Yee and Daniel
Murphy (114). There, they study the quark propagator for Coulomb and Landau gauge
for quenched configurations, and Wilson fermions are used. The paper shows form factors
in configuration space and from those a dynamical quark effective mass of ≈ 350 MeV
is extracted. Following up on this first article, they have explored the quark propagator
further in (115), specially the gauge variance of the effective mass, showing a small, albeit
statistically significant, dependence in the class of λ-gauges, which comprise the Landau
(λ = 1) and Coulomb (λ = 0) gauges as limiting cases.

In (116), a value of 350(40) MeV is cited for the infrared quark mass in Landau
gauge and the researchers reaffirm a gauge-dependence for the effective quark mass.

7.2 Adelaide group

The group that has published most papers on the subject is the Adelaide University
CSSM Lattice group. The studies of the group were initiated in the mid-nineties by
professors Jon-Ivar Skullerud and Anthony G. Williams and are now centered around
Prof. Derek Leinweber and Dr. Waseem Kamleh. Other people based in this center who
contributed significantly along the way are Dr. Patrick O. Bowman, Prof. Urs M. Heller,
Prof. Jianbo Zhang, Dr. Frédéric D. R. Bonnet, Dr. Maria B. Parappilly, Dr. Peter J.
Moran, Dr. Amalie Trewartha, and Adam Virgili.
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Although the seminal works of this group used Wilson-Clover fermions (87,117–121),
they have moved since the early 2000s to other discretizations. Several studies were produced
between 2001 and 2010 using Kogut-Susskind and Asqtad fermions (122–128), which are
types of staggered fermions. Since 2002, however, most studies were produced with overlap
fermions (120,124,129–146), which offer better chiral properties as explained in Chap. 5.

One caveat of the overlap propagator studies, that might be worth mentioning, is
that, due to the high cost of calculating overlap propagators, the gauge configurations
cannot currently be generated from them. Therefore, their results with overlap fermions
have been calculated with configurations which are either quenched or generated with
less demanding fermion discretizations, such as the ones produced by the PACS-CS
collaboration which uses Wilson-Clover or the ones by the MILC collaboration using
staggered fermions. Regarding the overlap propagators, they have implemented many
improvements to the overlap kernel along the way, such as introducing the FLIC (fat-link
irrelevant clover) kernel in (134) and adding stout-link smearing to the fermion actions in
(136). Among the explorations of the overlap quark propagator, they produced studies of
unquenching effects (125,127,145) and scaling behavior (126,130–132), showing how the
form factors that characterize the propagator change with a change in the lattice spacing
and, sometimes, extrapolating to the a→ 0 limit.

Even though, just like the rest of the community, their default gauge of choice is
Landau gauge, they have also produced interesting results in the Laplacian gauge, which
is free of the Gribov ambiguity (122,123,133,147).

The first paper considered in this section, by Professor Skullerud, (117) was actually
produced at the time of his PhD at Edinburgh University, but we include it here because
we find that it naturally gave rise to the ones that follow. In it, using clover improved
quarks, he introduced the study of momentum space form factors and observed that
the Landau gauge quark propagator seems to present a clear signal, which allows its
determination with relatively small errors even with modest statistics. The quark wave-
function improvement and the “tree-level correction”, which are necessary for Wilson
fermions and were presented in Sect. 5.6, were first implemented in (87,118). The form
factors found in these studies show roughly the same shape that was later obtained in all
subsequent studies, including the characteristic infrared behavior showcasing dynamical
mass generation for M(p), with a chiral limit extrapolation of M(0) ≈ 300 MeV, and
suppression of the quark renormalization function Z(p). A hybrid tree-level correction was
introduced in (119), where non-perturbatively determined coefficients were used in place
of the mean-field values employed previously.

Results for the plain and improved staggered quark propagators are displayed in
(122,123), where a comparison is made between Landau gauge and Laplacian gauge. The
mass function shows no gauge dependence, although the infrared supression of Z(p) is
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larger in the Laplacian case. A chiral extrapolation is tried, obtaining a Mchiral(p) slightly
below 300 MeV. In (121) the researchers model the tail of the quark propagator mass
function with two Ansätze, and are able to extract values for the chiral condensate from
the data. In the same study, stronger finite volume effects are seen for Z(p) than for
M(p). Unquenching of the staggered propagator was studied in (125), where it was shown
that dynamical sea quarks have a rather small effect on the resulting form factors, thus
displaying the importance of gluons for the dynamical generation of mass. In the theme
of unquenching, it was also verified that the mass of the sea quarks matters very little
in the form factor results (126, 127), at least in the range explored in the paper. These
studies also show that a lattice spacing of 0.12 fm seems to be enough for the staggered
form factors to be insensitive to the cutoff.

In (120,129), the overlap quark propagator was calculated. A relevant property of
overlap quarks is that their propagators need no tree-level correction. Form factors were
extracted for several bare quark masses and although they disagree quantitatively with
the previous clover improved Wilson quark results, the authors claim that an agreement
was obtained with the staggered formalism. The qualitative shape of the curves is similar
in the infrared for all discretizations. A linear chiral extrapolation gives, again, a value of
around 300 MeV.

A study of the scaling of the overlap form factors was performed in (130–132), where
the authors concluded that they were close to the continuum limit, although a finer lattice
would be desirable and also larger volumes would allow them to establish the behavior of
the quark wave-function renormalization with more precision, as this form factor seems to
be more sensible to finite volume effects (124). A mass dependence of Z(p) is seen in the
infrared. A comparison with staggered fermions is given in (124), where both are shown to
agree over a wide range of momenta. The overlap quark propagator in Laplacian gauge
is compared to the Landau gauge one in (133) and, like in the staggered case, the mass
function generally agrees in both gauges, with the wave-function renormalization showing
some gauge-dependence with a stronger supression in the infrared. A scaling analysis of the
overlap fermion with the improved FLIC (fat-link irrelevant-clover) kernel is performed in
(134), where the authors conclude that the improved kernel scales better than the simple
one they used previously.

Unquenching of overlap quark propagators was studied in (135). As was the case
for staggered fermion unquenching, the mass function is mostly insensitive to the sea-quark
mass, at least for values in the range considered. The Z(p) has a slightly more pronounced
dependence on the mass of the sea-quarks, especially in the infrared. The effect of smearing
in the form factors was also found to be very small (136,137). Partly in response to the
Maynooth-Coimbra study with Wilson fermions (97), to be discussed in the next section,
the Australians produced (144), with dynamical quarks close to the physical pion mass.
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The main point of divergence with the earlier study was that the Z(p) found by the
Europeans showed a week non-monotonic dependence on the momentum, whereas the
most recent study has found an absolutely monotonic growth in the quark renormalization
function as the absolute value of the momentum increases.

One of their major lines of investigation from 2010 onward has been analyzing what
mechanism drives the chiral symmetry breaking in QCD. The importance of instantons
and the associated center vortices in the QCD vacuum and their effect on the mass and
renormalization functions of the quark propagator have been explored in (128,138–143,
145,146).

Using a smearing technique designed to retain and isolate the instanton content of
the QCD vacuum, the authors of (138,139) obtained that, after many levels of smearing
were performed, they could still reproduce most of the non-perturbative mass function
from overlap quarks in a background of configurations dominated by instantons, thus
providing a possible link between these topological objects and the spontaneous breaking
of chiral symmetry. The infrared suppression of the Z(p) function is shown to become
milder in the instanton background.

In (128), using staggered fermions, it was found that removing center vortices
from the configurations, although drastically reducing the string tension of the quark-
antiquark potential, did little to reduce dynamical chiral symmetry breaking, as measured
by the mass function. However, the authors of (140–142), using overlap quarks, found that
vortex removed configurations showed an elimination of dynamical mass generation. The
vortex-only ensembles also showed little mass generation in the infrared, however, after
cooling (a technique to reduce the roughness of the configuration) was implemented, the
authors were able to reproduce the behavior of untouched configurations, with regards to
the propagator form factors. The authors claim that smoothing, be it through cooling or
smearing, exposes a connection between the vortices and instanton objects, being a step
necessary to the manifestation of chiral symmetry breaking in vortex-only configurations.
It was also found in (143), done with dynamical quarks close to the physical point, that
the removal of center-vortices suppressed dynamical chiral symmetry breaking. In the
wave-function renormalization function, a stronger suppression is seen in the infrared on
vortex-removed configurations in comparison with the untouched ones. In (145), it was
found that a clearer picture can be established with respect to the role of center vortices
as drivers of QCD low-energy dynamics when dynamical fermion configurations are used.
In particular, as pertaining to the quark propagator, the suppression of dynamical mass
is stronger for unquenched configurations. Finally, (146) presents even stronger evidence
of the role of center vortices to the low-energy dynamics of QCD, specially the chiral
symmetry breaking mechanism, also using dynamical configurations close to the physical
point.
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7.3 Maynooth-Coimbra-Adelaide collaboration

After publishing a few seminal papers during his time in Adelaide in the 90s
and early 2000s, already discussed in the previous section, Prof. Jon-Ivar Skullerud, has
published articles in collaboration with professors Orlando Oliveira, Ayşe Kızılersü, Paulo
Silva and Dr. André Sternbeck. Their articles have focused on Wilson-Clover fermions
in Landau gauge for unquenched configurations (97, 148) and a range of quark masses,
with their smallest corresponding to physical pion masses. They obtained a mass function
with the same qualitative shape as previous lattice studies, with M(0) ≈ 320 MeV. The
dependence of the Z(p) with respect to quark masses is small in the ultraviolet, and some
dependence is detected for small momenta: the quark renormalization function Z(p) is
suppressed as the mass is reduced, although some suppression is shown to be due to the
finite volume of the lattice. In order to try to reduce lattice artifacts, they perform a
H4 extrapolation (97,149), which takes into consideration the fact that the lattice has a
hypercubic symmetry, and extrapolate to the limit where the hyperspherical symmetry
is recovered. The results of the H4-extrapolation were mixed, as they also increase the
uncertainties, specially for the mass function.

The Coimbra components of this collaboration, together with Alexandre Falcão
have explored the analytical structure of propagators in (150, 151). Regarding quark
propagators in particular, they report to have detected no complex poles, predicted
by some Dyson-Schwinger studies. They also report a possible pole for Minkowski-like
momenta at p2 ≈ −0.2GeV2, which is interpreted as an effective quark mass. However
the value obtained ≈ 450 MeV is larger than what is usually associated for constituent
quark masses ≈ 300 MeV. The technique they used to extend the lattice data collected for
Euclidean momenta to the rest of the complex plane is based on Padé approximants. At
least preliminarily, the position of the pole was observed to correlate with the square of
the pion mass as required by the PCAC relation if this is to be identified with a quark
mass.

A Coulomb gauge study in which we were involved in collaboration with some
members of this group has been tried recently (152), but results were not easily reconciled
with previous work and the situation for this gauge choice seems to be more subtle. This
was produced using anisotropic lattices with Wilson quarks improved with a clover term.

7.4 Japanese collaboration

In the mid 2000s Professors Sadataka Furui and Hideo Nakajima produced some
results for the quark propagators using staggered fermions. In (153), even though their
primary goal was to perform a study to verify the Kugo-Ojima confinement criterion and
the effect that unquenching has on the said criterion, they incidentally mention that the
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quark renormalization function is suppressed in the infrared, in accordance with what
was found in many other studies of the quark propagator. In their article (154), they find
results for form factors with a behavior that agrees with the previous literature, with an
infrared suppressed Z function largely independent on the bare mass and a M function
showing dynamical mass generation in the infrared, with the amount of generated mass
being smaller for heavier quarks. They then go on to calculate condensates from the
quark propagator, via a relationship presented in (155,156) and link the behavior of the
renormalization function to the Kugo-Ojima confinement criterion.

In (157), Professor Furui calculated the quark mass function for a few lattice
momenta close to the diagonal and using the domain wall fermion discretization. Results
showed a rough compatibility to previous ones using the staggered fermion discretization.

7.5 Tübingen-Graz collaboration

Starting in 2010 in Tübingen and then continuining in Graz, Dr. Mario Schröck
with his collaborators Professors Giuseppe Burgio, Hugo Reinhardt and Markus Quandt
and later Dr. Markus Pak and Dr. Hannes Vogt, produced results on the quark propagator
using chirally improved, overlap and Asqtad fermions, a type of staggered fermion. In
their work, besides Landau gauge, they also explored Coulomb gauge and the maximally
Abelian gauge.

In the context of studying the gluon and ghost propagators and comparing results
for Coulomb and Landau gauge, members of the collaboration report some results for the
quark propagator in (158). These are quenched results using staggered fermions. For the
Coulomb gauge quark propagator, the study finds that a term proportional to p0/⃗p, that is
in principle allowed in the quark propagator, vanishes. Thus the number of non-trivial
form factors is reduced to 3. They integrate over p0 to get the static quark propagator
S(p⃗). The form factors of the static quark propagator seems to indicate a vanishing value
for Z(p⃗) in the infrared, and dynamically generated mass in the form of an enhancement
of M(p⃗) in the infrared, as is typical for quark propagator studies.

The studies (159,160) present a method for artificially restoring chiral symmetry by
removing low-lying eigenmodes of the valence Dirac operator. They showcase the method
in an unquenched ensemble. Their choice for the fermion discretization is the chirally
improved propagator, which they use as sea quarks as well as valence quarks. It is shown
what is the effect in the form factors Z and M in Landau gauge. The typical Landau gauge
finite value for the Z form factor in the infrared is completely suppressed until vanishing in
the infrared after removing a large number of eigenmodes, although its ultraviolet behavior
is unaltered. For M a supression is also seen after a severe removal of eigenmodes, even
though the chiral partners ρ and a1 become degenerate after a moderate removal. This
indicates that chiral symmetry is already restored for a less aggressive removal than what
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is needed to completely supress the mass function M . This is puzzling, as it seems to
indicate that dynamical mass is still being generated even in a chiral symmetric vacuum.

This collaboration has also obtained results quark propagator in Coulomb gauge
(161). The interest in Coulomb gauge arises from continuum analyses in the context of
studying the dispersion relations of gluons and ghosts in the Gribov-Zwanziger framework
(162). They aim at extending this to the quark sector. Quenched and unquenched ensembles
are utilized, where staggered fermions are chosen for the sea (in the unquenched case) and
valence quarks. The results show that a possible form factor Ad allowed in Coulomb gauge
for the inverse propagator, associated with a pjσj4 Dirac structure vanishes. They also
show that the form factors have no energy dependence, depending solely on the spatial
momentum. The mass form factor M is shown to coincide with the Landau gauge result,
giving a chiral mass of M(0) = mχ = 310(10) MeV in the deep infrared. The Z form
factor shows gauge dependence, with a behavior that indicates Z → 0 as |p⃗| → 0, different
from Landau gauge, where a finite value is achieved in the infrared. The form factor α
associated to γtpt in the quark propagator is shown to vanish unless one fixes the residual
gauge freedom between different time slices, which the Coulomb gauge condition does not
constrain. When this residual gauge freedom is fixed, using the Integrated Polyakov Gauge,
α is non-zero, allowing for the obtainment of the quark dispersion relation, which displays
a divergent behavior in the IR. The authors claim that this extends the Gribov-Zwanziger
scenario of gluons and ghosts to the quark sector, in which a divergent dispersion relation
indicates confinement, (162). They also perform a scaling analysis of the Coulomb gauge
quark propagator, concluding that it is multiplicatively renormalizable, and that their
results are close to the continuum limit. By comparing the unquenched and quenched
results, it is checked that the effects of unquenching are rather mild.

In (163,164), Dr. Schröck and collaborators have further explored the connection
between confinement and chiral symmetry breaking in Coulomb gauge, using the chiral
symmetric overlap fermions and a quenched ensemble this time. Again, their use of
Coulomb gauge is motivated by some earlier works in the continuum, which predicted that
the quark renormalization function Z goes to 0 in the deep infrared and which linked this
behavior to confinement. Conversely their AS and B dressing functions should diverge for
small momenta. They indeed get indications that Z vanishes in the infrared, confirming the
continuum predictions and in consonance to their staggered fermion results. In harmony
with most studies, Z seems not to depend on the valence quark masses. For the M form
factor, the authors obtain the usual enhancement at low momenta, and even though they
cannot get too deep in the infrared, an estimate gives a value of around 300 MeV for
vanishing momentum in a chiral extrapolation. Once more the shape of the M form factor
is similar to the one obtained in Landau gauge in other studies. In the second part of
(164), the researchers restore chiral symmetry artificially by removing the low-lying Dirac
eigenmodes of the valence propagator. With this, they see a suppression of M = B/A,
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as expected, but A and thus Z, which is its inverse, remain roughly the same. This is
interpreted as chiral symmetry being restored, but confinement staying intact.

In (165) the authors explore the gluon and quark propagator in maximally Abelian
gauge (MAG). The motivation for this choice of gauge comes from the dual-superconductor
picture of confinement, which states that the Abelian parts of the gauge fields should
dominate the infrared dynamics. In maximally Abelian gauge the Abelian parts of the
gauge fields are enhanced, which should presumably expose the dynamics more clearly.
Like Coulomb gauge, this is considered an incomplete gauge, meaning that a residual gauge
redundancy remains. This is fixed in their paper by applying the Landau gauge condition
supplementary with respect to subset of Abelian gauge transformations. The ensembles
considered in this study are composed by quenched and dynamical configurations using
staggered fermions. The quark propagator is calculated using staggered fermions in all
cases and the authors compare results for a background of gluon fields in Landau gauge,
MAG, only diagonal MAG (that is, only the components associated to the Gell-Mann
generators λ3 and λ8), only off-diagonal MAG. The MAG results show a mass function
which is slightly higher than the Landau gauge one, but the data points generally agree
within error bars (MAG error bars are larger, denoting a larger noise in comparison to
Landau). The quark renormalization function shows gauge dependence when comparing
both gauge choices, as was observed with Coulomb gauge before, with a stronger IR
supression in the MAG case, although not as severe as the Coulomb supression. Diagonal
only MAG results show dynamical generation of mass in the same order of magnitude as
Landau gauge, even slightly higher, whereas off-diagonal MAG results show no dynamical
mass generation and a value for the quark renormalization function which is close to its
tree level value of 1. From this the authors claim that indeed the Abelian dominance
hypothesis is justified when explaining QCD infrared dynamics.

7.6 Scattered studies

Some studies seem to not have established a long-living tradition of quark propa-
gator calculations and/or have focused on the extraction of QCD constants such as the
renormalized quark masses. We include references to them here, with a brief description of
the relevant content for the sake of completeness.

In (166, 167) quark masses are extracted from fits to the tail of the momentum
dependent mass form factor of the propagator. They use quenched configurations and
Wilson quarks.

The European Twisted Mass Collaboration has also produced studies which show
quark propagators form factors in Landau gauge. In (168), although the study is focusing
on the determination of renormalization constants, some plots for the inverses of the
form factors are shown. In (169), they used dynamical twisted mass configurations. By
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comparing the Landau gauge quark propagator lattice data to a perturbation series, they
are able to estimate the quark mass and chiral condensate, getting values that agree
with other estimates, but with larger error bars. Although presented in lattice units, the
plots seem to have the general shape found in Landau gauge propagator studies, with
a mass function presenting dynamical mass generation in the infrared and the quark
renormalization function attaining a finite value for low momenta and saturating at high
momenta.

Gauge dependence was detected in a study comparing the Landau gauge quark
propagator form factors with covariant-gauge ones (170).

In (171), plots are shown of the quark propagator form factors. The Landau gauge
mass function shows the usual shape and the renormalization function has a dip in the
infrared, but has a non-monotonic behavior as the absolute value of the momentum grows,
as was also found latter in (97), discussed in Sect. 7.3. They use domain-wall fermions,
which is an alternative chiral fermionic discretization on the lattice.

A technique to reduce lattice artifacts is applied to the quark propagator in (149).
Incidentally, the authors conclude that overlap propagators have larger hypercubic artifacts
than the ones calculated with clover improved quarks.

7.7 Finite temperature studies

The first study of quark propagators on the lattice at finite temperature was
produced by Masatoshi Hamada, Hiroaki Kouno, Atsushi Nakamura, Takuya Saito, and
Masanobu Yahiro, (172). They were based on several research centers in Japan. They
performed a study on quenched configurations using plain and clover improved Wilson
fermions in Landau gauge. Firstly, a different behavior is shown before and after the con-
finement phase transition: for low temperatures the mass function of the quark propagator
increase quickly, whereas for high temperatures, they still see an increase albeit slower (the
temperature dependence is further explored in a follow-up paper (173)). The researchers
have obtained a linear relation between the thermal quark mass and the temperature, as
predicted by a perturbative calculation (74). Their definition of the quark thermal mass is
given by the mass function at 0 momentum. When comparing the plain Wilson fermions
with the clover ones, they obtain that Wilson quarks present a mass function which is
about 20% larger than the clover counterparts.

In (174), Dr. Paulo Silva and Prof. Orlando Oliveira of Coimbra University, re-
ported results for quark propagators at finite temperature using Wilson fermions non-
perturbatively improved with the clover action using quenched configurations in Landau
gauge. They show that as the theory passes the transition temperature, the mass function,
for the lowest momentum and Matsubara frequency available, decreases to about half of
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its value in comparison to the low temperature case. The mass function, however, remains
large in comparison to the bare quark masses, which should signal that chiral symmetry is
not completely restored at the highest temperature of 275 MeV used in the study. Reference
(175) complements this initial study by going to higher temperatures (up to 324 MeV) and
presenting more detailed plots for all form factors. For these higher temperatures, the
mass function shows a flattening for small momenta, beginning at 290 MeV.

As was explained in Sect. 3.3, as the temperature increases the absolute value of the
Polyakov loop becomes non-zero and for each configuration, one may associate a particular
sector corresponding to a center element of SU(3), which is determined from the argument
of the complex value of Polyakov loop. In (176), the authors explored what happens to
propagators obtained from configurations in different sectors of the Polyakov loop. They
found that the thermal behavior of the quark propagators in the infrared is extremely
sensitive to the gauge sector, even though the configurations are quenched and, therefore,
center transformations are a symmetry of the action. For high-temperatures, the quark
propagator from the 0π/3 sector indeed tends to a free particle behavior. However, for the
2π/3 and 4π/3 sectors, the form factors strongly deviate from a trivial behavior, with the
mass function showing a greater amount of dynamical mass generation, for example.
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8 RESULTS

8.1 Gauge-fixing optimization results

8.1.1 Analysis of the stochastic overrelaxation parameters

We still need to discuss the value of p in Eq. 6.91 and the numbers of hits, as
indicated at the end of section 6.2.2. A efficiency study is needed in order to fix the value
of these two parameters. We also need to notice that, in principle, p can vary with all
other parameters of the simulation: the inverse coupling β, the lattice size and number of
hits of the gauge-fixing update.

The Los Alamos algorithm can be thought as a the p = 0 version of the stochastic
overrelaxation algorithm. We can then study the gains offered by the stochastic overre-
laxation together with the search for the optimal value of p, and have the Los Alamos
algorithm as a particular case. For the study of the efficiency as a function of p, we will
first hold β = 5.9, and will vary the lattice size (N4, with N = 4, 8, 10, 16) and, for each
lattice size, vary the number of local hits in the update (1, 2, 3 or 8).

An important aspect of the efficiency is that the typical number of sweeps needed
to gauge-fix should be the smallest possible, when comparing different versions of the
algorithm. In order to analyse this, we can establish what is the distribution of the number
of sweeps needed to gauge-fix for a sufficiently big sample of configurations to have their
gauges fixed. From these distributions we can obtain the typical number of sweeps needed
and their dispersion. In this study, we analyzed the fixing for the same 200 configurations
with size 44, 84 and 104 and 100 configurations of size 164, with different parameters, as
explained in the paragraph above.

Some statistical indices for the 44 lattice are shown in Table 1. To obtain what is
the typical number of sweeps, we prefer to look at the medians. This is because we noticed
that a few configurations demand an exceptionally large number of sweeps to be fixed,
which raises the mean and makes this indicator unsuitable, because it does not represent
a value that is common for the number of sweeps. In any case, we present the values for
the median, mean and standard deviation in the table, so that a few conclusions can be
taken independently of what statistical index one may choose.

The first conclusion is that, very clearly, the Los Alamos algorithm, or p = 0, is
worse than overrelaxation for a sufficiently high p, whatever the number of local hits one
chooses to perform. Another result is that by performing 2 hits, the median (or mean)
decreases, if p is adjusted accordingly. In other words, the minimal median, as a function
of p, is lower for 2 hits in comparison with 1. We also observe that increasing the number
of hits beyond 2 does not decrease the median significantly, so that one has little reason
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to go beyond 2, since the extra work does not pay.

It is worth noting that for 1 > p > 0.78, we observed that the algorithm does not
converge in the 1 hit variant, which means that for these parameters, the movement in
the space of possible gauge transformations does not compensate the low precision in the
determination of g(n). By performing 2 or more hits, the convergence occurs even for high
values of p, such as 0.9999.

Moreover, the table shows that for the same p, here p = 0.67, the median is lower
for a higher number of hits. We also see that the optimal value of p is lower for 1 hit
(p ≈ 0.5) and then increases for 2 hits (p ≈ 0.62), however, as the number of hits goes
beyond 2, the optimal value stabilizes.

Table 1 – Values for the median, mean and standard deviation for the distribution of the
number of sweeps to attain the Landau gauge-fixing for different parameters,
with β = 5.9 and lattice size 44. The sample size for these results was 200
configurations.

hits p median mean std. deviation
1 0 250 314.9 226.3
1 0.45 102.5 134.4 84.3
1 0.5 94.5 131.3 73.8
1 0.55 108 135.3 67.2
1 0.67 231 240.9 46.6
1 0.78 ∞ ∞ -
2 0 257 331.4 257.2
2 0.58 82 105.8 72.3
2 0.6 79.5 105.8 69.0
2 0.62 77 99.0 51.6
2 0.65 81 102.7 49.8
2 0.67 85 99.2 34.4
3 0 259 314.1 221.0
3 0.58 82 103.1 62.0
3 0.62 76 103.6 59.6
3 0.67 86 104.7 48.7
8 0 262 325.0 263.5
8 0.58 78.5 100.1 53.9
8 0.62 78 100.3 47.3
8 0.67 87 100.8 37.8

Source: By the author.

Observing the table for a lattice of size 84, we see that the general trends are the
same as for the 44 one. We still have that p = 0 is a bad choice; 2 hits instead of 1 decreases
the typical number of sweeps for gauge-fixing and going beyond this does not bring more
benefits; and, lastly, the optimal p for 1 hit is lower than for 2 hits, and after that, the
value remains constant. However, we also observe that the optimal p increases be it for 1
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hit (from p ≈ 0.5 to p ≈ 0.63) or for 2 or more (from p ≈ 0.62 to p ≈ 0.8), in comparison
with the 44 lattice. Thus, we can conclude that the optimal p depends on the size of the
lattice considered, being larger for larger lattices.

Table 2 – Values for the median, mean and standard deviation for the distribution of the
number of sweeps to attain the Landau gauge-fixing for different parameters,
with β = 5.9 and lattice size 84. The sample size for these results was 200
configurations.

hits p median mean std. deviation
1 0 882 1158.4 1248.1
1 0.58 283 337.0 266.9
1 0.63 246 308.7 196.2
1 0.67 325 376.4 220.0
1 0.75 ∞ ∞ -
2 0 867.5 1173.1 1278.4
2 0.67 207 248.2 148.6
2 0.75 163.5 209.4 174.0
2 0.8 158.5 190.8 104.9
2 0.82 171 207.7 129.7
3 0.67 210.5 261.1 220.6
3 0.8 158 199.5 130.1

Source: By the author.

For the 104 lattice, whose results are presented in Table 3, we abandoned the Los
Alamos algorithm (p = 0), given the results for smaller lattices, as well as the act of
performing 3 or more hits, given the fact that no significant gain was seen. We can observe
that the optimal value for p keeps growing with the lattice size, and that, now, it is p ≈ 0.67
for 1 hit and p ≈ 0.82 for 2 hits. This shows that as we continue increasing the lattice
size, the “squared” step of the stochastic overrelaxation algorithm grows in importance,
which is the step that is responsible for a higher motion in the space of possible gauge
transformations and does not necessarily decrease the value of the functional. Doing this
the algorithm does not get trapped in “flat” regions with low variation of the functional
Eq. 4.23. The region of non-convergence for the 1 hit version continue being p > 0.75, as
for the 84 lattice.

For the 164 lattice, the optimal p for 1 hit is approximately 0.67, and for 2 hits it
is 0.89.

Lastly, for 2 hits and a 244 lattice, we have the results presented in Table 5. The
1 hit variation was not tried, as it became clear from the previous results that it is less
efficient.
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Table 3 – Values for the median, mean and standard deviation for the distribution of the
number of sweeps to attain the Landau gauge-fixing for different parameters,
with β = 5.9 and lattice size 104. The sample size for these results was 200
configurations.

hits ou sub p mediana média desvio padrão
1 0.60 420.5 530.2 390.1
1 0.63 400 463.7 246.7
1 0.67 372 458.9 206.0
1 0.69 468.5 537.2 249.7
1 0.75 ∞ ∞ -
2 0.67 349 446.4 356.3
2 0.8 218.5 264.1 136.8
2 0.82 201.5 245.2 114.0
2 0.84 210.5 268.8 151.9
2 0.87 239 268.3 166.5

Source: By the author.

Table 4 – Values for the median, mean and standard deviation for the distribution of the
number of sweeps to attain the Landau gauge-fixing for different parameters,
with β = 5.9 and lattice size 164. The sample size for these results was 100
configurations.

hits p median mean std. deviation
1 0.65 1200 1445.4 888.8
1 0.67 1170 1318.0 567.0
1 0.71 1190 1421.2 803.4
2 0.67 1192.5 1347.4 597.9
2 0.88 440 494.2 262.1
2 0.9 440 559.6 443.8

Source: By the author.

Table 5 – Values for the median, mean and standard deviation for the distribution of the
number of sweeps to attain the Landau gauge-fixing for different parameters,
with β = 5.9 and lattice size 244. The sample size for these results was 20
configurations.

hits p median mean std. deviation
2 0.67 3310.0 3954.0 1901.6
2 0.90 1260 1368.0 713.6
2 0.92 780 813.0 193.9
2 0.95 720 771.0 150.9
2 0.97 1020 1053.0 72.2

Source: By the author.

8.1.2 Execution time

As pointed out in Section 6.2.2, there is a balance between gains and losses when
performing several update hits in the gauge-transformation at each site: one the one hand,
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if we make many hits, we get closer to the local maximum, which should presumably have
a positive influence on the extremization of the global functional; on the other hand, each
hit takes some time to be performed, in such a way that performing multiple hits may not
be compensated. Since we do not know a priori, what is the ideal number of hits, we are
forced to turn to an empirical study.

The results of last section show that in practice it makes no sense to do more than
2 hits. It remains to be checked whether making 1 or 2 hits is best, when time is taken
into account.

In order to measure what is the ratio between the characteric times for each variant,
we can take a large number of sweeps in one configuration using the three algorithms
and record the time it took for each of them. In the computer we used in this study, 100
thousand sweeps for a 44 lattice take 41.2 seconds for the 1 hit variant and 47.5 seconds
for the 2 hits variant, with the ratio of the two being 1.153. We can then compare if the
gain in sweeps shown in the previous sections compensates the extra time to perform the
2 hits in that variant. The results are presented in Table 6 in arbitrary time units, which
should not be compared among different lattice sizes.

Table 6 – Optimal p, medians and approximate execution time in arbitrary units for the
variants of the considered algorithms, with β = 5.9.

lattice size hits optimal p median aprox. execution time
44 1 0.5 94.5 1
44 2 0.62 77 0.94
84 1 0.63 246 1
84 2 0.8 158.5 0.74
104 1 0.67 372 1
104 2 0.82 201.5 0.62
164 1 0.67 1170 1
164 2 0.88 440 0.43

Source: By the author.

We see that, in each of the cases considered, performing 2 hits always brings
a considerable gain in the time to process the gauge-fixing in comparison to the 1 hit
alternative. We can also observe that as the lattice grows, this is even more the case.

8.1.3 Optimal p dependence with inverse coupling

Having estabilished that the best variant is the 2 hits one, we can ask ourselves
how the optimal p value varies with β. The results we obtained for lattice sizes 84 and 104

for β = 6.1 and 84 for β = 6.3, are shown in Table 7.

As we see in the data, the optimal value for p in a 84 lattice with beta = 6.1 is
p ≈ 0.78, and for β = 6.3 one has p ≈ 0.77, to be compared with the value for β = 5.9
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Table 7 – Median, mean and standard deviation of the distribution of the number of
sweeps needed for gauge-fixing for 2 hits, using the stochastic overrelaxation
algorithm for different β, varying p.

β lattice size p meadian mean std. deviation
6.1 84 0.60 234 343.71 385.47
6.1 84 0.75 169.5 207.69 109.11
6.1 84 0.77 165 204 121.8
6.1 84 0.775 162 198.3 96.2
6.1 84 0.78 162 203.1 111.1
6.1 84 0.785 164.5 211.7 180.5
6.1 84 0.79 168 204.0 87.9
6.1 84 0.795 165 210.4 183.7
6.1 84 0.80 165 207.9 141.3
6.1 84 0.82 175.5 209.7 104.7
6.1 84 0.85 207 225.3 43.2
6.1 84 0.9 309 315 21
6.1 104 0.80 216 308.8 357.3
6.1 104 0.81 211.5 299.0 266.3
6.1 104 0.82 216 272.8 171.7
6.3 84 0.75 178.5 227.5 163.3
6.3 84 0.76 182.5 226.1 150.1
6.3 84 0.765 179 233.8 162.7
6.3 84 0.77 172.5 219.7 134.4
6.3 84 0.775 173 228.0 157.9
6.3 84 0.78 178.5 215.6 111.2
6.3 84 0.79 174 227.3 143.6
6.3 84 0.8 178 222.0 133.0
6.3 84 0.81 174 215.7 96.8

Source: By the author.

which was 0.8. We see a slight decrease in the value for the optimal p in this β interval,
however, it is rather mild and even using p = 0.8 we keep approximately the same number
of sweeps. The typical number of sweeps also increases mildly as β grows, being 158.5 for
β = 5.9, 162 for β = 6.1 and 172.5 for β = 6.3.

For the 104 lattice, we see a variation of the optimal p of approximately 0.82 with
β = 5.9 to p ≈ 0.81 for β = 6.1, following the decreasing that was also observed for lattices
with 84 sites. The typical number of sweeps growns from 201.5 to 211.5 with this variation
of β, which represents an increase of about 5%.

The results for the overrelaxation method are presented in Table 8, for several
lattice sizes with β = 5.9. We notice here that when the lattice grows the optimal ω value
gets close to 2, an analogous behavior to the stochastic overrelaxation, where p approaches
1. Comparing with the stochastic overrelaxation algorithm, we see that overrelaxation
is more efficient. For example, for a 164 lattice, we obtain a median in the optimal case
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of, 580 sweeps for the fixing whereas for the stochastic overrelaxation the number is 720
sweeps.

Table 8 – Values for the median, mean and standard deviation of the distribution of sweeps
necessary to gauge-fix for different ω, with β = 5.9 and several lattice sizes. The
sample size was 200 configurations for 44, 84 and 104, 100 configurations for 164

and 20 configurations for 244.

lattice size ω median mean std. deviation
44 1.0 257 331.4 257.2
44 1.62 65 86.4 55.8
44 1.63 64 85.3 53.7
44 1.64 63.5 84.1 51.6
44 1.65 64 83.1 49.6
44 1.66 64 81.9 47.6
84 1.65 206 258.4 246.2
84 1.70 173 225.0 213.2
84 1.82 124 81.9 47.6
84 1.85 126.5 151.8 76.4
104 1.83 165 198.5 112.9
104 1.84 155 190.9 104.8
104 1.85 152 184.3 94.4
104 1.86 151.5 177.2 80.4
104 1.87 152.5 178.5 76.5
164 1.92 320 352.6 120.6
164 1.925 300 339.8 120.8
164 1.93 300 332.0 97.4
164 1.935 320 341.6 95.9
164 1.94 320 356.6 107.0
244 1.94 630 676.0 219.2
244 1.95 580 642.0 250.4
244 1.96 620 620.0 132.5

Source: By the author.

We can also study the behavior when varying β, as we did for the stochastic
algorithm. The results are in Table 9. We observe that there is a slight increase for the
median, as in the stochastic case, but the optimal ω changes very little.
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Table 9 – Values for the median, mean and standard deviation for the distribution of
sweeps needed to gauge-fix for 2 hits of the overrelaxation algorithm with
changing βs, in the region around the optimal ω.

β lattice size ω median mean std. deviation
6.1 84 1.79 135.5 160.7 84.4
6.1 84 1.80 134 158.7 80.7
6.1 84 1.81 132 157.4 75.7
6.1 84 1.82 134 156.4 70.5
6.1 84 1.83 135.5 155.7 64.6
6.1 104 1.84 177 212.9 135.4
6.1 104 1.85 173.5 210.1 128.5
6.1 104 1.86 174 205.8 114.4
6.3 84 1.78 151.5 182.0 102.6
6.3 84 1.79 151 178.8 97.5
6.3 84 1.80 151 175.6 91.0
6.3 84 1.81 147.5 174.5 89.3
6.3 84 1.82 147.5 173.6 84.8
6.3 84 1.83 149 175.0 85.1

Source: By the author.

Analysis with constant physics In order to obtain a critical exponent from the data,
we need configuration obtained with constant physics. This means that we need to change
the physical lattice spacing a, at the same time that we change the number of sites N
for each side of the four-dimensional hypercube where the configurations are obtained, in
order to have N × a constant. Following (46,73), the physical spacing can parameterized,
for 5.7 < β < 6.92, by

a = r0 exp(f(β)), (8.1)

with

f(β) ≡ −1.6804− 1.7331(β − 6.0) + 0.7849(β − 6.0)2 − 0.4428(β − 6.0)3, (8.2)

for the pure gauge Wilson action, in which r0 ≈ 0.5 fm is the Sommer parameter. In order
to have N × a constant, we need to change β as we change N , following the equation

Na = N ′a′, (8.3)

which brings us to
f(β′) = f(β) + log

(
N

N ′

)
. (8.4)

This equation should be solved for β′. The statistical values for the gauge-fixing using
configurations with β obtained from this procedure are shown in Tables 10 and 11, for the
stochastic overrelaxation and overrelaxation respectively.

A more detailed and rigorous analysis was performed by a former member of our
group, Dr. Matheus Cerqueira, in parallel to the presented above. The results are in (82).



127

Table 10 – Median, mean and standard deviation for the distribution of the number of
necessary sweeps for gauge-fix using 2 hits of the stochastic overrelaxation
algorithm and different lattice sizes, changing β to obtain a constant physical
size, and varying p around its optimal value.

β lattice size p median mean std. deviation
5.84572 64 0.67 123 168.6 144.5
5.84572 64 0.68 120 158.9 105.5
5.84572 64 0.69 115.5 155.0 115.5
5.84572 64 0.70 117 155.3 111.4
5.84572 64 0.71 116.5 158.1 103.5
6.00000 84 0.77 158.5 197.1 93.9
6.00000 84 0.78 152.5 200.5 129.5
6.00000 84 0.79 158 201.0 118.9
6.13655 104 0.79 217.5 287.9 283.8
6.13655 104 0.80 197.0 274.5 264.6
6.13655 104 0.81 201.5 286.2 290.25
6.26010 124 0.80 290 363.1 233.6
6.26010 124 0.81 267.5 334.7 175.7
6.26010 124 0.82 268.5 330.0 183.8
6.26010 124 0.83 260 326.8 185.3
6.26010 124 0.84 248 307.1 165.4
6.26010 124 0.85 262.5 326.6 174.7
6.47466 164 0.85 380 475.4 376.2
6.47466 164 0.86 340 415.2 197.1
6.47466 164 0.87 340 402.4 165.7

Source: By the author.

The program used to produce the results presented here was developed independently
from Dr. Cerqueira’s and were shown to produce congruent results. A variant was latter
developed to study Coulomb gauge for an anisotropic lattice study (152). This variant
was tested independently by Dr. Benjamin Page of Swansea University and was found to
fulfill their requirements. The results from the Coulomb version were also compared to the
results using a different implementation (177), and were also found to be the same within
statistical errors.

8.2 Quark form factors

The ensembles we produced for the study of the quark propagator were meant to
access different temperatures, finite size effects and finite lattice spacing effects. They were
quenched ensembles and a summary of their characteristics is presented in Table 12.

According to the Necco-Somer formula 3.63, the lattice spacing for β = 6.0 is
a = 0.093 fm, which corresponds to a−1 = 2.11 GeV. For β = 6.13655, one has a = 0.0745 fm
and a−1 = 2.65 GeV.



128

Table 11 – Median, mean and standard deviation for the distribution of the number of
necessary sweeps for gauge-fix using 2 hits of the overrelaxation algorithm
and different lattice sizes, changing β to obtain a constant physical size, and
varying ω around its optimal value.

β lattice size ω median mean std. deviation
5.84572 64 1.75 93 120.2 89.0
5.84572 64 1.76 92 119.2 85.2
5.84572 64 1.77 93 119.0 81.4
5.84572 64 1.78 94 118.4 77.7
5.84572 64 1.79 95 118.2 74.2
6.00000 84 1.81 137.5 166.5 111.9
6.00000 84 1.82 133.5 162.7 103.3
6.00000 84 1.83 133.5 161.1 97.1
6.00000 84 1.84 134 162.1 92.3
6.13655 104 1.85 166 215.2 184.2
6.13655 104 1.86 163 211.6 170.7
6.13655 104 1.87 169.5 211.4 158.6
6.13655 104 1.88 170.5 213.5 153.1
6.26010 124 1.87 211.5 250.9 137.8
6.26010 124 1.88 210.5 253.4 134.3
6.26010 124 1.89 214.5 253.9 122.4
6.26010 124 1.90 223.5 253.3 107.7
6.47466 164 1.89 280 328.0 176.1
6.47466 164 1.90 270 323.4 169.4
6.47466 164 1.91 280 315.0 134.1

Source: By the author.

Table 12 – Ensembles produced to study the quark propagator

Ns Nt β temperature (MeV) spatial volume (fm3) # configurations
16 4 6.0 530.60 3.31 100
32 4 6.0 530.60 26.48 50
16 6 6.0 353.06 3.31 100
32 6 6.0 353.06 26.48 20
16 48 6.0 44.13 3.31 40
20 48 6.0 44.13 6.466 40
20 60 6.13655 44.13 3.31 30

Source: By the author.

For the propagator inversion we used the improvement coefficient cSW (β = 6.0) =
1.76923 and κc(β = 6.0) = 0.135196 for the coarser lattice and cSW (β = 6.13655) = 1.76923
with κc(β = 6.13655) = 0.135605 for the finer lattice, following the formulas in (96), as
explained in 5.6.

The critical transition temperature in quenched SU(3) gauge theory is around
Tc = 270 MeV (175). We have produced our ensembles trying to stay away from the
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transitional region and focusing on temperatures which are undoubtedly within the
confined or the deconfined phase, as can be seen in Table 12. We will refer to the lattices
at T = 44.13 MeV as the zero-temperature lattices, as this temperature is expected to be
too low to show any thermal effects.

The quark propagator at finite temperature is expected to have the following form

S(ω, p⃗) = Z(ω, p⃗)
iγ4ω + i/⃗pR(ω, p⃗) + 1M(ω, p⃗) , (8.5)

where ω is the Matsubara frequency. The fermionic Matsubara frequencies allowed on the
discretized lattice are

ωnt = 2π
aNt

(
nt + 1

2

)
, (8.6)

with nt = −Nt/2 + 1, . . . , Nt/2. In the zero-temperature limit, the R function should be
unity and the dependence on the momentum should be on the variable p = √pµpµ =
√
ω2 + p⃗ · p⃗ only, as demanded by Lorentz symmetry.

On the lattice, for Wilson fermions, we expect, instead of Eq. 8.5,

S(ω, p⃗) = Z(ω, p⃗)
iγ4aK4(p) + iaγ⃗ · K⃗ R(ω, p⃗) + 1M(ω, p⃗)

, (8.7)

due to our discussion around Eq. 5.93, where aKµ(p) = sin(apµ). The form factors Z, M
and R can be obtained by taking traces of the propagator, similarly to what was shown in
Sect. 5.7 for the zero temperature case.

8.2.1 Zero temperature results

The Wilson quark propagator is known to present large lattice artifacts, even with
improvement in place. In Fig. 1, the interacting form factors are shown plotted against
the norm of different kinds of 4-momenta for κ = 0.1335: the Fourier momentum p, the
lattice sine momentum K and the Qµ(p) = 2 sin(pµ/2) momentum. Above 0.5 units of
momentum measured in lattice units, we see strong lattice artifacts related to the breaking
of rotational symmetry. In the infrared, the data agree with each other no matter the
momentum used.

The plots in Fig. 1 are uncorrected plots. We had anticipated in Sect. 5.7 that a
characteristic of the Wilson propagator, even in the free case, is that its form factors do
not correspond to the continuum ones. The mass form factor, for example, contains a term
quadratic in Qµ (see Eq. 5.98). This shows in the plot for the uncorrected mass form factor
as a momentum dependent mas that grows in the ultraviolet, which is a non-physical
discretization phenomenon.

The free improved propagator, Eq. 5.103, depends on the Kµ and Qµ in an intricate
way. This complicates the choice of variable to plot the form factors against. We have
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chosen to stick to the p momentum for all subsequent plots, as using the other momentum
variables do not show great improvements to the readability of the figures anyway.

We notice that the plot for the R(p) form factor, which we expected to be 1 for
zero temperature, as is the case here, actually shows some deviations from unity. These
may be due to finite-size effects, as our lattice is asymmetric. Another source of asymmetry
between the imaginary time and spatial directions is the anti-periodic boundary condition
that the fermion fields are required to obey. We have used a multiplicative correction for
the quark wave-function renormalization Z form factor, in order to try to cancel the lattice
artifacts (87) for medium and high-momenta. The Z form factor is expected to be 1 at
tree-level, so we force this value by dividing the data by Z free

I (p) of Eq. 5.114.

Zmult. corr.
I (p) = Zuncorr.

I (p)
Z free
I (p) . (8.8)

We have tried three possible corrections for the mass form factor. The mass function in
lattice units should be equal to am at tree level. We can define a multiplicative correction
for the M(p) form factor, as was done for Z(p) by

aMmult. corr.
I (p) = am

Muncorr.
I (p)
M free

I (p) , (8.9)

where M free
I (p) is given in Eq. 5.115. A subtractive correction was also tried,

aM subt. corr.
I (p) = am+ a(Muncorr.

I (p)−M free
I (p)), (8.10)

which would also result in a corrected form factor with the value am at tree-level.

A third scheme for the mass form factor is provided by a hybrid correction (119). It
is a mixture of the subtractive and multiplicative corrections, tuned to reduce the lattice
artifacts

aMhyb. corr.
I (p) = aMuncorr.

I (p)−∆M (−)
I (p)

∆M (×)
I (p)

, (8.11)

with

∆M (−)
I (p) = − 1

16A′
I(p)

[
am (aK)2 + 1

2(aK)2(aQ)2
]

(8.12)

∆M (×)
I (p) = 1

amA′
I(p)

{
am + 1

2
[
(aQ)2 − (aK)2

]}
, (8.13)

where the p dependence of Kµ(p) and Qµ(p) was suppressed and A′
I(p) is given by Eq.

5.108. We plot a comparison of the correction schemes in Fig. 2. In the infrared the
uncorrected data agrees with all corrections, which shows that the artifacts are associated
to a finite spacing effect, as expected. The hybrid correction seems to perform best of
the three to remove the lattice artifacts of the M(p) form factor, although some effects
associated to the breaking of the rotational symmetry are still displayed. The mass form
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Figure 1 – The three form factors of the propagator plotted against different momentum
variables for a 203 × 48 lattice at β = 6.0 and κ = 0.1335.

Source: By the author..
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Figure 2 – Corrections to the M(p) and Z(p) form factors for a 203× 48 lattice at β = 6.0
and κ = 0.1335.

Source: By the author..

factor indeed shows dynamical mass generation in the infrared, just like all previous studies
cited in Chap. 7. The value for M(p) for the lowest momentum available is aM ≈ 0.22,
which corresponds to M ≈ 460 MeV.

The corrected quark wave-function renormalization shown in the right-hand side
of Fig. 2, the value seems to saturate, in accordance with most studies of the quark
propagator in the vacuum. The characteristic dip in the infrared of the Landau gauge
quark propagator is also clearly seen in the plot.

When inverting the quark propagator, the value of κ determines the bare quark
mass that is being used. The equation relating both is Eq. 5.75. Table 13 shows the
conversion of κ to corrected bare quark mass for the values used here.

Table 13 – Corrected bare quark mass used in the propagator calculations.

κ am m(MeV)
0.1335 0.0470 99.5
0.13392 0.0352 74.6
0.1342 0.0266 56.4

Source: By the author.

The plot in Fig. 3 shows the mass dependence of the propagator form factors for
the uncorrected data and Fig.4 for the corrected data.

The mass dependence is stronger for the mass form factor M(p), with larger κ,
corresponding to smaller bare masses, laying lower in the plot, as expected. The Z(p) and
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Figure 3 – The mass dependence of the quark propagator uncorrected form factors for a
163 × 48 lattice at β = 6.0 for several κ.

Source: By the author..
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Figure 4 – The mass dependence of the quark propagator corrected form factors, with our
preferred corrections, for a 163 × 48 lattice at β = 6.0 for several κ.

Source: By the author..

R(p) form factors have no discernible mass dependence, as far as the uncertainties allow
us to probe.

We have inverted the propagator for κ = 0.1335 on lattices with two spatial volumes,
keeping all else constant. The comparison between the two volumes is presented in Fig.5.

When looking at Table 12, we see that the physical spatial volume almost doubles
between the two lattices. In the plot, one sees that finite volumes are definitely present for
data in the infrared, although both form factors still retain their qualitative form. The
dip in in the infrared of the quark renormalization is smaller for larger volume lattices,
indicating that the suppression may be, at least partially, a finite volume effect.

Keeping the physical volume, as well as the bare quark mass in physical units,
we have calculated the form factors for two different lattice spacings. The results for the
M(p) and Z(p) form factors is presented in Fig. 6. For the 163 × 48 lattice with β = 6.0,
κ = 0.1335, whereas for the 203 × 60 lattice with β = 6.13655, κ = 0.13423, in order to
maintain the value of the bare quark mass in physical units.

Differently from the volume dependence, the plot shows that the mass function is
more sensitive to a change in the lattice spacing than the quark renormalization function.
The finer lattice shows a smaller degree of dynamical mass generation, although the
qualitative features of the plot are still present.
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8.2.2 Finite-temperature results

At high temperatures, as discussed in Sect. 3.3, QCD undergoes a phase transition.
For the quenched theory, the order parameters for this transition is the Polyakov loop. Its
value vanishes for small temperatures, in the confining phase of the theory, and develops a
finite value at high temperatures, signaling deconfinement. For SU(3), the expectation
value of the Polyakov loop is a complex number and, as such, can be written as

P = ⟨P [U ]⟩ = |P |eiφ. (8.14)

The angle φ is known to gather around the three phases of the center elements: φ =
0, 2π/3 and 4π/3. This is similar to what happens in Ising model simulations, where the
broken phase can have magnetization in one of two M = ±1 phases. The pure-gauge
action is symmetric under center transformations, however these transformations change
the values of the Polyakov loops as explained around Eq. 3.80. The action being symmetric
under these transformations mean that two configurations related to one another by a
center transformation actually have the same statistical weight and thus have, in principle,
the same probability of being drawn in the Monte Carlo sampling. However, due to the
local nature of the updates of the Heat-Bath or Metropolis algorithm, a tunneling between
different sectors of the Polyakov loop is actually very unlikely, as the volume of the lattice
grows. This is also true in the Ising example, where tunneling between the two phases gets
more unlikely as the size of the system is increased.

What one can do is generate all configurations in one sector and then apply a
center transformation to each of them to get to the other sectors. We can then calculate
the propagator in these different sectors and see if we detect any change in them. There
is no reason, in the quenched theory, why any sector may be preferred, so we show our
results for all of them on equal footing. This analysis is similar to the one presented in
(176).

Figs. 7, 8 and 9 show how the uncorrected form factors behave at finite temperature
for the different sector and separate Matsubara frequencies as a function of |p⃗|. The
corrected form factors are presented in Fig. 10 for the highest temperature available in
our ensembles. We show here only the results for our lightest quark, with κ = 0.1342.

Comparing the form factors for different sectors, we see that, indeed they have
quite a different behavior. The 0π/3 sector shows a suppression of the mass generation in
the infrared, whereas the 2π/3 and 4π/3 sectors show dynamical mass generation for one
of the lowest Matsubara frequencies associated to nt = 0 and nt = −1 respectively. When
calculating the Matsubara frequency for these values of nt from the formula in Eq. 8.6, we
get

ω−1 = 2π
aNt

(
−1 + 1

2

)
= − π

aNt

, ω0 = 2π
aNt

(
0 + 1

2

)
= π

aNt

, (8.15)



137

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

Sector 0π/3

u
n

c
o
rr

e
c
te

d
 Z

|a SPATIALp|

ω4=-2
ω4=-1
ω4=+0
ω4=+1
ω4=+2
ω4=+3

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

Sector 2π/3

u
n

c
o
rr

e
c
te

d
 Z

|a SPATIALp|

ω4=-2
ω4=-1
ω4=+0
ω4=+1
ω4=+2
ω4=+3

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

Sector 4π/3

u
n

c
o
rr

e
c
te

d
 Z

|a SPATIALp|

ω4=-2
ω4=-1
ω4=+0
ω4=+1
ω4=+2
ω4=+3

Figure 7 – The uncorrected form factors Z(p) for the different Matsubara frequencies
and the three different Polyakov loop sectors. Results for a 16× 6 lattice with
β = 6.0 and κ = 0.1342.

Source: By the author..
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Figure 8 – The uncorrected form factors M(p) for the different Matsubara frequencies
and the three different Polyakov loop sectors. Results for a 16× 6 lattice with
β = 6.0 and κ = 0.1342.

Source: By the author..
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Figure 9 – The form factor R(p) for the different Matsubara frequencies and the three
different Polyakov loop sectors. Results for a 16× 6 lattice with β = 6.0 and
κ = 0.1342.

Source: By the author..
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Figure 10 – The corrected form factors M(p) and Z(p), with our preferred corrections,
for the different Matsubara frequencies and the three different Polyakov loop
sectors. Results for a 16× 4 lattice with β = 6.0 and κ = 0.1342.

Source: By the author..
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which have the same absolute value. Indeed, for the 0π/3 sector we see a pairing of
Matsubara frequencies for (nt = 2, nt = 3), (nt = −2, nt = 1) and (nt = 0 and nt = −1).
When we compute the Matsubara frequency, we see that the values in each pair are the
same except for a sign, meaning that for this sector, the form factors depend solely on the
absolute value of the Matsubara frequency∗.

For most Matsubara frequencies and most sectors, the Z(p) function preserves a
dip in the infrared and goes to a constant in the ultraviolet.

We also observe that the pairing of Matsubara frequencies does not hold for the
2π/3 and 4π/3 sectors, and is maximally broken in the infrared for the lowest frequencies
ω0 and ω−1. There is however, a symmetry: for all form factors, one of the frequencies of
the pairing in one of these sectors takes has the behavior of the other one in the other
sector.

The Matsubara frequency which we are most interested in is the ω0 as is probes
deeper into the infrared. We plot the values of the corrected M(p) and Z(p) functions for
the different sectors for the single ω0 frequency in Fig. 11. We see that even though for
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Figure 11 – The corrected form factors M(p) and Z(p), with our preferred corrections,
for the different sectors and Matsubara frequency ωn4=0. Results for a 16× 4
lattice with β = 6.0 and κ = 0.1342.

Source: By the author..

the 0π/3 sector the mass generation is not efficient in the infrared, the other sectors have
large values, specially the 2π/3 sector. In the case that we plot the ω−1 frequency, then
∗ For this to work with the pair nt = 2 and nt = 3, one must actually interpret the latter as

nt = −3, which is correct in the context of discrete Fourier transforms, since the frequency
2π(−nt)/aNt is the same as the frequency 2π(Nt − nt)/aNt.
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the 4π/3 sector shows the large increase for low momenta, as displayed in Fig. 12. There
is also a large increase in the Z(p) function for the 2π/3 sector.
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Figure 12 – The corrected form factors M(p) and Z(p), with our preferred corrections, for
the different sectors and Matsubara frequency ωn4=−1. Results for a 16 × 4
lattice with β = 6.0 and κ = 0.1342.

Source: By the author..

The same results are displayed for the temperature of 353.06 MeV associated to
Nt = 6 in Figs.13 and 14 for comparison.

The actual temperature dependence of the corrected form factors Z(p) and M(p)
is shown in Fig.15. Since no sector can be defined at zero temperature, we show the same
data in all three plots.

The M(p) temperature dependence for the 0π/3 sector shows that as the tempera-
ture is raised the mass generation is less effective. In the other sectors, the situation is
more complex. For the 4π/3 sector, there is a crossing of the data at medium momentum:
the order in the ultraviolet, from highest to lowest, is Nt = 4, 6 and then 48. In the infrared
this gets inverted. In the 2π/3 sector, the ordering is preserved. In the ultraviolet the data
mostly agrees.

As for the Z(p) form factor, the infrared dip is not strongly sensitive to the
temperature difference between Nt = 4, 6, corresponding to a difference of about 170 MeV
in physical units. The behavior, however, is quite different from the zero temperature data,
which shows quite a strong suppression. In the ultraviolet the data also agrees, as was
the case for the mass form factor. For the other sectors, there is no agreement over the
momentum range plotted in the graph, with the 2π/3 behavior being starkly different,
depending on the temperature. The R(p) form factor in Fig. 16 shows that the degree
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Figure 13 – The corrected form factors M(p) and Z(p), with our preferred corrections,
for the different sectors and Matsubara frequency ωn4=0. Results for a 16× 6
lattice with β = 6.0 and κ = 0.1342.

Source: By the author..
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Figure 14 – The corrected form factors M(p) and Z(p), with our preferred corrections, for
the different sectors and Matsubara frequency ωn4=−1. Results for a 16 × 6
lattice with β = 6.0 and κ = 0.1342.

Source: By the author..

of assymmetry between the spatial and temporal components of the non-scalar part of
the propagator increases as the temperature increases for the 2π/3 and 4π/3 sectors, and
remains almost the same for the 0π/3 form factor.
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Figure 15 – The corrected form factors M(p) and Z(p), with our preferred corrections, for
different temperatures and sectors and Matsubara frequency ωn4=0. Results
for lattices with Ns = 16, β = 6.0 and κ = 0.1342.

Source: By the author..
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Figure 16 – The form factor R(p) for different temperatures and sectors and Matsubara
frequency ωn4=0. Results for lattices with Ns = 16, β = 6.0 and κ = 0.1342.

Source: By the author..
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Lastly, we examine the volume dependence of the finite temperature form factors.
The corrected M(p) and Z(p) functions are displayed in Figs. 17 and 18 for Nt = 4 and
Nt = 6 respectively, and likewise the R(p) function in Figs.19 and 20.
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Figure 17 – The form factors M(p) and Z(p) for different volumes and sectors and Matsub-
ara frequency ωn4=0. Results for lattices with Nt = 4, β = 6.0 and κ = 0.1342.

Source: By the author..

For most form factors and sectors, the volume dependence seems rather mild.
An exception is 4π/3 sector in the case of the corrected Z, which shows some volume
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Figure 18 – The form factors M(p) and Z(p) for different volumes and sectors and Matsub-
ara frequency ωn4=0. Results for lattices with Nt = 6, β = 6.0 and κ = 0.1342.

Source: By the author..

dependence in the infrared for both temperatures.
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Figure 19 – The form factors R(p) for different volumes and sectors and Matsubara
frequency ωn4=0. Results for lattices with Nt = 4, β = 6.0 and κ = 0.1342.

Source: By the author..
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Figure 20 – The form factors R(p) for different volumes and sectors and Matsubara
frequency ωn4=0. Results for lattices with Nt = 6, β = 6.0 and κ = 0.1342.

Source: By the author..
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8.2.3 H4 extrapolation

On the lattice, we necessarily reduce the continuum 4-dimensional spherical sym-
metry group O(4) to the discrete rotations of the hypercubic group H(4). One of the
consequences of this is that quantities which were restricted to depend only on invariants
of O(4) will now, in general, depend on the invariants of H(4) which are higher in number.
For example, the quark propagator, which can be described in the continuum as a function
of p2, where pµ is the 4-momentum, will on the lattice depend on the H(4) invariants
p[2] = p2, p[4], p[6] and p[8], where

p[2i] =
∑
µ

p2i
µ . (8.16)

That these are invariants of H(4) can be seen by noting that the hypercubic transformations
simply shuffle the components of the pµ vector, possibly changing their signs if a rotation
or a reflection is involved, but since the powers in the summands are always even, these
sign changes will not change the sum.

The fact that we only considered i up to 8 above, comes from a result in group-
invariant theory, which states that any polynomial function of p which is invariant under
the action of H(4) is a function of the 4 invariants above, (97,149).

One example can help in elucidating the difference between the continuum and
lattice results in regards to the H(4) artifacts is the following.

The possible momenta pµ for a fermion on the lattice, with anti-periodic boundary
conditions in the time direction, is restricted due to the finiteness of the lattice as well as
from the discretization of the space-time itself. The set of allowed values are

Λ̃ =
{
p = (p1, p2, p3, p4) | a pµ = 2π

Nµ

(nµ + θµ), nµ = −Nµ

2 + 1, ..., Nµ

2

}
, (8.17)

where θ0 = 1/2 and θi = 0, which comes from the anti-periodic boundary condition in the
time direction.

Consider a 163×48 lattice. A few lattice momenta with the same a2p2 and different
values for the other H(4) invariants are shown in Table 14. If we had O(4) symmetry, then
the quantities of interest would only depend on (ap)2, and would therefore be the same
for all momenta with the same value (ap)2, but this is not the case: this manifests itself in
plots of the said quantities against (ap)2 in the form of bands instead of a single curve,
with data with the same or close values of (ap)2 giving somewhat different values, due to
the artifacts, complicating the unambiguous determination of the values of interest.

What we can do, since we are ultimately interested in the continuum results, which
should depend only on p2, is to try to extrapolate out the other invariants. We make
the supposition that we can write the quantities of interest extracted from the lattice as
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Table 14 – H(4) invariants for a few lattice momenta and a measurement of the distance
to the diagonal in momentum space.

nµ a2p[2] a4p[4] a6p[6] ∆ap
(0, 1, 2, 2) 1.39220 0.78481 0.47310 0.60253
(8, 0, 0, 1) 1.39220 1.55639 1.90101 0.90867
(0, 0, 0, 3) 1.39220 1.92632 2.67354 1.00279
(7, 2, 2, 2) 2.81438 2.07048 1.59951 0.17004
(1, 0, 3, 3) 2.81438 3.85409 5.34714 1.08881
(10, 1, 1, 2) 2.81438 3.99678 6.98372 0.80356
(1, 1, 1, 4) 2.81438 6.13712 15.0291 1.08881
(4, 0, 0, 4) 2.81438 6.20846 15.0635 1.28380
(7,1,2,3) 3.12281 3.25955 3.80729 0.58081
(4,0,3,3) 3.12281 3.97300 5.38886 0.97683
(10,0,2,2) 3.12281 4.32972 7.21110 0.97683
(4,1,1,4) 3.12281 6.25603 15.0708 0.97683
(1,0,2,4) 3.12281 6.47006 15.2565 1.22227
(13,0,0,0) 3.12281 9.75191 30.45330 1.53039

Source: By the author.

following (97),

QL(a, p) = Q((ap)2) + a4p[4]f4((ap)2) + a6p[6]f6((ap)2) + a8p[8]f8((ap)2). (8.18)

We will eventually need to worry about the continuum limit of Q((ap)2), but if
this is a sound procedure, the H(4) lattice artifacts will have been eliminated.

We could try to fit for each value of (ap)2 separately, but the momenta in Table
14 is the exception rather than the rule: in the majority of the cases, we have one single
representative for each (ap)2 and therefore, if the f4, f6 and f8 in Eq. 8.18 are not constants,
we would not be able to obtain a reliable extrapolation for all values of (ap)2, as we would
have more parameters to be fitted than data points. We proceed differently and try a
global fit with all data points contributing information.

In order to fit the functions f4((ap)2) and f6((ap)2), we rely on an Ansatz motivated
by the O(a2) expansion of the trace of the 1-loop Wilson quark propagator, whose term
associated to a4p[4] has the form (97,178)

f 1-loop
4 ((ap)2) = c(g2) + clog(g2) log((ap)2)

(ap)2 . (8.19)

We take the same form for f6 as well, but we have set f8 = 0, as we have observed that
these contributions did not change the results significantly.

An alternative method which aims at reducing these H(4) artifacts is the so-called
’cylinder cut’. In this approach, one aims to keep only data corresponding to momentum
which lies close to the diagonal in momentum space n̂ = 1

2(1, 1, 1, 1), eliminating the
rest of the points. One selects points which satisfy the condition that they are contained
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in a cylinder of a given radius. More concretely, for each momentum, one calculates
∆ap = |ap| sin(θ(ap)), where the angle is computed by

cos(θ(ap)) = ap.n̂

|ap|
, (8.20)

and keep only momenta that satisfy ∆ap < rcut. The original proponents of this scheme
(179) used rcut = 1 × 2π

Ns
, which is a radius of 1 lattice spacing from the diagonal. In

this formula, Ns is the number of points in the spatial direction. For the data in Table
14, this would eliminate all but the point corresponding to (7, 2, 2, 2). One can observe
that there is a correlation between low values of ∆ap and lower values of a4p[4], although
this is not a strict rule, as can be seen comparing the rows of (1, 0, 3, 3) and (10, 1, 1, 2).
This correlation goes in the direction of implying that by taking momenta close to the
diagonal, we are effectively taking values close to Q((ap)2) of Eq. 8.18, without doing
any extrapolation of the data. This procedure, however, throws away all the information
contained corresponding to momenta which do not survive the cut criterion. It does not
take into account, for example, what the trend is between values associated to momenta
with the same (ap)2 but different a4p[4]. This is what the extrapolation aims to improve
upon. For our quantities, therefore, we will prefer to use the H(4) extrapolation method.
We first average over the signed permutations of our momenta.

For example, data corresponding to momentum (0, 1, 2, 2), and its permutations
(0, 2, 1, 2) and (0, 2, 2, 1) as well as (0,−1, 2, 2) and its permutations, with all possible
placements of the minus signs will give the same invariants in H(4), therefore the data can
be safely combined in order to increase the statistics. This is sometimes referred to as an
orbit average. The time component, however, cannot be permutated around, because of
the θ term in 8.17, which would give a different value for the invariants.

We perform a non-linear fit, with the model

QL(a, p) = Q((ap)2) + a4p[4]
(
c4 + clog 4 log((ap)2)

(ap)2

)
+ a6p[6]

(
c6 + clog 6 log((ap)2)

(ap)2

)
,

(8.21)
i.e, we find the constants c4, clog 4, c6, clog 6 and the set of Q((ap)2) which minimize the
residual sum of squares, given our data.

Due to time constraints this analysis could not be completed at the time of the
submission of this thesis, but work on it is underway.
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9 CONCLUSION

In our gauge fixing results we found that it is possible to reduce critical slowing
down in Landau gauge fixing algorithms for SU(3) using overrelaxation and stochastic
overrelaxation, bringing the critical exponents down from approximately 2 to close to 1.
In order to attain these improvements, one can use two steps of maximization per site for
the calulation of the improvement matrix and then use the optimal ω or p parameters for
the algorithms, as shown in the text.

Encouraged by studies that found unquenching effects on the quark propagator to
have a small effect on the final results we calculated the quark propagator on pure-gauge
ensembles of various volumes and temperatures with the aim of understanding the thermal
effects on this correlator.

At zero temperature, we are able to reproduce the qualitative features found in
all studies for the form factors in Landau gauge, namely, dynamical mass generation for
the mass form factor in the infrared, which can be attributed to the mechanism of chiral
symmetry breaking. We also found the characteristic dip for low momenta for the quark
wave-function renormalization function in Landau gauge. The R(p) form factor, which
measures the level of asymmetry between the spatial and temporal non-scalar components
of the propagator, show some deviation from 1, which we attribute to the anti-periodic
boundary conditions of the quark field in the time direction and the asymmetry of our
lattice, which is larger in the time direction. Some volume dependence shows up and
this needs to be addressed more carefully, perhaps by producing ensembles with spatial
volumes in between the ones considered here, to be able to investigate how the data is
approaching the infinite volume limit. Likewise, some finite spacing dependence shows
that we are not as close to the continuum limit as we would like.

At finite temperature, we found that, depending on the the Polyakov loop sector
that one is, the results change dramatically. For the ω0 Matsubara frequency, in the 0π/3
sector, we get a suppression of dynamical mass generation, however for the 2π/3 sector,
we get higher values for the mass form factor than at zero temperature. The dip for low
momenta of the Z function in the 0π/3 sector is not as deep as in the vacuum, and for the
other sectors there is actually an enhancement. Lastly, finite volume effects at non-zero
temperature seem milder than what we found at zero temperature.
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