• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.85.2016.tde-22042016-130130
Document
Auteur
Nom complet
Regis Cortez Bueno
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2016
Directeur
Jury
Mesquita, Roberto Navarro de (Président)
Jackowski, Marcel Parolin
Perillo, Sergio Ricardo Pereira
Rocha, Marcelo da Silva
Seleghim Junior, Paulo
Titre en portugais
Detecção de contornos em imagens de padrões de escoamento bifásico com alta fração de vazio em experimentos de circulação natural com o uso de processamento inteligente
Mots-clés en portugais
circulação natural
detector de bordas
escoamento bifásico
inferência fuzzy
processamento de imagens
Resumé en portugais
Este trabalho desenvolveu um novo método para a detecção de contornos em imagens digitais que apresentam objetos de interesse muito próximos e que contêm complexidades associadas ao fundo da imagem como variação abrupta de intensidade e oscilação de iluminação. O método desenvolvido utiliza lógicafuzzy e desvio padrão da declividade (Desvio padrão da declividade fuzzy - FuzDec) para o processamento de imagens e detecção de contorno. A detecção de contornos é uma tarefa importante para estimar características de escoamento bifásico através da segmentação da imagem das bolhas para obtenção de parâmetros como a fração de vazio e diâmetro de bolhas. FuzDec foi aplicado em imagens de instabilidades de circulação natural adquiridas experimentalmente. A aquisição das imagens foi feita utilizando o Circuito de Circulação Natural (CCN) do Instituto de Pesquisas Energéticas e Nucleares (IPEN). Este circuito é completamente constituído de tubos de vidro, o que permite a visualização e imageamento do escoamento monofásico e bifásico nos ciclos de circulação natural sob baixa pressão.Os resultados mostraram que o detector proposto conseguiu melhorar a identificação do contorno eficientemente em comparação aos detectores de contorno clássicos, sem a necessidade de fazer uso de algoritmos de suavização e sem intervenção humana.
Titre en anglais
Edge detection in Images of two-phase flow patterns with high void fraction in natural circulation experiments with Intelligent Processing
Mots-clés en anglais
edge detection
fuzzy inference
image processing
natural circulation
two-phase flow
Resumé en anglais
This work has developed a new method for digital image contour detection which can be successfully applied to images presenting objects of interest with high proximity and presenting complexities related with background abrupt intensity fluctuations. The developed method makes use of fuzzy logic and declivity standard deviation (Fuzzy Declivity Standard Deviation FuzDec) to image processing and contour detection. Contour detection is an important task to estimate two-phase flow features through bubble segmentation in order to obtain parameters as void fraction and bubble diameter. FuzDec was applied to natural circulation instability images which were experimentally acquired. Image acquisition was done at the Natural Circulation Circuit (CCN) of the Instituto de Pesquisas Energéticas e Nucleares (IPEN) in Brazil. This facility is all made up with glass tubes allowing easy visualization and imaging of one-phase and two-phase flow patterns during natural circulation cycles under low pressures. Results confirm that the proposed detector can improve contour identification when compared to classical contour detector algorithms, without using smoothing algorithms or human intervention.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
2016BuenoDeteccao.pdf (12.70 Mbytes)
Date de Publication
2016-05-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.