
UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE FÍSICA DE SÃO CARLOS

Vinicius Pretti Rossi

Wigner’s friend and quantum clocks

São Carlos

2020





Vinicius Pretti Rossi

Wigner’s friend and quantum clocks

Dissertation presented to the Graduate Pro-
gram in Physics at the Instituto de Física de
São Carlos, Universidade de São Paulo, to
obtain the degree of Master of Science.

Concentration area: Basic Physics

Advisor: Prof. Dr. Diogo de Oliveira Soares
Pinto

Corrected version
(original version available on the Program Unit)

São Carlos
2020



I AUTHORIZE THE REPRODUCTION AND DISSEMINATION OF TOTAL OR
PARTIAL COPIES OF THIS DOCUMENT, BY CONVENTIONAL OR ELECTRONIC
MEDIA FOR STUDY OR RESEARCH PURPOSE, SINCE IT IS REFERENCED.

Rossi, Vinicius Pretti
   Wigner's friend and quantum clocks / Vinicius Pretti
Rossi; advisor Diogo de Oliveira Soares-Pinto - corrected
version -- São Carlos 2020.
   89 p.

    Dissertation (Master's degree - Graduate Program in
Theoretical and Experimental Physics) -- Instituto de
Física de São Carlos, Universidade de São Paulo - Brasil ,
2020.

   1. Quantum foundations. 2. Wigner's friend. 3. Quantum
clocks. 4. Quantum reference frames. I. Soares-Pinto,
Diogo de Oliveira, advisor. II. Title.



ACKNOWLEDGEMENTS

Agradeço primeiramente ao meu irmão e melhor amigo, Leonardo, por tudo o que
não precisamos dizer um ao outro. Aos meus pais, Edilaine e Itamar, por todo o apoio
incondicional que recebi, por todos os combates que venceram por mim. Aos meus avós,
pelas orações.

Agradeço ao meu orientador, Diogo, por me ensinar tanto sobre física. Mas mais do
que isso, agradeço por me ensinar tanto sobre o aspecto humano da pesquisa. Que eu possa
carregar sua energia e leveza pra onde eu for, e prover essa segurança tranquila quando for
a minha vez. Agradeço também aos meus amigos do GIQ, por todas as discussões regadas
a café que aliviavam as tardes de insucessos. Ao Tiago e à Gabi, particularmente, por
tornarem experiências incríveis ainda mais incríveis.

Agradeço aos meus irmãos de São Carlos, Tim e Lucas, pela irmandade inques-
tionável e presença acima de qualquer distância. Aos amigos do Estrôncio, particularmente
à Dalila e à Marcia, por todo apoio e companhia. À Be, pelas conversas leves e comidas
gostosas. Aos meus amigos de Araraquara, Rafa e Arthur, por me darem um chão onde eu
pudesse cair, e ao meu grupo de amigos queridos por me fazerem aguardar ansiosamente
os fins de semana em que nos encontraríamos. Ao Iago, por tudo, sempre.

Agradeço ao pessoal do GMF por me dar as bases da pesquisa. A todos os excelentes
professores da UFSCar e da USP, que me ensinaram física. Aos que me ensinaram as letras
e os números. Aos que ficaram de fora e que contribuíram para que as coisas atingissem
esse estado.

Agradeço, por fim, à USP e à CAPES pelo apoio estrutural e financeiro, e a todos
que lutaram e lutam por ensino público e pesquisa universais e de qualidade. Venceremos.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.





“The problem, as I see it, is that you’ve been told and not told. You’ve been told, but none
of you really understand, and I dare say, some people are quite happy to leave it that way.”

Kazuo Ishiguro





ABSTRACT

ROSSI, V. P. Wigner’s friend and quantum clocks. 2020. 89p. Dissertation
(Master of Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São
Carlos, 2020.

In 1962, Eugene P. Wigner introduced a thought experiment that highlighted the incom-
patibility in quantum mechanics between unitary evolution and wave function reduction
in a measurement. This work resulted in a class of thought experiments often called
Wigner’s Friend Scenarios, which have been providing insights over many frameworks
and interpretations of quantum theory. Recently, a no-go theorem obtained by Daniela
Frauchiger and Renato Renner brought attention back to the Wigner’s Friend and its
potential of putting theories to test. Many answers to this result pointed out how timing
in the thought experiment could be yielding a paradox. In this work, we ask what would
happen if the isolated friend in a Wigner’s Friend Scenario did not share a time reference
frame with the outer observer, and time should be tracked by a quantum clock. For this
purpose, we recollect concepts provided by the theory of quantum reference frames and the
quantum resource theory of asymmetry, to learn how to internalize time in this scenario,
and introduce a model for a feasible quantum clock proposed by Mischa P. Woods, Ralph
Silva and Jonathan Oppenheim, called the quasi-ideal clock. Our results have shown that
no decoherent behavior comes from this approach, and the disagreement between the
superobserver and its friend persists even for an imprecise clock, indicating that the source
of paradox in a Wigner’s Friend Scenario may be elsewhere.

Keywords: Quantum foundations. Wigner’s friend. Quantum clocks. Quantum reference
frames.





RESUMO

ROSSI, V. P. Amigo de Wigner e relógios quânticos. 2020. 89p. Dissertação
(Mestrado em Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo,
São Carlos, 2020.

Em 1962, Eugene P. Wigner apresentou um experimento mental que destacava a incompat-
ibilidade na mecânica quântica entre a evolução unitária e a redução da função de onda em
uma medição. Esse trabalho resultou em uma classe de experimentos mentais usualmente
chamados Cenários do tipo Amigo de Wigner, que têm provido informações sobre várias
abordagens e interpretações da teoria quântica. Recentemente, um teorema obtido por
Daniela Frauchiger e Renato Renner trouxe de volta a atenção sobre o Amigo de Wigner
e seu potencial de colocar teorias à prova. Diversas respostas a este resultado indicaram
como a marcação temporal no experimento mental poderia estar produzindo um paradoxo.
Neste trabalho, nos perguntamos o que aconteceria se o amigo isolado não compartilhasse
um referencial temporal com o observador externo, e o tempo fosse rastreado por um
relógio quântico. Para este fim, revisitamos conceitos fornecidos pela teoria de referenciais
quânticos e pela teoria quântica de recursos de assimetria, para descobrir como internalizar
o tempo neste cenário, e apresentamos um modelo de relógio implementável proposto
por Mischa P. Woods, Ralph Silva e Jonathan Oppenheim, chamado de relógio quase
ideal. Nossos resultados mostraram que nenhum comportamento decoerente surge dessa
abordagem, e o desacordo entre o superobservador e seu amigo persiste mesmo para um
relógio impreciso, indicando que a fonte de paradoxo em um Cenário do tipo Amigo de
Wigner pode estar em outra parte.

Palavras-chave: Fundamentos da teoria quântica. Amigo de Wigner. Relógios quânticos.
Referenciais quânticos.
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1 INTRODUCTION

Evolution in quantum theory is governed by two postulates: one of them, given
by the well-known Schrödinger equation, describes the time evolution of isolated systems
via unitary operators, while the measurement postulate describes how a system is to be
described after interacting with a measurement aparatus. The first one tells us that isolated
systems suffer no loss of information as time goes by, while the second one provides a
discontinuous reduction of information. Even though this formulation has proved a powerful
theory, generating predictions good enough to astonishingly enhance the technological
power of humankind in the last century, there are some theoretically odd features that
blur the interpretation we should have about the universe.

To emphasize the incompatibility between these two descriptions, Eugene P. Wigner
proposed in 1962 a thought experiment later called the Wigner’s Friend.1 An observer,
inside an isolated lab, measures some physical property of a particle. Measurement is
described by the measurement postulate, and thus there will be loss of information. But
for an outer observer, the lab is completely isolated, so evolution is described by the
Schrödinger equation, and no information is lost. This situation leads to different statisti-
cal predictions for the internal observer and the external one, and at least one of them
must be wrong if quantum theory is self consistent.

On the other hand, the theory of quantum reference frames tells us how measure-
ments over a system can be done with respect to another physical system, and this is usually
the source of many mistakes, since reference frames are often taken for granted as ideal and
universally shared.2 According to this theory, if the internal friend is completely isolated
inside the lab, she must not share a quantum reference frame with the outer observer. That
is because, if they had access to the same quantum reference frame, the external observer
could affect or monitor the evolution inside the lab by correlations between it and the
reference frame, and the lab would not be in fact isolated. Taking this into account might be
crucial to understanding what is the theoretical flaw that allows this sort of paradox to arise.

In this work, we analyze what would happen in a Wigner’s Friend Scenario (WFS)
if the outer observer had no direct access on how time was passing inside the lab, but
should rather describe its state with respect to a quantum clock. The main idea behind this
approach is that the unitarily evolved state described by the external observer may not be
converted to the colapsed state described by the internal one, but the insertion of a clock
could work as a catalytic process to this conversion. The concept of catalytic conversion
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has been used in many problems in literature, and brings with it a whole formalism of
Quantum Resource Theories that shows its worth everyday.3–5 The work is organized as
follows:

In Chapter 2 we will introduce the Wigner’s Friend Gedankenexperiment by taking
a look on Wigner’s original proposal, contextualizing the purpose of that piece and the
ideas behind it. The recent work of Frauchiger and Renner,6 that put Wigner’s Friend
under the spotlight again, is also summarized and discussed. Implications of this work
among the foundations of quantum mechanics community as well as main critics and
answers are quickly presented, highlighting the clues that pointed to time as a paradox
raiser.

In Chapter 3 we focused on studying how one should deal with time measurements
in quantum mechanics. We recollect some remarkable results in the history of time in the
quantum realm, from Pauli’s theorem to the Page-Wooters mechanism, passing through
Dirac’s extended phase space. Two questions arise from this section: (i) How is one sup-
posed to obtain the static states of the Page-Wooters mechanism, and (ii) how can one
build a time operator that works and still is not forbidden by Pauli’s result. The first
question is answered by the theory of quantum reference frames and the quantum resource
theory of asymmetry, and we introduce the tools and formalism provided by them. The
second one is answered with an overview on the history of quantum clocks, culminating in
the quasi-ideal clock of Woods, Silva and Oppenheim.7

Chapter 4 is our main result. We propose a model for a Wigner’s Friend Scenario
where the outer observer has no access to the parametric time t, but can keep track of time
through his quasi-ideal clock. This model of clock allows for analytic time symmetrization
in a good approximation for a given regime of the clock’s classical uncertainty σ. We
conclude that even with the insertion of a clock, the external observer is not allowed to
perform any measurement over the lab without raising a paradox, thus implying that
either this model for a clock does not work as a catalyst, or the symmetrization process is
not a catalytic operation. A discussion on the clock functioning is made, with interesting
results that show how the clock works for a specific entangling hamiltonian that describes
the unitary evolution of the lab.

Chapter 5 concludes the work by summarizing our results and discussing what they
indicate. Further investigation is sugested concerning information storing and internal
entanglement in charge sectors of the WFS.
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2 TROUBLESOME FRIENDSHIP: WIGNER’S FRIEND SCENARIOS

“To say that prediction is the purpose of a scientific theory is to confuse means with ends.
It is like saying that the purpose of a spaceship is to burn fuel.”

- David Deutsch8

The advent of quantum theory in the 1900’s, though it increased astonishingly the
predictive power of Physics, left physicists with conceptual and philosophical problems to
be solved. The incompatibility between unitary and non-unitary evolutions is particularly
highlighted by Eugene P. Wigner, in 1962, in a proposed Gedankenexperiment that seems
to state the need of “biological” behavior to solve this loose end.1 Although Wigner later
claimed that he disbeliefed on consciousness as a physical element,9 his famous early work
was never really forgotten, since it yields to an interesting class of Gedankenexperiment
that allows us to analyze the measurement problem with a keen eye, and has provided
great insights on the subject.

It is to introduce and summarize this class of thought experiments, called Wigner’s
Friend Scenarios, that this chapter is dedicated. First section outlines the arguing made by
Wigner in his piece. Later, a recent result inspired in Wigner’s work provided by Frauchiger
and Renner6 is introduced and demonstrated. Finally, the repercutions of this result are
briefly reviewed, and we introduce the central question of the present work.

2.1 Wigner’s Friend Gedankenexperiment

In 1962, a collection of 123 articles selected by Irving J. Good were published
in a book called “The Scientist Speculates: An anthology of partly-baked ideas”. Among
these works, Eugene P. Wigner published his work Remarks on the Mind-Body Question,1

a digression about the role of consciousness in quantum mechanics. In this work, Wigner
questioned the state of art of quantum theory at the time to introduce the measurement
problem for laypeople and to argue that consciousness could play a crucial role on solving
it. Here we will not focus on this discussion itself, but rather in presenting the Gedankenex-
periment Wigner proposes to exemplify the oddity of a theory that relies on two seemingly
incompatible forms of evolution.

Wigner invites us to think of a simple experiment: an observer is looking towards a
defined direction. At time increments of t, she knows she is supposed to detect a flash of
light. If this signal is detected, the observer knows that at the time t+ 1 she will detect
another flash in 1/4 of tries, and the flash will be missing in 3/4 of tries. If the signal is
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missing, she is aware that at time t+ 1 she should detect a flash in 3/4 of tries, and miss a
flash in 1/4 of tries. Repeating this experiment for a large number of tries should confirm
this prediction.

In terms of a wave function, one could say that every time this observer detects a
flash, she describes the system in a state |yes〉. After a time increment, the system evolves
unitarily by the Schrödinger equation into the state

|ψ1〉 = 1
2
(
|yes〉+

√
3 |no〉

)
, (2.1)

and if she did not detect the flash, then the system is said to be in the state |no〉 and,
after a time increment, it will be described by the state

|ψ2〉 = 1
2(
√

3 |yes〉 − |no〉), (2.2)

where the minus sign is ensuring the unitarity of the evolution. Notice that this describes
exactly the experiment presented in the late paragraph: right after a measurement is
performed by the observer, she updates her description of the wave function to a state
|yes〉 or |no〉, and the system evolves via the unitary

Ut = 1
2

 1
√

3
−
√

3 1

 , (2.3)

into the state |ψ1〉 or |ψ2〉 again. This is an adequate mathematical description of what the
observer perceives: indeed, a large number of measurements will confirm the frequencies
introduced in the verbal form before.

Following his introduction to Quantum Mechanics, Wigner points out the property
a perception has of being communicated: if this observer would tell us either she has seen
a flash or not at a given time, we could also tell with certainty that the state of the system
is either |yes〉 or |no〉, and make further predictions with this information.

Working on these two concepts together (the assumption of describing a physical
system as a wave function and the communicability of the perception of an outcome),
Wigner presents its thought experiment: let us suppose that our friend is going to measure
flashes. In this scenario, it makes no sense to describe only the system as a wave function.
Let us suppose, for instance, that our friend has measured and communicated to us a
result yes at a given time t. All we can say about this joint wave function at the time t+ 1
is that it is given by the state

|Ψ1〉 = 1
2
(
|yes〉S |yes〉F +

√
3 |no〉S |no〉F

)
, (2.4)
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where |yes〉F and |no〉F assign for the states of our friend’s consciousness, and |yes〉S and
|no〉S assign for the states of the system. This is appearently nice and fine: there is no
chance that our friend is lying to us, since every time we ask her if she has observed the flash
or not, her answer will be either yes or no, and the state of the system will be in agreement
with it. In other words, there is no |yes〉S |no〉F or |no〉S |yes〉F states to be measured.
Furthermore, probabilities are still compatible with the verbal description: in 1/4 of tries,
our friend will tell us that she has seen a flash, and in 3/4 of tries she will tell us she has not.

But what did happen to our friend’s mind before we ask her what she has seen?
If she tells us yes, does it mean the real joint state was |yes〉S |yes〉F all the time? If we
ask her what she knew between the moment she performed her measurement and the
moment we asked her what she saw, will she tell us “I already told you, I did see a flash!”?
If this is the case, then we are failing in our description of the joint system, since states
|yes〉S |yes〉F and |no〉S |no〉F do not have the same properties |Ψ1〉 has.

Wigner emphasizes that this problem would not exist if our friend was a consciousness-
lacking quantum system, for instance, an atom or another two-level system. Indeed, in
accord to Copenhagen Interpretation (CI), a quantum system causes no colapse over
another quantum system, and the state |Ψ1〉 would be the right description. For Wigner,
this was a life-emerging issue, and it could even be possible to detect the existence of life
or consciousness by analyzing the vanishing coherences on the density operator. Explicitly,
Wigner proposes that for a given state α |yes〉S |yes〉F +β |no〉S |no〉F , with |α|2 + |β|2 = 1,
the density operator would be written in the {|yes〉S |yes〉F , |no〉S |no〉F} basis as

ρ =
 |α|2 αβ∗ cos δ
α∗β cos δ |β|2

 , (2.5)

where δ is a measurement of the classicality of the friend. When δ = 0, the measurement
performed by the friend results in an entanglement, as if the friend was an atom. When
δ = π/2, this is a full-colapse, and the density operator would be describing a statistical
mixture of |yes〉S |yes〉F and |no〉S |no〉F .

Besides that, we are not confined in measuring the joint system on the same basis
it is written. Freedom of choice allows us to measure any quantity our lab is prepared to
detect, and since this is a Gedankenexperiment, our lab is prepared to detect any physical
property. The problem this Wigner’s Friend Scenario is concerned becomes explicit when
we decide to perform a measure of a generic observable

|ok〉 = cos
(
θ

2

)
|yes〉S |yes〉F + eiφ sin

(
θ

2

)
|no〉S |no〉F . (2.6)
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If Wigner’s description was right and |Ψ1〉 was the right way of representing the state of
the joint system, then the probability associated to this observable would be given by

| 〈ok|Ψ1〉 |2 = 1
4(2− cos θ +

√
3 sin θ cosφ), (2.7)

while if the friend was right and the system in fact colapsed, this probability would be
given by

| 〈ok|yes〉S |yes〉F |
2 = cos2

(
θ

2

)
; | 〈ok|no〉S |no〉F |

2 = sin2
(
θ

2

)
. (2.8)

This clearly leads to different probability distributions and reveals the major concern of
this Gedankenexperiment: the prediction power of this theory is obscured. One may argue
that there is no superobservable in the real world. Indeed, we are not capable of measuring
the state of a friend and distinguishing every degree of freedom of its body and mind (if
there is any difference between saying body and mind). But this limitation is not axiomatic,
and at any moment someone, somewhere around the world, could publish a paper claiming
the performance of a superobservation.

Even though Wigner’s seminal work was just an speculative piece and was not
very rigorous when defining what a wave function exactly is describing,9 it does touch in
a crucial wound of quantum theory, and many physicists dedicated their time trying to
understand this scenario. Variations and expansions of this Gedankenexperiment constitute
a class of thought experiments which are usually called Wigner’s Friend Scenarios (WFS),
and can provide powerful insights about theories and interpretations one adopt to describe
it. In 2016, a discussion over an Extended Wigner’s Friend Scenario (EWFS) brought
Wigner’s work back to spotlight. In next section, we shall briefly check on this result.

2.2 Frauchiger-Renner no-go theorem

In 2016, Daniela Frauchiger and Renato Renner, a PhD candidate and her super-
visor, developed a non-probabilistic framework for general scientific theories.10 By adopting
a story-plot framework, a set theory where elements of a given universe (countable) set
would represent stories to be told about an experiment, a scientific theory consisted of one
or more rules constructing a subset of forbidden stories, i.e., stories that could not be told
about an experiment when describing it under that given theory. Frauchiger’s dissertation
is a great contribution to foundations of quantum theory, since this framework of stories is
probability-free. Probabilities may emerge later when one takes a decision-theoretic frame-
work: a racional agent making bets about an outcome of an experiment. This characterizes
probabilities as subjective entities, and the objective Born rule derived is independent of
racional agents or bets.
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At the end of her dissertation, Frauchiger derives a no-go theorem, later pub-
lished as an article,6 by analyzing an EWFS under this non-probabilistic framework.
First appearing under the title “Single-world interpretations of quantum theory cannot be
self-consistent”, this result gathered attention of great part of Quantum Foundations and
Quantum Information communities. Here we will follow the development presented in the
published version of the article.

Let us assume an observer, Alice, who measures the state of a quantum coin inside
her lab. The lab is completely isolated from the external world, except by a quantum
channel that allows her to send a qubit to a neighbor lab. After her measurement, Alice
will perpare a spin-1

2 particle in a state conditioned to her measurement outcome.

In a neighbor lab, Bob is waiting for the spin-1
2 particle prepared by Alice. He

is supposed to measure the spin state in the same basis it was prepared by Alice, and
nothing more. This lab is also completely isolated from the external world except by the
quantum channel.

Outside the labs, Ursula and Wigner are waiting with their advanced measurement
devices. Ursula has a device capable of determining the state of the whole Alice’s lab, i.e.,
the joint state of the quantum coin and of Alice’s device, body and mind. Wigner, on the
other hand, has a device capable of doing the same with Bob’s lab, i.e., determining the
joint state of the spin-1

2 particle and of Bob’s device, body and mind.

The experiment must go as the following protocol says, where n = XY assigns for
the X-th main step and Y -th intermediate step. Figure 1 pictorizes the scenario.

• n = 00: Alice receives a quantum coin described by the state |ψ〉C = 1√
3 |h〉C+

√
2
3 |t〉C ,

where h stands for heads and t stands for tails, and performs her measurement
with outcome r ∈ {h, t} the basis {|h〉C , |t〉C}. If she gets r = h, she shall prepare a
spin-1

2 particle in a state |↓〉S; if she gets r = t, she shall prepare the spin in a state
|→〉S = 1√

2(|↑〉S + |↓〉S). She then sends the particle through the quantum channel
to Bob’s lab;

• n = 10: Bob performs his measurement of the spin-1
2 particle with respect to the

basis {|↑〉S , |↓〉S}, with outcome z ∈
{
−1

2 ,
1
2

}
;

• n = 20: Ursula performs a measurement with outcome u ∈ {ok, fail} with respect
to the basis {|ok〉U , |fail〉U}, where |ok〉U = 1√

2(|h〉C |h〉A − |t〉C |t〉A), {|h〉A , |t〉A}
being states representing Alice’s device, body and mind. If her device detects this
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state, her result is said to be u = ok. If any other state is detected, then her result is
said to be u = fail.

• n = 30: Wigner performs a measurement with outcome w ∈ {ok, fail} with respect
to the basis {|ok〉W , |fail〉W}, where |ok〉W = 1√

2(|↓〉S |↓〉B− |↑〉S |↑〉B), {|↑〉B , |↓〉B}
being states representing Bob’s device, body and mind. If his device detects this
state, his result is said to be w = ok. If any other state is detected, then his result is
said to be w = fail.

• n = 40: If u = ok and w = ok, the experiment is halted. Otherwise, it is restarted.

Figure 1 – Schematic representation of the Frauchiger-Renner Gedankenexperiment.

Source: By the author.

Agents will also make statements about measurement outcomes. It is assumed that
they can make statements about measurements of their own and measurements performed
by other agents, using the following assumptions:
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• Quantum Theory (Q): Let an agent A be capable of certainly state about any
given system that “The state of the system is properly described by |ψ〉 ∈ HS”,
and also that “The value of a physical property x is given by a projection of |ψ〉S
with respect to a family of Heisenberg projectors {Πx(t0)}x∈χ at the time t0, being
completed at time t”i. With these two statements, if 〈ψ|Πξ(t0)|ψ〉 = 1 for ξ ∈ χ,
then agent A can properly state that

“I am certain that x = ξ at time t.”

• Self Consistency (C): If an agent A can properly state that “I am certain that
agent B, who is reasoning over the same theory as I am, is certain that x = ξ at
time t”, then he/she can also state that

“I am certain that x = ξ at time t.”

• Single-world (S): If an agent A can properly state that “I am certain that x = ξ

at time t”, then he/she must deny that

“I am certain that x 6= ξ at time t.”

Let us now see what is happening in the Gedankenexperiment. At first, the joint
state of the whole system is given byii

|Ψ(00)〉 = 1√
3

(|h〉C +
√

2 |t〉C)⊗ |⊥〉A ⊗ |⊥〉S ⊗ |⊥〉B , (2.9)

where |⊥〉 represents a state of readiness with null outcome if measured. The measurement
of Alice is described by a unitary process which results on an entangled state between
Alice and the coin, exactly as we did in the last section, i.e.,

|Ψ(01)〉 = 1√
3

(|h〉C |h〉A +
√

2 |t〉C |t〉A)⊗ |⊥〉S ⊗ |⊥〉B . (2.10)

Then Alice shall prepare the spin-1
2 particle as it is said at the protocol, which is described

by another unitary evolution entangling Alice+coin with the spin particle:

|Ψ(02)〉 = 1√
3

(|h〉C |h〉A |↓〉S +
√

2 |t〉C |t〉A |→〉S)⊗ |⊥〉B ; (2.11)

or writing it with respect to the {|↑〉 , |↓〉}S basis,

|Ψ(02)〉 = 1√
3

(|h〉C |h〉A |↓〉S + |t〉C |t〉A |↑〉S + |t〉C |t〉A |↓〉S)⊗ |⊥〉B . (2.12)
ii Subscript C assigns for coin states, A for Alice’s mind states, S for spin-1

2 particle states, B
for Bob’s mind states. Subscript U stands for eigenstates of Ursula’s measurement, and W
for eigenstates of Wigner’s measurement.



24

After that, Alice would send the spin-1
2 particle to Bob, and he would perform his

measurement, again described as an entangling unitary evolution, resulting in

|Ψ(10)〉 = 1√
3

(|h〉C |h〉A |↓〉S |↓〉B + |t〉C |t〉A |↑〉S |↑〉B + |t〉C |t〉A |↓〉S |↓〉A). (2.13)

Now, notice that

|h〉C |h〉A = 1√
2

(|fail〉U + |ok〉U); |t〉C |t〉A = 1√
2

(|fail〉U − |ok〉U); (2.14)

|↓〉S |↓〉B = 1√
2

(|fail〉W + |ok〉W ); |↑〉S |↑〉B = 1√
2

(|fail〉W − |ok〉W ), (2.15)

where we adopted |fail〉U = 1√
2(|h〉C |h〉A + |t〉C |t〉A) and |fail〉W = 1√

2(|↓〉S |↓〉B +
|↑〉S |↑〉B).11 Thus, we can write the joint state of both labs as

|Ψ(10)〉 =
√

3
4 |fail〉U |fail〉W+ 1√

12
(|fail〉U |ok〉W−|ok〉U |fail〉W+|ok〉U |ok〉W ). (2.16)

So we see from here that there is a 1
12 probability of both Ursula and Wigner detecting ok

on their measurement devices, and thus the halting condition will eventually be achieved
due to the overlap |ok〉U |ok〉W . Now, agents start to reason about which outcome each
other agent has seen. Ursula knows that, at step n = 10, the wave function can be written
as

|Ψ(10)〉 = 1√
3

(
√

2 |fail〉U |↓〉S |↓〉B + |t〉C |t〉A |↑〉S |↑〉B), (2.17)

and thus for Ursula to detect ok with her device, Bob should have detected z = +1
2 , since

the state |↓〉B is uniquelly overlapped with the state |fail〉U . So, if Ursula can state that
“I am certain that u = ok at n = 21”, then she can also state by assumption (Q) that

“I am certain that Bob is certain that z = +1
2 at n = 11”,

and, by assumption (C), she can state that

“I am certain that z = +1
2 at time n = 11”.

Bob can make the same protocol. If we check on the state at n = 02, we can see that the
state |↑〉S is overlapped only with the state |t〉A. It means that if Bob can state “I am
certain that z = +1

2 at time n = 11”, then by (Q) he can also state that

“I am certain that Alice is certain that r = t at time n = 01”,

and by assumption (C), he can state that

“I am certain that r = t at time n = 01”.
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Ursula could make the same statements just by using assumptions (Q) and (C), so Ursula
can also state that “I am certain that r = t at time n = 01”. Wigner, on his turn, is
also capable of deriving the same conclusions, since he and Ursula have access to the
same information (joint wave function) and can freely share their measurement results. So
Wigner can also state that “I am certain that r = t at time n = 01”

This means that Bob, Ursula and Wigner all agree that Alice must have detected
r = t at her measurement for the halting condition to be achieved. Thus, we should reach
the halting condition once we assume that Alice indeed detected r = t, that is, that Alice
describes the wave function as

|Ψ(01)〉 = |t〉C |t〉A |⊥〉S |⊥〉B , (2.18)

with probability 2
3 , as can be seen from Eq. (2.10). Alice would then prepare the spin-1

2

particle, leading to the wave function

|Ψ(02)〉 = 1√
2

(|t〉C |t〉A |↑〉S + |t〉C |t〉A |↓〉S) |⊥〉B , (2.19)

and send it to Bob. At his lab, Bob will perform his measurement resulting in a wave
function

|Ψ(10)〉 = 1√
2

(|t〉C |t〉A |↑〉S |↑〉B + |t〉C |t〉A |↓〉S |↓〉B) = |t〉C |t〉A |fail〉W . (2.20)

So, by assumption (Q), if Alice can state that “I am certain that r = t at n = 01”, then
she can also state that “I am certain that Wigner is certain that w = fail at time n = 31".
This leads to a contradiction: if Wigner can state that “I am certain that w = ok at time
n = 31”, by using assumptions (Q) and (C), he is capable of properly stating “I am certain
that w = fail at time n = 31”, a statement he must deny by assumption (S). This leads
to Frauchiger and Renner famous theorem

Theorem. (Frauchiger-Renner) Any theory that satisfies assumptions (Q), (C) and (S)
yields contradictory statements when applied to this Gedankenexperiment.

On its first version, Frauchiger and Renner paper argued this was an evidence
that the single-world assumption (S) should be ruled out, since consistency (C) seems to
be a mandatory property in a theory and experiments detecting quantum coherence on
macroscopic systems would give assumption (Q) an experimental support, and hence the
title “Single-world interpretations of quantum theory cannot be self-consistent”. The later
version, published as “Quantum theory cannot consistently describe the use of itself ”, was
less conclusive, and focused simply on presenting the main result and discussing which
interpretation would violate which assumption.
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2.3 Questions and answers on Frauchiger and Renner’s result

Many articles answered Frauchiger and Renner’s work with questions and coun-
terarguments. Some readers, in fact, will probably finish the last section with many of
these questions and counterarguments, bringing their own favorite interpretations and
experiences in different fields of quantum theory to the debate. Hereby, we will cite some
of these arguments that particularly helped us to build our approach. We will not stick
to explanations about different quantum interpretations, phenomena and other jargons
unless it sounds necessary, but complementary reading will be indicated.

First of all, it is relevant to mention an important result which converges to the
Frauchiger-Renner theorem. Brukner12 derived a theorem stating that observer-independent
facts, typically known as facts of the world, are incompatible with the universal validity of
quantum theory and other reasonable assumptions one could make. The theorem can be
stated as follows:

Theorem. (Brukner) Any theory that satisfies assumptions

• (Q) Universal validity of quantum theory: quantum predictions hold at any scale;

• (L) Locality: measurements an observer performs have no influence on outcomes of
other distant observers;

• (F) Freedom of choice: the choice of measurements does not depend on any other
random variable described in the experiment;

• (W) Facts of the world: truth values atributed to statements Ai made by observers
form a Boolean algebra A, which is equiped with a countably additive positive
measure p(A) ≥ 0, ∀A ∈ A, representing the probability for the statement to be
true;

will eventually lead to contradictions.

Brukner also argues that the last assumption is equivalent to the (C) assumption
of Frauchiger and Renner. This result is often discussed in recent literature along with
Frauchiger and Renner’s, and evidence some hidden assumptions made on their work.
In fact, the first approach one may take is to question whether assumptions (Q), (C)
and (S) are the only assumptions made by agents. At the end of their article, Frauchiger
and Renner list a number of interpretations of quantum mechanics and discuss which
assumption each interpretation is letting go. But some of them are said to give up an
assumption by elimination criteria using the no-go theorem, what may be not necessarily
true. It is said that Bohmian mechanics,13 for instance, do not assume consistency between
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observations made by different agents, just because it clearly assumes (Q) and (S) as true.
This reasoning may sound controversal, and other hidden assumptions may be relevant to
this discussion, since (Q), (S) and (C) may be all central hipothesis of a given interpretation,
and secondary (protective) hipothesis may be given up instead. Frauchiger and Renner
even mention some of them on their work, like the non-probabilistic aspect of the world
they are describing; the subjectivity of a measurement, thereby presented as statements
made by agents; the definition of key concepts, such as textitagent or time. Indeed, great
part of the arguing against this controversal result lies on finding hidden assumptions that
may be way more questionable than (Q), (C) or (S).14

In defense of the Copenhagen interpretation (CI), it was argued that the wave
function must have no representational interpretation, but rather a probabilistic one about
how the intrinsecally random behavior of microscopic phenomena may be described after
interaction with a ultimate measurement device, thus giving up on assumption (Q), that
claims universal validity for quantum theory.15 The discussion is transposed, therefore, to
what does make a device the ultimate one. If Alice and Bob are ultimate observers, then a
wave function reduction indeed happened. If Wigner and Ursula have the ultimate devices,
then it is wrong to say that Alice and Bob in fact observed any outcome. Another argument
is that a hidden assumption made by the authors admits subjective consciousness about a
measurement outcome even with no colapse, which is fundamentally incompatible with
Copenhagen interpretation.16 Indeed, it can be said that, for CI, to acquire knowledge
about a physical property is mathematically described by the reduction of the wave
function, so if there is no reduction, then there is no knowledge to be discussed among
agents. Similar arguments concerning the misconception of a subjective consciousness and
the incorrect use of superposition states or reduction of the wave function are also given
by Tausk,17 although using an interpretationless approach.

Given that agents make statements about physical properties of parts of the same
joint state at different times, it is interesting to adopt a framework in which the main
object to be analyzed is, in fact, a chain of events (where an event stands for a set of
physical properties measured at a certain instant of time). Frauchiger herself discussed
this EWFS within the story-plot framework,10 and one of its earliest responses used that
same framework to argue that no interpretation of quantum mechanics could be in fact
ruled out by the Gedankenexperiment.18 An approach within the Theory of Consistent
Stories19 argued that some assumptions made at the given times do not belong to the
same family of stories, and thus cannot simultaneously describe the same experiment.20

Relational interpretation21 yielded a similar argument, pointing out that agents were
unseemly performing self-measurements and making statements which rely on registers
from the past that, in fact, do not exist.22 A timeless formulation of the problem, discribing
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it in a Page-Wootters universeiii,23 showed that the paradox is ruled out for three proposed
conditional probabilities, and moved the discussion to whether a definition of conditional
probability is the appropriate one for Wigner’s Friend Scenarios.24

Another class of arguments is that observers completely neglect the uncontrolable
and (almost ever) unavoidable degrees of freedom of the environment. The so called
Decoherence Program25,26 emerges to give its analyses of this EWFS in an interpretation-
free approach. A first argument is that internal agents (Alice and Bob) cannot properly
tell which environmental evolutions had in fact occured, and thus cannot make their
statements.27 A deeper look on this argument yielded the conclusion that, if internal
agents in fact observed outcomes, then states describing their minds would change during
the measurement performed by superobservers (Ursula and Wigner), due to interaction
with the external environment, and if their minds do not change, it must mean that they
observed nothing at all.28 Another interesting work ensures this conclusion, proposing
a Bell theorem for pre-measurements which would allow external observers to conclude
that Alice and Bob, in fact, did not observe any outcomes if decoherence is not taken into
account.29 This collection of arguments have a strong appeal to the operational feature of
quantum theory, and from an information-theoretical point of view, after being presented
to the Gedankenexperiment, it may be immediate to think that some information has been
stolen or hidden somewhere.

An approach fusing the argument of a proper time registering and the decoherence
framework comes from the Montevideo Interpretation.30 This framework argues that, even
though decoherence provides an apparent colapse, it cannot be classified as a proper colapse,
and in a first moment any measurement could be undone by an skillful experimentalist
with a miraculous evolution-reversing device. Our inability to distinguish between a state
that has gone through an unitary evolution and lost its coherences to the environment and
a colapsed state comes from the impossibility of measuring time and lenght with infinite
precision. This impossibility would axiomatically arise from relativistic arguments, that
would demand an infinite energy to build an ideal continuous quantum clock, combined
with Heisenberg uncertainty relations. An argument proposes that this approach could
completely exterminate the paradox in FRiv Gedankenexperiment, not only for all practical
purposes, as one may say if we take just decoherence in account.31

Our work shall follow this path, working on the introduction of a quantum clock
which is imprecise by construction, and which will act as the time reference frame in a given

iii We shall discuss this particular mechanism in the following chapter.
iv From now on, FR will stand for Frauchiger-Renner.
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WFS. Associating the limitations of a knowledge one may have over a given experiment
with a fundamental uncertainty has a stronger theoretical appeal than associating it to
uncontroled degrees of freedom of what one would call an environment, since there is no a
priori argument that forbids an observer to build an experiment in a way that most (or
all) of these degrees of freedom can be neglected. The main question of our work can be
summarized as

“What would happen in a Wigner’s Friend Scenario if internal friends were
in fact isolated, in the sense that superobservers had no access on how time is
passing inside the labs? In other words, what are the consequences of the lack
of a shared time reference frame in a WFS?”

This section did not cover the whole of recent literature about Wigner’s Friend
Scenarios and the FR Gedankenexperiment, and did not intented to do so. Interesting works
such as one relating the FR Gedankenexperiment to Generalized Probability Theories
(GPT) can be found in Vilasini, Nurgalieva and del Rio.32 A disclaimer between the usually
mistaken concepts of formalism and interpretation is made on Baumann and Wolf.33

Philosphical digressions on the proper language used within the literature about this prob-
lem and an analysis of how much this problem could properly contribute to the evolution on
the state-of-art of the measurement problem are shown in Hansen and Wolf.34,35 Durham36

confronted Brukner’s result questioning its validity when special relativity is taken into ac-
count, and experimental verifications of it are provided by Proietti et al.37 and Bong et al.38

In the next chapter, we will introduce the problem of describing time in quantum
theory, and also some of the methods used for internalizing reference frames. A candidate
for quantum clock will be presented which, although not continuous, can satisfy all
conditions an ideal clock must do, with an error that typically decays exponentially with
the dimension of the clock. This chapter shall provide all the main tools we use to approach
a Wigner’s Friend Scenario under the framework of time internalization.
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3 TRACKING THE TIME IN QUANTUM THEORY

“He who made eternity out of years remains beyond our reach. His ways remain
inscrutable because He not only plays dice with matter but also with time.”

— Karel V. Kuchǎr39

The early years of quantum theory were a fuzzy time for physics, and there is
much to be discussed in the field of history and philosophy of science during the first
three decades of the 20th century. Particularly, the conceptual transition between classical
and quantum mechanics might seem to rely a lot on guesses. Of course, these impressions
always arise when one take a look to the past with a mind of the present — it might be
easy to say that an abandoned formalism sounds absurd based on 60 years of discussion,
but at the edges of the state of art, any try is valid.

Why position in quantum theory takes the role of an operator, while time keeps
on being treated as a classical quantity? What could possibly mean the time-energy
uncertainty relation if time is a parameter and not an observable, and thus is not subjected
to the algebraic boundaries imposed over observables? This chapter is devoted to digress a
little about how to deal with time in quantum theory. A brief overview about the history
of time within the theory is going to be made in the first part. Following, we recollect
some resource-theoretic concepts that might be useful when one deals with quantum
reference frames. After that, we introduce a feasible system which is capable of emulating
the properties of an ideal clock under suitable conditions.

3.1 Dealing with time in Quantum Mechanics

3.1.1 Classification of time and Pauli’s argument

What do we mean by time? In a first moment, any physicist would answer this
question (at least in the context of quantum theory) with the usual “it is a real parameter
in the Schrödinger equation", or something similar. This is right in some sense, but Pashby40

invites us to be more careful and replicate with “which time are we talking about?”. The
following tripartite definition of time is fully given by him. A pictorical summary can be
found in Figure 2.

When one refers to the real parameter in the Schrödinger equation, one is actually
talking about external time. It is precisely what it is: a parameter one uses to run over
the temporal coordinate of the spatiotemporal inertial reference frame, with respect to
which the dynamical equations of motion are going to be described in a simpler form.
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However, it is certainly not equivalent to the time one sees a physical property of a
system being detected, and certainly not the same time we would be talking about if one
asks “what time is it?”. It is not granted, thus, that an observer has direct access to this
parametric time when performing a real experiment.

The values of the external time associated with the existence of proper physical
properties of the system are called event times. These values can be related with variables
which characterize the system, and even other external variables and parameters, to allow
us to predict when further events occur. Therefore, given enough data, event times can be
predicted by a good theory. As an example, Pashby introduce the motion of a classical
free particle, and predicts the time when the event “the particle crosses the point x = 0”
occurs given a set of initial data (q(0), p(0)).

To keep track of time during an experiment, an experimentalist usually appeals
to a clock. Clocks are internal systems, and hence subjected to the same dynamics gov-
erning the main system. They possess one or more physical properties whose evolution is
functionally conected to the external time, and a clock is said to be ideal if it has at least
one of these properties which covaries with the external time, i.e., is linearly related to it.
In this sense, the external time can be thought as the time measured by an ideal clock, at
least in operational terms. The obsevation of this external time is, thus, subjected to the
feasibility of an ideal clock.

Figure 2 – Schematic representation of Pashby’s tripartite classification of time.

Source: By the author.
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To guarantee a notion of common time between inertial reference frames, Einstein
argues that it takes a colection of distant clocks capable of emiting and receiving light
signals. In Einstein’s Relativity, thus, one cannot access the external time, but only the
time registered by clocks composing the reference frames. The mechanism by which they
keep track of the external time, however, is negligible as long as they remain small enought
so they do not interact with the system of interest. It is perfectly plausible that these
clocks are ideal clocks, keeping track of the external time through variables that covary
with it. But the scenario in quantum theory is slightly different, since there is no system
small enough that can work as an ideal clock and still not affect the dynamics of the main
system. This is the source of the arguments given by Schrödinger and Pauli to forbid the
existence of an observable for time.41,42

The following discussion will be mostly guided by Martinelli.41 With B(H) being
the set of operators acting over the Hilbert space H, let us define an operator T (t) ∈ B(H),
which locally covaries with the external time, i.e.,

dT (t)
dt

= k, k ∈ R, (3.1)

meaning that T (t) = ktI+ T (0), where I is the identity. For practical purposes, we will
take k = 1 from now on. If the clock also globally covaries with the external time, then
〈T (t)〉 = 〈T (0)〉+ t, where 〈T (t)〉 = 〈ψ|T (t)|ψ〉, ∀ |ψ〉 ∈ D(T ), D(T ) being the domain of
T . We can also define a strongly continuous group as follows:

Definition 3.1.1. Let Ut ∈ B(H),∀t ∈ R be a family of operators over a given Hilbert
space. It is said to be a one-parameter strongly continuous group if, for each element of
this family,

• Ut=0 = I;

• Ut1Ut2 = Ut1+t2 ,∀t1, t2 ∈ R;

• Given |ψ〉 ∈ H, then limt→0 Ut |ψ〉 = |ψ〉.

With this definition, it is possible to enunciate Stone’s theorem:

Theorem. (Stone) Let |ψ〉 ∈ H, and let {Ut}t∈R be a one-parameter strongly continuous
group in which every element is unitary and bounded. Then, {Ut}t∈R will be associated
with a self adjoint generator H ∈ B(H) such that

lim
t→0

(Ut − I)
it

|ψ〉 = H |ψ〉 . (3.2)
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Conversely, let H ∈ B(H) be a self adjoint operator. Then, it generates a one-parameter
strongly continous group of unitary operators, each given byi

Ut = eiHt, t ∈ R. (3.3)

Now, we can perceive some useful properties of our time operator. In the Heisenberg
picture, T (t) = UtT (0)U †t . But since global covariance already told us that T (t) = T (0) + t,
we have

UtT (0)U †t = T (0) + t, (3.4)

which means that T and T + t are unitarilly equivalent (where T = T (0)), for any t ∈ R,
and thus share the same spectrum. This implies that spec(T ) ≡ R, and by applying Ut
from the right, we get

UtT − TUt = [Ut, T ] = tUt. (3.5)

Also, the commuting relation with the self adjoint generator of {Ut}t∈R yields to

[T,H] = TH −HT (3.6)

= T lim
t→0

(Ut − I)
it

− lim
t→0

(Ut − I)
it

T (3.7)

= − lim
t→0

[Ut, T ]
it

(3.8)
= lim

t→0
iUt = i, (3.9)

where we used Eq.(3.5) and the property that limt→0 Ut = I. These are the properties
expected from a time operator T which covaries both locally and globally with the external
time t. Pauli claims, however, that there would be no feasible system detaining such
physical property.

His claim can be summarized with the Stone theorem. Since T is an observable, it
is a self adjoint operador capable of generating a family {Uλ = eiλT}λ∈R which is a one-
parameter strongly continous group with unitary elements. That being said, if [H,T ] = −i,
then

[H,Uλ] = [H, eiλT ] =
[
H,

∞∑
n=0

(iλT )n
n!

]
=
∞∑
n=1

(iλ)n
n! [H,T n], (3.10)

since for n = 0, [H, I] = 0. Then, by the property that [T,H] = i⇒ [T n, H] = inT n−1,

[H,Uλ] = −
∞∑
n=1

(iλ)n
(n− 1)!iT

n−1 = λ
∞∑
n=1

(iλT )n−1

(n− 1)! = λUλ. (3.11)

This allows us to make the same process we did with the time operator, i.e., apply U †λ by
the left side of the commutator, obtaining

U †λHUλ = H + λ. (3.12)
i In this work, ~ = 1.
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This relation implies that H and H + λ are equivalent up to an unitary transformation,
which means they share the same spectrum spec(H). Since λ is any real number, it turns
out that spec(H) ≡ R, which would be impossible: an Hamiltonian without a lower bound
would allow the extraction of an infinite amount of energy of the system. Such miraculous
energy source is unfeasible, an that is why Pauli (and many others after him43,44) argues
against the existence of a system capable of keeping track of the external time in an ideal
way. Summarizing, Pauli’s theorem can be enunciated as follows

Theorem. (Pauli) Let H be a separable Hilbert space, and let H,T ∈ B(H) be self
adjoint operators over this Hilbert space. If T obeys a global covariance relation with every
element of the one-parameter strongly continuous group of unitaries generated by H, i.e.,
if

UtTU
†
t = T + t, ∀t ∈ R, (3.13)

then spec(H) = spec(T ) ≡ R.

This result is often interpreted as a disclaimer for giving up paying too much
attention to this foundational concern of the quantum theory: if there is no possible time
opertor, then let time be a parameter in Schrödinger Equation. Following Pashby40 again,
what could it even mean to measure the time of a particle? If measuring position means
one is asking what is the probability of detecting a particle in a given region of space,
there is definetly some oddity in asking what is the probability of detecting a particle in a
given region of time. If your outcome is null, then where have the particle gone? Many
causal and conservational problems could arise from this sort of scenario.

However, one should not give up so easily on the persecution of a time operator,
since for quantum theory every measurable property is represented by an operator acting
over the Hilbert space, and the time an event occurs is expected to be measurable. Avoiding
here metaphysical discussions that appeal to Pauli’s theorem,44 we will highlight Pashby’s
argument that everything this argument is telling is that the existence of (i) a bounded
self adjoint hamiltonian H, (ii) a self adjoint operator T with σ(T ) = R and (iii) a one-
parameter strongly continuous group of unitaries generated by H such that U †t TUt = T + t,
∀t ∈ R are never simultaneously allowed. This still allows some paths to be taken in the
search for an operator that tells us how time is passing for a given system, and we shall
now take the one followed by Dirac, Wheeler and DeWitt.

3.1.2 Extended Hilbert space

There is a strong connection between Quantum Mechanics and the action-angle
formalism of Classical Mechanics. Dirac45 proposes an extention of the phase space of
the canonical variables to include another two coordinates, canonically conjugated to
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each other, given by t and −W , where W would mean a fixed value for the energy. The
(quantum) equation of motion thus will be given by the identity

(H −W )ψ(x, t) = 0, (3.14)

where x represents the many degrees of freedom quantized by the conventional process.
Since t and −W are a canonical pair, it implies in quantum mechanical terms that [W, t] = i,
and following the first quantization for position and momentum, one may atribute the
form

W = i
∂

∂t
, (3.15)

obtaining the expression
Hψ(x, t)− i ∂

∂t
ψ(x, t) = 0. (3.16)

This might sound like nothing new, but Dirac’s technique of expanding the phase
space (or similarly, the Hilbert space) removes the double burden from H of simultaneously
providing the spectrum of energies and generating time translations. With the inclusion
of operators t and −W , H is now responsible for providing just the possible outcomes of
energy of the system, while time evolution is dictated by −W . There would be no problem,
at a first moment, that −W had an unbounded spectrum and H had not, since Eq. (3.16)
would have solutions just for eigenvalues of −W which were also eigenvalues of H. Pauli’s
Theorem is, therefore, not forbidding this construction.

Dirac’s approach was a first step that led Wheeler and DeWitt, more than 30
years later, to develop their constraint equation for quantum gravity.46 It was also the
impulse for Page and Wootters to develop their model of static universe, with a time given
relationally with respect to the variable t of this extended Hilbert space.23,47 Let us take a
look on this formulation more carefully.

Page and Wootters propose a universe described by a bipartite Hilbert space,
H = HS ⊗HC , whose hamiltonian is non-interacting between the parts, i.e.,

H = HS ⊗ IC + IS ⊗HC . (3.17)

Inspired by Wheeler-DeWitt constraint equation, the Page-Wootters mechanism consists
of a static universe whose global physical state is a solution of the constraint equation

H |Ψ〉〉 = 0. (3.18)

In this universe, the dynamics of a part is given relationally with respect to the other.
Therefore, one can define a time operator TC with [TC , HC ] = i, and however, because
HS is the hamiltonian responsible for providing the energy spectrum of the main system,
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Pauli’s theorem play no role here since [TC , HS] = 0. TR is thus keeping track of time
passage and still does not imply a system S with unbounded energy spectrum. System
C can evidently be thought of as the clock in Figure 2. Indeed, if we take |θC(t)〉 to be
eigenstates of the operator TC (with eigenvalue t), we can define the state of the system S

relationally to the clock as
|ψS(t)〉 = 〈θC(t)|Ψ〉〉. (3.19)

Notice that t here is not the external time unless system C is an ideal clock. However, as
long as TC has an spectrum which is isomorph to R, Schrödinger equation can be recovered
locally in S:

d

dt
|ψS(t)〉 = d

dt
(〈θC(t)|Ψ〉〉) = d

dt
(〈θC(t)|) |Ψ〉〉+ 〈θC(t)| d

dt
(|Ψ〉〉), (3.20)

and since d
dt
|Ψ〉〉 = −iH |Ψ〉〉 and d

dt
|θC(t)〉 = −iHC |θC(t)〉, then

d

dt
|ψS(t)〉 = iIS 〈θC(t)|HC |Ψ〉〉 − iHS 〈θC(t)|IC |Ψ〉〉 − iIS 〈θC(t)|HC |Ψ〉〉 (3.21)

= −iHS 〈θC(t)|Ψ〉〉 (3.22)
= −iHS |ψS(t)〉 . (3.23)

So quantum mechanics is working in system S. Nevertheless, t has a new meaning: it
is not just the real parameter on the Schrödinger’s equation, but the eigenvalues of a
time operator TC of a clock. Martinelli41 points out how this is not so different from the
usual interpretation of the parameter t when we think operationally. In fact, the time
of any experiment is given relationally with respect to a clock hanging on a wall inside
the lab. The only difference is that this clock is classical, and thus there is no coherences
acting between it and the system being measured. When the clock is quantum, however,
coherences start to play a crucial role.

Although the Page-Wooters mechanism provides us an example of how Pauli’s
theorem is avoidable with Dirac’s technique of extending the Hilbert space, and push the
problem one step closer to the scenario described in Figure 2, there are remaining issues to
be dealt with. First, one usually has no access to the physical state |Ψ〉〉. In other words,
inside a lab, one is often aware of the descriptions of parties S and C individually, but
not of the state |Ψ〉〉 which is solution of Eq. (3.18) and provides the relational dynamics
between S and C. So how can one go from ρS and ρC to |Ψ〉〉? Second, if we are looking for
a reasonable description of the world, our whole universe should be feasible. In this sense,
we are still stuck with the problem that, while [TC , HS] = 0, still [TC , HC ] = i, implying
σ(HC) = R, which is forbidden. A possible solution to this problem is to search for systems
that mimic the clock properties described previously under certain circumstances, despite
its hamiltonian being bounded. The following sections aim to answer these questions.
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3.2 An overview on Quantum Reference Frames

To answer the first question, suppose that Alice and Bob are astronauts traveling
through space in their respective spaceships. They are separated in space, in the sense
that they cannot see each other in their radars, but can still communicate with each other
through their radios. Suppose also that they do not share any common star or planet in
their radars. If Alice is supposed to send Bob instructions so he is capable of reaching her
out, what can she tell him? Instructions involving directions will have no meaning, since
they do not share any Cartesian reference frame.2 This simple example pictorizes how
not any information can be stored and shared through a string of bits or qubits. If Alice
really wants to help Bob, she must send some system capable of pointing to some direc-
tion, or else Bob’s only option is to cover every possible direction to find his fellow explorer.

Information which can be stored and shared through a string of classical or quantum
bits is called speakable. Lists of instructions or coordinates, for example, are information
of this type. However, coordinates mean nothing without a predetermined set of directions
in space, and “meet me at 2 o’clock” hardly have any signifcance if one has no access to a
working clock synchronized to the local timezone. Information that cannot be stored in
strings of classical or quantum bits, but rather require some sort of asymmetric system,
are called unspeakable.2,48

One may think of a quantum system |ψ(g)〉 ∈ H on which two types of transforma-
tion can be performed: the usual one consists of taking |ψ(g)〉 → |ψ′(g)〉 through operations
on |ψ〉. But one could take g → g′ instead, i.e., exchange the adopted reference frame. The
set of every g ∈ G forms a groupii, and {Ug}g∈G is the representation of this group on
the Hilbert space H. This is the algebraic description of processes one so often deals with
in Physics, such as galilean or lorentzian boosts, and in our previous example, would be
the operation Bob would perform over Alice’s instructions if they shared a reference system.

But without the knowledge of what is the reference frame g of Alice, everything
Bob can do is to cover every direction that might lead him to Alice. In our description, this
means to perform an average over every possible transformation between Alice’s reference
frame and his, an operation called G-twirling. So if Alice sends a state ρ = |ψ(g)〉 〈ψ(g)|,
then because of the Superselection Rule (SSR)49 imposed over the system by the lack of a

ii A group G is a set equipped with a binary operation and an identity element e, such that,
for every g, g′, g′′ ∈ G: Ug′′ = Ug′+g = Ug′Ug; Ug′′g′Ug = Ug′′Ug′g; and there is a g−1 ∈ G such
that Ug−1Ug = UgUg−1 = e.
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shared reference frame, Bob will describe this state as

G[ρ] =
∫
g∈G

UgρU
†
gdg. (3.24)

The G-twirling is precisely the operation that solves the issue of leaving from the
individual states ρS and ρC and arriving at the physical state |Ψ〉〉 from which we can
derive the relational state |ψS(t)〉. Notice that, indeed, the state ρ = ρS ⊗ ρC iii might not
be static, since [ρ,H] will hardly vanish for almost every reasonable description of a lab.
But if G is the set of time shifts generated by H = HS ⊗ IC + IS ⊗ HC , with H being
time-independent, then

[G[ρ], H] = lim
T→∞

1
2T

∫ T

−T
UtρU

†
t dtH −H lim

T→∞

1
2T

∫ T

−T
UtρU

†
t dt (3.25)

= lim
T→∞

1
2T

∫ T

−T
Ut[ρ,H]U †t dt, (3.26)

but since for ∂ρ
∂t

= 0 we have

i
dρ(t)
dt

= i
d(UtρU †t )

dt
(3.27)

= i
dUt
dt
ρU †t + iUtρ

dU †t
dt

(3.28)

= HUtρU
†
t − UtρHU †t (3.29)

= Ut(Hρ− ρH)U †t (3.30)
= Ut[H, ρ]U †t , (3.31)

then
[G[ρ], H] = −i lim

T→∞

1
2T

∫ T

−T

dρ(t)
dt

dt = −i lim
T→∞

ρ(T )− ρ(−T )
2T , (3.32)

and because the eigenvalues of ρ(T ) and ρ(−T ) are always non-negative and lower or equal
than 1, this limit automatically vanishes, resulting on the static equation

[G[ρ], H] = 0. (3.33)

Within this formalism, if ΠC
t are projectors over the eigenspaces of TC associated with

outcomes t, then the relational state of the main system will be given by

ρS(t) = TrC
{

(IS ⊗ ΠC
t )G[ρ](IS ⊗ ΠC

t )
Tr{(IS ⊗ ΠC

t )G[ρ]}

}
. (3.34)

The scenario described by Figure 2, that we have been developing hitherto, forbids
an observer to directly access the external parametric time t. We are never allowed to
describe states such as UtρU †t , but must instead tell the passage of time relationally to
iii Of course, one could describe an entangled initial state. But since this is seldom the case

between a system and its clock, we will treat the separable case here.
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the time of the lab, given by a clock state. Since time shifts are represented in quantum
theory as phase shifts, the lack of access to this external phase reference frame imposes
a SSR that forbids states asymmetric with respect to the U(1) group generated by H.
Every quantum scenario with restrictions over allowed operations might be conveniently
treated by a quantum resource theory, and the structure of this formalism of physical time
measurements is an invitation for a resource-theoretic treatment.

3.2.1 Quantum Resource Theory of Asymmetry

The concept of resource is borrowed from the economical concept of scarcity. A
certain state of things is more or less valuable according to the easiness with which it can
be extracted, obtained or implemented.48,49 It is convenient thus to consider a theory that
can keep track of how valuable is a given state or experimental protocol under certain
physical restrictions. Structurally, a resource theory is a commutative ordered monoid.50

This can be defined as follows

Definition 3.2.1. (Commutative ordered monoids) Let A be a set equipped with a binary
operation +, a distinguish element e, called identity, and a ordering relation ≥. Then A is
said to be a commutative ordered monoid if, for any a, a′, a′′ ∈ A, we have

• if a ≥ a′ and a′ ≥ a′′, then a ≥ a′′;

• if a ≥ a′ and a′ ≥ a, then a = a′;

• a+ (a′ + a′′) = (a+ a′) + a′′ and a+ a′ = a′ + a;

• a+ e = a;

• if a ≥ a′, then a+ a′′ ≥ a′ + a′′.

In physical terms, one should read the symbol ≥ as “is convertible to”. Whenever
ρ ≥ σ, it means that, in the set of operations and descriptions allowed by the restriction
imposed over the experimental scenario, there will be ways of transforming ρ into σ. If,
otherwise, ρ � σ, it must be read as “ρ is not convertible to σ”, meaning that there is no
way of performing this transformation with the knowledge one has access to in the exper-
imental scenario. This is the case, for example, of Bob performing ρA → ρB = UgρAU

†
g ,

since he has no means of accessing Alice’s reference frame.

It is thus typical to define a quantum resource theory (QRT) in terms of free
operations and free states, such as the following49
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Definition 3.2.2. (Quantum Resource Theory) Let Hi be Hilbert spaces of subsystems i,
and B(H) the set of bounded operators in H. Let S(H) ⊂ B(H) the subset of bounded,
positive semi-defined operators with unitary trace in H, O(HA,HB) ⊂ B(HA,HB) be a
set of CPTP maps and F(C,H) ⊂ S(H). Then, the tuple R = (F ,O) is a Quantum
Resource Theory if

• I ∈ O(H), ∀H;

• Φ ∈ O(HA,HB) and Θ ∈ O(HB,HC)→ Θ⊗ Φ ∈ O(HA,HC), ∀HA,HB,HC .

The set F is called the set of free states, while the set O is called the set of
free operations. The demands for constructing a Quantum Resource Theory are perfectly
reasonable: to do nothing is always a free operation, and a sequence of free operations must
be free as well. A corolary of this definition is often highlighted due to its interpretational
convenience, being known as the Golden Rule of QTR:

Definition 3.2.3. (Golden Rule of Quantum Resource Theories) Let R = (F ,O) be a
QRT. If Φ ∈ O(HA,HB) and ρ ∈ F(HA), then Φ(ρ) ∈ F(HB).

The interpretation is as simple as it seems: acting a free operation over a free state
will necessarily lead to a free state. In other words, free operations cannot convert free
states into resource states. Bob, indeed, could not turn any instruction given by Alice into
something more useful only by performing operations he was allowed without a reference
frame.

Quantum Resource Theories are always constructed operationally, taking into
account what is the central phenomena to be studied to define the set of free operations or
of free states (usually, one starts by defining just one of the sets, and the other is obtained
from the Golden Rule).49 The quantum resource theory of entanglement, for example,
starts from the assumption that for bipartite scenarios, operations performed locally over
each of the parties and classical comunication between them are always allowed. The set
of free states, as consequence, is restricted to separable states. For the quantum resource
theory of asymmetry, which we will be dealing with, it is useful to begin by defining the
set of free states.

Definition 3.2.4. (Set of free states for QRT of Asymmetry)49 Let H be a Hilbert space
and B(H) be the set of bounded operators acting on H. Let S(H) ⊂ B(H) be the set of
bounded, positive semi defined operators with unitary trace in this Hilbert space. Let also
{Ug}g∈G be the group of transformation representations generated by the group G over
S(H). Then, F(H) ⊂ S(H) such that

F(H) := {G[ρ],∀ρ ∈ S(H)}, (3.35)
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is said to be the set of free states for a QRT of asymmetry with respect to the group G,
with G being the G-twirling operation previously defined.

The set of free states for a QRT of asymmetry can be thus defined as the set of
states which are invariant over a G-twirl. Within this theory, the G-twirling operation may
often be called the symmetrization operation, and F(H) is called the set of symmetric
states.48 Any state not living inside this set is, of course, an asymmetric state, and therefore
carries resource for forbidden operations. It implies, however, a different set F(H) for each
SSR one may impose over a system, i.e., for each group G with respect to there is no
way of centainly performing transformations. The G-twirling can be defined as a resource
destructing operation, since it takes both resource and free states into the set of free states.49

Starting from this definition, it is possible to construct a set of free operations for
SSR as

Definition 3.2.5. (Set of free operations for QRT of Asymmetry) Let F(H) be the set of
free states for a QRT of Asymmetry subjected to a certain SSR. The set O(H) ⊂ B(H)
such that

O(H) := {Φ ∈ B(H)|[Φ(·), Ug(·)U †g ] = 0, ∀g ∈ G}. (3.36)

is said to be the set of free operations for this QRT.

Notice that, if Φ is also covariant to global translations,48 then

G[Φ(ρ)] =
∫
g∈G

UgΦ(ρ)U †gdg =
∫
g∈G

Φ(UgρU †g )dg = Φ(G[ρ]), (3.37)

A map Φ satisfying this condition is often called G-covariant channel or translation-
covariant channel. When the group responsible for generating translations is U(1), these
maps receive a specific form. Since H is a finite separable Hilbert space and U(1) is a
compact group, there is a way of representing H as48

H =
⊕
q∈Q
Hq, (3.38)

where each Hq is a mq-dimensional Hilbert space called charge sector q. Taking this into
account, a general G-covariant channel possess the form48,51

Φ(ρ) =
∑
q∈Q

αqπq(ρ)π†q, (3.39)

where πq is a permutation between the states of a charge sector Hq. In other words,
a SSR generated by a lack of phase reference frame confines the information of a sys-
tem in its charge sectors, so that it cannot flow between them. This will get clearer with
a further example, but first, let us analyze how can we quantify the asymmetry of a system.
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The most useful feature of a quantum resource theory for our purposes is the
possibility of idenitifying monotones associated with the resource property. Monotones
are functions capable of witnessing or quantifying the convertibility between states, and
are mathematically described as homomorphisms between the resource theory A and R≥0,
where R≥0 is the set of non-negative real numbers.

Definition 3.2.6. (Homomorphism) Let A and A′ be commutative ordered monoids. An
ordered map f : A → A′ is an homomorphism if, for every a, a′ ∈ A, we have

• a ≥ a′ ⇒ f(a) ≥ f(a′);

• f(a+ a′) = f(a) + f(a′);

• f(0) = 0.

Since R≥0 is also a commutative ordered monoid with respect to addition, we want
to search for a functional f capable of quantifying the convertibility between elements of
A with real numbers.

A general monotone for asymmetry can be defined as48

Definition 3.2.7. (Monotone for asymmetry) Let R = (F ,O) be a QRT of Asymmetry
with respect to a group G. A function f : S(H)→ R, where S(H) is the set of bounded,
self-adjoint operators on H with unitary trace, is said to be an asymmetry monotone if

• f(ρ) ≥ 0,∀ρ ∈ S(H);

• f(ρ) = 0,∀ρ ∈ F(H);

• f is monotone under G-covariant channels.

The first condition is trivial if f is going to be an homomorphism of the commutative
ordered monoid A which we associate to R. Indeed, x ≥ 0, ∀x ∈ A, since any resource
state must be freely converted to nothing, i.e., discarded. Addiction of some auxiliary
systems and disposal of degrees of freedom must be always allowed operations if we are
willing to conserve quantum theoryiv. The second one is reasonable, but not obvious: free
states are not resource states, and thus its resource measure must be null. The last one
states that operating with free operations over a system will never generate resource.
Vaccaro et al.54 propose a candidate function that satisfies these three conditions:
iv Since they are essential processes for fundamental theorems, such as Stinespring dilation.52,53
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Definition 3.2.8. (Holevo asymmetry) Let H be a Hilbert space and G be the G-twirling
operation definded for some group G. The quantity

AG(ρ) := S(G[ρ])− S(ρ), ∀ρ ∈ S(H) (3.40)

is called Holevo asymmetry, with S(·) being the von Neumann entropy.

Proposition 3.2.1. The Holevo asymmetry is an asymmetry monotone.

Proof. By the concavity of the von Neumann entropy,55

S(G[ρ]) = S
(∫

g∈G
UgρU

†
gdg

)
≥
∫
g∈G

S(UgρU †g )dg =
∫
g∈G

S(ρ)dg = S(ρ), (3.41)

and thus S(G[ρ]) − S(ρ) ≥ 0. The second property is trivial, since if ρ ∈ F(H), then
G[ρ] = ρ, and therefore

AG(ρ) = S(G[ρ])− S(ρ) = 0. (3.42)

For the third condition, we can represent the most general G-covariant channel as

Φ(ρ) =
N∑
i=1

piΦi(ρ), (3.43)

where ∑N
i=1 pi = 1 and Φi ∈ O(H). We must now show that

AG(ρ) ≥
N∑
i=1

piAG(Φi(ρ)). (3.44)

This must ensure that any free operation over a state ρ will always decrease the amount
of resource measured by the Holevo asymmetry. Explicitly, we have

S(G[ρ])− S(ρ) ≥
∑
i

piS(G[Φi(ρ)])−
∑
i

piS(Φi(ρ)), (3.45)

or yet
S(G[ρ])−

∑
i

piS(G[Φi(ρ)]) ≥ S(ρ)−
∑
i

piS(Φi(ρ)). (3.46)

Starting from the left side,

S
(∫

g∈G
UgρU

†
gdg

)
−
∑
i

piS
(∫

g∈G
UgΦi(ρ)U †gdg

)
≥
∫
g∈G

S(UgρU †g )dg

−
∑
i

pi

∫
g∈G

S(UgΦi(ρ)U †g )dg,
(3.47)

by the concavity of S. Then, since S(UgρU †g ) = ρ, ∀g ∈ G,

S(G[ρ])−
∑
i

piS(G[Φi(ρ)]) ≥ S(ρ)−
∑
i

piS(Φi(ρ)), (3.48)

the same result obtained by Eq. (3.44).
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It is interesting to state also, for a bipartite system such as the Page-Wootters
mechanism, a quantification of the local resources available in each of the parties. Such
monotone is defined as local asymmetry,54 and is computed as

AG⊗G(ρSC) = S(GG⊗G[ρSC ])− S(ρSC), (3.49)

where
GG⊗G[ρSC ] =

∫
g∈G

∫
g′∈G

US
g ⊗ UC

g′ (ρSC)US†
g ⊗ U

C†
g′ dgdg

′ (3.50)

is called local symmetrization or local G-twirling. This quantity AG⊗G is also an asymmetry
monotone.48 By combining Holevo and local asymmetries, one can obtain another useful
measure for asymmetry of bipartite systems, given by

AshG⊗G(ρSC) = AG⊗G(ρSC)− AG(ρSC). (3.51)

This quantity is called shared asymmetry.54 Mendes and Soares-Pinto56 and Martinelli
and Soares-Pinto57 analyzed this quantity for bipartite systems with product initial states
ρ = ρS ⊗ ρC , the later deriving the identity

AshG⊗G(ρSC) = AG(ρS) + AG(ρC)− AG(ρSR), (3.52)

which made them name this quantity as mutual asymmetry, refering to the informational
notion of mutual information.

3.2.2 Catalytic convertibility

Catalytic convertibility is a common concept in Quantum Resource Theories, and
is borrowed from the Chemistry concept of catalysis. Mathematically, a Resource Theory
that allows catalytic convertibility can be deffined by a non-cancelative comutative ordered
monoid.50

Definition 3.2.9. (Non-cancelative commutative ordered monoid) Let x, y, z ∈ A be
elements of a commutative ordered monoid. A is said to be non-cancelative if

x+ z ≥ y + z 6=⇒ x ≥ y. (3.53)

In resource-theoretic terms, it means that x is not convertible in y by itself,
but in the presence of z, this process is allowed. Fritz50 provides a nice example: the
conversion of wood+nails to table is not allowed, but the conversion wood+nails+hammer
to table+hammer is possible. The state z is called the catalyst of this conversion. A
resource theory that is non-cancelative can be turned into a cancelative one by redefining
its ordering relation, such that for any x, y, z ∈ A,

x+ z ≥ y + z =⇒ x � y. (3.54)
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This relation can be read as “x is catalytic convertible into y”, and a resource theory which
is cancelative becomes an abelian ordered groupv. Resource Theories of this type are the
ones that allow borrowing of resources, since the concept of a debt resource −x is included
in an abelian ordered group. This is not the case, however, of the QRT of Asymmetry we
are going to deal with.

The problem we are willing to solve can be summarized as a catalytic conversion.
We are not allowed to perform the conversion ρ(t)→ |↑↑〉 〈↑↑| or |↓↓〉 〈↓↓| within a Wigner’s
Friend Scenario, where ρ(t) is the entangled state the superobserver uses to describe the
measurement occuring inside the lab. But with the help of a clock, it may be obtained
ρ(t) ⊗ τC → |↑↑〉 〈↑↑| (or |↓↓〉 〈↓↓|) ⊗ τC . Indeed, it has already been proved58 that this
conversion is nearly achievable through symmetric operations (in our context, G-covariant
channels), which leads to a resulting state whose fidelity with the desired state is lower
bounded. We will announce this result here.

Theorem. (Lower bound for fidelity in catalytic conversion) Let H = HS ⊗ HC be a
separable Hilbert space subjected to a SSR. Let R be the QRT associated to this SSR,
τC ∈ HC be an accessible state, and σS ⊗ τC be a desired state. Then, there exists
Φ ∈ O(HC ,H) a G-covariant channel such that

F (Φ(τC), σS ⊗ τC) ≥ 2−∆A
2 , (3.55)

with F (·, ·) being the Uhlmann fidelityvi between the desired state and the state obtained
through the G-covariant channel, and ∆A = AG(σS ⊗ τC) − AG(τC) is the difference
between Holevo asymmetries of the desired state and the available state.

Equipped with these concepts, one is capable of, given a global hamiltonian for a
bipartite system and an initial state, obtain a solution to the Page-Wootters mechanism,
quantify the amount of resource in this given state and obtain the relational partial states.
It is interesting to present a simple example to familiarize the reader.

3.2.3 An example: two qubits

We can think of an universe constituted of two qubits, one of them playing the
role of main system S and the other being the clock C. The global hamiltonian will be
given by

H = HS ⊗ IC + IS ⊗HC = ω(σSz ⊗ IC + IS ⊗ σCz ), (3.56)
v i.e., a commutative ordered monoid that has, for every a ∈ A, an element a−1 ∈ A such that

aa−1 = a−1a = e.
vi Defined as55 F (ρ, σ) =

[
Tr{

√
ρ1/2σρ1/2}

]2
.
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σz being the typical Pauli matrix. The initial state will be given by the two spins pointing
to the same direction

ρ = |+〉 〈+|S ⊗ |+〉 〈+|C , (3.57)

where |+〉 = 1√
2(|0〉+ |1〉), and {|0〉 , |1〉} is the σz eigenbasis. The G-twirling will be thus

described by
G[ρ] = ω

2π

∫ 2π/ω

0
e−iHtρeiHtdt, (3.58)

since the evolution is periodic in τ = 2π/ω. The integrand can be explicitly described by

e−iHtρeiHt = 1
4


1 ei2ωt ei2ωt ei4ωt

e−i2ωt 1 1 ei2ωt

e−i2ωt 1 1 ei2ωt

e−i4ωt e−i2ωt e−i2ωt 1

 , (3.59)

and performing the G-twirling will lead to

G[ρ] = 1
4


1

1 1
1 1

1

 . (3.60)

Notice, then, that the G-twirling erases any coherence between different charge sec-
tors: there are nonzero elements just inside the subspaces such that span(H0) = {|00〉},
span(H1) = {|01〉 , |10〉} and span(H2) = {|11〉}.

Let us assume now that a time operator over the clock state is given by T = σCx .
Evidently this is not an ideal clock, since [T,HC ] 6= i, but this will provide us a good
insight on how clocks work. This is a two-ticks clock with outcomes “ + ” and “− ”. If we
are going to detect the state |±〉 〈±|C , then

(IS ⊗ |±〉 〈±|C)G[ρ](IS ⊗ |±〉 〈±|C)
Tr{(IS ⊗ |±〉 〈±|C)G[ρ]} = 1

4


1 ±1 ±1

2
1
2

±1 1 1
2 ±1

2

±1
2

1
2 1 ±1

1
2 ±1

2 ±1 1

 , (3.61)

and tracing off the clock degrees of freedom, we finally get the conditional state

ρS(“± ”) = 1
2

 1 ±1
2

±1
2 1

 . (3.62)

The amount of information concerning the passage of external time this system is providing
is given by

AG(ρ) = S(G[ρ])− S(ρ) = 3
2 , (3.63)
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since G[ρ] has eigenvalues 1
4 with multiplicity 3 and 0 with multiplicity 1, and S(ρ) = 0.

The local asymmetry, however, is given by

GG⊗G[ρ] = ω

2π

∫ 2π/ω

0
e−iHStρSe

iHtdt⊗ ω

2π

∫ 2π/ω

0
e−iHCt

′
ρCe

iHCt
′
dt′ = IS ⊗ IC

4 , (3.64)

i.e., the maximally mixed state. Its entropy is well known to be S(GG⊗G[ρ]) = log 4 = 2,
and thus the shared asymmetry is given by

AshG⊗G(ρ) = AG⊗G(ρ)− AG(ρ) = 1
2 . (3.65)

Given a lemma proposed by Simões,48 shared asymmetry is bounded for G = U(1) by the
relation

0 ≤ AshG⊗G(ρSC) ≤ min{log(dimHS), log(dimHC)}, (3.66)

what implies that, for this specific case, 0 ≤ AshG⊗G(ρ) ≤ 1. This indicates that, even
though our clock is not the worst possible, it is not the best either. Indeed, the con-
ditional probabilities for the clock and the system pointing to the same direction are
P (+|+) = P (−|−) = 3

4 , while the probabilities of the clock mistracking the dynamics of
the system is P (+|−) = P (−|+) = 1

4 . If the clock and the system shared the maximum
amount of asymmetry possible, then the former would perfectly track the dynamics of the
later.

This was a simple example on how one can deal with these quantities. Generally,
the QRT of Asymmetry has been applied to study how much information can be derived
from symmetries of hamiltonians, and the main idea of the theory is to analyze how
asymmetry beween states or between states and expressions can provide an understanding
about some physical processes.48,59 There are also discussions on how a measurement over
one of the systems may affect the dynamics of the other and the distribution of information
between parties.60–62 We are going to use it to identify how well a system is keeping track
of the dynamics of the other when we insert a clock in a Wigner’s Friend Scenario. Our
first question made in the last paragraph of section 3.1 must be satisfyed by now, and we
can venture on trying to answer the second one.

3.3 A model of a feasible clock: quasi-ideal clock states

One of the first atempts to build a quantum clock is due to Salecker and Wigner.63

In this work, they propose a system of k free particles moving between two resting particles
A and B, separated in space. Whenever a moving particle reaches a resting particle, it
is deflected elastically towards the other resting particle. Each moving particle, however,
takes a different period niτ to go back and forth, in a way that particle 1 takes n1τ to
do so, particle 2 takes n2τ and so on, making a parallel with the different pointers of a
classical clock (tracking seconds, minutes and hours). With the system working, k + 2
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photons will be sent towards the clockwork, each targeting one of the moving or resting
particles, and being scatered back to a detector in the same position as the lightsource, as
examplified in Figure 3. Time is tracked based on the ratio between the distances A1/AB,
A2/AB, etc, which are invariant under lorentzian boosts.

Authors were concentrated on discussing the feasibility of this clock in operational
ways, deriving a lower bound for its mass and mass spread to ensure it works. Even
though no mention was made with respect to an operator canonically conjugated to
the hamiltonian and the main focus was to quantum mechanically describe relativistic
scenarios, this approach sure did leave a clue for the next steps of the construction of a
proper clock.

Figure 3 – Model for Salecker-Wigner Clock: full black arrows represent particle worldlines,
while dashed red arrows represent photon worldlines.

Source: Adapted from SALECKER;WIGNER.63

Peres64 brings the issue of constructing a clock based on a system with an observable
T canonically conjugated to the Hamiltonian. His first proposal is given by a quatization
of the classical time of displacement of a free particle,

τ = m

p
q → T = m(P−1X +XP−1). (3.67)

Notice that, if H = 1
2mP

2, then

[T,H] = 1
2(P−1XP 2 +XP − PX − P 2XP−1) = i. (3.68)

It is relevant to notice40 that the classical time of displacement is actually given by
τ = m

p
(q(t)− q(0)), and one usually obtains Eq. (3.67) by a change of reference frame in

order to make q(0) = 0. This is not allowed in quantum theory, however, since if X(0) = 0,
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then X(t) = 0,∀t ∈ R. Setting q(0) = 0 corresponds to setting 〈X(0)〉 = 0, which can be
done by picking a specific state, but do not imply on the quantum version of Eq. (3.67).
This time operator would then be properly given by

T = m(U †t (P−1X +XP−1)Ut − (P−1X +XP−1)), (3.69)

resulting in [T,H] = 0. This would also raise problems such as how this operator could
not capture the consequences of the first measurements over the outcomes of the second,
just like any two-measurements based quantityvii. Furthermore, Peres himself discards this
operator as a candidate for a time operator by arguing that its eigenvectors do not have a
clear interpretation.

Another model proposed by Peres in the same work, though, is described by a
d-dimensional system with hamiltonian

H = ω
d−1∑
n=0

n |n〉 〈n| , (3.70)

{|n〉} being the orthonormal basis of energy eigenstates. Another orthornormal basis can
be obtained by

|θk〉 = 1√
d

d−1∑
n=0

e−i2πkn/d |n〉 , (3.71)

with k ∈ [0, d− 1] ⊂ Z. This is a sort of “Fourier transform” of the energy basis. Notice
that, indeed,

〈θk|θk′〉 = 1
d

d−1∑
n,n′=0

e−i2π(kn−k′n′)/d 〈n|n′〉 = 1
d

d−1∑
n=0

e−i2πn(k−k′)/d = δk,k′ , (3.72)

∀k, k′ ∈ [0, d− 1], and

d−1∑
k=0
|θk〉 〈θk| =

1
d

d−1∑
k,n,n′=0

e−i2πk(n−n′)/d |n〉 〈n′| =
d−1∑
n,n′=0

δnn′ |n〉 〈n′| = I. (3.73)

Also, these states are discretely shifted by Ut in steps of τ/d, with τ = 2π/ω

e−iHτ/d |θk〉 = 1√
d

d−1∑
n=0

e−i2πkn/de−iHτ/d |n〉 = 1√
d

d−1∑
n=0

e−i
2πn
d (k+ωτ

2π ) |n〉 = |θk+1〉 , (3.74)

and for every k ∈ [0, d− 1], |θk〉 will be completely indistinguishable from |θk+md〉, m ∈ Z,
since

|θk+md〉 = 1√
d

d−1∑
n=0

e−i2πn(k+md)/d |n〉 = 1√
d

d−1∑
n=0

e−i2πnme−i2πkn/d |n〉 = |θk〉 , (3.75)

vii A typical example of this sort of problem is given by the construction of an work operator
based on two energy measurements.65
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for n and m are both integers.

States {|θk〉}d−1
k=0 can be thought of as time markings in a classical clock. Indeed,

for an analog clock, the passage of the hour hand by the 1 mark means always “1 o’clock”,
despite the number m of times this passage happened. To remove the degeneracy, one
must perform a number of other measurements, such as look through the window to ensure
if it is day or night, and check on the calendar to learn what day, month and year is it.

It is possible to construct a time operator diagonal in this pointer basis, given by

T =
d−1∑
k=0

k
τ

d
|θk〉 〈θk| , (3.76)

which will capture the discrete jumps caused by Uτ/d. However, it is not canonically
conjugate to the hamilonian, since

〈θk|[T,H]|θk〉 = 〈θk|TH|θk〉 − 〈θk|HT |θk〉 = kτ

d
(〈H〉 − 〈H〉) = 0, (3.77)

and because we want [T,H] = i, these diagonal terms should not vanish. Furthermore, for
all k ∈ [0, d− 1]

〈H〉 = 〈θk|H|θk〉 =
d−1∑
n=0

nω| 〈n|θk〉 |2 =
d−1∑
n=0

nω

d
= (d− 1)

2 ω, (3.78)

and

〈H2〉 = 〈θk|H2|θk〉 =
d−1∑
n=0

n2ω2| 〈n|θk〉 |2 =
d−1∑
n=0

n2ω2

d
= (d− 1)(2d− 1)

6 ω2, (3.79)

leading to an uncertainty on the energy

∆H =
√
〈H2〉 − 〈H〉2 = ω

2
√

3
√
d2 − 1 = 〈H〉√

3

√
d+ 1
d− 1 . (3.80)

For small dimensions, ∆H ≈ 〈H〉, and for large clocks, ∆H → 〈H〉 /
√

3. Therefore, even
though a system with access to high values of energy is picked to be a clock and prepared
in a state |θ0〉, its behavior will be strongly dominated by quantum phenomena, not
recovering a classical clock.

Anyway, Peres shows how this clock can indeed keep track of time in three classic
scenarios: measuring the time of flight of a free particle traveling between two detectors;
timing the duration of an atomic decay; controlling the application of a magnetic external
field responsible for fliping a spin. These results show, nevertheless, that the resolution of
the clock is bounded from above. The more accurate this clock is, the more it will interact
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with the system which it is timing on, up to the point where the described phenomena could
even cease from happening (with a too highly energetic clock, for example, the decaying
atom could be constantly fed and this decay could come to a halt, resulting in a quantum
Zeno effect66). For Peres, this represented a structural scar in the Hamiltonian formulation
of quantum theory, for it would imply the impossibility of properly differentiating a state
with respect to time, the crucial operation in Schrödinger equation. The last sentence in
his work claims: “(...) the Hamiltonian approach to quantum physics carries the seeds of
its own demise”.64 As we have properly discussed before, time tracked by a clock is not the
same time with respect to which differentiation takes place in the Schrödinger equation,
and hitherto the Hamiltonian approach is serving to its purposes. This reservation made,
the clock proposed by Peres, often called Salecker-Wigner-Peres (SWP) clock, proved itself
worthy of a closer look.

A more complex model for a clock was recently proposed67 consisting of two
structures: a system capable of keeping track of the external time, called a clockwork,
and a string of classical bits each registering an outcome of the observable T at different
instants of time, called tick registers. This definition externalizes a concern with the feats a
suitable clock must have: measurements of time should not disturb its capability of keeping
track of time in the future. A clock that tells time only once does not worth the effort
of its preparation. This was actually one of the concerns of Salecker and Wigner when
analyzing the minimum mass a quantum clock should have. In operational terms, a clock is
a tuple constituted of an initial state of the clockwork, ρC , and a set of time-homogeneous
markovian dynamics.68

Definition 3.3.1. (Quantum clock) Let ρ0
C ∈ HC be the state of a d-dimensional system,

and {Mt} be a family of CPTP linear maps such thatMt : HC → HC ⊗HT , t ≥ 0. Then,
the tuple (ρC0 ,Mt) is called a quantum clock.

Practically, one could return to our example of the clock given by a qubit. If it is
initially in the state ρC0 = |+〉 〈+|, a good definition of an evolution map is

Mτ =
∑
t=0,1

ΠtUτ/2(·)U †τ/2Πt ⊗ |t〉 〈t| , (3.81)

with Π0 = |+〉 〈+| and Π1 = |−〉 〈−|. Since the evolution Ut is generated by HC = ωσCz ,
the time evolution flips the qubit between the states |+〉 〈+| and |−〉 〈−|, and we can
define the tick register after t = Nτ as

ρT (N) = TrC{©N
i=1Mi

τ (ρC)} = |1〉 〈1|1 ⊗ |0〉 〈0|2 ⊗ |1〉 〈1|3 ⊗ |0〉 〈0|4 ⊗ ...⊗ |tN〉 〈tN |N ,
(3.82)

whereMi
τ : HC → HC ⊗HTi registers the tick in the i-th entry of the tick register. This

tick register can be read by an observer as “tic-toc-tic-toc-...”, a structure often called
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two-ticks clock.

This definition of a quantum clock has been recently used to prove how the precision
of single time signals is bounded, as Peres was aware of.68 A singleton generator is a clock
capable of generating a tick register given by

ρT (N) = |0〉 〈0|1 ⊗ |0〉 〈0|2 ⊗ ...⊗ |0〉 〈0|j−1 ⊗ |1〉 〈1|j ⊗ |0〉 〈0|j+1 ⊗ ...⊗ |0〉 〈0|N . (3.83)

This tick register can be read as “silence-...-silence-tic!-silence-...”. Particularly, the sharp-
ness of the singleton signal, defined as R = µ2/σ2, where µ is the mean time when the
time signal is supposed to be generated and σ is the spread of the peak, is confined to be
always lower or equal to d2, for any singleton generator with dimension d ≥ 4. Thus even
though the dimension of the clock is incresed in order to reach higher precision in time
tracking, this process will never be infinetly precise as a measurement performed over an
ideal clock. This result justifies a choice of clock which intrinsecally considers this gaussian
behavior in time signal generation.

It is about time to introduce our chosen model for a clock. It was proposed first
by Woods, Silva and Oppenheim7 based on the Salacker-Wigner-Peres clock, and can be
defined as

Definition 3.3.2. (Quasi-ideal clock states) Let HC be a d-dimensional Hilbert space,
with {|θk〉} being the orthonormal basis of time eigenstates of the Salecker-Wigner-Peres
clock. The subspace Λσ,n0 ⊆ HC is said to be the set of quasi-ideal states, and is given by

Λσ,n0 := {|ψ(k0)〉 ∈ HC ; k0 ∈ R;σ ∈ (0, d) ⊂ R;n0 ∈ (0, d− 1) ⊂ R} , (3.84)

where
|ψ(k0)〉 =

∑
k∈Sd(k0)

Ae−
π
σ2 (k−k0)2

ei2πn0(k−k0)/d |θk〉 . (3.85)

Here, A is a normalizing factor such that 〈ψ(k0)|ψ(k0)〉 = 1, ∀k0 ∈ R, and Sd(k0) is the
set of d integers or half-integers centered around k0, i.e.,

Sd(k0) :=


{
k ∈ Z;−d

2 ≤ k − k0 <
d
2

}
, if d is even{

k ∈ Z+ 1
2 ;−d

2 ≤ k − k0 <
d
2

}
, if d is odd

. (3.86)

One can think of this state as a clock hand pointing to the time k0, which, unlike
the SWP clock, does not have to be an integer. This hand, however, is not sharp: it is
actually spread around k0 by a gaussian width σ. The n0 represents the mean occupation
of the energy eigenstates {|n〉}, and will be responsible for controling the intereferences
between different time marks |θk〉. The measurment of time will still be described by
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Peres’ time operator, nevertheless, this state already shows signs of its immense potential
when we analyze 〈T (t)〉. As it is shown in Figure 4, for dimensions as great as d = 8, the
expectation value for T already covaries with the external time t for most part of the
period of the clock with reasonably small deviation. The bigger the size of the clock, the
more accurate 〈T 〉 becomes as a measurement of the external time t.
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Figure 4 – Expected value and standard deviation of T measurements over quasi-ideal
clock states with clock dimension (A) d = 8 and (B) d = 100. For both plots,
σ =
√
d; n0 = d−1

2 ; and τ = 1µs.

Source: By the author.

Some useful properties arise from these states, and we will hereby introduce them
and discuss its implications. Interesting secondary properties can be found in Appendix A.

Lemma 3.3.1. (Quasi-continuity) Let HC be a d-dimensional Hilbert space and |ψ(k0)〉 ∈
Λσ,n0 a quasi-ideal clock state whose dynamics is generated by the Hamiltonian HC . Then,
for any t ∈ R,

e−iHCt |ψ(k0)〉 =
∑

k∈Sd(k0+td/τ)
Ae−

π
σ2 (k−k0+td/τ)2

ei2πn0(k−k0+td/τ)/d |θk〉+ |ε〉 , (3.87)

with
| 〈θk|ε〉 | ≤ O

(
t poly(d)e−π4 d

)
, d→∞. (3.88)

In other words, differently from the Salecker-Wigner-Peres clock, whose steps have
to be quantized, this clock is allowed to track the external time continuously up to an error
that should quickly vanish as the size of the clock becomes large enough. This property is
crucial for our approach, once a G-twirling demands the knowledge of how infinitesimal
time translations occur over the system.
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Lemma 3.3.2. (Quasi-canonical commutation) Let HC be a d-dimensional Hilbert space
and |ψ(k0)〉 ∈ Λσ,n0 a quasi-ideal clock state whose dynamics is generated by the Hamil-
tonian HC . Let T be the previously defined time operator, diagonal in the basis {|θk〉}.
Then, for any k0 ∈ R,

[T,HC ] |ψ(k0)〉 = i |ψ(k0)〉+ |εc〉 , (3.89)

with
| 〈εc|εc〉 |2 = O

(
poly(d)e−π4 d

)
, d→∞. (3.90)

This is an impressive result that demonstrates how weak the restriction imposed
by Pauli theorem actually is. As we mentioned before, his argument would only forbid the
simultaneous existence of a bounded hamiltonian H responsible for generating continuous
shifts on the eigenvalues of a T operator cannonically conjugated to it. The assumption
that this would rule out every possibility of quantizing time in quantum theory sustained
over not a so solid foundation. We have, therefore, a pair of operators T and H, canonically
conjugated, that when measured over a large system described by a quasi-ideal clock state
|ψ(k0)〉 generate the statistics of a canonical pair, just like a time operator would do with
the hamiltonian. Besides that, the expected value of T covaries with the external time
with quite a small error. In fact, whichever is the gaussian deviation σ, it is demonstrated7

that ∆H∆T = 1
2 , saturating the Heisenberg uncertainty principle.

Another feature of this clock is its autonomous control, i.e., how well its dynamics
is not affected by the action of a external specific potential. Even though this is not a
property upon which we will rely very much, it is still worth mentioning to emphasize
how close the quasi-ideal clock states are from an ideal clock. For an ideal clock, with a
continuous distinguishable basis {|t〉} of eigenstates of the operator T =

∫∞
−∞ t |t〉 〈t| dt,

the change of the evolution generator from HC to HC + V (t), V (t) being an integrable
potential whose entries are functions of the eigenvalues t, leads only to a global phase. Let
|ψ〉 ∈ HC , then

〈t0|e−i(HC+V (t))t|ψ〉 = 〈t0 − t|e−iV (t)t|ψ〉 = 〈t0 − t|I− iV (t)t− V 2(t)t2
2! + ...|ψ〉 , (3.91)

and inserting the completeness relation I =
∫∞
−∞ dt |t〉 〈t| between the products V n(t) =

V · V · ..., we are led to

〈t0|e−i(HC+V (t))t|ψ〉 = e
−i
∫ t0
t0−t

V (t′)dt′ 〈t0 − t|ψ〉 . (3.92)

This leads us to the last lemma.

Lemma 3.3.3. (Autonomous quasi-control) Let HC be a d-dimensional Hilbert space and
|ψ(k0)〉 ∈ Λσ,n0 a quasi-ideal clock state whose dynamics is generated by the Hamiltonian
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HC . Let V (t) be a smoothviii external potential, diagonal in the time basis, given by

V = 2π
τ

d−1∑
k=0

V0

(
2πk
d

)
|θk〉 〈θk| . (3.93)

Then, the time translation generated by HC + V is given by

〈θk|e−i(HC+V )t|ψ(k0)〉 = e
−i
∫ k
k−td/τ Vd(t′)dt′ 〈θk|ψ(k0 + td/τ)〉+ 〈θk|εv〉 , (3.94)

with
| 〈θk|εv〉 | ≤ O

(
poly(d)e−

π
d
d
ξ

)
, d→∞, (3.95)

with ξ being a function inverselly proportional to the derivatives of V0.

This must answer the second question made at the end of Section 3.1. We are now
aware of how can we begin from local states ρS and ρC to obtain the global state G[ρ]
which is a solution for the constraint Eq. (3.33), and inherits a whole theoretical structure
from quantum resource theory of asymmetry in this process. We also know how should a
quantum clock work, and have access to a model of finite-size clock which can mimic the
properties of an ideal clock with a small error. We are able, from now on, to approach to a
Wigner’s Friend Scenario and observe the consequences of including a quantum clock in
its description. This is the main result of this work, and will be done in the next chapter.

viii i.e., an operator whose derivatives are all finite within integration limits.
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4 INTERNALIZING TIME IN WIGNER’S FRIEND SCENARIOS

Hitherto we introduced the sort of scenario we are interested in studying, high-
lighting its relevance to the foundations of quantum theory and listing some interesting
approaches that propose more or less convincing answers to the problem. We argued that,
if the friend inside the lab is in fact isolated, she must not share a quantum reference
frame with the external superobserver, and asked ourselves what could possibly arise from
this situation. Then, a brief introduction to some resource theoretical tools was made, and
also a short passage over the properties of the model of clock we are willing to insert to
the problem.

It is finally time to approach our problem. Section 4.1 will introduce our Wigner’s
Friend Scenario (WFS) and discuss how each observer is describing the state of the whole
lab. Section 4.2 will deal with the problem of internalizing the external time to the joint
system lab+clock. Section 4.3 will finally analyze our results and propose some other
approaches.

4.1 Model

Let us suppose a WFS constituted of a single lab. Inside the lab, there are at t = 0
a qubit with initial state |+〉 = 1√

2(|↑〉 + |↓〉) ∈ HS; an observer, labeled as Friend and
described in the Hilbert space HF with span(HF ) = {|⊥〉 , |↑〉 , |↓〉}, and an ideal clock
capable of tracking time in a way that G[ρ] = ρ(t), with t ∈ R. At the time t = tF , the
Friend is going to perform a measurement of σz over the system, describing the final state
of the whole lab (system+herself) as either |↑↑〉FS or |↓↓〉FS.

Outside the lab, a superobserver, called Wigner, is going to perform the measurment
of the global property

|ok〉 = cos
(
θ

2

)
|↑↑〉FS + eiφ sin

(
θ

2

)
|↓↓〉FS (4.1)

of the lab, at a time tW > tF . He, however, has no access to how time is passing inside the
lab, and can appeal just to a quasi-ideal clock such as the one described in Chapter 3. He
then will describe the relational lab state as

ρWSF (k) = TrC
{

(IFS ⊗ ΠC
k )G[ρFS ⊗ ρC ](IFS ⊗ ΠC

k )
Tr{(IFS ⊗ ΠC

k )G[ρFS ⊗ ρC ]}

}
, (4.2)

and for k > d tF
τ
, with τ being the period of the clock, he will calculate

PW (ok|k) = Tr{ΠFS
ok ρ

W
FS(k)}. (4.3)
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From the Friend’s viewpoint, the lab state becomes static once her measurement is
performed. The system will be thus in one of the product states previously enumerated,
and from her perspective, Wigner will observe the outcome ok with probability

PF (ok| ↑) = | 〈ok| ↑↑〉FS |
2, PF (ok| ↓) = | 〈ok| ↓↓〉FS |

2. (4.4)

Our main quantities are going to be the ∆’s, that represent the difference between the
Friend and Wigner’s predicions of the probability with which the outcome ok occurs. They
can be defined as

∆0(θ, φ) = PF (ok| ↑)− PW (ok|k); ∆1(θ, φ) = PF (ok| ↓)− PW (ok|k), (4.5)

and the paradox vanishes when
∆0 = ∆1 = 0, (4.6)

for any |ok〉 being measured.

A possible model for describing the entangling process between the system and the
Friend is such that

UFS
t =



1−Θ(t− tF ) 0 −iΘ(t− tF ) 0 0 0
0 1−Θ(t− tF ) 0 0 0 −iΘ(t− tF )

−iΘ(t− tF ) 0 1−Θ(t− tF ) 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 −iΘ(t− tF ) 0 0 0 1−Θ(t− tF )


, (4.7)

where Θ(t− tF ) is Heaviside’s step functioni. This would lead to an instantaneous transi-
tion as long as t > tF , but it is a too unrealistic description for what is happening in a
measurement.

We propose another model for the description of this measurement, given by
HSF ∈ B(HFS) such that

HFS = ω0(|↑↑〉 〈⊥↑|+ |⊥↑〉 〈↑↑|+ |↓↓〉 〈⊥↓|+ |⊥↓〉 〈↓↓|). (4.8)

This hamiltonian generates an evolution inside the lab such that

UFS
t = e−iHFSt =



cosω0t 0 −i sinω0t 0 0 0
cosω0t 0 0 0 −i sinω0t

−i sinω0t 0 cosω0t 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 −i sinω0t 0 0 0 cosω0t


. (4.9)

i Θ(t− tF ) = 1 if t > tF , 0, if t < tF and 1
2 , if t = tF .
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This is inspired by De Pasquale et al.69 Even though the authors appeal necessarily to
degenerate degrees of freedom of the pointers of the measurement apparatus (here, the
Friend) in order to rule out the periodic behavior of the evolution, this is not precisely the
appropriate framework for our WFS. Decoherence would introduce a state reduction to
Wigner’s perspective also, and the insertion of a clock would then become obsolete. Anyway,
Wigner here is a superobserver, which means he is capable of distinguishing any degree of
freedom of the Friend. So the evolved state of the lab, given ρFS(0) = |⊥〉 〈⊥|F ⊗ |+〉 〈+|S,
will be given by

UFS
t ρFS(0)UFS†

t = 1
2



cos2 ω0t cos2 ω0t
i
2 sin 2ω0t 0 0 i

2 sin 2ω0t

cos2 ω0t cos2 ω0t
i
2 sin 2ω0t 0 0 i

2 sin 2ω0t

− i
2 sin 2ω0t − i

2 sin 2ω0t sin2 ω0t 0 0 sin2 ω0t

0 0 0 0 0 0
0 0 0 0 0 0

i
2 sin 2ω0t − i

2 sin 2ω0t sin2 ω0t 0 0 sin2 ω0t


, (4.10)

which will actually describe the entangling process |⊥〉F ⊗ |+〉S → |Φ+〉FS ii only for
t =

(
m+ 1

2

)
π
ω0
. So if there is a way that Wigner’s clock can detect k =

(
m+ 1

2

)
πd
ω0τ

, then
he can properly describe this entangling process through his quasi-ideal clock.

4.2 Symmetrization

Let us now assume that Wigner describes the initial state of his whole universe
(lab+clock) as the tripartite product state

ρ(0) = |⊥〉 〈⊥|F ⊗ |+〉 〈+|S ⊗ |ψ(0)〉 〈ψ(0)|C , (4.11)

where |ψ(0)〉 is the quasi-ideal clock state introduced in the last chapter, with k0 = 0.
Global time translations are going to be generated by the non-interacting hamiltonian

H = HFS ⊗ IC + IFS ⊗HC , (4.12)

between the lab and the clock, where HFS is given by Eq. (4.8) and HC is the Salecker-
Wigner-Peres clock hamiltonian given in equation 3.70. This non-interacting approach
allows us to split the unitary Ut in two, each one acting in a part, so that

ρ(t) ≈ ρFS(t)⊗ |ψ(td/τ)〉 〈ψ(td/τ)|C , (4.13)

where ρFS(t) is given by Eq. (4.10), and we assumed a clock large enough so the error
given by lemma 3.3.1 can be properly neglected. Explicitly,

|ψ(td/τ)〉 〈ψ(td/τ)| =
∑

k,k′∈Sd(td/τ)
|A|2e−

π
σ2 (k−td/τ)2

e−
π
σ2 (k′−td/τ)2

ei2πn0(k−k′)/d |θk〉 〈θk′| .

(4.14)
ii Here, |Φ±〉 = 1√

2(|↑↑〉 ± |↓↓〉) are Bell states.
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By completing the square, we can write

|ψ(td/τ)〉 〈ψ(td/τ)| =
∑

k,k′∈Sd(td/τ)
|A|2e−

π
2σ2 (k−k′)2

ei2πn0(k−k′)/de
− π
σ2

(√
2d
τ
t− k+k′√

2

)2

|θk〉 〈θk′ | .

(4.15)

The G-twirling operation is given by

G[ρ] = lim
T→∞

1
T

∫ T

−T
ρ(t)dt, (4.16)

and we can write the lab state as ρFS(t) = ∑
i,j fij(t) |i〉 〈j|, where |i〉, |j〉 are representations

of the HFS basis that we have been using so far, and fij(t) are the non zero entries of
matrix Eq. (4.10), given by linear combinations of the functions 1 and e±i2ω0t, such that

fij(t) = cos2(ω0t) = 1
2

(
1 + ei2ω0t + e−i2ω0t

2

)
; (4.17)

fij(t) = sin2(ω0t) = 1
2

(
1− ei2ω0t + e−i2ω0t

2

)
; (4.18)

fij(t) = sin(2ω0t) = 1
2i
(
ei2ω0t − e−i2ω0t

)
. (4.19)

Hence

G[ρ]ij ≤ lim
T→∞

|A|2σ
2
√

2T

∫ T

−T

∑
k,k′∈Sd(td/τ)

e−
π

2σ2 (k−k′)2
ei2πn0(k−k′)/d

×

e− π
σ2

(√
2d
τ
t− k+k′√

2

)2

fij(t)
 |θk〉 〈θk′| dt.

(4.20)

where we appealed to the clock property that

〈ψ(k0)|ψ(k0)〉 ≤ |A|2
(
σ√
2

+ ε1 + ε2

)
, (4.21)

and both errors ε1 and ε2 are exponentially vanishing with respect to the clock size d as
long as σ ≥

√
d (see Appendix A). Indeed, |A|2 is nearly constant in time for a large clock,

as it can be seen in Figure 5. Notice also from the plots that |A|2 ≈
√

2
σ

(for d = 8, for
example, σ =

√
d implies |A|2 =

√
2√
8 = 0.5), and henceforth the ordering relation ≥ is

going to be treated as a strict equality from now on.
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Figure 5 – Normalizing factor values as functions of time for σ ≥ d, given (A) d = 8 and
(B) d = 100.

Source: By the author.

The term between brackets in Eq. (4.20) is appearently the only part of the sum-
mation that is time dependent. However, looking closely, the summation boundaries given
by Sd(k0) are time dependent, and thus we cannot simply commute the integration with
this summation. We must then analyze how Sd(td/τ) changes with t.

First, notice that

Sd(td/τ) =
{
k ∈ Z| − d

2 ≤ k − td

τ
<
d

2

}
=
{
k ∈ Z|t− τ

2 ≤
kτ

d
< t+ τ

2

}
. (4.22)

Hence, if d = 2, we have for t = 0

S2(0) = {k ∈ Z| − τ/2 ≤ kτ/2 < τ/2} = {k ∈ Z| − 1 ≤ k < 1} = {−1, 0}. (4.23)

If t = τ/2, in its turn,

S2(1) = {k ∈ Z|τ/2− τ/2 ≤ kτ/2 < τ/2 + τ/2} = {k ∈ Z|0 ≤ k < 2} = {0, 1}. (4.24)

Now notice that, if t is infinitesimally greater than 0, then t− τ/2 will be greater then
−τ/2, and so the value k = −1 fits no longer in the set S2(2t/τ). Withal, the value t+ τ/2
will be greater then τ/2, and so the value 1 is now included in the set. Therefore,

S2(dt/τ) = S2(0), t ∈ (−τ/2, 0]; S2(dt/τ) = S2(1), t ∈ (0, τ/2]; ... (4.25)

In the same way, if d = 3, we have t = 0

S3(0) = {k ∈ Z+ 1
2 | − τ/2 ≤ kτ/3 < τ/2} =

{
−3

2 ,−
1
2 ,

1
2

}
. (4.26)
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When t = τ/3, then

S3(1) = {k ∈ Z+ 1
2 | − τ/6 ≤ kτ/3 < 5τ/6} =

{
−1

2 ,
1
2 ,

3
2

}
. (4.27)

And with the same discussion, it is possible to realize that if t→ 0+, then S3(3t/τ) does
not include k = −3/2, but will include k = 3/2. Therefore,

S3(td/τ) = S3(0), t ∈ (−τ/3, 0]; S3(td/τ) = S3(1), t ∈ (0, τ/3]; ... (4.28)

Generalizing this discussion for any d,

Sd(td/τ) = Sd(n), t ∈
(
τ

d
(n− 1), τ

d
n
]
, n ∈ Z, (4.29)

where Sd(n) is the set d integers (if d is even) of half integers (if d is odd) centered around
n. That way,

G[ρ]ij = lim
T→∞

|A|2σ
2
√

2T

Td/τ∑
n=−Td/τ

∫ τ
d
n

τ
d

(n−1)

∑
k,k′∈Sd(n)

e−
π

2σ2 (k−k′)2
ei2πn0(k−k′)/d

×

e− π
σ2

(√
2d
τ
t− k+k′√

2

)2

fij(t)
 |θk〉 〈θk′| dt.

(4.30)

Now that the boundaries of the summation over k, k′ do not depend on time anymore, we
can commute the integration with the summation. Defining N := Td/τ , we finally get

G[ρ]ij = lim
N→∞

|A|2σd
2
√

2τN

N∑
n=−N

∑
k,k′∈Sd(n)

e−
π

2σ2 (k−k′)2
ei2πn0(k−k′)/d |θk〉 〈θk′|

×
∫ τ

d
n

τ
d

(n−1)
e
− π
σ2

(√
2d
τ
t− k+k′√

2

)2

fij(t)dt.
(4.31)

Let us now transform the elements of the basis which constitutes fij(t). Begining
with fij(t) = 1, ∫ τ

d
n

τ
d

(n−1)
e
− π
σ2

(√
2d
τ
t− k+k′√

2

)2

dt, (4.32)

and with a simple change of variable u =
√
π
σ

[√
2d
τ
t− k+k′√

2

]
,

∫ τ
d
n

τ
d

(n−1)
e
− π
σ2

(√
2d
τ
t− k+k′√

2

)2

dt = στ

2
√

2d

{
erf
[√

2π
σ

(
n− k + k′

2

)]

−erf
[√

2π
σ

(
n− 1− k + k′

2

)]}
,

(4.33)

where
erf(x) = 2

π

∫ x

0
e−t

2
dt (4.34)
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is the error function.

In the same sense, when fij(t) = e±i2ω0t, then we ought to solve

∫ τ
d
n

τ
d

(n−1)
e
− π
σ2

(√
2d
τ
t− k+k′√

2

)2

e±i2ω0tdt. (4.35)

By completing the square and performing a change of variable, and adopting

Γ = ω0τσ√
2πd

(4.36)

as a substantial value associated to this integration, we have

∫ τ
d
n

τ
d

(n−1)
e
− π
σ2

(√
2d
τ
t− k+k′√

2

)2

e±i2ω0tdt = στe−Γ2

2
√

2d
e±i
√

2πΓ(k+k′)/σ
{
erf
[√

2π
σ

(
n− k + k′

2

)
± iΓ

]

−erf
[√

2π
σ

(
n− 1− k + k′

2

)
± iΓ

]}
.

(4.37)

Since the relative lab state that Wigner describes is associated to a projection
of G[ρ] over a subspace |θK〉 〈θK |, it is convenient to study what is happening with the
diagonal elements of G[ρ] in the clock space. Let us look first to the behavior of the
symmetrization of fij(t) = 1. We have

G[fij(t) = 1] = lim
N→∞

|A|2σ2

8N

N∑
n=−N

∑
k,k′∈Sd(n)

|θk〉 〈θk′ | e−
π

2σ2 (k−k′)2
ei2πn0(k−k′)/d

×
{
erf
[√

2π
σ

(
n− k + k′

2

)]
− erf

[√
2π
σ

(
n− 1− k + k′

2

)]}
.

(4.38)

Now, let us assume d = 2, and also that we are willing to project our state to the clock
subspace associated to K = 0, i.e., the projection |θ0〉 〈θ0|. There are just two sets which
include the pointer |θ0〉, namely, S2(0) = {−1, 0} and S2(1) = {0, 1}. In this case, the
summation component over the set S2(0) refering to the entry |θ0〉 〈θ0| will be given by

erf
[√

2π
σ

(0)
]
− erf

[√
2π
σ

(−1)
]

; (4.39)

while the summation component over S2(1) referring to this entry is

erf
[√

2π
σ

(1)
]
− erf

[√
2π
σ

(0)
]
. (4.40)

Adding these two terms, we get

2erf
[√

2π
σ

]
. (4.41)
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If we now look to K = 1, we notice that there are again only two sets including
the vector |θ1〉: S2(1) = {0, 1} and S2(2) = {1, 2}. Looking to the summation components,
we get

S2(1) : erf
[√

2π
σ

(0)
]
− erf

[√
2π
σ

(−1)
]

; (4.42)

S2(2) : erf
[√

2π
σ

(1)
]
− erf

[√
2π
σ

(0)
]
. (4.43)

totalizing

2erf
[√

2π
σ

]
. (4.44)

If we now assume d = 4, and look for the clock subspace K = 0, there will be 4
sets including the vector |θ0〉: S4(−1), S4(0), S4(1) e S4(2). By repeting the procedure, the
summation components result in

S4(−1) : erf
[√

2π
σ

(−1)
]
− erf

[√
2π
σ

(−2)
]

; (4.45)

S4(0) : erf
[√

2π
σ

(0)
]
− erf

[√
2π
σ

(−1)
]

; (4.46)

S4(1) : erf
[√

2π
σ

(1)
]
− erf

[√
2π
σ

(0)
]

; (4.47)

S4(2) : erf
[√

2π
σ

(2)
]
− erf

[√
2π
σ

(1)
]
, (4.48)

and they thus add to

2erf
[
2
√

2π
σ

]
. (4.49)

We can hence conclude that the value associated to the the projection |θK〉 〈θK |
for fij(t) = 1 does not depend K, but only on the clock size, yielding to

2erf
[√

2π
σ

d

2

]
. (4.50)

Note also that the component |θK+md〉 〈θK+md| is indistinguishable from the component
|θK〉 〈θK |, and thus for each K +md terms of the summation n, there is a new term given
by Eq. (4.50) being added to the total value of the component, summing up to 2N/d
terms. This results in

ΠC
KG[fij(t) = 1]ΠC

K = lim
N→∞

|A|2σ2

8N
2N
d

2erf
[√

2π
σ

d

2

]
= |A|

2σ2

2d erf
[√

2π
σ

d

2

]
. (4.51)
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Similarly, we can analyze the behavior of the elements G[fij(t) = e±i2ω0t]. Explicitly,

G[fij(t) = e±i2ω0t] = lim
N→∞

|A|2σe−Γ2

4
√

2d
e±i

√
2π
σ

Γ(k+k′)
{
erf
[√

2π
σ

(
n− k + k′

2

)
± iΓ

]

−erf
[√

2π
σ

(
n− 1− k + k′

2

)
± iΓ

]}
,

(4.52)

Let us assume again d = 2, and that we are going to perform a projetion over the subspace
K = 0. Once more, only two sets contain terms |θ0〉 〈θ0|, which are S2(0) e S2(1). By
repeting the previous procedure, we get

S2(0) : erf
[√

2π
σ

(0)± iΓ
]
− erf

[√
2π
σ

(−1)± iΓ
]

; (4.53)

S2(1) : erf
[√

2π
σ

(1)± iΓ
]
− erf

[√
2π
σ

(0)± iΓ
]
, (4.54)

that add to

erf
[√

2π
σ
± iΓ

]
+ erf

[√
2π
σ
∓ iΓ

]
. (4.55)

Repeting these steps for d = 2 e K = 1,

S2(1) : e±i
√

2π
σ

Γ(2)
{
erf
[√

2π
σ

(0)± iΓ
]
− erf

[√
2π
σ

(−1)± iΓ
]}

; (4.56)

S2(2) : e±i
√

2π
σ

Γ(2)
{
erf
[√

2π
σ

(1)± iΓ
]
− erf

[√
2π
σ

(0)± iΓ
]}

, (4.57)

leading to

e±i
√

2π
σ

2Γ
{
erf
[√

2π
σ
± iΓ

]
+ erf

[√
2π
σ
∓ iΓ

]}
. (4.58)

We can thus see that |θK〉 〈θK | para fij(t) = e±i2ω0t depends on K and on the clock size,
such that

e±i2
√

2π
σ

ΓK
{
erf
[√

2π
σ

d

2 ± iΓ
]

+ erf
[√

2π
σ

d

2 ∓ iΓ
]}

. (4.59)

Furthermore, we must take into account the indistinguishability between K and
k = K+md, m ∈ Z, yielding to a new term being added to |θK〉 〈θK | for each m. Therefore

ΠC
KG[fij(t) = e±i2ω0t]ΠC

K = lim
N→∞

|A|2σ2e−Γ2

4N e±i2
√

2π
σ

ΓKRe
{
erf
[√

2π
σ

d

2 ± iΓ
]}

×
N/d∑

m=−N/d
e±i2

√
2π
σ

Γmd.

(4.60)
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Notice now that the summation on m will vanish when the limit is taken, unless
e±i2

√
2π
σ

Γmd = 1, for any m ∈ Z. This condition implies that
√

2π
σ

Γd = qπ ⇐⇒ ω0τ = qπ, q ∈ Z (4.61)

that is, ω0 = q
2ω. Notice that this is precisely the condition presented in the last paragraph

of Sec. 4.1: if ω0τ = qπ, then the instant of time that Wigner is supposed to detect the
measurement is going to be described as K =

(
m+ 1

2

)
πd
ω0τ

=
(
m+ 1

2

)
d
q
. Then, for a given

experimental setup in which ω0τ = qπ, there will always be m such that K is an integer,
and this detection is possible. Out of this resonance, Wigner is never allowed to detect
the instant of time for which the lab system completed the entanglement, and will always
describe the lab as a mixed state.

So, in this resonant regime, the summation becomes ∑N/d
m=−N/d e

±i2
√

2π
σ

Γmd = 2N
d

+ 1,
and therefore

ΠC
KG[fij(t) = e±i2ω0t]ΠC

K =


|A|2σ2e−Γ2

2d e±i2
√

2π
σ

ΓKRe
{
erf
[√

2π
σ

d
2 ± iΓ

]}
, if ω0 = q

2ω;

0, otherwise
.

(4.62)

From these expressions, we can reconstruct the operator (IFS⊗ΠC
K)G[ρ](IFS⊗ΠC

K).
The non zero entries of this matrix are either cos2 ω0t, sin2 ω0t or i

2 sin 2ω0t. Hence,

ΠC
KG[cos2 ω0t]ΠC

K = 1
2ΠC

KG[1]ΠC
K + 1

4(ΠC
KG[ei2ω0t]ΠC

K + ΠC
KG[e−i2ω0t]ΠC

K); (4.63)

ΠC
KG[sin2 ω0t]ΠC

K = 1
2ΠC

KG[1]ΠC
K −

1
4(ΠC

KG[ei2ω0t]ΠC
K + ΠC

KG[e−i2ω0t]ΠC
K); (4.64)

ΠC
KG[sin 2ω0t]ΠC

K = 1
2i(Π

C
KG[ei2ω0t]ΠC

K − ΠC
KG[e−i2ω0t]ΠC

K), (4.65)

where IFS ⊗ ΠC
K was abreviated by ΠC

K . Out of ressonance, then, we got a relative state

ρWFS(K) = TrC
{

(IFS ⊗ ΠC
K)G[ρ](IFS ⊗ ΠC

K)
Tr{(IFS ⊗ ΠC

K)G[ρ]}

}
= 1

4



1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 1


. (4.66)
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So the clock is not properly keeping track of the external time, and everything Wigner
can tell is that the measurement inside the lab might have happened or not with equal
probabilities. However, when ω0 = q

2ω, then

ρWFS(K) = 1
4



1 +R(Γ, K) 1 +R(Γ, K) iQ(Γ, K) 0 0 iQ(Γ, K)
1 +R(Γ, K) 1 +R(Γ, K) iQ(Γ, K) 0 0 iQ(Γ, K)
−iQ(Γ, K) −iQ(Γ, K) 1−R(Γ, K) 0 0 1−R(Γ, K)

0 0 0 0 0 0
0 0 0 0 0 0

−iQ(Γ, K) −iQ(Γ, K) 1−R(Γ, K) 0 0 1−R(Γ, K)


, (4.67)

where, using the fact that
√

2π
σ

Γ = ω0τ
d

= qπ
d

when in resonance, we define

R(Γ, K) = e−Γ2 Re
{
erf
[√

2π
σ

d
2 + iΓ

]}
erf
[√

2π
σ

d
2

] cos
(2πqK

d

)
; Q(Γ, K) = R(Γ, 0) sin

(2πqK
d

)
.

(4.68)
Notice that, when K =

(
m+ 1

2

)
d
q
, the instant of time Wigner sees the entanglement being

completed, then
2πq
d
K = 2πq

d

d

q

(
m+ 1

2

)
= π(2m+ 1), (4.69)

and then cos(2πqK/d) = −1, for any m ∈ Z, resulting in

ρWFS

(
K =

(
m+ 1

2

)
d

q

)
= 1

4



1−R(Γ, 0) 1−R(Γ, 0) 0 0 0 0
1−R(Γ, 0) 1−R(Γ, 0) 0 0 0 0

0 0 1 +R(Γ, 0) 0 0 1 +R(Γ, 0)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 +R(Γ, 0) 0 0 1 +R(Γ, 0)


.

(4.70)
We therefore have obtained the relative state of the lab with respect to Wigner’s quasi-ideal
clock. It will be from this state that he is going to perform the measurement of |ok〉 and
compare with the predictions of the Friend. We emphasize once more that this analytical
approach is valid only under some assumptions: d is large enough so that e−πd4 is negligible,
and σ ≥

√
d so that the normalizing factor can be taken as a constant.

4.3 Results

Now that we have access to the relative state ρWFS(K), we can study the behavior
of the ∆’s, looking for conditions that rule out the paradox. If Wigner is going to measure
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the observable |ok〉 〈ok|, with

|ok〉 = cos
(
θ

2

)
|↑↑〉FS + eiφ sin

(
θ

2

)
|↓↓〉FS , (4.71)

then
PF (ok| ↑) = cos2

(
θ

2

)
; PF (ok| ↓) = sin2

(
θ

2

)
, (4.72)

the same situation we had in Sec. 4.1. Wigner, by its turn, will predict a probability

PW

(
ok|

(
m+ 1

2

)
d

q

)
= 1

4(1 + sin θ cosφ)(1 +R(Γ, 0)). (4.73)

It is clear, just by taking a quick look, that the condition ∆0 = ∆1 = 0 will not be satisfied
for any (θ, φ) characterizing |ok〉. Notice, however, that

∆0(1) = 1± cos θ
2 − 1

4

1 + e−(q√π
2
σ
d )2 Re

{
erf
[√

π
2
d
σ

+ iq
√

π
2
σ
d

]}
erf
[√

π
2
d
σ

]
 (1 + sin θ cosφ) (4.74)

does not depend on σ directly, but rather on the ratio σ/d, that can vary from 1√
d
to nearly

1 without violating the conditions for which our results are valid. For d = 100, for example,
σ
d
∈ [0.1, 1), and the transition can go as slow as ω0 = 0.5ω, so that the measurement will

be completed at K = 50, or as fast as ω0 = 25ω, for which the measurement occurs right
at K = 1. The values of (θ, φ) for which ∆0 and ∆1 are both null are given, for different
ω0 and σ, in Figure 6.
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Figure 6 – Values of θ and φ for which ∆0 (solid lines) and ∆1 (dashed lines) are 0. Red
lines refer to ω0 = 0.5ω and black ones to ω0 = 5ω, for ratio σ

d
equal to (A) 0.1,

(B) 0.35, (C) 0.7 and (D) 0.999.

Source: By the author.
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It is possible to see from Figure 6 that there are few points for which ∆0 = ∆1 = 0.
For σ =

√
d and ω0 = 0.5ω, for example, those points correspond to the observable

|ok〉 = 1√
2

(|↑↑〉FS ± i |↓↓〉FS), (4.75)

which are indeed the only observables that guarantee a consonant scenario between the
Friend and Wigner’s predictions with an ideal clock. As long as the measurement described
by Wigner becomes faster or the ratio σ

d
becomes closer to the unit, however, the only

observable capable of ruling out the paradox is

|ok〉 = 1√
2

(|↑↑〉FS + |↓↓〉FS). (4.76)

That is because, for a unitary process which is way faster than the clock or a large gaussian
spread σ, the function R(Γ, 0) responsible for modulating the consequences of the time
tracking exponentially vanishes, resulting on the mixed state given by Eq. (4.66). The
paradox for this observable indeed vanishes: while the Friend will predict a probability
1
2 for the detection of ok because she sees either |↑↑〉FS or |↑↑〉FS, Wigner will predict
the same probability for he sees a statistical mixture of the entangled state |Φ+〉 and the
initial state |⊥〉F ⊗ |+〉S.

It is interesting to analyze the shared asymmetry between the lab and the clock.
For this purpose, simulations were carried out in a way that we are allowed to work at
any value of σ ∈ (0, d) with just numeric errors associated. The values of AshG⊗G(ρ) can be
seen in Figure 7. It is clear how asymmetry is increased for time-squeezed states (σ <

√
d).

With these time-squeezed states, the expected value for energy n0 does not seem to have
any influence over how well the clock is tracking the evolution in the lab. For the sym-
metric state (σ =

√
d) and for energy-squeezed states (σ >

√
d), however, the population

distribution of the clock can initiate a small recovery of shared asymmetry. For σ → d, how-
ever, the clockwork mechanism is completely lost, which was expected from our previous
results, since this results in the mixed state between the entangled state and the initial state.
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Figure 7 – Shared asymmetry between the lab, evolving periodically, and the clock, as a
function of σ for different mean energies n0. For both plots, ω0 = ω, with (A)
d = 8 and (B) d = 100.

Source: By the author.

Furthermore, notice that the maximum amount of asymmetry shared between the
lab and the clock is still way bellow the upper bound for shared asymmetry,48 which is
log 6 ≈ 2.6 for clock sizes that allow the error in quasi-continuity to be neglected. This
could mean that either the quasi-ideal clock is not really working to keep track of time of
the lab dynamics, or shared asymmetry is not a good quantifyer for the physical property
responsible for making a functional clock. The maximum amount of shared asymmetry
slightly grows with the clock size, what does not mean in any sense that this upper bound
could be reached for d→∞. The decaying behavior of the curve clearly do not depend on
the dimension d, but rather with the ratio σ

d
that characterizes the prediction differences

∆0 and ∆1. The bigger the clock, the smaller the ratio σ
d
for a symmetric state, and since

this is the most ideal quasi-ideal state (in the sense that the decrease in errors associated
with lemmas 3.3.1, 3.3.2 and 3.3.3 is the fastest), the possibility of accessing the maximum
shared asymmetry available with such a state is a convenient feature.

The oddity with the relaxation that happens when σ → d is not quite clear. In this
regime, quasi-ideal states are strongly energy-squeezed, such that for d large enough and
integer n0

|ψ(k0)〉 =
∑

k∈Sd(k0)
Ae−

π
σ2 (k−k0)2

ei2πn0(k−k0)/d |θk〉 (4.77)

≈ e−i2πn0k0/d
1√
d

∑
k∈Sd(k0)

ei2πn0k/d |θk〉 (4.78)

= e−i〈H〉t |n0〉 , (4.79)
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with k0 = td/τ (see Apendix A). For states like these, any eigenvalue of T is equiprobable,
and it is quite odd to observe that energy-squeezed states can track time as well as states
with σ = d

2 , for instance.

One could claim that the transition given by Eq. (4.9) is still too unrealistic for a
description of a von Neumann measurement. In a real measurement, indeed, there is no
possibility of unmaking this entangled state. Since instantaneous transitions such as the
one given by Eq. (4.7) are also unrealistic, for every measurement has a finite duration,
one could assume an analytical transition such that

UFS
t = 1√

2



1−tanh(ω0t)√
1+tanh2(ω0t)

0 −i 1+tanh(ω0t)√
1+tanh2(ω0t)

0 0 0

0 1−tanh(ω0t)√
1+tanh2(ω0t)

0 0 0 −i 1+tanh(ω0t)√
1+tanh2(ω0t)

−i 1+tanh(ω0t)√
1+tanh2(ω0t)

0 1−tanh(ω0t)√
1+tanh2(ω0t)

0 0 0

0 0 0
√

2 0 0
0 0 0 0

√
2 0

0 −i 1+tanh(ω0t)√
1+tanh2(ω0t)

0 0 0 1−tanh(ω0t)√
1+tanh2(ω0t)


,

(4.80)
where ω0 again defines how instantaneous is the measurement, and it is assumed the
instant of time the Friend performs its measurement to be tF = 0. The transition described
by Eq. (4.9) imposed a constraint relating ω0 to ω because it was suposed to halt at a
certain instant of time — otherwise, the measurement would be unmade. The transition
described above does not allow the unmaking of a measurement, and thus will not impose
any constraint over ω0. This evolution would result in a lab state for arbitrary time t given
by

ρFS(t) =



(1−tanh(ω0t))2

4(1+tanh2(ω0t))
(1−tanh(ω0t))2

4(1+tanh2(ω0t))
i sech2

(ω0t)
4(1+tanh2(ω0t))

0 0 i sech2
(ω0t)

4(1+tanh2(ω0t))
(1−tanh(ω0t))2

4(1+tanh2(ω0t))
(1−tanh(ω0t))2

4(1+tanh2(ω0t))
i sech2

(ω0t)
4(1+tanh2(ω0t))

0 0 i sech2
(ω0t)

4(1+tanh2(ω0t))

−i sech2
(ω0t)

4(1+tanh2(ω0t))
−i sech2

(ω0t)
4(1+tanh2(ω0t))

(1+tanh(ω0t))2

4(1+tanh2(ω0t))
0 0 (1+tanh(ω0t))2

4(1+tanh2(ω0t))

0 0 0 0 0 0
0 0 0 0 0 0

−i sech2
(ω0t)

4(1+tanh2(ω0t))
−i sech2

(ω0t)
4(1+tanh2(ω0t))

(1+tanh(ω0t))2

4(1+tanh2(ω0t))
0 0 (1+tanh(ω0t))2

4(1+tanh2(ω0t))


.(4.81)

Values of shared asymmetry for this model of measurement are almost negligible,
with an order of magnitude of 10−4 for d = 8, even for smooth transitions (ω0 = ω),
as it can be seen at Figure 8. This leads to the scenario given by the mixed state
ρFS(K) = 1

2ρFS(0) + 1
2 |Φ+〉 〈Φ+| once more, and the only observable ok Wigner is allowed

to measure without disagreeing from the Friend is |ok〉 = |Φ+〉. It therefore indicates how
the model for the measurement is not the problem, since we are obtaining the same result
for different entangling hamiltonians.
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Figure 8 – Shared asymmetry between the lab, evolving non periodically, and the clock,
as a function of σ for different mean energies n0. For both plots, d = 8, with
(A) ω0 = ω and (B) ω0 = 4ω.

Source: By the author.

Still, there is always a possibility of performing G-covariant channels over the
clock in order to obtain a final state as close to |↑↑〉 〈↑↑| ⊗ ρC or |↓↓〉 〈↓↓| ⊗ ρC as the-
orem 3.2.2 provides. However, adding the system ρFS(0) is not a G-covariant channel,
since it is an asymmetric state for any entangling hamiltonian we provide, and thus
ρFS(0)⊗ G[ρC ] 6= G[ρFS(0)⊗ ρC ]. Furthermore, projections can hardly be defined as free
operations. In fact, it has recently been proved that projective measurements cost infinite
resources to be performed,70 so this can also be a source of paradox: introduce uncertainty
not only over the measurement of time, but also over any measurement, might rule out
the paradox for any observable other than the |ok(θ, φ)〉 highlighted above.
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5 CONCLUSIONS AND FURTHER WORK

This work focused on studying how a proper measurement of time by quantum
clocks could affect the paradox that arises in a Wigner’s Friend Scenario. After adopting a
model for describing a WFS constituted of a single lab, where the internal observer would
perceive a proper wave reduction, while the external observable described the measurement
as a von Neumann measurement, we adopted a model for a feasible quantum clock that
can reproduce properties of an ideal clock up to vanishing errors, and with respect to which
the outer superobserver is supposed to track time. We internalized time with the formalism
provided by the theory of quantum reference frames, quantifying how well the quasi-ideal
clock was keeping track of the dynamics in the lab with a monotone provided by quantum
resource theory of asymmetry, noticing that the clock operation is strongly dependent on
the entangling hamiltonian that generates the von Neumann measurement inside the lab.
Shared asymmetry, the quantifyer adopted for telling how well the clock is working, proved
to be also dependend on the clock size, optimizing its maximum value for increasing d.
The uncertainty of the gaussian spread that characterizes the quasi-ideal clock does not
have a direct influence over the clock functioning, but rather the ratio σ

d
. This ratio also

has an influence over the possible observables the outter observer can measure without
disagreeing with the inner friend with respect to the probability of detecting the outcome ok.

The procedure of internalizing time did not rule out the paradox for any observable
|ok〉 of a global lab property, but rather for specific observables characterized by the angles
(θ, φ). Under the circumstances for which the quasi-ideal clock is functionally keeping
track of the lab’s dynamics, for a periodic evolution happening inside the lab, the problem
behaves exactly as the WFS with an ideal clock. With the uncertainty over the quasi-ideal
clock approaching its upper bound, timing is lost and the outer observable is left with a
statistical mixture between the initial state and the entangled state that represents the
von Neumann measurement, also not ruling out the paradox for any |ok〉. In other words,
the insertion of a feasible clock with an intrinsic uncertainty is not enough to simulate the
decoherence that represents the final step of a measurement. Indeed, as it is clarified by
Żukowski and Markiewicz,29 a complete quantum measurement is divided in

1. Pre-measurement, described as the von Neumann measurement;

2. Decoherence, where coherences are erased by interaction with uncontrolled degrees
of freedom of the environment.

If the insertion of the clock was capable of generating decoherence, the incresing of d
would certainly force the paradox to vanish, at least if the internal friend performed a
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non-selective measurement, and thus described the lab state as a statistical mixture of
|↑↑〉 and |↓↓〉. It does not seem to be the case, even though the clock has uncontrolled
degrees of freedom, represented here by the gaussian uncertainty σ.

There are some issues to be taken into account, however, if decoherence is to be
considered a central feature of quantum theory, and not a phenomenon that may occur in
some situations. First is the well known discussion of decoherence being a for all practical
purposes (FAPP) sort of answer for the measurement problem, once if humankind refine
its measurement skills to include every degree of freedom of the environment, no outcome
would ever be detected. Under Zurek’s decoherence program, the information lost with
a wave reduction is actually just stored in the environment, and a skillful experimental-
ist could be capable of unmaking a measurement. In order to avoid this argument, the
Montevideo Interpretation already proposed how uncertainties in time and lenght mea-
surements are fundamental.30 Indeed, the uncertainty in time measurements in our WFS
proved to be capable of controling which measurement Wigner is allowed to perform with-
out disagreeing from his friend. Those uncontrolled degrees of freedom, here represented
as a classical error generator, have proved to be relevant for the development of the problem.

The choice of inserting a single quasi-ideal clock, to which just the external observer
had access, can be questioned as a source of paradox. This choice reflects the assumption
that, inside the lab, any degree of freedom was perfectly controled. If the internal observer
had access to another quasi-ideal clock, its uncertainty σ would represent uncontrolled
degrees of freedom inside the isolated lab, which was not compatible with the description
we intented to make. Any decoherence that could possibly emerge should come from
the lack of knowledge Wigner had on how time was passing inside it. Furthermore, we
assume Wigner’s perspective as the priorized one, and the friend in question would be
experimentally described as a second quantum system inside the lab.29 One could adopt
the inverse scenario, where the inner friend had access to a quasi-ideal quantum clock
while the outer observer would have access to an ideal one. This might raise the decoherent
behavior inside the lab. A scenario for which both the internal and the external observer
had access to quasi-ideal clock states would be more complex, since we would be dealing
with multipartite states. Any scenario for which both of them had access to the same clock,
quasi-ideal or not, or to different clocks synchronized between themselves, would violate
the definition of an isolated lab, for Wigner would have ways to percieve and influence
what was happening inside the lab by interecting with the shared clock or time reference
frame. If the lab is ideally isolated, the only period of time in which Wigner has access to
its content is during his measurement.
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Another source of paradox could be the global measurement performed by Wigner,
or even the clock measurement ΠC

K from which he constructs the relational lab state
ρWFS(K). As argued before, these measurements are not G-covariant channels, and thus
cannot be performed under a SSR over time without access to an asymmetric state. This
is indeed reasonable since no measurement inside a lab is infinitely precise.

One way of avoiding the paradox is simply giving up on consistency between pre-
dictions provided for the observers in quantum theory. This was an assumption made both
by Frauchiger and Renner6 and by Brukner12 for the derivation of their no-go theorems.
In our discussion, this means that the constraint given by Eq. (4.6) can be abandoned,
and therefore Wigner is allowed to perform any measurement |ok〉 he is capable of. Indeed,
it can be argued that both observers have access to different parts of the universe, and
thus there is no point on demanding them to provide the same probability distributions.
Many current interpretations of Quantum Mechanics in fact give up on self consistency
within the theory, and a recent work provides an enforcement on how objectivity of a
measurement becomes subjetive with respect to the adopted quantum reference frame.71

Our results thus might reinforce the no-go theorems of Frauchiger and Renner and of
Brukner.

Anyway, the greatest feature of this work is that the quasi-ideal clock in fact proved
to be a good model for a quantum clock, that can emulate every property of an ideal clock
with sharp precision. Even without infinitesimal control of every degree of freedom of the
clock (a classical uncertainty represented by σ), for any time-squeezed and symmetric
clock state (σ ≤ d) the periodic Wigner’s Friend Scenario evolution would go sharply close
to the scenario with an ideal clock, given the correct regime of slow entangling evolution
inside the lab. More than that, this behavior was recovered even without saturating the
upper bound on the shared asymmetry, which might indicate that a tighter upper bound
could be derived from Carmo and Soares-Pinto’s result.48,72 Further analysis of information
storage between the parties could also lead to clues on why the ressonant clock works even
without maximum shared asymmetry between them, and also a careful study of the charge
sectors that arise from the SSR imposed over this universe by the global hamiltonian,
and how internal entanglement might be optimizing the clock functioning. These analyses
could also explain why the clock would not work for the non periodic scenario, since the
charge sectors could change from one scenario to another.
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APPENDIX A – USEFUL PROPERTIES OF QUASI-IDEAL CLOCK STATES

This appendix intent to showcase the proofs for secondary properties of quasi-ideal
clock states that are most useful to our discussion. Lemmas 3.3.1, 3.3.2 and 3.3.3 are
proved in the original article7 by appealing majorly to the following properties. Derivations
are all extracted from the main article, here made in a slower pace.

A.1 Upper bound for gaussian summations

First of all, we want to show that

∞∑
n=a

e−
(n−X)2

∆2 <
e−

(a−X)2

∆2

1− e−
2(a−X)2

∆2

, ∀a > X ∈ R. (A.1)

Changing the dumb index n→ m = n− a, we have
∞∑
n=a

e−
(n−X)2

∆2 =
∞∑
m=0

e−
(m+a−X)2

∆2 = e−
(a−X)2

∆2
∞∑
m=0

e−
2(a−X)m

∆2 e−
m2
∆2 . (A.2)

Notice, however, that e−
m2
∆2 < 1, for m ≥ 0 e ∆ ∈ R, so

e−
2(a−X)m

∆2 e−
m2
∆2 < e−

2(a−X)m
∆2 . (A.3)

This leads to ∞∑
m=0

e−
2(a−X)m

∆2 e−
m2
∆2 <

∞∑
m=0

e−
2(a−X)m

∆2 = 1
1− e−

2(a−X)
∆2

, (A.4)

where we appealed in the last step to the the fact that the summation was a telescoping
series for any a > X. Therefore,

∞∑
n=a

e−
(n−X)2

∆2 = e−
(a−X)2

∆2
∞∑
m=0

e−
2(a−X)m

∆2 e−
m2
∆2 <

e−
(a−X)2

∆2

1− e−
2(a−X)

∆2
, ∀a > X ∈ R. (A.5)

A.2 Upper bound for normalizing factor

Given
|ψ(k0)〉 =

∑
k∈Sd(k0)

Ae−
π
σ2 (k−k0)2

e−i2π(k−k0)/d |θk〉 , (A.6)

we got
〈ψ(k0)|ψ(k0)〉 = |A|2

∑
k∈Sd(k0)

e−
2π
σ2 (k−k0)2

. (A.7)

Expanding this summation over the whole set Z,

〈ψ(k0)|ψ(k0)〉 = |A|2
∑
k∈Z

e−
2π
σ2 (k−k0)2 + ε1

 , (A.8)



86

where

|ε1| =
∑

k∈Z/Sd(k0)
e−

2π
σ2 (k−k0)2 = 2

∞∑
k−k0=d/2

e−
2π
σ2 (k−k0)2

<
2e−

πd2
2σ2

1− e−
2πd
σ2

:= ε̄1, (A.9)

and we used the result given in subsection A.1. Let us now appeal to Poisson summation
formula, which states that any function f that have a continuous Fourier transform f̂

must then satisfy the identity
∑
n∈Z

f(n) =
∑
k∈Z

f̂(k). (A.10)

Let us take a look to the function that constitutes the argument in summation A.8. Its
continuous Fourier transform is given by∫ ∞

−∞
e−

2π
σ2 (k−k0)2

e−i2πkmdk = e−i2πk0m
∫ ∞
−∞

e−
2π
σ2 (k−k0)2

e−i2π(k−k0)mdk = (A.11)

e−i2πk0me−
πσ2

2 m2
∫ ∞
−∞

e
−
(√

2π
σ

(k−k0)+iσ
√

π
2m

)2

dk,

where we completed the square. Making the obvious variable substitution

u =
√

2π
σ

(k − k0) + iσ

√
π

2m; du =
√

2π
σ

dk, (A.12)

this leads to ∫ ∞
−∞

e−
2π
σ2 (k−k0)2

e−i2πkmdk = σ√
2
e−

πσ2
2d2

(md)2
e−i2πk0(md)/d. (A.13)

Therefore,

〈ψ(k0)|ψ(k0)〉 = |A|2
∑
k∈Z

e−
2π
σ2 (k−k0)2 + ε1

 (A.14)

= |A|2
∑
m∈Z

σ√
2
e−

πσ2
2d2

(md)2
e−i2πk0(md)/d + ε1

 (A.15)

= |A|2
(
σ√
2

+ ε2 + ε1

)
, (A.16)

where

|ε2| =
∑

m∈Z−{0}

σ√
2
e−

πσ2
2d2

(md)2
e−i2πk0(md)/d (A.17)

<
σ√
2

∑
m∈Z−{0}

e−
πσ2
2d2

(md)2 (A.18)

= 2 σ√
2

∞∑
m=1

e−
πσ2
2d2

(md)2 (A.19)

<
2σ√

2
e−

πσ2
2

1− e−πσ2 := ε̄2. (A.20)
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A.3 Definitions for quasi-ideal clock states and representation w.r.t. energy basis

Definition A.3.1. (Distance of mean energy with respect to spectrum boundaries) Let
α0 ∈ (0, 1] ⊂ R. It is a parameter that quantifies how close n0 is from the spectrum
boundaries, 0 or d− 1, and is given by

α0 =
( 2
d− 1

)
min{n0, (d− 1)− n0} = 1−

∣∣∣∣1− n0

( 2
d− 1

)∣∣∣∣ , (A.21)

where we used min(a, b) = (a + b− |a− b|)/2. Notice that, when n0 = 0 ou n0 = d− 1,
then α0 = 0. When n0 = (d− 1)/2, on the other hand, then α0 = 1.

Definition A.3.2. (Analytical extension for clock states) For every |ψ(k0)〉 ∈ Λσ,n0 , it can
be defined a function ψ : R→ C such that

ψ(k0; k) = 〈θk|ψ(k0)〉 = Ae−
π
σ2 (k−k0)2

ei2πn0(k−k0)/d, (A.22)

with k ∈ Sd(k0) and the property ψ(k0; k + y) = ψ(k0 − y, k).

Definition A.3.3. (Classification for quasi-ideal clock states) Let |ψ(k0)〉 ∈ Λσ,n0 . It is
said that |ψ(k0)〉 is either

• symmetric, for σ =
√
d;

• time squeezed, for σ <
√
d;

• energy squeezed, σ >
√
d.

Furthermore, if n0 = d−1
2 , the adverb completely is added to the previous definition.

Definition A.3.4. (Continuous Fourier transform) Let ψ : R → C be the analytical
extension for a clock state. Then, ψ̄ : R→ C is the continuous Fourier transform of ψ,

ψ̄(k0, p) := 1√
d

∫ ∞
−∞

ψ(k0, x)e−i2πpx/ddx = A
σ√
d
e−

πσ2
d2

(p−n0)2
e−i2πpk0/d. (A.23)

Lemma A.3.1. (Representation w.r.t. energy basis) The continuous Fourier transform
ψ̄(k0; p) is an exponentially good aproximation for the projection of |ψ(k0)〉 over the energy
basis, i.e.,

| 〈n|ψ(k0)〉 − ψ̄(k0;n)| <
(

29/4d−1/4

1− e−π

)
e−

π
4 d, n ∈ [0, d− 1] ⊂ Z. (A.24)

Proof. Notice that the projection over an energy eigenstate results in

〈n|ψ(k0)〉 = 〈n| 1√
d

∑
k∈Sd(k0)

d−1∑
n′=0

ψ(k0; k)e−i2πn′k/d |n′〉 (A.25)

= 1√
d

∑
k∈Sd(k0)

ψ(k0; k)e−i2πnk/d, (A.26)
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which is nothing more than the discrete Fourier transform of ψ. For to estimate an
upper bound for the difference between discrete (〈En|ψ(k0)〉) and continuous (ψ̄) Fourier
transforms, we shall quantify the difference between both and the summation over the
whole set Z. To begin with the discrete Fourier transform,∣∣∣∣∣∣ 1√
d

∑
k∈Sd(k0)

ψ(k0; k)e−i2πnk/d − 1√
d

∑
k∈Z

ψ(k0; k)e−i2πnk/d
∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
d

∑
k∈Z/Sd(k0)

ψ(k0; k)e−i2πnk/d
∣∣∣∣∣∣ ,

which is by its turn equal to∣∣∣∣∣∣ 1√
d

∑
k∈Z/Sd(k0)

ψ(k0; k)e−i2πnk/d
∣∣∣∣∣∣ = |A|√

d

∣∣∣∣∣∣
∑

k∈Z/Sd(k0)
e−

π
σ2 (k−k0)2

ei2πn0(k−k0)/de−i2πnk/d

∣∣∣∣∣∣
= |A|√

d

∣∣∣∣∣∣e−i2πnk0/d
∑

k∈Z/Sd(k0)
e−

π
σ2 (k−k0)2

ei2π(n0−n)(k−k0)/d

∣∣∣∣∣∣
= |A|√

d
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∑

k∈Z/Sd(k0)
e−

π
σ2 (k−k0)2
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∣∣∣∣∣∣
≤ |A|√

d

∣∣∣∣∣∣
∑

k∈Z/Sd(k0)
e−

π
σ2 (k−k0)2
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= |A|√

d

∣∣∣∣∣∣2
∞∑

k=d/2
e−

π
σ2 (k−k0)2

∣∣∣∣∣∣ ,

(A.27)

where we shifted the dumb index to be centered in 0, and since Sd(0) =
[
−d

2 ,
d
2

]
, we can

split the summation in two summations whose absolute value is identical. Applying the
result of section A.1, we have∣∣∣∣∣∣ 1√

d

∑
k∈Sd(k0)

ψ(k0; k)e−i2πnk/d − 1√
d

∑
k∈Z

ψ(k0; k)e−i2πnk/d
∣∣∣∣∣∣ < |A|√d 2e−

πd2
4σ2

1− e−
πd
σ2
, (A.28)

and applying the result of section A.2, assuming both errors ε1 and ε2 as negligible (i.e.,
σ ≈
√
d for an exponentially decaying error ε2),

|A| < 21/4d−1/4, (A.29)

and therefore∣∣∣∣∣∣ 1√
d

∑
k∈Sd(k0)

ψ(k0; k)e−i2πnk/d − 1√
d

∑
k∈Z

ψ(k0; k)e−i2πnk/d
∣∣∣∣∣∣ < 25/4d−3/4 e−

πd
4

1− e−π . (A.30)

Let us now take a look to the continuous Fourier transform. First, we apply the
Poisson summation formula to the summation over all the integers. Notice that∫ ∞
−∞

ψ(k0; k)e−i2πnk/de−i2πmkdk = e−i2π(n+md)k0/d
∫ ∞
−∞

e−
π
σ2 (k−k0)2

ei2π(n0−n−md)(k−k0)/ddk =
(A.31)
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= e−i2π(n+md)k0/de−
πσ2
d2

(n+md−n0)2
∫ ∞
−∞

e
−
(√

π
σ

(k−k0)−i
√
πσ
d

(n0−n−md)
)2

dk =
√
dψ̄(k0;n+md).

And thus Poisson summation formula leads to

1√
d

∑
k∈Z

ψ(k0; k)e−i2πnk/d =
∑
m∈Z

ψ̄(k0;n+md). (A.32)

So ∣∣∣∣∣∣ψ̄(k0;n)−
∑
m∈Z

ψ̄(k0, n+md)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

m∈Z−{0}
ψ̄(k0;n+md)

∣∣∣∣∣∣ (A.33)

= 2|Aσ|√
d

∣∣∣∣∣
∞∑
m=1

e−
πσ2
d2

(n+md−n0)2
e−i2π(n+md)k0/d

∣∣∣∣∣(A.34)
≤ 2|Aσ|√

d

∣∣∣∣∣
∞∑
m=1

e−
πσ2
d2

(n+md−n0)2
∣∣∣∣∣ (A.35)

<
2|A|σ√

d

e−
πσ2
d2

d2
4

1− e−
2πσ2
d2

d
2

, (A.36)

where we applied the result of section A.1. Applying the result of section A.2, assuming ε1
and ε2 both negligible again (i.e., exponentially vanishing with large d, implying σ ≈

√
d),

results in ∣∣∣∣∣∣ψ̄(k0;n)−
∑
m∈Z

ψ̄(k0;n+md)
∣∣∣∣∣∣ < 25/4d−1/4

 e−
πd
4

1− e−π

 . (A.37)

The difference between discrete and continuous Fourier transforms, which we aim
to achieve, will be at least the sum of these two upper bounds (since the discrete transform
might be distant from the summation over all the integers from bellow, while the continuous
transform might be distant from above, or contrariwise). This sum leads to

25/4d−3/4

 e−
πd
4

1− e−π

+ 25/4d−1/4

 e−
πd
4

1− e−π

 = 25/4d−1/4

 e−
πd
4

1− e−π

 1 +
√
d√

d
(A.38)

< 29/4d−1/4

 e−
πd
4

1− e−π

 , (A.39)

which is precisely the upper bound proposed by the lemma.
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