ESTUDO DE VIABILIDADE TÉCNICA E ECONÔMICA PARA IMPLEMENTAÇÃO DE UMA UNIDADE MÓVEL PARA TRATAMENTO DE EFLUENTES INDUSTRIAIS COM FEIXE DE ELÉTRONS

CAROLINA SCIAMARELLI RELA

Dissertação apresentada como parte dos requisitos para obtenção do Grau de Mestre em Ciências na Área de Tecnologia Nuclear - Aplicações.

Orientadora:
Dra. Margarida Mizue Hamada

São Paulo
2006
INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES

Autarquia Associada à Universidade de São Paulo

ESTUDO DE VIABILIDADE TÉCNICA E ECONÔMICA PARA
IMPLEMENTAÇÃO DE UMA UNIDADE MÓVEL PARA TRATAMENTO DE
EFLUENTES INDUSTRIAIS COM FEIXE DE ELÉTRONS

CAROLINA SCIAMARELLI RELA

Dissertação apresentada como parte
dos requisitos para obtenção do Grau
de Mestre em Ciências na área de
Tecnologia Nuclear- Aplicações

Orientadora:
Dra. Margarida Mizue Hamada

São Paulo
2006
Dedico este trabalho aos meus pais que incentivaram a sua conclusão.
AGRADECIMENTOS

Agradeço a todos aqueles que direta, ou indiretamente contribuíram para que fosse possível a realização do presente trabalho, e especialmente:

À Dra. Margarida Mizue Hamada pela sua orientação, incentivos e amizade.

À Dra. Maria Helena de Oliveira Sampa, pela sua orientação inicial e incentivos.

Ao Dr. Paulo Roberto Rela pelo empenho e motivação.

À Dra. Celina Lopes Duarte pelas contribuições na finalização deste trabalho.

À Agência Internacional de Energia Atômica pelo financiamento do projeto.

Ao Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear pela infra-estrutura necessária à realização deste trabalho.
SUMÁRIO

Lista de Tabelas.. i
Lista de Figuras.. ii
1.0. INTRODUÇÃO .. 1
 1.1. INTERAÇÃO DA RADIAÇÃO COM EFLUENTES ... 3
 1.1.1. Mecanismos de Radiolise da Água ... 4
 1.1.2. Fontes de Radiação ... 6
 1.1.3. Acelerador de Elétrons ... 8
 1.1.4. Grandezas Básicas .. 9
 1.2. ESTADO DA ARTE .. 10
 1.3. OBJETIVOS ... 16
2.0. MATERIAL E MÉTODOS ... 17
 2.1. ARRANJO FÍSICO DA INSTALAÇÃO DE IRRADIAÇÃO MÓVEL 17
 2.2. ENSAIOS DE IRRADIAÇÃO DE EFLUENTE ... 17
 2.2.1. Unidade Hidráulica .. 18
 2.2.2. Acelerador de Elétrons .. 19
 2.2.3. Dispositivo de Irradiação ... 22
 2.2.4 - Sistema Dosimétrico ... 24
 2.2.5 - Verificação do Sistema Dosimétrico .. 25
 2.3. DIMENSIONAMENTO DA BLINDAGEM ... 29
 2.3.1. Cálculo da taxa de emissão de raio X(Do) .. 31
 2.3.2. Cálculo da Taxa de Dose Admissível (Hm) 33
 2.3.3. Fator de Ocupação de Área (T) ... 33
 2.3.4. Cálculo da Espessura (S) .. 33
 2.4. SELEÇÃO DA CARRETA ... 37
 2.5. ESTUDO DE VIABILIDADE ECONÔMICA .. 40
 2.5.1. Estimativa de Custo para Processamento 41
3.0. RESULTADOS E DISCUSSÃO ... 43
 3.1. ARRANJO FÍSICO DA INSTALAÇÃO .. 43
 3.2. ENSAIOS DE IRRADIAÇÃO DE EFLUENTES ... 46
 3.3. ACELERADORES DE ELÉTRONS .. 49
3.4. SISTEMA DE VERIFICAÇÃO DOSIMÉTRICO .. 51
3.5. CÁLCULO DA BLINDAGEM .. 52
3.6. SELEÇÃO DA CARRETA .. 53
3.7. ESTUDO DA VIABILIDADE ECONÔMICA .. 54
4.0. CONCLUSÃO .. 60
4.1 SUGESTÕES PARA TRabalhos FUTUROS ... 60
REFERÊNCIAS BIBLIOGRÁFICAS .. 61
LISTA DE TABELAS

<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cálculo da taxa de emissão de raio X (D₀)</td>
<td>32</td>
</tr>
<tr>
<td>2.</td>
<td>Medidas específicas de cada acelerador</td>
<td>36</td>
</tr>
<tr>
<td>3.</td>
<td>Valores de dose absorvida e rendimento do processo para diferentes energias e corrente do feixe de elétrons</td>
<td>47</td>
</tr>
<tr>
<td>4.</td>
<td>Valores das espessuras e peso das blindagens para diferentes energias de aceleração feixe de elétrons</td>
<td>52</td>
</tr>
<tr>
<td>5.</td>
<td>Valores do investimento e construção da unidade móvel com os 3 tipos de aceleradores de elétrons estudados</td>
<td>55</td>
</tr>
<tr>
<td>6.</td>
<td>Estimativa de custos operacionais da unidade móvel utilizando acelerador de elétrons (annual)</td>
<td>56</td>
</tr>
<tr>
<td>N°</td>
<td>Descrição</td>
<td>Página</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Interação da radiação gama, raio X ou elétron com a eletrosfera de um átomo.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Comparação entre acelerador de elétrons e o tubo de televisão.</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Desenho esquemático da unidade móvel de tratamento de efluente pertencente a empresa High Voltage Engineering Company, Inc. USA.</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Foto e desenho esquemático da unidade móvel de tratamento de grãos da empresa E- VENTUS.</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Diagrama funcional do circuito hidráulico.</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Diagrama funcional do acelerador de elétrons RDI (1,5 MeV).</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Dispositivo de irradiação desenvolvido pelo IPEN.</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Desenho esquemático do Dispositivo de Irradiação.</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Parte do conjunto do sistema de tratamento e efluente em tratamento.</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Posição dos sensores de temperatura do dispositivo de irradiação.</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Esquema elétrico do circuito utilizado no calorímetro.</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>Dosímetro ALANPOL®</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Taxa de emissão de raio-x em materiais que apresentam número atômico alto com energias variando de 0,1 a 100 MeV adaptada do Apêndice E-1 da NCRP – 51.</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Dose equivalente x Espessura . Adaptada do Apêndice E- 14 da NCRP – 51.</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>Esquema da blindagem do Acelerador de Elétrons.</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>Características e dimensões das carretas fabricadas no país.</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>Arranjo Físico da Instalação.</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>Fluxograma do processo.</td>
<td>46</td>
</tr>
<tr>
<td>19</td>
<td>Gráfico da eficiência do processo de interação dos elétrons em função da energia de aceleração para diferentes vazões.</td>
<td>48</td>
</tr>
<tr>
<td>Número</td>
<td>Título</td>
<td>Página</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>20</td>
<td>Acelerador Haefely do IPEN</td>
<td>49</td>
</tr>
<tr>
<td>21</td>
<td>Dependência do sinal RPE com o tipo de radiação incidente</td>
<td>51</td>
</tr>
<tr>
<td>22</td>
<td>Foto da carreta com 03 eixos</td>
<td>53</td>
</tr>
<tr>
<td>23</td>
<td>Características técnicas da carreta</td>
<td>54</td>
</tr>
</tbody>
</table>
ESTUDO DE VIABILIDADE TÉCNICA E ECONÔMICA PARA IMPLEMENTAÇÃO DE UMA UNIDADE MÓVEL PARA TRATAMENTO DE EFLUENTES INDUSTRIAIS COM FEIXE DE ELÉTRONS

CAROLINA SCIAMARELLI RELA

RESUMO

O tratamento de efluentes industriais é uma prática que vem se disseminando em ritmo acelerado, porque além de contribuir para reforçar a imagem pública, através do combate à poluição, ela traz vantagens econômicas para as empresas que podem reutilizar a água tratada do efluente em seus próprios processos. A técnica de tratamento estudada no presente trabalho é a que utiliza a oxidação/redução química destacando-se a utilização da radiação ionizante por meio de feixes de elétrons. Esta técnica utiliza um processo oxidativo avançado, gerando radicais altamente reativos que provocam a oxidação, redução, dissociação e degradação em compostos orgânicos e exercendo efeito letal nos microorganismos, protozoários e parasitas em geral. Neste trabalho desenvolveu-se um projeto conceitual e básico de uma unidade móvel de tratamento de efluentes utilizando radiação ionizante, fazendo com que a unidade se desloque até o ponto de tratamento, facilitando assim a logística. Em seguida, elaborou-se um estudo de viabilidade técnica e econômica permitindo dados consistentes sobre a capacidade e custo de processamento de efluentes e valores consolidados dos investimentos necessários para serem apresentados a órgãos financeiros para a construção de uma unidade móvel. Os resultados dos estudos demonstram que é viável tecnicamente a construção de uma unidade móvel, pois atende a legislação pertinente do Brasil, nos aspectos de Radioproteção e limite de transporte de carga. O custo unitário do processamento mostrou-se superior ao de uma unidade fixa em razão da diminuição da eficiência da interação da radiação incidente no efluente processado, devido à redução de energia do acelerador de elétrons e da disponibilidade de operação da unidade.
STUDY OF TECHNICAL AND ECONOMICAL FEASIBILITY FOR IMPLEMENTATION OF A MOVABLE UNIT FOR TREATMENT OF INDUSTRIAL EFFLUENTS WITH ELECTRON BEAM

CAROLINA SCIAMARELLI RELA

ABSTRACT

The treatment of industrial effluents is a practice that is disseminating in accelerated rhythm, of contributing to reinforce the public image, through the combat of the pollution, it brings economical advantages allowing the companies the reuse of the treated water in their own processes. The liquid effluent treatment technique studied in the present work is the one that uses the chemical oxidation / reduction standing out the use of the electron beam (e.b.) radiation. This technique uses an advanced oxidation process, generating radicals highly reagents that provoke the oxidation, reduction, dissociation and degradation in composed organic and exercising lethal effect in general in the microorganisms and parasites. In this work a conceptual and basic project of a movable unit of effluents treatment using electron beam radiation process was developed, in order that the unit moves until the treatment point, where the effluent is produced, facilitating the logistics. A technical and economical feasibility study was also elaborated allowing data on the capacity and cost of effluents processing to consolidate the values of the necessary investments to be presented to foundations organs for the construction of a movable unit. The results of the studies demonstrated that it is technically viable attending the pertinent legislation of Brazil, in the aspects of Radiation Protection and transport limit capacity. The unitary cost of the e.b. radiation processing in the movable unit was shown more expensive than in the fixed unit, the reason is the decrease of the efficiency of the interaction of the incident electrons in the effluent, due to the reduction of electron energy operation time of the unit.
1.0- INTRODUÇÃO

Considerando-se a limitação das reservas de água doce no planeta, o crescente aumento pela demanda de água para consumo humano, a prioridade de utilização dos recursos hídricos disponíveis para abastecimento público, bem como as restrições que vêm sendo impostas com relação à liberação de efluentes para o meio ambiente, torna-se necessária a adoção de estratégias que visem maximizar a utilização dos recursos hídricos e minimizar os impactos negativos relativos à geração de efluentes pelas indústrias (1).

O tratamento dos efluentes industriais é uma prática que vêm se disseminando em ritmo acelerado, porque além de contribuir para reforçar a imagem pública, através do combate à poluição, ela traz vantagens econômicas para as empresas que podem reutilizar a água tratada do efluente em seus próprios processos.

O reuso da água pode ser direto ou indireto. O reuso direto ocorre quando o uso é planejado e deliberado para certas finalidades, como irrigação e serviços públicos. O reuso indireto, o qual será estudado no presente trabalho, é aquele que ocorre quando a água já usada, uma ou mais vezes para uso doméstico ou industrial, é descarregada nas águas superficiais ou subterrâneas e utilizada novamente a jusante, de forma diluída (2).

No caso de efluentes, após uma caracterização adequada dos pontos de geração, bem como da sua composição estimada, pode-se então verificar a viabilidade de reutilização dentro dos processos desenvolvidos, ou então em estabelecerem-se critérios para coleta e tratamento desses efluentes, evitando a mistura de pequenos volumes de efluentes com alta concentração de contaminantes, com grandes volumes de efluentes com baixa concentração de contaminantes, o que pode inviabilizar, técnica e/ou economicamente, o tratamento de efluente (1).
Em uma situação ideal, todos os efluentes gerados nos diversos processos desenvolvidos na indústria seriam coletados e encaminhados por uma tubulação, para um ponto único, denominado sistema de tratamento de efluente, no qual se adotam técnicas de tratamento que visem adequar esse efluente aos padrões estabelecidos por normas. Sendo que estas normas se apresentam cada vez mais restritivas requerendo o uso de técnicas mais eficientes (1).

Atualmente existe um grande número de técnicas de tratamento disponíveis que são aplicadas tanto para o tratamento da água, quanto para os efluentes. Podendo-se citar: filtração, adsorção em carvão ativado, flotação, precipitação química, coagulação, floculação, extração por solvente, incineração de líquidos, entre outras (1).

Os critérios para a escolha de uma determinada técnica, bem como a definição de um sistema de tratamento, devem ser definidos com base nas necessidades de cada indústria, onde devem ser considerados fatores como, ramo de atividade, localização geográfica, recursos hídricos disponíveis, processos produtivos, possibilidade de reutilização da água ou modificação do processo e restrições com relação à liberação de efluentes para o meio ambiente (1).

Estas técnicas de tratamento vão das tecnologias mais simples, até as mais avançadas, dentre estas, podemos citar a tecnologia que utiliza a oxidação/redução química destacando-se a utilização da radiação ionizante.

Nesta tecnologia há uma interação da radiação com a água e seus poluentes, provocando várias reações químicas que geram a oxidação, redução, dissociação e degradação, principalmente de compostos orgânicos, e também exercendo efeito letal nos microorganismos, protozoários e parasitas em geral. Tudo isso sem a necessidade de adição de produto químico.

Esta tecnologia vem ganhando espaço em virtude de:
- da sua eficiência;
- do custo competitivo em relação aos processos tradicionais para determinadas aplicações e;
- em alguns casos permitir a reutilização da água.

1.1 - INTERAÇÃO DA RADIAÇÃO COM EFLUENTES

A radiação gama proveniente de isótopos radioativos, os elétrons e os raios X gerados nos aceleradores, são conhecidos como radiações ionizantes, que interagem com os produtos e no resultado de colisões com os elétrons orbitais que constituem os materiais dos produtos, perdem energia para esses elétrons, que por sua vez são excitados adquirindo níveis mais altos de energia ou são expulsos completamente de suas órbitas colidindo com outros elétrons orbitais, conforme ilustração da FIG. 1(3).

Este processo complexo conduz à produção de uma grande quantidade de átomos excitados e de átomos eletricamente carregados, ou grupos de átomos denominados íons. Os produtos da ionização, os íons, os elétrons secundários, átomos e moléculas excitadas subsequentemente perderão suas energias para o meio que os circundam e se revertem em estados estáveis de radicais livres.

A energia proveniente da radiação ionizante ao interagir com a camada de efluentes, ou outro material qualquer, é absorvida pelo meio e redistribuída entre os átomos e moléculas que o constituem, altamente reativos (3).
Introdução

FIGURA 1- Interação da radiação gama, raio X ou elétron com a eletrosfera de um átomo.

O rendimento de produtos químicos ou ions produzidos pela radiação é expresso como a razão da quantidade de produtos produzidos pela dose absorvida. Na química da radiação este rendimento é denominado G cuja unidade é mol J⁻¹ e significa o número de radicais, moléculas ou ions que são formados (ou destruídos) em uma solução pela absorção de 100 eV de energia incidente⁴,⁵.

1.1.2 - Mecanismos de Radiolise da Água

A radiólise da água é o mecanismo mais importante no processo de irradiação de materiais em solução aquosa. Os ions carregados positivamente, os elétrons e as espécies excitadas são os precursores das alterações químicas observadas no material irradiado.

Dentro da química da irradiação, os sistemas aquosos têm sido muito estudados e os mecanismos básicos de interação da radiação têm sido estabelecidos. A exposição da água à radiação produz moléculas ionizadas,
excitadas e elétrons livres. As moléculas ionizadas reagem rapidamente para formar ions de hidroxila \(^6\).

\[\text{H}_2\text{O}^+ + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{OH} \]

Os elétrons tornam-se hidratados:

\[\text{e}^- + \text{n H}_2\text{O} \rightarrow \text{e}^-_{\text{aq}} \]

Vários compostos intermediários e produtos moleculares são formados como consequência da interação entre a radiação ionizante e a água. Os principais produtos moleculares formados são \(^7,8\):

\[\text{H}_2\text{O} \rightarrow \text{e}^-_{\text{aq}} + \text{H} + \text{OH} + \text{H}_2\text{O}_2 + \text{H}_3\text{O}^+ + \text{H}_2 \]

Em meio ácido o \(\text{e}^-_{\text{aq}}\) é convertido em átomo de hidrogênio:

\[\text{e}^-_{\text{aq}} \rightarrow \text{H}^+_{\text{aq}} \rightarrow \text{H} \]

Em meio básico os átomos de hidrogênio são transformados em \(\text{e}^-_{\text{aq}}\):

\[\text{H} + \text{OH}^- \rightarrow \text{e}^-_{\text{aq}} \]

Os radicais OH se dissociam:

\[\text{OH}^- \rightarrow \text{O}_{\text{aq}} + \text{H}^+_{\text{aq}} \]

Na presença de ar, os radicais H e \(\text{e}^-_{\text{aq}}\) são capturados pelo oxigênio levando à formação de radicais peróxidos:

\[\text{H} + \text{O}_2 \rightarrow \text{H}_2\text{O} \]
\[\text{e}^-_{\text{aq}} + \text{O}_2 \rightarrow \text{O}_2^- \]
\[\text{HO}_2 \leftrightarrow \text{O}_2^- + \text{H}^+ \]
Os radicais formados pela ação da radiação ionizante na molécula de água reagem entre si e essas reações são chamadas de reações primárias. As principais são\(^{(6)}\):

\[
\begin{align*}
H^+ + H^- & \rightarrow H_2 \\
H^+ + OH^- & \rightarrow H_2O \\
H^+ + e^{-}_{aq} & \rightarrow H_2 + OH^-_{aq} \\
OH + OH & \rightarrow H_2O_2 \\
OH + e^{-}_{aq} & \rightarrow OH^-_{aq} \\
e^{-}_{aq} + e^{-}_{aq} & \rightarrow H_2 + 2OH^-_{aq} \\
H^+ + H^-_{aq} & \rightarrow e^{-}_{aq} \\
OH^- & \leftrightarrow OH^-_{aq} + O^-_{aq} \\
H_2O_2 & \leftrightarrow OH^+_{aq} + HO^-_{aq}
\end{align*}
\]

A quantidade de espécies reativas depende da dose de irradiação e estes radicais interagem com compostos orgânicos e inorgânicos, sendo que os produtos resultantes destas reações dependerão dos compostos presentes na solução \(^{(9)}\).

1.1.3 - Fontes de Radiação

As radiações podem ser emitidas por elementos químicos com núcleos atômicos instáveis ou por equipamentos construídos pelo homem. Elementos químicos radioativos podem ser encontrados na natureza ou produzidos através de reações específicas em aceleradores de partículas ou reatores nucleares.

Os raios X, fontes gama e os elétrons são citados como fonte de radiação.
RAIOS X

Raios X podem ser produzidos quando elétrons são acelerados em direção a um alvo metálico. O choque do feixe elétrons com o anodo (alvo) produz o efeito bremsstrahlung (espectro contínuo) e resulta da desaceleração do elétron durante a penetração no anodo gerando os raios X\(^{(10)}\).

Esta fonte de irradiação tem como principal aplicação industrial em ensaios não destrutivos, como podemos citar, a radiografia de peças e estruturas metálicas que não requerem grande intensidade de radiação para a sensibilização dos filmes.

FONTES GAMA

A radiação gama provém de certos núcleos atômicos (são emitidas por partículas que sofrem transições no interior do núcleo atômico) como o isótopo artificial \(^{60}\)Co, produzido em reatores nucleares e é utilizado em irradiadores industriais. O \(^{60}\)Co emite dois raios gama com energias de 1,17 MeV e 1,33 MeV quando ocorre o seu decaimento radioativo\(^{(10)}\).

As fontes de \(^{60}\)Co são utilizadas em radioterapia, na esterilização em diversos produtos médicos e farmacêuticos e na redução da carga microbiana de alimentos.

ELÉTRONS

O feixe de elétrons pode ser produzido artificialmente por aceleradores de elétrons. Os elétrons são produzidos por um filament aquecido pela passagem de uma corrente elétrica e acelerados por uma diferença de potencial.

O acelerador de elétrons é um equipamento de alta tecnologia que permite a emissão de feixes de elétrons de alta velocidade, capazes de modificar as propriedades físicas dos materiais\(^{(10)}\).
1.1.4 - Acelerador de Elétrons

Um acelerador de elétrons pode ser definido como um equipamento que transfere energia a partículas carregadas por um processo físico e que emprega uma combinação de campos elétricos e magnéticos, gerando íons de alta velocidade e alta energia cinética. Quando se estabelece um potencial de alta voltagem entre o cátodo e o ánodo, no vácuo, o cátodo emite feixe de elétrons, chamados raios catódicos ou feixes eletrônicos, com uma energia na ordem de milhões de volts \(^{(11)}\).

A dinâmica do feixe de elétrons apresenta uma dependência entre o movimento das partículas e parâmetros do campo na estrutura de aceleração. O produto da intensidade do feixe ou corrente elétrica formada por partículas carregadas em movimento no acelerador de elétrons (expressa em mA e MeV) corresponde à potência do feixe de elétrons. A potência média do feixe de elétrons está diretamente relacionada ao rendimento da taxa de dose de irradiação \(^{(12,13)}\).

O princípio de funcionamento do acelerador de elétrons é semelhante a de um tubo de televisão, sendo a diferença fundamental é que este último utiliza cerca de 25.000 volts de energia enquanto que o acelerador utiliza na ordem de milhões de volts \(^{(11)}\). (FIG. 2)

FIGURA 2 - Comparação entre acelerador de elétrons e o tubo de televisão
1.1.5 - Grandezas Básicas

A medida da radiação denominada dose absorvida pelo produto, é dada pela seguinte fórmula:

\[
D = \frac{de}{dm}
\] \hspace{1cm} (1.1)

onde:

- \(D\) – dose absorvida;
- \(de\) – quantidade de energia;
- \(dm\) – quantidade de material que irá interagir com a radiação.

A quantidade de energia transferida da radiação ionizante para a matéria num determinado volume dividida pela massa contida neste volume é definida como dose absorvida. Esta grandeza definida em 1953, abrange todos os tipos de radiação ionizante e é válida para qualquer tipo de material absorvedor. A unidade definida pelo Sistema Internacional de Unidades para dose absorvida é joule por quilograma (Jkg\(^{-1}\)), a qual é dado o nome de gray (Gy) previamente chamado de rad (1Gy = 1 Jkg\(^{-1}\) = 100 rad)\(^{(14)}\).

No caso do tratamento de líquidos, em regime contínuo, a capacidade de processamento de um acelerador está associada ao rendimento dos dispositivos de radiação, que é a eficiência da transferência de energia do feixe de elétrons para o efluente. Podendo ser expressa pela seguinte fórmula, derivada da definição de dose\(^{(3)}\):

\[
Q = 3600 \frac{V \cdot i}{D_i}
\] \hspace{1cm} (2.1)

onde:
\(Q \) – vazão, expressa em kg/h;
\(V \) – energia do feixe de elétrons, expressa em milhões de elétrons-volts (MeV);
\(i \) – corrente do feixe de elétrons, expressa em mili-âmpere (mA);
\(D_t \) – dose teórica absorvida pelo produto, expressa em (kGy).

Através desta fórmula, obtém-se o valor teórico da dose absorvida, permitindo assim, calcular o rendimento do processo de tratamento do efluente (\(\eta \)) utilizando a seguinte fórmula:

\[
\eta = \frac{D_r}{D_t}
\] \hspace{1cm} (3.1)

onde:

\(\eta \) - rendimento global do processo de tratamento do efluente;
\(D_t \) – dose teórica absorvida pelo produto, expressa em (kGy);
\(D_r \) – dose real absorvida pelo produto, é obtida, durante os experimentos, por meio da leitura direta no sistema dosimétrico, expressa em (kGy).

As fórmulas descritas acima são utilizadas para o dimensionamento do acelerador de elétrons, do dispositivo de irradiação e sistema de bombeamento de efluentes.

1.2 - ESTADO DA ARTE

O uso da radiação para propósitos industriais teve início após a descoberta da emissão natural de raios alfa realizada por Madame Curie em 1898. Em 1929, Robert Van Der Graff, mostrou que uma corrente de seda e um motor podiam gerar 80.000 volts de potencial. Ele desenvolveu um equipamento que acelerava prótons em alta velocidade, podendo ser usado para o estudo nuclear. Entre 1930 e 1950, Van Der Graff desenhou e construiu aceleradores eletrostáticos, do qual eram capazes de gerar potenciais na escala de 1 a 5 milhões de volts. Durante este mesmo período, outros pesquisadores como, Cockcroft Walton, Sloan e
Lawrence, desenharam e construíram diferentes tipos de aceleradores. As máquinas de Sloan e Lawrence eram aceleradores de partículas e ciclotrons. Após o ano de 1950, os aceleradores começaram a ser utilizados nos processos industriais, aumentando as reações poliméricas e a taxa de vulcanização das borrachas na indústria de pneus (15).

Nos anos seguintes, pesquisadores desenvolveram diferentes geometrias de aceleradores de elétrons, e apenas um tipo de máquina veio a ser comercialmente utilizada destacando-se o acelerador de corrente direta. Estes aceleradores possuem uma voltagem entre 0,5 a 2 MeV, são máquinas de alta energia com correntes acima de 50 mA. Através destas máquinas descobriu-se que a voltagem da aceleração, ou energia de aceleração, determina a energia das partículas e a penetração dos elétrons no material (15).

Em 1970, pesquisas ambientais que utilizavam os aceleradores de elétrons para a remoção de poluentes das águas e efluentes começaram a ser desenvolvidas. A empresa High Voltage Engineering Company – USA e pesquisadores do MIT (Massachusetts Institute Technology) construíram um acelerador de 1,5 MeV e instalaram na Planta de Tratamento de Efluentes de Deer Island em Boston, operando em fase de demonstração por vários anos, demonstrando claramente que a alta energia dos elétrons era capaz de desinfetar o lodo que foi exposto ao feixe de elétrons. Baseado nos resultados desta unidade de demonstração, em 1980, foi construído outro sistema em Planta de Tratamento de Efluentes de Virginia Key em Miami, na Florida. O sistema Virginia Key utilizava um acelerador similar ao Deer Island, também construído pela empresa HIGH VOLTAGE, esta unidade ficou operando em fase de demonstração durante um ano após a sua construção e mais uma vez o sistema provou ser eficiente (15,16).

No entanto, a expansão do uso da tecnologia de feixe de elétrons na área ambiental tem sido lenta devido a várias razões:

- a primeira razão está relacionada à área de engenharia ambiental em geral. Esta área tem sido muito conservadora no que diz respeito à adoção de novas tecnologias. Para esta prática ser aceita por essa comunidade, precisará ser
mais difundida a sua eficiência e eficácia, demonstrada em relação a outros tratamentos convencionais. Sendo assim, a engenharia ambiental terá conhecimento fundamental do sistema, fazendo com que o uso da prática de feixe de elétrons para tratamento de água e efluentes seja difundida.

- a segunda razão que restringe a utilização desta tecnologia, é o custo inicial do equipamento, quando comparados com os tradicionais utilizados por municípios, no qual o custo da instalação é relativamente pequeno, mas possui um custo alto de operação devido ao uso de aditivos químicos e outros custos operacionais, sendo que na tecnologia de feixe de elétrons o custo operacional é baixo.

- a razão mais importante é a que está relacionada ao fato de que muitos aceleradores são fabricados e destinados para usos específicos como reticulação e cura de polímeros. Os aceleradores para uso ambiental requerem alta potência para poder tratar um volume suficiente de água e efluentes. O custo de fabricação de um acelerador de elétrons é extremamente alto devido ao fato de não ser produzido em grande quantidade. Se houver um aumento da demanda haverá uma redução dos custos em consequência da economia da escala de produção.

Em 1994, a empresa High Voltage Engineering Company, Inc. USA juntamente com um grupo de pesquisadores da Universidade de Miami, desenvolveu uma unidade móvel para tratamento de efluentes, desse modo fazendo a unidade se deslocar até o ponto de tratamento, facilitando assim a logística.

Esta unidade móvel, cujo desenho esquemático é apresentado na FIG. 3, é composta por uma carreta de caminhão e está dividida em 3 salas: a sala de bombas, com capacidade de bombeamento de 40 gpm (151 L/min); a sala de processamento, onde está localizado o acelerador de elétrons de 500 keV com potência do feixe de elétrons de 20 KW; e a sala de controle, que monitora e controla todos os equipamentos.
FIGURA 3 - Desenho esquemático da unidade móvel de tratamento de efluente pertencente a empresa High Voltage Engineering Company, Inc. USA

A Environmental Protection Agency of USA (EPA) avaliou, em 1999, o tratamento de água contaminada com compostos orgânicos voláteis de concentração de até 840 µg/L, resultando em um custo de US$ 5,16 / 1000 galões ou US$1,36/m³, demonstrando assim, ser uma técnica viável e competitiva em relação aos processos tradicionais.

Por meio dos resultados positivos obtidos nas pesquisas utilizando o feixe de elétrons, a EPA incluiu esta tecnologia como sendo uma das maiores inovações tecnológicas de tratamento de água e efluentes. Esta unidade vem operando com sucesso desde a sua construção, na degradação de compostos orgânicos de água de subsolo em diversas regiões dos Estados Unidos e da Europa.

Com o mesmo propósito de facilitar a logística, deslocando a instalação até o local de tratamento, a empresa alemã E-VENTUS desenvolveu, em 2000, uma unidade móvel de tratamento de grãos na agricultura utilizando feixes de elétrons.

Esta unidade móvel é composta por uma carreta de caminhão e dividida em 4 salas: sala de refrigeração, sala de processamento, sala de equipamentos elétricos e sala de controle (FIG.4).
FIGURA 4 – Foto e desenho esquemático da unidade móvel de tratamento de grãos da empresa E- VENTUS (17)

Com o propósito de introduzir esta tecnologia no País, o Instituto de Pesquisas Energéticas Nucleares (IPEN), está desenvolvendo pesquisas que utilizam o feixe de elétrons de alta energia para a degradação química de compostos orgânicos de origem industrial e para a desinfecção de esgotos e lodos de origem doméstica, desde 1991.

O IPEN possui um Acelerador Industrial de Elétrons, de fabricação Radiation Dynamics Inc., modelo Dynamiton II com energia variável até 1,5 MeV e corrente variável até 25 mA. Neste acelerador foram submetidas à irradiação,
durante o desenvolvimento do Projeto Tratamento de Efluentes com Feixe de Elétrons \(^{(4)}\), as amostras de águas de abastecimento, resíduárias e de lodos. Com isso, foram estudados os efeitos da interação da radiação com o efluente no ponto de vista da degradação dos compostos orgânicos, mudança da velocidade de sedimentação e mudança de intensidade de cor. Com os resultados obtidos, foi permitido correlacionar a dose de radiação necessária para se provocar um determinado efeito no produto a ser tratado \(^{(9,18,19,20)}\).

Para que esta tecnologia fosse aplicada em escala comercial, foi necessário o desenvolvimento de sistemas com capacidade de processamento de caudais da ordem de 5 m\(^3\)/h. Estes sistemas possuem as seguintes características:

- permitem uma absorção uniforme da dose requerida pelo efluente a ser tratado;
- controlam, em tempo real, durante o processamento, a dose absorvida pelo produto;
- permitem a amostragem durante o processo de irradiação, para verificação da eficiência do processo;
- permitem a montagem de arranjos e configurações de modo a testar materiais, equipamentos e instrumentação;
- otimização do processamento, obtendo-se parâmetros operacionais para o aumento de escala do projeto, e dados para um estudo de viabilidade econômica do processo \(^{(3)}\).

Este projeto teve o financiamento do IPEN, da Agência Internacional de Energia Atômica (AIEA), do Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq).

Os resultados positivos apresentados pelo IPEN demonstram que esta tecnologia é uma alternativa viável para o tratamento de diversos tipos de efluentes e para a consolidação desta tecnologia necessita, no presente momento, de uma unidade de demonstração para a realização de testes em escala industrial.
1.3 - OBJETIVOS

Utilizando os resultados obtidos até o presente estágio de desenvolvimento do grupo do IPEN, que trabalha na aplicação de aceleradores de elétrons no tratamento de efluentes industriais e principalmente, na otimização dos dispositivos de irradiação, ou seja, da unidade responsável pelo modo como o efluente se apresenta para o feixe de elétrons, o presente trabalho apresenta um projeto conceitual e básico de uma unidade móvel, seguido da elaboração de um estudo de viabilidade econômica de modo a permitir:

- a obtenção de dados consistentes sobre a capacidade e custo de processamento de efluentes de uma unidade móvel, e:
- a obtenção de valores consolidados dos investimentos necessários para serem apresentados a órgãos financiadores para a construção de uma unidade móvel.
2.0 - MATERIAL E MÉTODOS

2.1 - ARRANJO FÍSICO DA INSTALAÇÃO DE IRRADIAÇÃO MÓVEL

No estudo da disposição dos equipamentos para estabelecer o arranjo físico da instalação radioativa móvel, utilizando acelerador de elétrons, a localização do acelerador de elétrons e respectiva blindagem, o posicionamento sobre o conjunto de eixos da carreta foram selecionados como requisito básico na concepção do projeto. Estes são os itens que acarretam maior peso e maior influência no dimensionamento estrutural da carreta.

Também no estudo do arranjo físico, foram observadas as configurações já utilizadas por instalações equivalentes e desenvolvidas por pesquisadores que militam nessa área, como Schuetz (12) e Waite (13).

Outro parâmetro que também foi levado em consideração foi o suprimento de energia para a unidade de irradiação, que depende inteiramente de energia elétrica, exigindo assim, durante a sua operação, uma potência considerável acima de 100 kW. Foi estudada a instalação de uma unidade autônoma de geração de energia elétrica (motor gerador diesel elétrico), tornando a instalação independente de infra-estrutura externa, que pelo nível de potência requerido não é normalmente encontrado ou disponível na instalação onde o sistema será utilizado.

2.2 - ENSAIOS DE IRRADIAÇÃO DE EFLUENTE

A energia de aceleração dos elétrons impacta diretamente na espessura da blindagem do acelerador e, consequentemente, no peso final do conjunto a ser transportado. Esta limitação tornou necessário o estudo do comportamento do dispositivo de irradiação desenvolvido pelo IPEN em condições longes das ideais ou das que possibilitam maior eficiência da interação da radiação com fluido processado.
Com o propósito de determinar o melhor desempenho do conjunto, composto pelo acelerador e pelo dispositivo de irradiação, ensaios foram realizados na Planta Piloto de Tratamento de Efluentes do CTR/ IPEN, para as energias de 550 keV, 750KeV, 850 keV e 900 keV.

A Planta Piloto de Tratamento de Efluentes do CTR/ IPEN (3) é constituída por uma unidade hidráulica, um acelerador de elétrons, um dispositivo de irradiação e pelo sistema dosimétrico.

2.2.1 - Unidade Hidráulica

A unidade hidráulica é responsável pela transferência e armazenamento do líquido durante o processo e constituída de:

- 2 bombas centrífugas, modelo 170 R50 (1HP), de fabricação DANKOR;
- 2 tanques de fibra de vidro de capacidade 1500 l;
- Válvulas solenóides (VS), com tensão de alimentação de 220 VAC;
- Painel de controle que realiza manobras das válvulas solenóides, e;
- Medidor de vazão tipo turbina (MV) de fabricação DIGIFLOW, modelo 1100.

O diagrama funcional do circuito hidráulico é apresentado na FIG. 5, onde a bomba 1 é responsável pelo recalque do efluente no dispositivo de irradiação, e a bomba 2 é responsável pela homogeneização do efluente no tanque de armazenamento de produto a ser processado. A capacidade total de processamento da planta piloto é de 5m³/h.
FIGURA 5 – Diagrama funcional do circuito hidráulico

O sistema de bombeamento possui as seguintes operações:

- Bombeamento do tanque T1 para o dispositivo de irradiação, onde o produto processado é encaminhado, por gravidade, ao tanque T2 e, por meio de bomba, diretamente à rede externa.

- Produto bombeado do tanque T1 para o dispositivo de irradiação, processado, transferido para T2, que por meio de manobras com válvulas solenóides, é transferido para T1, permitindo ao sistema a aplicação de doses acumulativas para realização de experimentos.

2.2.2 - Acelerador de Elétrons

O acelerador utilizado, no presente trabalho, é o Dynamitron II instalado no IPEN, de fabricação Radiation Dynamics Inc., com energia variável de 0,55 MeV até 1,5 MeV e corrente variável até 25 mA.

Os principais componentes de um acelerador de elétrons, mostrados na
FIG. 6 são:
- **Sistema de alta tensão**: é composto por uma sequência de retificadores dobradores de tensão, que quando associados, obtém-se circuito multiplicadores de tensão com tensões de saída muito elevadas. O circuito multiplicador de tensão é alimentado por um transformador que opera com alta frequência (para minimizar os valores dos capacitores) e voltagem da ordem de 100 kHz e 100Kv respectivamente, onde a radiofrequência (R.F.) através dos eletrodos A e B, carregando os capacitores C₁; C₂ a Cₙ constituídos pelos anéis de corona e os próprios eletrodos de R.F. formando os sucessivos circuitos dobradores de tensão. Esta configuração permite, de acordo com as características construtivas dos aceleradores, obter tensões elevadas, permitindo aos elétrons adquirirem energia de até 5 MeV.

- **Tubo acelerador**: composto por um filamento de tungstênio que quando aquecido, de acordo com a tensão estabelecida no terminal de alta tensão, gera elétrons e estes são acelerados, em alto vácuo, à velocidade próxima a da luz da ordem de 300.000 km/s.

- **Sistema de Varredura e ótico**: composto por bobinas que focalizam os elétrons já acelerados no interior do tubo de aceleração e, em seguida, os elétrons são defletidos por meio de um campo magnético oscilante, possibilitando um ajuste na largura de varredura do feixe, e finalmente atravessam uma janela de titânio (com espessura na ordem de 50 microns), e abandonam a região com vácuo, incidindo nos produtos a serem beneficiados.

O acelerador de elétrons do IPEN opera com os seguintes parâmetros:

- **Tensão de alimentação**: 440 V;
- **Frequência do circuito oscilador (radiofrequência)**: 100 kHz;
- **Tensão de circuito oscilador**: 100 Kv;
- **Tensão máxima do acelerador de feixes de elétrons (tensão de aceleração dos elétrons)**: 1,5 MV;
- **Corrente máxima do feixe de elétrons**: 25 Ma;
- Potência máxima do feixe de elétrons (produto da tensão máxima de aceleração de 1,5 MeV, com o valor da corrente máxima do feixe de elétrons 25 mA: 37,5 kW;
- Largura ajustável do feixe de elétrons: de 30 cm a 120 cm;
- Freqüência de varredura do feixe de elétrons: 100 Hz;
- Diâmetro do feixe de elétrons ao incidir nos materiais a uma distância media de 20 cm da janela de titânio: 2 cm.

A FIG. 6 apresenta o diagrama funcional do acelerador de elétrons RDI (1,5 MeV).

FIGURA 6- Diagrama funcional do acelerador de elétrons RDI (1,5 MeV)
2.2.3 - Dispositivo de Irradiação

O dispositivo de irradiação utilizado no trabalho, apresentado na FIG. 7, foi o desenvolvido pelo IPEN, o qual provou ser eficiente e robusto sob o aspecto de resistência mecânica e conveniente para a montagem em uma instalação móvel.

FIGURA 7 – Dispositivo de irradiação desenvolvido pelo IPEN

A configuração básica do dispositivo de irradiação desenvolvido é indicada na FIG. 8, onde o efluente em tratamento, movendo-se continuamente no sentido vertical dentro de um duto de seção retangular, se apresenta ao feixe de elétrons e após sofrer o bombardeamento, verte pelas laterais da parede do duto, caindo no interior de outro duto, também de seção retangular, que é conectado à tubulação de um tanque de armazenamento\(^{(3)}\).
FIGURA 8 - Desenho esquemático do Dispositivo de Irradiação

Neste dispositivo há uma folha de titânio na sua parte superior com espessura de 50µm, permitindo a irradiação de efluentes em "circuito fechado", sem o contato com o meio ambiente.

A incorporação da folha faz com que haja um isolamento do ambiente onde ocorrem as interações, permitindo assim, que os produtos perigosos ou que por radiólise possam gerar subprodutos tóxicos, sejam beneficiados com segurança, sem riscos para os operadores e contaminação para o meio ambiente\(^3\).

Na FIG. 9 é apresentada parte do conjunto do sistema de tratamento de efluentes, composto pela câmara de varredura e o dispositivo de irradiação, onde o efluente está em tratamento, no dispositivo de irradiação, movendo-se continuamente no sentido vertical.
FIGURA 9 – Parte do conjunto do sistema de tratamento e efluente em tratamento

2.2.4 - Sistema Dosimétrico

2.2.4.1- Calorimetria

O sistema dosimétrico a ser utilizado no trabalho será do tipo calorímetro desenvolvido pelo IPEN(21).

O sistema consiste na elevação da temperatura em um meio através da absorção de energia, desse modo, associa-se a temperatura com a dose absorvida.
A medida da dose absorvida é realizada através da medida da diferença de temperatura do efluente que interage com o feixe de elétrons no interior do dispositivo de irradiação, onde há uma transferência da quantidade de energia ao efluente, desse modo elevando-se a sua temperatura.

A calorimetria baseia-se na equação fundamental:

\[E = \Delta m \cdot c \cdot [T2 - T1] \] \hspace{1cm} (4.2)

Onde:

\(E \) - é a energia necessária para elevar a temperatura de 1°C de um grama de água, expressa em (cal). Uma caloria equivale a 4,18 Joule (J);

\(\Delta m \) - é o elemento de massa do efluente ao receber uma quantidade de energia \(E \), expressa em (g);

\(T2 \) - temperatura após a interação com o feixe de elétrons, expressa em °C;

\(T1 \) - temperatura antes de sofrer a interação com o feixe de elétrons, expressa em °C;

\(c \) - é o calor específico.

Sabendo-se que para a água \(c = 1 \) cal °C⁻¹.g⁻¹, substituindo-se na equação 4.2 a unidade caloria por joule e unidade grama por Kilograma teremos:

\[E(J).4.18 = (\Delta m(kg)/1000). [T2 - T1] (°C) \] \hspace{1cm} (5.2)

A unidade definida pelo Sistema Internacional para dose absorvida é o Gray (Gy) que corresponde a um Joule de energia absorvida por um quilograma de material irradiado. Assumindo-se a unidade de massa \(\Delta m = 1 \) kg de efluente e dividindo-se os dois lados da equação acima pela unidade de massa em kg teremos:

\[(E(J)/ 1(kg)).4.18.1000 = \Delta m (Kg) \cdot [T2 - T1] (°C) \cdot (1/1(kg)) (°C) \] \hspace{1cm} (6.2)
Material e Métodos

O dimensional do termo esquerdo da equação 6.2 passa a ser dose absorvida em Gy e o da direita em °C estabelecendo-se a relação:

\[D(\text{Gy}) \times 4.18 \times 1000 = [T_2 - T_1] (^\circ \text{C}) \] (7.2)

Ou em kGy obtém-se:

\[4.18 \times D(\text{kGy}) = \Delta T (^\circ \text{C}) \] (8.2)

A relação acima corresponde para elevação de temperatura do efluente em 1°C, o mesmo absorveu uma dose de 4,18kGy, ou que cada kGy absorvido provoque um aumento na temperatura de 0,239°C no efluente irradiado (3).

Na FIG. 10 são mostrados as posições dos sensores de temperatura montados na tubulação de entrada do dispositivo e os outros montados na tubulação de saída para medir a diferença de temperatura do sistema.

![FIGURA 10- Posição dos sensores de temperatura do dispositivo de irradiação](image-url)
O sistema utiliza um circuito integrado transdutor de temperatura em corrente elétrica (AD590J da INTERSIL/GE) INTERSIL-GE-USA, Component Data Catalog, 1987, com uma precisão de 0,02 °C na linearização.

O esquema elétrico utilizado está representado na FIG. 11, onde observa-se a disposição dos sensores de temperatura de entrada e saída. A saída do circuito pode ser conectada a um multímetro digital, onde uma leitura de 41,8 mV representa o equivalente a 4,18 kGy de dose absorvida(3).

![Circuito Elétrico](image)

FIGURA 11 - Esquema elétrico do circuito utilizado no calorímetro (4)

O sistema de controle dosimétrico utiliza um software para o controle do processo de irradiação, bem como o fluxo de água e suas flutuações. Esse software permite a visualização do valor da dose absorvida e da vazão do efluente durante o processamento, em tempo real (21).
2.2.4.2 – ALANPOL®

Com o propósito de verificar o desempenho do sistema dosimétrico, da Planta Piloto de Tratamentos de Efluentes do IPEN, que utiliza o sistema calorimétrico, fornecendo o valor da dose em tempo real e permite o controle e automatização do processo de irradiiação, foi estudado o desempenho do dosímetro ALANPOL®.

O dosímetro ALANPOL® foi desenvolvido pelo Instituto de Química e Tecnologia Nuclear - INCT, da Polônia, com a finalidade de medir doses em águas e efluentes industriais submetidos ao processo da radiação ionizante(22).

O dosímetro ALANPOL® foi manufaturado por extrusão de uma mistura de DL-α Alanina em pó com polietileno de baixa densidade variando de 0,91 a 0,93g/cm³. O polietileno atua como um ligante e não contribui para o sinal induzido pela irradiiação.

Na FIG. 12 são mostradas algumas unidades do dosímetro ALANPOL® que possui forma cilíndrica com 3mm de diâmetro externo, 2mm de diâmetro interno e 25,4 mm (1”) de comprimento.

FIGURA 12 – Dosímetro ALANPOL®
A finalidade do estudo realizado foi de comparar as respostas dosimétricas dos dosímetros ALANPOL® em diferentes condições de irradiação, foram realizados experimentos com os dosímetros, submersos em água destilada e em efluentes industriais\(^{(22)}\).

As irradiações com feixe de elétrons de alta energia foram realizadas utilizando-se o Acelerador Industrial de Elétrons tipo Dynamitron II – RDI pertencente ao CTR-IPEN.

Os dosímetros ALANPOL® foram posicionados no centro da esteira, perpendicular à direção do feixe de varredura e irradiado a uma velocidade de 6,72 m/mim com várias passadas sob o feixe para obter-se a dose total desejada. Utilizaram-se dosímetros de triacetato de celulose (CTA), para medir e comparar a dose real absorvida pelos dosímetros irradiados\(^{(22)}\).

As leituras dos dosímetros ALANPOL®, foram realizadas por meio da técnica de Ressonância Paramagnética Eletrônica (RPE), utilizando-se um espectrômetro Bruker, modelo EMX equipado com cavidade ressonante retangular, modelo ER4102 ST., localizado no Instituto de Física da Universidade de São Paulo.

2.3 - DIMENSIONAMENTO DA BLINDAGEM

Após a definição do arranjo físico da instalação radioativa com acelerador de elétrons, o estudo do dimensionamento da blindagem do acelerador de elétrons e do dispositivo de irradiação, localizados na planta de tratamento de efluentes industriais, foi realizado utilizando-se os critérios estabelecidos na Norma NCRP Report No. 51 Radiation Protection Design Guidelines For 0.1- 100 MeV Particle Accelerator Facilities \(^{(24)}\). Este dimensionamento tem o propósito de otimizar o peso da mesma, por ser o item que mais causa impacto no peso total da carreta e da instalação como um todo.
No cálculo da blindagem, levou-se em consideração apenas os raios X (efeito Breemstralung) originados pela interação do feixe de elétrons com elementos estruturais do dispositivo de irradiação, totalmente construído em aço inoxidável, uma vez que para blindagem dos elétrons, com energia de 1 MeV, bastaria a espessura de 1 mm de aço. O valor de 1 MeV foi assumido como sendo o da maior energia compatível para ser instalado em uma unidade móvel.

Para o cálculo da blindagem foi utilizada a fórmula da NCRP Report No. 51\(^\text{24}\) que permite dimensionar o índice de transmissão para radiação eletromagnética (Raio- X)

\[
B_X \geq (1.67 \times 10^{-5}) \left(\frac{H_m \cdot d^2}{D_{0} \cdot T} \right)
\]

onde:

- \(B_X\) - é o índice de transmissão de raios X na blindagem; é o valor para o qual os raios X incidentes são absorvidos pela blindagem até permitir a redução para os emergentes na superfície oposta a um nível inferior ao limite ocupacional para trabalhadores;
- \(D_{0}\) - taxa de emissão de raios X (rads m\(^{-2}\) min\(^{-1}\));
- \(H_m\) - taxa de dose admissível (mrem h\(^{-1}\));
- \(d\) - é a distância entre fonte de raio-x e o ponto de referência (m);
- \(T\) - é o fator de ocupação na área de interesse.

De acordo com a NCRP Report No. 51\(^\text{24}\), um importante parâmetro para o desenvolvimento da blindagem do acelerador é a direção do feixe de elétrons incidente no material (alvo). Para energias abaixo de 1 MeV é recomendável, de modo conservador e a favor da segurança, realizar o cálculo da blindagem na direção de 90\(^{\circ}\) na direção paralela a superfície do alvo irradiado. Para energias acima de 1 MeV é recomendável realizar o cálculo da blindagem com o feixe incidente na direção de 0\(^{\circ}\) ou seja, perpendicular a superfície do "alvo".
Na FIG. 13, gráfico adaptado da norma NCRP Report No. 51(24), são apresentados os valores da taxa de emissão de raios X para mesma energia do feixe de elétrons porém, com distintos ângulos de incidência.

2.3.1 - Cálculo da taxa de emissão de raio X (D_o)

Para o cálculo da taxa de emissão e raio X, foi considerado o Níquel (Ni) como elemento bombardeado pelos elétrons, pois o dispositivo de irradiação é todo fabricado e aço inoxidável AISI 304, tendo na sua composição 0,08% de C; 2,0% de Mn; 1,0% de Si; 18% a 20% de Cr; 8,0 a 12% de Ni e o restante Fe. De todos os elementos constituintes deste tipo de aço inoxidável Ni é o que apresenta maior número atômico $Z_{\text{Ni}} = 28$.

De acordo com o apêndice E-1 da NCRP 51(24), os elementos químicos com $Z < 73$ são considerados alvos de baixo número atômico e os valores de emissão de raios X devem ser corrigidos por fatores dependentes da constituição do material do alvo. A correção foi realizada, seguindo critério do Apêndice E da NCRP 51, utilizando o fator de correção 0,7 correspondente a materiais de número atômico baixo.

Nos ensaios de irradiação realizados para definição dos melhores parâmetros operacionais, eficiência do dispositivo de irradiação, as energias estudadas variaram de 0,55 a 0,90 MeV. Para estes valores de energia, os valores da Taxa de emissão de raio X (rads m2 mA$^{-1}$ min$^{-1}$) foram calculados por meio dos ábacos do Apêndice E-1 da NCRP 51(24) relacionados na FIG. 13. Os cálculos da taxa de emissão de raios X, utilizados nos cálculos da blindagem, são apresentados na TAB. 1.
FIGURA 13- Taxa de emissão de raio-x em materiais que apresentam número atômico alto com energias variando de 0,1 a 100 MeV adaptada do Apêndice E-1 da NCRP – 51

TABELA 1 - Cálculo da taxa de emissão de raio X (D_0)

<table>
<thead>
<tr>
<th>Direção</th>
<th>Energia (MeV)</th>
<th>Taxa de emissão de raio X (a)</th>
<th>Corrente = 50 mA</th>
<th>Corrente = 65 mA</th>
<th>Corrente = 83 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(rads m²/min)</td>
<td>D_0</td>
<td>D_0</td>
<td>D_0</td>
</tr>
<tr>
<td>0°</td>
<td>0,55</td>
<td>9</td>
<td>22,5</td>
<td>29,25</td>
<td>37,35</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>9,5</td>
<td>23,75</td>
<td>30,87</td>
<td>39,42</td>
</tr>
<tr>
<td></td>
<td>0,75</td>
<td>13</td>
<td>32,5</td>
<td>42,25</td>
<td>53,95</td>
</tr>
<tr>
<td></td>
<td>0,85</td>
<td>30</td>
<td>75</td>
<td>97,5</td>
<td>124,5</td>
</tr>
<tr>
<td>90°</td>
<td>0,9</td>
<td>40</td>
<td>100</td>
<td>130</td>
<td>166</td>
</tr>
</tbody>
</table>

Observação

(a) Valores obtidos da FIG. 13 - Apêndice E.1- Taxa de emissão de raio-x em materiais que apresentam número atômico alto com energias variando de 0,1 a 100 MeV.
2.3.2 - Cálculo da Taxa de Dose Admissível (H_m)

Segundo a NCRP Report No. 51, o cálculo do H_m é realizado utilizando-se o fator de 2,5 mrem por hora (áreas controladas). Considerando-se a permanência anual do trabalhador na instalação com acelerador de elétrons de 11 meses, 20 dias por mês, sendo que cada dia com 8 horas de permanência, obtém-se o total de 1.760 horas por ano (23).

Entretanto, seguindo a legislação brasileira estabelecida na NORMA CNEN-3.0.1 – Diretrizes Básicas de Radioproteção (21), o limite de dose permissível ao trabalhador que lida com radiação ionizante é de 20 mSv/ano. Portanto, a taxa de dose admissível para o trabalhador, com 1.760 horas e permanência, utilizado no dimensionamento foi de 1,16 mrem por hora ou 11 μSv por hora.

2.3.3 - Fator de Ocupação de Área (T)

Tendo em vista que o operador permanece aproximadamente 1.760 horas por anos na instalação, sendo que, a maior parte do tempo na sala de controle afastado do acelerador, fez-se necessário corrigir o tempo de permanência junto à blindagem do acelerador por meio do fator de ocupação. Esta correção permite a elevação do valor da Taxa de Dose Admissível (H_m). Adotou-se o valor de ¼ do valor de permanência na instalação radioativa. Valor este bastante conservador uma vez que as intervenções no acelerador são realizadas com a alta tensão que acelera os elétrons desligado e o sistema hidráulico (dispositivo de irradiação) não possui partes móveis reduzindo a incidência de manutenção.

2.3.4 - Cálculo da Espessura (S)

Para o cálculo da espessura da blindagem em função do índice de transmissão de raio- X (B_x), utilizou-se o apêndice E-14 da Norma NCRP-51 que apresenta as espessuras das camadas décimo redutoras para material chumbo com raios X gerados em aceleradores de elétrons com energia variando de 0,1 MeV a 100 MeV. A camada décimo reduitora é corresponde a espessura do
material da blindagem que reduz a intensidade da radiação no lado oposto de incidência por um fator 10, logo:

$$Bx = 10^{-n} \quad \text{ou} \quad n = \log_{10} \left(\frac{1}{Bx} \right)$$ \hspace{1cm} (10.2)

Onde \(n \) é o número necessário de camadas décimo redutora (T), para que a exposição ocupacional não ultrapasse os limites estabelecidos pela Norma CNEN 3.01\(^{(20)}\).

O cálculo da espessura da blindagem de acordo com a NCRP Report No. 51\(^{(24)}\) foi realizado utilizando-se a fórmula:

$$S = T_1 + (n-1) \cdot T_o$$ \hspace{1cm} (11.2)

onde:

\(S \) - é o valor da espessura da blindagem (cm);
\(T_1 \) - é o valor da primeira camada décimo redutora onde incidem os raios X (de frente para a fonte emissora de radiação);
\(T_o \) - é o valor das camadas décimo redutora subsequente.

Os valores das camadas décimo redutoras são obtidas a partir da FIG. 14 onde é apresentado o gráfico adaptado da NCRP – 51\(^{(24)}\).
FIGURA 14– Dose equivalente x Espessura. Adaptada do Apêndice E- 14 da NCRP – 51

As espessuras da blindagem (S), foram calculadas simulando diferentes distâncias (de 0,1 a 1,5 m) entre a fonte de raios-X e os pontos de referência (d₁, d₂ e d₃) apresentados na FIG. 14, que indicam a distância entre o local onde é gerado o raio –X até o ponto de interesse da camada externa da blindagem.

Para otimização do dimensionamento da blindagem, os cálculos da espessura da blindagem foram реализados para três tipos de aceleradores, disponíveis no mercado para serem instalados em unidades móveis: modelos Variant N1 e Variant N2 de fabricação russa Budker Institute of Nuclear Physics (25) e modelo High Voltage de fabricação japonesa da Nissin Co (26).

As dimensões e correntes dos aceleradores apresentadas na TAB. 2 foram considerados no dimensionamento da blindagem. As dimensões L, A, B e C,
indicadas na FIG. 14 são características de cada componente dos aceleradores estudados.

TABELA 2 – Medidas específicas de cada acelerador

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Variant N1</th>
<th>Variant N2</th>
<th>Nissin High Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (keV)</td>
<td>600</td>
<td>600</td>
<td>500</td>
</tr>
<tr>
<td>Imáx(mA)</td>
<td>50</td>
<td>83</td>
<td>65</td>
</tr>
<tr>
<td>Pmáx (kW)</td>
<td>30</td>
<td>50</td>
<td>32,5</td>
</tr>
<tr>
<td>L (cm)</td>
<td>100</td>
<td>126</td>
<td>100</td>
</tr>
<tr>
<td>A (cm)</td>
<td>151</td>
<td>180</td>
<td>151</td>
</tr>
<tr>
<td>B (cm)</td>
<td>136</td>
<td>165</td>
<td>136</td>
</tr>
<tr>
<td>C (cm)</td>
<td>100</td>
<td>126</td>
<td>100</td>
</tr>
</tbody>
</table>

Para o dimensionamento da blindagem e o seu respectivo peso total, adotou-se como configuração básica da unidade de irradiação um acelerador de elétrons com energia variável de (0,55 a 0,90 MeV). Como dispositivo de irradiação, adotou-se a unidade desenvolvida pelo IPEN(5) e utilizada nos experimentos de irradiação, sendo que a sua largura foi ampliada para 135 cm, tornando-a compatível com a largura de varredura do feixe de elétrons (120 cm), dos aceleradores industriais disponíveis no mercado.

Na FIG. 15 são apresentados os pontos considerados no dimensionamento da blindagem e de espessura constante.
FIGURA 15- Esquema da blindagem do Acelerador de Elétrons

Nos cálculos das blindagens foram consideradas diferentes distâncias entre o ponto de geração dos raios X até o ponto externo da blindagem. As seguintes distâncias, indicadas na FIG. 14, representam:

Para o dimensionamento das blindagens, adotando-se o critério conservador a favor da segurança, foi considerado o feixe de elétrons focalizado e estático na borda lateral do dispositivo de irradiação, atuando como uma fonte pontual de radiação.

2.4 - SELEÇÃO DA CARRETA

Para estabelecer o limite do peso total para unidade móvel de irradiação e adequá-la a capacidade de carga permissível nas estradas do país, foi consultada
a Resolução n° 2264/81 do Conselho de Administração do DNER. Sessão n.º 40 de 07.12.81 \(^{(28)}\).

Esta Resolução regulamenta o uso das rodovias federais por veículos destinados ao transporte de cargas indivisíveis e excedentes em peso e/ou dimensões aos limites estabelecidos na Legislação vigente, para o conjunto de veículos e carga transportada.

No transporte de carga indivisível, a Resolução estabelece que devem ser atendidos os seguintes limites máximos de peso por eixo ou conjunto de eixos:

- Eixo simples: 2 rodas – até 7,5 t (sete e meio toneladas); 4 rodas até 12 t (doze toneladas); 8 rodas – até 16 t (dezesseis toneladas);
- Eixo duplo, com distância entre eixos igual ou superior a 1,35 m (um metro e trinta e cinco centímetros), 4 rodas por eixo – até 22 t (vinte e duas toneladas); 8 rodas por eixo – até 24 t (vinte e quatro toneladas);
- Eixo duplo, com distância entre eixos igual ou superior a 1,50 m (um metro e cinqüenta centímetros), 4 ou 8 rodas por eixo – até 24 t (vinte e quatro toneladas);
- Eixo triplo, com distância entre eixos igual ou superior a 1,35 m (um metro e trinta e cinco centímetros); 4 rodas por eixo – até 28,5 t (vinte e oito e meia toneladas); 8 rodas por eixo – até 34,5 t (trinta e quatro e meia tonelada);
- Eixo triplo, com distância entre eixos igual ou superior a 1,50 m (um metro e cinqüenta centímetros); 4 rodas por eixo – até 30 t (trinta toneladas); 8 rodas por eixo – até 36 t (trinta e seis toneladas) \(^{(27)}\).

Foram consultados, potenciais fornecedores/fabricantes nacionais de carretas (furgão semi-reboque) \(^{(28,29,30)}\), focalizando a consulta nas características das já existentes na linha rotineira de produção. Evitou-se carretas especiais que elevassem o custo final da instalação. Na FIG. 16 são mostradas as principais dimensões das carretas disponíveis no mercado.
FIGURA 16 – Características e dimensões das carretas fabricadas no país

<table>
<thead>
<tr>
<th>Características</th>
<th>Dimensão (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento externo</td>
<td>14.600 a 15.000</td>
</tr>
<tr>
<td>Largura externa</td>
<td>2.600</td>
</tr>
<tr>
<td>Altura interna</td>
<td>2.800</td>
</tr>
</tbody>
</table>

2.5 - ESTUDO DE VIABILIDADE ECONÔMICA

A viabilidade da utilização da tecnologia e processamento de efluentes com feixe de elétrons depende na maior parte do custo do tratamento, que por sua vez depende da eficiência do processo e dos equipamentos e instalações necessárias para sua utilização. Para um estudo de viabilidade econômica com o propósito de determinar a melhor relação custo – benefício, faz-se necessário definir a dose requerida para o tratamento e a vazão do efluente.

A partir destes dados, define-se o tipo de acelerador a ser utilizado com a correspondente energia de aceleração e a capacidade de corrente do feixe de elétrons. Define-se, também, o dispositivo de irradiação a ser utilizado que otimize
o aproveitamento do feixe de elétrons e determinam-se os custos operacionais de modo a se obter o custo unitário para o tratamento de um metro cúbico do efluente\(^{(3)}\).

No caso de utilizar uma unidade móvel, cujo objetivo principal é o de prestar serviço de irradiação para diferentes fontes geradoras de efluentes, é fundamental que o conjunto acelerador de elétrons e o dispositivo de irradiação tenham características de robustez que permitam o seu transporte, sem a necessidade de serem acondicionados em sistemas especiais de embalagem, e que o tempo de preparação da instalação, especialmente do acelerador, para o início da operação, seja o menor possível.

Outro fator limitante é a energia de aceleração dos elétrons que, para este tipo de instalação, em virtude da limitação imposta pelo peso da blindagem, requer valores de energia muito abaixo dos valores desejados para a operação com a máxima eficiência do conjunto acelerador e dispositivo de irradiação.

Procurou-se, nos estudos realizados, obter condições de operação para o dispositivo de irradiação que apresentasse o melhor custo benefício de processamento, sabendo-se, previamente, que as condições ótimas de operação obtidas para o dispositivo de irradiação desenvolvidas no IPEN, não seriam alcançadas, em função da limitação da energia do acelerador de elétrons.

A partir da seleção dos aceleradores disponíveis no mercado, com características adequadas para serem montados em uma unidade móvel, foi realizada uma análise de custos adotando-se o modelo do “Manual for Preparation of Industrial Feasibility Studies, da UNIDO\(^{(31)}\).

Nos valores apresentados para os custos, adotou-se como moeda o dólar americano (US$), por permitir maior facilidade de comparação com outros estudos internacionais na área de tratamento de efluentes.
2.5.1 - ESTIMATIVA DE CUSTO PARA PROCESSAMENTO

O levantamento de todas as despesas que incidem no custo final do processamento, iniciou-se pelo custo do capital investido, que considera todos os gastos envolvidos durante a fase de projeto, construção e implantação da unidade móvel de irradiação.

Para a determinação dos custos operacionais foram estimados os custos fixos e variáveis da instalação. Os custos fixos foram relacionados com depreciação, custo do capital investido e gastos administrativos. Estes custos independem do volume processado. Os custos variáveis, relacionados diretamente com a quantidade de horas e volume da operação da instalação, foram obtidos considerando-se as necessidades de: mão de obra envolvida, manutenção e gastos de energia.

Para determinação do custo unitário por hora de processamento (custo hora máquina - US$/ hora de operação), levou-se em consideração o número de horas de operação disponíveis da instalação por ano. Apesar do acelerador ter capacidade para operar mais de 8.000 horas por ano, levou-se em consideração os tempos necessários para o transporte da instalação e a necessidade de preparação da instalação (remontagem de itens do acelerador e acoplamientos hidráulicos), reduzindo a disponibilidade para 6.000 horas por ano.

A capacidade de processamento, ou seja, a vazão do efluente durante a irradiação por metro cúbico, foi determinada utilizando-se a fórmula apresentada no trabalho de Rela (3):

\[
Q \left(\frac{kg}{h} \right) = 3600 \cdot \frac{V (MeV)}{i (mA)} \cdot \eta \left(\frac{D (kGy)}{} \right)
\]

(12.2)
Onde:

- Q – vazão, expressa em kg/h;
- V – energia do feixe de elétrons, expressa em milhões de elétrons-volts (MeV);
- i – corrente do feixe de elétrons, expressa em mili-âmpere (mA);
- D_T – dose teórica absorvida pelo produto, expressa em (kGy).
- η – é o parâmetro que indica o aproveitamento da interação do feixe de elétrons com o líquido em processamento.
3.0 - RESULTADOS E DISCUSSÃO

3.1 - ARRANJO FÍSICO DA INSTALAÇÃO

Na FIG. 17 é apresentada a concepção final da instalação com indicação dos principais sistemas que constituem a unidade móvel de radiação.

O arranjo físico final e os respectivos itens de constituição são apresentados a seguir:

- **SALA DE BOMBAS**
 - 03 bombas centrífugas, modelo 170 R50 (3 HP);
 - 02 tanques de fibra de vidro de capacidade 1.500 l;
 - 05 válvulas solenóides (VS) de Ø 1", com tensão de alimentação de 220 VAC;
 - 01 medidor de vazão tipo turbina (MV) de fabricação DIGIFLOW. Modelo 1100.

- **SALA DE PROCESSOS**
 - Dispositivo de irradiação, projeto e fabricação CTR/IPEN;
 - Acelerador de elétrons, a ser definido de acordo com a capacidade de processamento;
 - Blower;
 - Chiller.

- **SALA DE CONTROLE**
 - Painel de controle.

- **UNIDADE GERADORA DE ENERGIA**
 - Aparelho moto gerador diesel, capacidade 30 Kw a 150 kW dependendo da capacidade do acelerador
FIGURA 17- Arranjo Físico da Instalação
Na configuração adotada, observou-se que o posicionamento do acelerador sobre o conjunto de três eixos traseiros da carreta permitiu uma melhor distribuição de carga nas longarinas da carreta.

A unidade hidráulica com o tanque de armazenamento e homogeneização de líquido a ser processado, foi posicionada na traseira com o propósito de facilitar, durante o estacionamento da carreta, a maior proximidade com a tubulação a ser acoplada com a tubulação existente no local onde a planta de irradiiação fará o processamento do efluente.

A unidade geradora de energia foi posicionada na parte frontal da carreta, por ser o segundo item mais pesado da instalação. O posicionamento frontal desta unidade está localizado sobre o eixo de tração do cavalo mecânico, que fará o arraste da carreta, possibilitando uma melhor distribuição de carga sobre os eixos de transporte, durante o movimento do conjunto. A concentração dos maiores valores de carga (acelerador e respectiva blindagem), se dará sobre os pontos de apoio no solo, esta configuração diminui os momentos fletores e torsores da estrutura da carreta, permitindo assim, a utilização de carretas já existentes no comércio, barateando o custo do capital inicial a ser investido na instalação.

O fluxograma do processo, apresentado na FIG.18, possui as seguintes operações de bombeamento:

- Bombeamento do tanque T1 para o dispositivo de irradiação, onde o produto processado é encaminhado, por gravidade, ao tanque T2 e, por meio de bomba diretamente à rede externa.

- Produto bombeado do tanque T1 para o dispositivo de irradiação, processado, transferido para T2, onde que por meio de manobras com válvulas solenóides, é transferido para T1, permitindo ao sistema a aplicação de doses acumulativas para realização de experimentos.
3.2 - ENSAIOS DE IRRADIAÇÃO DE EFLUENTES

Na TAB. 3 são apresentados os resultados obtidos de dose e de eficiência dos ensaios realizados variando-se a vazao e a energia de aceleração de 0,55 a 0,90 MeV e a corrente do feixe de elétrons. O ideal seria utilizar 0,5 MeV como
valor inferior do intervalo de energia de aceleração do feixe de elétrons, porém, a estabilidade da corrente do acelerador utilizado (IPEN) foi a partir de 0,6 MeV.

TABELA 3 – Valores de dose absorvida e rendimento do processo para diferentes energias e corrente do feixe de elétrons

<table>
<thead>
<tr>
<th>Experimento</th>
<th>Energia MeV</th>
<th>Corrente mA</th>
<th>Vazão L/min</th>
<th>Dose kGy</th>
<th>η (%)</th>
<th>Média η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,60</td>
<td>2</td>
<td>40</td>
<td>0,7</td>
<td>38,9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,60</td>
<td>2</td>
<td>60</td>
<td>0,6</td>
<td>50,0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,60</td>
<td>4</td>
<td>20</td>
<td>2,1</td>
<td>29,2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,60</td>
<td>4</td>
<td>40</td>
<td>1,3</td>
<td>36,1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,60</td>
<td>4</td>
<td>60</td>
<td>0,8</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,60</td>
<td>8</td>
<td>20</td>
<td>3,3</td>
<td>22,9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,60</td>
<td>8</td>
<td>40</td>
<td>2</td>
<td>27,8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,60</td>
<td>8</td>
<td>60</td>
<td>1,4</td>
<td>29,2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,60</td>
<td>12</td>
<td>20</td>
<td>4,6</td>
<td>21,3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,60</td>
<td>12</td>
<td>40</td>
<td>2,9</td>
<td>26,9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,60</td>
<td>12</td>
<td>60</td>
<td>1,7</td>
<td>23,6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,75</td>
<td>2</td>
<td>20</td>
<td>1,1</td>
<td>24,4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,75</td>
<td>2</td>
<td>40</td>
<td>0,6</td>
<td>26,7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0,75</td>
<td>2</td>
<td>60</td>
<td>0,2</td>
<td>13,3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,75</td>
<td>4</td>
<td>20</td>
<td>2,3</td>
<td>25,6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0,75</td>
<td>4</td>
<td>40</td>
<td>1,3</td>
<td>28,9</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0,75</td>
<td>4</td>
<td>60</td>
<td>0,8</td>
<td>26,7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0,75</td>
<td>8</td>
<td>20</td>
<td>4,6</td>
<td>25,6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0,75</td>
<td>8</td>
<td>40</td>
<td>2,7</td>
<td>30,0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0,75</td>
<td>8</td>
<td>60</td>
<td>1,8</td>
<td>30,0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0,75</td>
<td>12</td>
<td>20</td>
<td>6,9</td>
<td>25,6</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0,75</td>
<td>12</td>
<td>40</td>
<td>4,2</td>
<td>31,1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0,75</td>
<td>12</td>
<td>60</td>
<td>2,9</td>
<td>32,2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0,85</td>
<td>2</td>
<td>40</td>
<td>1,5</td>
<td>58,8</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0,85</td>
<td>2</td>
<td>60</td>
<td>1</td>
<td>58,8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0,85</td>
<td>4</td>
<td>20</td>
<td>3,1</td>
<td>30,4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0,85</td>
<td>4</td>
<td>40</td>
<td>2,3</td>
<td>45,1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0,85</td>
<td>4</td>
<td>60</td>
<td>1,6</td>
<td>47,1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0,85</td>
<td>8</td>
<td>20</td>
<td>6,3</td>
<td>30,9</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,85</td>
<td>8</td>
<td>40</td>
<td>4,1</td>
<td>40,2</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0,85</td>
<td>8</td>
<td>60</td>
<td>2,9</td>
<td>42,6</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0,85</td>
<td>12</td>
<td>20</td>
<td>9,3</td>
<td>30,4</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0,85</td>
<td>12</td>
<td>40</td>
<td>5,7</td>
<td>37,3</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0,85</td>
<td>12</td>
<td>60</td>
<td>4,1</td>
<td>40,2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0,90</td>
<td>2</td>
<td>20</td>
<td>1,8</td>
<td>33,3</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0,90</td>
<td>2</td>
<td>40</td>
<td>1,3</td>
<td>48,1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0,90</td>
<td>2</td>
<td>60</td>
<td>1</td>
<td>55,6</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0,90</td>
<td>4</td>
<td>20</td>
<td>3,4</td>
<td>31,5</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0,90</td>
<td>4</td>
<td>40</td>
<td>2,1</td>
<td>38,9</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0,90</td>
<td>4</td>
<td>60</td>
<td>1,7</td>
<td>47,2</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0,90</td>
<td>8</td>
<td>20</td>
<td>6,6</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0,90</td>
<td>8</td>
<td>40</td>
<td>4,1</td>
<td>38,0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0,90</td>
<td>8</td>
<td>60</td>
<td>3</td>
<td>41,7</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0,90</td>
<td>12</td>
<td>20</td>
<td>9,9</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0,90</td>
<td>12</td>
<td>40</td>
<td>6,4</td>
<td>39,5</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>0,90</td>
<td>12</td>
<td>60</td>
<td>4,7</td>
<td>43,5</td>
<td></td>
</tr>
</tbody>
</table>
Na FIG. 19 é apresentado o gráfico relacionando a energia de aceleração com o valor calculado da eficiência da interação dos elétrons (η) com o líquido processado (água) para diferentes valores de vazão.

![Gráfico](image)

FIGURA 19 - Gráfico da eficiência do processo de interação dos elétrons em função da energia de aceleração para diferentes vazões

A eficiência aumenta em função do aumento da energia incidente, no efluente e vazão estudadas, como pode ser observado nesta figura, e também, que os valores dos rendimentos referentes à transferência de energia, ou melhor, da interação do feixe de elétrons com o efluente, são inferiores aos obtidos por Rela\(^{(3)}\). A principal razão é o valor da energia de aceleração de elétrons ser inferior, da ordem de 0,6 MeV, em função da limitação imposta pela blindagem do acelerador montado em uma unidade móvel.
3.3 - ACELERADORES DE ELÉTRONS

Inicialmente foi avaliado o estado dos componentes do acelerador de 450 keV de fabricação Haefely (Suíça) mostrado na FIG. 20. Este acelerador foi doado ao IPEN pela empresa Móveis Bérgamo, que se encontra fora de operação por mais de 15 anos, com o propósito de determinar os seus custos de recuperação para torná-lo viável para aplicação no Projeto da Unidade Móvel. Nesta avaliação, além de técnicos especializados do IPEN, houve o apoio da Agência Internacional de Energia Atômica por meio do "expert" Dr Ruston Salimov, pesquisador e projetista de aceleradores do "Budcker Institute of Nuclear Physics", instituição pertencente à "Russian Academy of Sciences".

FIGURA 20 – Acelerador Haefely do IPEN
Além do péssimo estado de conservação, após avaliação dos seus componentes internos levou à conclusão de que o acelerador existente necessitaria de peças de reposição e modificação do projeto original, para adequação a uma unidade móvel, cujos custos necessários seriam superiores aos da aquisição de uma unidade nova, com menores custos operacionais e facilidade de manutenção.

Foram consultados fornecedores internacionais de aceleradores de elétrons com capacidade de atender às exigências de dimensões físicas e robustez do acelerador para suportar impactos durante o deslocamento da unidade móvel.

Os aceleradores selecionados, para aplicação em uma unidade móvel, foram o de fabricação Russa e Japonesa do tipo “internal core transformer”, com os seguintes preços e capacidades operacionais:

Modelo Variant N1(25)

\[E = 600 \text{ keV} \]
\[I_{\text{máx}} = 50 \text{ mA} \]
\[P_{\text{máx}} = 30 \text{ kW} \]
Valor: US$ 600.000,00

Modelo Variant N2(26)

\[E = 600 \text{ keV} \]
\[I_{\text{máx}} = 83 \text{ mA} \]
\[P_{\text{máx}} = 50 \text{ kW} \]
Valor: US$ 750.000,00

Modelo Nissin – High Voltage(26)

\[E = 600 \text{ keV} \]
\[I_{\text{máx}} = 65 \text{ mA} \]
\[P_{\text{máx}} = 32,5 \text{ kW} \]
Valor: US$ 1.100.000,00
Os aceleradores russos demonstraram ser mais vantajosos pelas suas condições de preço e características operacionais.

3.4 – SISTEMA DE VERIFICAÇÃO DOSIMÉTRICO

O dosímetro ALANPOL apresentou boa reprodutibilidade e estabilidade de sinal para diferentes meios aquosos (água e efluente industrial), podendo ser utilizado na avaliação de sistemas dosimétricos instalados em unidades de processos de tratamento de efluentes industriais utilizando acelerador de elétrons, como pode ser observado na FIG 21.

![Gráfico mostrando a dependência do sinal RPE com o tipo de dose para diferentes amostras](image)

FIGURA 21 - Dependência do sinal RPE com o tipo de dose para diferentes amostras

3.5 - CÁLCULO DA BLINDAGEM

Na TAB. 4 é apresentado um resumo dos cálculos efetuados para o dimensionamento das blindagens para as posições apontadas no item 2.3.4 e o respectivo peso total para diferentes energias de aceleração e corrente do feixe de
elétrons, estudadas para a operação do acelerador a ser instalado na unidade móvel.

TABELA 4 – Valores das espessuras e peso das blindagens para diferentes energias de aceleração feixe de elétrons

<table>
<thead>
<tr>
<th>Corrente (mA)</th>
<th>d(cm)</th>
<th>Peso Total (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,55 MeV</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>11,17</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>11,32</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>11,49</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>11,68</td>
</tr>
<tr>
<td>50</td>
<td>35</td>
<td>11,89</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>12,11</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>12,35</td>
</tr>
<tr>
<td>65</td>
<td>15</td>
<td>11,79</td>
</tr>
<tr>
<td>65</td>
<td>20</td>
<td>11,95</td>
</tr>
<tr>
<td>65</td>
<td>25</td>
<td>12,14</td>
</tr>
<tr>
<td>65</td>
<td>30</td>
<td>12,34</td>
</tr>
<tr>
<td>65</td>
<td>35</td>
<td>12,57</td>
</tr>
<tr>
<td>65</td>
<td>40</td>
<td>12,81</td>
</tr>
<tr>
<td>65</td>
<td>45</td>
<td>13,06</td>
</tr>
<tr>
<td>83</td>
<td>15</td>
<td>12,29</td>
</tr>
<tr>
<td>83</td>
<td>20</td>
<td>12,46</td>
</tr>
<tr>
<td>83</td>
<td>25</td>
<td>12,65</td>
</tr>
<tr>
<td>83</td>
<td>30</td>
<td>12,87</td>
</tr>
<tr>
<td>83</td>
<td>35</td>
<td>13,11</td>
</tr>
<tr>
<td>83</td>
<td>40</td>
<td>13,36</td>
</tr>
<tr>
<td>83</td>
<td>45</td>
<td>13,63</td>
</tr>
</tbody>
</table>
Observa-se na TAB. 4 que para a energia de 0,55 MeV, o valor do menor peso da blindagem é de 11,17 ton para a distância de 15 cm do dispositivo de irradiação. A distância de 15 cm pode ser considerada como otimizada, uma vez que o peso da blindagem calculado, para todas as energias e correntes estudadas, é o de menor valor.

3.6 - SELEÇÃO DA CARRETA

Adotando-se, de modo conservador, o maior valor de energia e corrente, obtém-se, a partir do dimensionamento da blindagem e o cálculo do respectivo peso apresentado no item anterior, o peso da blindagem de 26,5 toneladas com o do acelerador de elétrons e periféricos (blower, chiller e moto gerador) o peso total do conjunto é próximo de 31 toneladas, concentrando-se a carga no conjunto dos eixos traseiros.

A partir desta distribuição de cargas e obedecendo a resolução 2264/81 DNER, optou-se por uma carreta com três eixos (11 toneladas por eixo), conforme ilustra FIG. 22.
Na FIG. 23 são apresentadas as características técnicas da carreta escolhida:

<table>
<thead>
<tr>
<th>Cota</th>
<th>Característica</th>
<th>Dimensão</th>
<th>Unidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Comprimento externo</td>
<td>13.500</td>
<td>14.100</td>
</tr>
<tr>
<td>D</td>
<td>Largura externa</td>
<td>2.600</td>
<td>2.600</td>
</tr>
<tr>
<td>E</td>
<td>Largura interna</td>
<td>2.480</td>
<td>2.480</td>
</tr>
<tr>
<td>F</td>
<td>Altura externa</td>
<td>2.870</td>
<td>2.870</td>
</tr>
<tr>
<td>G</td>
<td>Altura interna</td>
<td>2.700</td>
<td>2.700</td>
</tr>
<tr>
<td>H</td>
<td>Largura interna da porta traseira</td>
<td>2.480</td>
<td>2.480</td>
</tr>
<tr>
<td>I</td>
<td>Altura interna da porta traseira</td>
<td>2.673</td>
<td>2.673</td>
</tr>
<tr>
<td>J</td>
<td>Altura mesa pino-rei ao solo</td>
<td>1.350</td>
<td>1.350</td>
</tr>
<tr>
<td>K</td>
<td>Distância entre eixo</td>
<td>1.250</td>
<td>1.250</td>
</tr>
<tr>
<td>L</td>
<td>Balanço dianteiro</td>
<td>800 / 800 / 1.250</td>
<td>800 / 1.250</td>
</tr>
<tr>
<td>M</td>
<td>Distância pino-rei ao pé de apoio</td>
<td>2.300</td>
<td>2.300</td>
</tr>
</tbody>
</table>

Capacidade de carga: 11 toneladas por eixo

FIGURA 23 - Características técnicas da carreta

Foi feita consulta aos tradicionais fabricantes de carretas do país, o preço médio foi de R$ 65.000,00 correspondendo a US$ 30.000,00.

3.7 – ESTUDO DA VIABILIDADE ECONÔMICA

Os dados referentes aos aceleradores de elétrons disponíveis no mercado, o custo da blindagem, o custo dos itens relevantes da unidade móvel estimados, são apresentados na TAB. 5, e permitem calcular o valor do capital inicial a ser investido para os três tipos de aceleradores estudados.
TABELA 5 – Valores do investimento e construção da unidade móvel com os 3 tipos de aceleradores de elétrons estudados.

<table>
<thead>
<tr>
<th>Itens</th>
<th>Investimento (x US$ 1.000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacidade do Acelerador</td>
</tr>
<tr>
<td></td>
<td>0,6MeV</td>
</tr>
<tr>
<td></td>
<td>30kW</td>
</tr>
<tr>
<td>Acelerador de Elétrons</td>
<td>600</td>
</tr>
<tr>
<td>Custo (US$)</td>
<td>49,2</td>
</tr>
<tr>
<td>Dispositivo de Irradiação</td>
<td>15</td>
</tr>
<tr>
<td>Sistema de Controle</td>
<td>50</td>
</tr>
<tr>
<td>Carreta</td>
<td>30</td>
</tr>
<tr>
<td>Unidade Hidráulica</td>
<td>20</td>
</tr>
<tr>
<td>Energia- Moto gerador</td>
<td>15</td>
</tr>
<tr>
<td>Sistema de Ventilação/ Refrigeração</td>
<td>25</td>
</tr>
<tr>
<td>Projeto de Engenharia(^{(a)})</td>
<td>86</td>
</tr>
<tr>
<td>Custo do Licenciamento</td>
<td>60</td>
</tr>
<tr>
<td>CUSTO TOTAL</td>
<td>950,20</td>
</tr>
</tbody>
</table>

Observação

\(^{(a)}\) Valor do projeto de engenharia correspondente a 10% do custo dos equipamentos da instalação.

A TAB. 6 apresenta os custos anuais operacionais da unidade móvel para os três aceleradores estudados.
TABELA 6 – Estimativa de custos operacionais da unidade móvel utilizando acelerador de elétrons (anual).

<table>
<thead>
<tr>
<th>Custos Operacionais (US$ x 1000)</th>
<th>0,6MeV 30kW</th>
<th>0,6MeV 83kW</th>
<th>0,5MeV 32,5kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTOS FIXOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amortização do capital investido (a)</td>
<td>77,3</td>
<td>91,8</td>
<td>120,4</td>
</tr>
<tr>
<td>Custo do capital investido(b)</td>
<td>47,5</td>
<td>56,4</td>
<td>73,9</td>
</tr>
<tr>
<td>Custos administrativos (c)</td>
<td>19</td>
<td>22,5</td>
<td>29,58</td>
</tr>
<tr>
<td>CUSTOS VARIÁVEIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mão de obra</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Energia (consumo de óleo diesel)(d)</td>
<td>30</td>
<td>83</td>
<td>32,5</td>
</tr>
<tr>
<td>Manutenção(e)</td>
<td>47,5</td>
<td>56,4</td>
<td>73,9</td>
</tr>
<tr>
<td>Custo Operacional Total</td>
<td>371,3</td>
<td>460,1</td>
<td>480,20</td>
</tr>
</tbody>
</table>

Observações:
(a) Foi adotada a amortização do capital em um período de dez anos e taxa de juros a 5% ao ano (valor internacional) {22}
(b) Taxa de juros adotada de 5% ao ano (valor internacional) {22}
(c) Valor correspondente a 2% do custo do investimento {22}
(d) Consumo de óleo diesel 250 g/Kw/ h
(e) Valor correspondente a 5% dos equipamentos da instalação

O valor do custo da mão de obra foi dimensionado em função da Norma da Comissão Nacional de Energia Nuclear (CNEN) que exige 02 Supervisores de Radioproteção credenciados para aceleradores industriais. Estes supervisores deverão ter nível superior e também, desempenharão a função de Supervisores de Operação e realizarão a manutenção preventiva e corretiva da instalação. Além dos supervisores, a instalação terá 04 operadores e 04 auxiliares para operação continua (03 turnos mais revezamento).

Uma vez determinado o custo operacional anual da unidade móvel de irradiiação, admitindo-se uma disponibilidade de 6.000 horas por ano em função dos tempos requeridos para o transporte e para adequação da unidade ao local de...
tratamento de efluentes, o custo operacional por hora da instalação (hora/maquina) é para os aceleradores estudados:

- Acelerador 0,6 MeV - 30 kW - custo/ hora = US$ 61,8 por hora
- Acelerador 0,6 MeV - de 83 kW - custo/ hora = US$ 76,7 por hora
- Acelerador 0,5 MeV - de 32,5 kW - custo/ hora = US$ 80,1 por hora

Utilizando-se a fórmula 12.2 do item 2.6, do presente trabalho, para a determinação da capacidade de irradiação dos aceleradores e dos resultados dos experimentos de irradiação, apresentados na TAB. 3, onde foi obtido o valor médio de 30,8% para o rendimento ou eficiência do processo de irradiação para o feixe de elétrons com energia de 0,6 MeV, as capacidades de processamento e dos aceleradores estudados para o valor de dose de 1kGy a ser absorvido pelo efluentes são apresentadas a seguir:

- Acelerador 0,6 MeV - 30 kW - capacidade de processamento = 33,3 m³/hora
- Acelerador 0,6 MeV - 83 kW - capacidade de processamento = 92,0 m³/hora
- Acelerador 0,5 MeV - 32,5 kW - capacidade de processamento = 36,0 m³/hora

O custo unitário do processamento de acordo com as capacidades de processamento para os três aceleradores estudados, são apresentados a seguir:

- Acelerador 0,6 MeV – Variant N₁²⁵⁻ potência de 30 kW – custo unitário de processamento = US$ 1,8 / m³
- Acelerador 0,6 MeV – Variant N₂²⁵⁻ potência de 30 kW – custo unitário de processamento = US$ 0,8 / m³
- Acelerador 0,5 MeV – Nissin High Voltage\(^{(26)}\) - potência de 32,5 kW – custo unitário de processamento = US$ 2,2 / m³

Tendo em vista os custos unitários de processamento, a versão que utiliza o acelerador de 83 kW de potência e 0,6 MeV de energia é a que apresenta o valor mais competitivo. Este valor é inferior ao obtido pelo estudo feito pela Enviromental Protection Agency (EPA), em 1997\(^{(16)}\), quando avaliaram a instalação semelhante para o tratamento de água subterrânea contaminada e determinaram valor de processamento entre US$ 5 e US$ 8 por mil galão ou US$ 1,3 e US$ 2,1 por metro cúbico. Entretanto cabe observar que no estudo efetuado pela EPA não apresentou o valor do rendimento do dispositivo de irradiação e também a dose utilizada para tratar o efluente.

O valor assumido de 1 kGy para o tratamento do efluente na determinação do custo unitário do processamento é bastante conservador, uma vez que, existem dados na literatura onde os valores das doses para este tipo de produto pode variar de 0,5 kGy a 3,0kGy dependendo do nível e da qualidade do contaminante e permite, com facilidade, avaliar os custos para outros valores de doses, pois a variação dos mesmos é diretamente proporcional a dose requerida para o processamento.

A planta projetada por B. Han\(^{(33)}\) da empresa EB TECH Co., utiliza um acelerador de alta potência (400kW - 1MeV) de fabricação russa, operando a 8.000 horas por ano, instalado em uma planta de tratamento de efluentes na cidade de Daegu, na Coreia, onde para um volume de 20.000 m³/dia, uma dose de 1 kGy apresenta custo unitário de US$ 0,15/ m³. Este valor é da ordem de cinco vezes inferior ao valor de US$ 0,8 / m³ obtido para o acelerador de 0,6 MeV-83 kW, cabendo observar que por ser uma unidade fixa, tem uma disponibilidade de operação maior e também operando com energia de 1MeV aumenta o rendimento do processo, estes fatores influenciam diretamente no custo unitário do tratamento.
Outro fator relevante a ser considerado, é a otimização do dispositivo de irradiação que foi projetado para operar com energia incidente dos elétrons de 1,5 MeV e em função da limitação do peso da blindagem foi testado para operar com 0,6 MeV reduzindo a metade a eficiência. Um novo estudo da configuração do dispositivo, principalmente das haletas, tornará mais eficiente e consequentemente reduziria o custo do processamento.
4.0 - CONCLUSÃO

Utilizando-se o dispositivo de irradiiação desenvolvido pelo IPEN, a construção de uma unidade móvel no interior de uma carreta comercial é viável tecnicamente e atende, nos aspectos de Radioprotecção e limite de transporte de carga, a legislação pertinente do Brasil.

O dosímetro ALANPOL® poderá ser utilizado para realizar a verificação do sistema dosimétrico da técnica de tratamento de efluentes industriais da unidade móvel, pois apresentou boa reprodutibilidade e estabilidade de sinal para diferentes meios aquosos (água e efluente industrial).

O custo unitário do processamento é superior ao de uma unidade fixa em razão da diminuição da eficiência da interação da radiação incidente no efluente processado, motivada pela redução de energia do acelerador de elétrons e também pela menor disponibilidade de operação motivada pela necessidade de deslocamento até o local aonde o efluente foi gerado.

4.1 - SUGESTÕES PARA TRABALHOS FUTUROS

Otimizar o dispositivo de irradiiação, realizando um estudo da configuração das haletas, para melhorar o desempenho do dispositivo, tornando-o mais eficiente e consequentemente reduzir o custo do processamento.

Estudar novas aplicações da unidade móvel, e estudar, também, o dispositivo apropriado, como por exemplo, a unidade móvel de tratamento de grãos desenvolvida pela empresa E- VENTUS.
REFERÊNCIAS BIBLIOGRÁFICAS

17. E-VENTUS
Descrição do processo de tratamento de silos.

24. COMISSÃO NACIONAL DE ENERGIA NUCLEAR, Diretrizes Básicas de Proteção Radiológica, 2005 (CNEN- 3.0.1).

26. Nissin Electric Company
 High Voltage
 Disponível em:

27. Departamento Nacional de Estradas de Rodagem
 Guia de Tráfego
 Disponível em:

28. Facchini.
 Especificação Técnica da Carreta Tipo Baú.
 Disponível em:

29. Guerra.
 Especificação Técnica da Carreta Tipo Baú.
 Disponível em:

30. Randon
 Especificação Técnica da Carreta Tipo Baú.
 Disponível em:

Instituto de Pesquisas Energéticas e Nucleares
Diretoria de Pesquisas, Desenvolvimento e Ensino
Av. Prof. Lineu Prestes, 2242 Cidade Universitária CEP: 05565-000
Fone/Fax(0XX11) 3816-9148
SÃO PAULÔ - São Paulo - Brasil
http://www.ipen.br

O Ipen é uma autarquia vinculada à Secretaria de Ciência, Tecnologia e Desenvolvimento Econômico
e Turismo do Estado de São Paulo, gerida técnica, administrativa e financeiramente pela
Comissão Nacional de Energia Nuclear, órgão do Ministério de Ciência e
Tecnologia, e associada à Universidade de São Paulo.