• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.87.2010.tde-29042010-105556
Document
Author
Full name
Sergio Luiz Alves Junior
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2010
Supervisor
Committee
Stambuk, Boris Juan Carlos Ugarte (President)
Araujo, Pedro Soares de
Basso, Luiz Carlos
Gombert, Andreas Karoly
Schenberg, Ana Clara Guerrini
Title in Portuguese
Genômica do metabolismo de maltotriose em Saccharomyces cerevisiae: o papel determinante do gene AGT1
Keywords in Portuguese
AGT1
Expressão
Fermentação
i>Saccharomyces cerevisiae
Maltotriose
Transporte
Abstract in Portuguese
Processos biotecnológicos importantes dependem da eficiente fermentação de hidrolisados de amido, ricos em maltose e maltotriose, pela levedura i>Saccharomyces cerevisiae. Entretanto, algumas linhagens apresentam dificuldade para consumir a maltotriose, o que diminui a eficiência fermentativa nesses processos. Embora se acredite que o transporte desse açúcar através da membrana plasmática seja o passo limitante para sua fermentação, existem conflitos na literatura em relação às permeases capazes de transportar a maltotriose. No intuito de melhorar a compreensão do metabolismo desse açúcar em S. cerevisiae, correlacionamos o fenótipo de várias cepas em maltotriose com seus respectivos genótipos. Para isso, identificamos os genes de transportadores de α-glicosídeos presentes nas linhagens analisadas e avaliamos o crescimento celular, a produção de etanol e as atividades de transporte por cada cepa. Para confirmar se tais genes eram, de fato, expressos, analisamos a expressão dos mesmos em diferentes condições de cultivo. Após verificarmos que a presença de um regulador constitutivo aumenta a expressão do gene AGT1 e incrementa a fermentação de maltose e maltotriose, deletamos esse gene do genoma de três linhagens de laboratório para avaliar a contribuição da permease Agt1p para a utilização de maltotriose. Embora as linhagens selvagens tenham consumido e fermentado rapidamente esse açúcar, as agt1 Δ foram incapazes de transportar a maltotriose e de utilizála durante 3-4 dias de incubação. Contudo, após um período de incubação maior (8 dias), apenas uma das linhagens agt1 Δ continuou incapaz de crescer em maltotriose, enquanto as outras apresentaram crescimento tardio, após ~100 h de fase lag, porém sem produção de etanol. Essa mesma fase lag extensa foi também observada em cepas industriais incapazes de expressar o AGT1. Além disso, através de QRT-PCR vimos que os transportadores MPH2- MPH3 não estão relacionados a esse fenótipo. Ao buscarmos o que poderia promover esse novo fenótipo, análises de microarray indicaram expressão aumentada de α-glicosidases e transportadores de hexose durante esse crescimento tardio. Após inocularmos uma linhagem hxt-null agt1 Δ em maltotriose, detectamos glicose no meio de cultura durante o seu crescimento tardio, indicando que cepas que não contam com o Agt1p na membrana só conseguem crescer tardiamente em maltotriose em virtude da hidrólise extracelular desse açúcar. Por fim, nós demonstramos ainda que a α-glicosidase codificada pela ORF YJL216C é responsável por essa hidrólise extracelular da maltotriose, uma vez que a sua deleção tornou as células incapazes de crescer em maltotriose mesmo durante longos períodos de incubação. Assim, nossos resultados indicam que o Agt1p é o único transportador de maltotriose em S. cerevisiae e que o mesmo é necessário para promover eficiente fermentação desse açúcar. Pudemos também concluir que, em sua ausência, as células podem crescer em maltotriose somente se forem capazes de hidrolisá-la extracelularmente. Neste trabalho, discutimos também o poder de indução dos genes MAL pela maltose e pela maltotriose. Analisados em conjunto, nossos resultados sugerem que, embora não haja um indutor mais forte dentre esses açúcares, a atividade de transporte é maior em células crescidas em maltotriose.
Title in English
Genomics of maltotriose metabolism in i>Saccharomyces cerevisiae the determinant role of AGT1 gene
Keywords in English
Saccharomyces cerevisiae
AGT1
Expression
Fermentation
Maltotriose
Transport
Abstract in English
Important biotechnological processes depends on the efficient fermentation of starch hydrolysates rich in maltose and maltotriose by Saccharomyces cerevisiae. However, some strains have difficulty to consume maltotriose, which decreases their fermentation efficiency. Although it is believed that maltotriose transport across the plasma membrane is the rate-limiting step for its fermentation, there have been conflicting reports whether all the known α-glucoside transporters in S. cerevisiae allow efficient maltotriose utilization by yeast cells. In order to contribute for a better understanding of maltotriose metabolism in S. cerevisiae, we correlated the phenotype of several strains on maltotriose with their respective genotype. For such correlation, we identified which α-glucoside transporter genes were present in the strains analyzed and we determined the kinetics of cell growth and ethanol production by each strain on maltotriose, as well as their transport activities. To be sure that those genes were, indeed, expressed, we also evaluated their expression under different growth conditions. After verifying that a constitutive MAL regulator increases the expression of AGT1 gene and improves maltose and maltotriose fermentation, we decided to delete this gene from three laboratorial strains to evaluate the contribution of the Agt1p permease for maltotriose utilization. In spite that the wild-type cells rapidly consumed and efficiently fermented this sugar, the agt1 Δ strains were unable to transport maltotriose and to utilize this sugar during 3-4 days of incubation. However, after a longer period of incubation (8 days), just one of the agt1 Δ strains was still unable to grow on maltotriose, while the other two strains presented delayed growth, after an ~100 h lag phase, but did not ferment this sugar. The same long lag phase on maltotriose was also seen in industrial strains which were unable to express their AGT1 gene. Furthermore, QRT-PCR assays demonstrated that MPH2-MPH3 transporters are not related to this phenotype. Seeking for what could promote this novel phenotype, microarray analysis indicated upregulation of α-glucosidases and hexose transporters during this delayed growth on maltotriose. After inoculation of an hxt-null agt1 Δ strain on maltotriose, we detected glucose on the medium during cellular growth, indicating that strains which do not have Agt1p in their plasma membrane are able to grow after a long lag phase on maltotriose only because of extracellular maltotriose hydrolysis. Finally, we also show that the α-glucosidase codified by YJL216C is responsible for this delayed extracellular hydrolysis of maltotriose, since after its deletion cells became unable to grow on maltotriose at all. Thus, our results indicate that Agt1p is the only effective maltotriose transporter in S. cerevisiae and that it is required to promote an efficient fermentation of this sugar by yeast cells. We can also conclude that in its absence cells can only grow on maltotriose if they are capable to hydrolyze this sugar outside the cells. In the present work, we also discussed which one, maltose or maltotriose, is the best inducer of MAL genes. Taking together, our results suggest that, although there is no best inducer, α-glucoside transport activity is higher in maltotriose grown cells.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2010-05-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.