ABLAÇÃO A LASER DE SUBSTRATOS DENTAISS: ESMALTE, DENTINA E RESINAS COMPOSTAS

ROSANE DE FÁTIMA ZANIRATO LIZARELLI

Tese apresentada à Área Interunidades em Ciência e Engenharia de Materiais da EESC, IFSC, IQSC, da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Doutor em Ciência e Engenharia de Materiais

Orientador: Prof. Dr. Vanderlei Salvador Bagnato

São Carlos – São Paulo
2002
Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

Rosane de Fátima Zanirato Lizarelli - Tese de Doutoramento - Setembro/2002 - IFSC/USP
MEMBROS DA COMISSÃO JULGADORA DA TESE DE DOUTORADO DE
ROSANE DE FÁTIMA ZANIRATO LIZARELLI APRESENTADA À ÁREA
INTERUNIDADES CIÊNCIA E ENGENHARIA DE MATERIAIS,

COMISSÃO JULGADORA:

Prof. Dr. Vanderlei Salvador Bagnato (Orientador e Presidente) – IFSC-USP

Profa. Dra. Denise Maria Zezell – IPEN

Prof. Dr. Renato Amaro Zângaro – UNIVAP

Prof. Dr. Carlos Alberto dos Santos Cruz – UNESP

Prof. Dr. Marcelo Henrique Gehlen – IQSC-USP
No princípio Deus criou os céus e a terra.
A terra, porém, estava informe e vazia, e as trevas cobriam o abismo,
e o Espírito de Deus pairava sobre as águas.

E Deus disse: “Faça-se a luz!”

E a luz foi feita.

Deus viu que a luz era boa; e separou a luz das trevas.

Gênesis

Dedicatória

À minha “vózinha” Maria, que está no céu,
olhando e orando por mim, e que é para mim o

Exemplo de Mulher forte, corajosa,
determinada e apaixonada pelo amor.

Obrigada Vó por sua força, pelo seu amor de
mãe e pelo exemplo de vida para todas suas
netas e filhas.
Dedicatória Especial

À minha Mãe, Marina, Meu maior Exemplo.
Mãe, você é para mim Exemplo de Tudo: de Mulher, de Pessoa, de Esposa,
Mãe, Amante e Professora!
Uma professora que lutou muito para ter seu lugar reconhecido e que, de
forma incrível, hoje, é homenageada Todos os anos por seus alunos!
Você é uma grande Guerreira. É o Meu Espelho. Amo você.

Dedicatória Essencial

À todas as mulheres do meio acadêmico, que lutam para reestruturar suas
vidas, a todo momento, repartindo suas energias como Professoras,
Pesquisadoras, Mães, Esposas e Amigas.
Nossa luta não é em vão. Nossa sensibilidade, qualidade essencial para os
Pesquisadores, com sua curiosidade inerente, é condição “sine-qua-non”
para a evolução da Pesquisa Científica.
AGRADECIMENTOS

Um guerreiro da Luz tem respeito pela gratidão.
Durante a luta foi ajudado pelos anjos; as forças celestiais colocaram cada coisa em seu lugar e permitiram que o guerreiro pudesse dar o melhor de si.
Ele jamais esquece os amigos... Um guerreiro não precisa que seu benfeitor lhe lembre o quanto o ajudou, ele se lembra sozinho.

Paulo Coelho

A Deus, que me honrou com a inteligência, vontade de estudar e coragem para lutar.

Aos meus Amados Pais, José Luiz e Marina, pelo apoio de todas as horas e pelo amor infinito. Especialmente ao meu Pai que tem sido meu amigo, parceiro e tem gerenciado minha vida profissional e econômica.
À minha Adorada irmã e colega de trabalho Renata, por tornar sempre minha vida mais alegre; e ao meu Querido irmãozinho, Rogério, por seu amor incondicional.
À minha querida amiga, parceira nesta Tese, a aluna de Iniciação Científica e Responsável pela Biossegurança-Laser do nosso consultório do CePOF-IFSC/USP, Lílian Tan Moriyama, pela dedicação incondicional e desprendida durante todos os experimentos aqui apresentados.

Ao meu Querido Amigo Prof. Dr. Walter Gomes Miranda Jr., Docente do Departamento de Materiais Dentários da FO-USP, ao estimado colega Prof. Dr. Carlos Alberto Cruz, Docente do Departamento de Materiais Dentários da FOAr-UNESP, e à brilhante Profa. Dra. Maria Cristina Borsatto, Docente do Departamento de Clínica Infantil da FORP-USP, por colaborarem informalmente e prontamente com meus trabalhos.

Aos Docentes do Departamento de Dentística Restauradora da FOAr-UNESP, em especial aos Profs. Drs. Sizenando Toledo Porto Neto, Osmir Batista Oliveira Jr., Marcelo Ferrarezi
de Andrade, pela pronta disposição em colaborar e pelo interesse em implementar as pesquisas utilizando o Laser na Dentística.

A FAPESP, pelo suporte financeiro nos últimos oito meses do meu Doutoramento.

A toda a Equipe do CePOF - Grupo de Óptica, em especial ao Prof. Dr. Zílio, ao amigo Daniel e à “Kilvinha”, ao Cléber, ao Léo e ao “Linus”; ao Prof. Dr. Marcassa; aos colegas Mônica, Jú Ferreira, Cláudia, Marcelo, Marcel, Brás, Clóvis, Kleber Chicrala; e aos colegas CDs “Crisinha”, Walter Bagnato, Girlene, Cris Castilho, Juçaira, Liz, Igor, Carla, Augusto, Luciana e aos meus estagiários Danilo e Juliana, que sempre estiveram por perto me auxiliando.

Aos estimados colegas e alunos da FOAr-UNESP: Kina, Pabiino, Anderson, Hermes, Fabrício, Susin, Abraham, Sonia, Laura, Ana Maria Góis, Ana Maria Sarabia, Rinaldo, Jean, Cris, Jeferson, Sílvio, Sérgio, Desirée, Cláudia e também aos meus Querido(a)s aluno(a)s do curso de Aperfeiçoamento em Laser do GEL/APCD-RP, Luciana, Renata B., Renata C., Alice, Erica, Fabiano, Maria Cristina, Cristiane, Janine, Takami, Laerte, Kátia, Marina, Michella, Angélica, Maria Ângela, Lamar, Gilberto, Marcos, Rejane, Regina, Cristiane, pelo respeito.

Aos funcionários do IFSC-USP pelo carinho e respeito, em especial a Gláucia do Grupo de Óptica; a Neusa e a Mara da Biblioteca; e também à querida Rô da cantina.

Às “meninas” da Pós-Graduação: Erica, Wladerez, Samira e Cristiane.

Ao meu grande amigo Zé (José Eduard P. Pelino), professor-doutor do Mestrado Profissionalizante de Lasers em Odontologia do IPEN-FO/USP, pela correção gramatical do “Abstract”.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Aos pacientes que doaram seus preciosos dentes, sem os quais essa Tese não existiria.

Aos estimados colegas estudiosos da área da Laserterapia: Prof. Dr. Carlos de Paula Eduardo (FO-USP), Prof. Dr. Nivaldo Parizotto (UFSCar), Prof. Dr. José Eduardo Pelizone Pelino (IPEN-USP), Profa. Luciana Almeida Lopes, Prof. Dr. Antonio Pinheiro (UFBa), Prof. Dr. Jesus Djalma Pécora (FORP-USP), Prof. Dr. Aldo Brugnera Jr. (UCCB), Prof. Dr. Renato Amaro Zângaro (UNIVAP), e, Profa. Dra. Tiina I. Karu (Institute of Laser and Information Technologies of Russian Academy of Sciences): que continuem acreditando na Luz como um instrumento terapêutico diferenciado.

A todos os meus queridos pacientes, pela confiança e respeito, e acima de tudo por entenderem minhas ausências e limitações.

Às minhas grandes amigas “Marcelanis” (Marcela Cheffer Bianchini), Rê (Regina Helena Cocareli), por gostarem de mim assim mesmo e pelo apoio sempre que solicitado.

E, ao meu amado Paulo (Paulo César Gomes Silva), companheiro, parceiro e amigo de tantas vidas, e, ao meu lado, há 16 anos: você tem um lugar especial também nessa minha vida e no meu coração.
A maioria dos professores perde tempo fazendo perguntas que visam a descobrir o quê o aluno não sabe, quando a verdadeira arte consiste em descobrir o quê o aluno sabe ou é capaz de saber. O objetivo da educação deve ser o treinamento de indivíduos que agem e pensam independentemente, mas que vêem no serviço à comunidade a conquista mais alta de suas vidas.

Albert Einstein

AGRADECIMENTOS ESPECIAIS

Ao meu Querido Orientador e Amigo, Prof. Dr. Vanderlei Salvador

Bagnato, Prof. Titular do Departamento de Física e Ciência dos Materiais do IFSC-USP, pelo respeito, por acreditar nos meus sonhos e na minha capacidade, e pela oportunidade em aprender, ao seu lado, sobre Ciência e sobre a Vida.

Tenho certeza de que aqui, sob sua orientação, eu cresci cientificamente como eu não conseguiria em nenhum outro lugar. Obrigada por Tudo. Obrigada por me orientar e por ser meu grande amigo. Obrigada por me ter dito Não sempre que foi necessário e nunca para me ofender ou magoar. Obrigada por acreditar em mim e na minha insanidade, digo, imaturidade científica. Obrigada por me chamar “Pesquisadora-Nata”, vindo de você foi uma grande honra. Obrigada por me confiar o consultório odontológico do CePOF, daqui, e também a Disciplina da PG da FOAr-UNESP. Como você, somente Meus Pais e Deus confiaram tanto em mim. Quero continuar crescendo Com Você, enquanto Deus e você me permitirem. Eu adoro você e te respeito como Pessoa, como Cientista e como Meu Grande Amigo. Deus te abençoe.
SUMÁRIO

Lista de figuras ... 11
Lista de tabelas ... 22
Lista de abreviaturas e símbolos 22
Resumo ... 24
Abstract ... 27

1. Introdução e Estabelecimento do Problema 31

2. Uma Revisão do Tema e os Sistemas Lasers aqui utilizados 35
2.1 Ablação a Laser .. 41
2.2 Os lasers de Nd:YAG e Er:YAG – sistemas utilizados nesta pesquisa 47
2.3 Referências Bibliográficas ... 54

3. Experimentos com o laser de Nd:YAG operando no regime de picossegundos 60
3.1 Referências Bibliográficas ... 69
3.2 Mapeamento Térmico na Interação do Laser de Picossegundos com Dentes Decíduos ... 72
3.3 Referências Bibliográficas ... 89
3.4 Ablação de Dentes Decíduos com o Laser de Picossegundos ... 92
3.5 Referências Bibliográficas ... 118

4. Experimentos com o laser de Er:YAG 119
4.1 Referências Bibliográficas ... 125
4.2 Ablação de esmalte e dentina humanos de dentes permanentes e decíduos com laser de Er:YAG ... 128
4.3 Referências Bibliográficas ... 149

4.4 Ablação de Resinas Compostas com o Laser de Er:YAG Microsssegundos
... 151

4.5 Referências Bibliográficas ... 185

4.6 Ablação diferencial e comparativa entre substratos dentais: esmalte, dentina e resinas compostas ... 186

4.7 Referências Bibliográficas ... 200

4.8 Proposta de uma Nova Técnica para Remoção Seletiva de Restaurações Insatisfatórias em Resinas Compostas .. 201

4.9 Referências Bibliográficas ... 204

5. Considerações Finais ... 205

6. Anexos ... 211

6.1 Anexo A: Conceitos básicos da física do LASER 211

6.2 Anexo B: Tecidos duros dentais Esmalte e Dentina 220

6.3 Anexo C: Materiais restauradores dentais Resinas Compostas 226

6.4 Anexo D: Biossegurança na utilização de sistemas lasers em consultório odontológico ... 229

7. Apêndices ... 246

7.1 Carta do Comitê de Ética .. 246

7.2 Artigos aceitos para publicação e publicados em revistas internacionais arbitradas ... 247
LISTA DE FIGURAS

Figura 1 - Ablação de esmalte e dentina, permitindo a ejeção da fase mineral sem modificação... 43

Figura 2 – Uma avalanche eletrônica é gerada devido à ionização por impacto colisional (Mourou; Liu – 1997) ... 45

Figura 3 – Desenho esquemático do Antares 76-s (Nd:YAG no regime de picossegundos) (Antares Service Manual, Coherent, USA) ... 48

Figura 4 – Laser de Nd:YAG no regime de picossegundos (Antares 76-s, Coherent, USA) externamente (A) e internamente (B) – cavidade ressonante em “U”.. 49

Figura 5 – Gráfico da potência pelo tempo (Antares – 1996) ... 49

Figura 6 – A) Laser de Er:YAG (Twin Light – Fotona Medical Lasers, Slovenia); e, B) ponta ativa não-contato (janela em safira) ... 51

Figura 7 – Ablação com lasers de pulsos ultra-curtos em comparação aos pulsos longos (adaptado de Marion; Kim – 1999) .. 52

Figura 8 – Fotomicrografia de esmalte (acima) e dentina (abaixo) de dentes decíduos (do lado esquerdo) e permanentes (do lado direito) após ataque químico com ácido fosfórico a 35% (5000X) .. 65

Figura 9 – Microcavidades confeccionadas por lasers de Nd:YAG operando no regime de nanossegundos, sob aumento de 200X (A) e picossegundos, sob aumento de 200X (B) e sob aumento de 5000X (C) .. 66

Figura 10 – Diferentes vistas para micropreparos executados com laser de Nd:YAG picossegundos em esmalte, sob aumento de 100X (A) e em dentina, sob aumento de 5000X (B e C) .. 67

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Figura 11 - Termímetro de alta precisão ao lado de uma régua milimetrada (Model 120-202 EAJ, Fenwal Electronic, Milford, MA) ... 76

Figura 12 – Esquema do primeiro molar decíduo com o termímetro posicionado e pronto para ser irradiado .. 77

Figura 13 - Sistema experimental: “a boca artificial”. Um recipiente de vidro simulando as condições de umidade e de condução térmica no meio bucal para o elemento dental. O elemento a ser investigado é fixado em um suporte de acrílico e permanece parcialmente submerso em água aquecida e mantida a 37°C ... 78

Figura 14 - Irradiação laser em esmalte e dentina. O feixe laser foi focalizado no centro da face vestibular (esmalte) e no centro da parede axial do preparo Classe V (dentina)78

Figura 15 - Aparato experimental .. 79

Figura 16 - Curvas de aquecimento e de resfriamento de cada potência média considerando superfícies de esmalte (à esquerda) e dentina (à direita) de dentes anteriores (acima) e posteriores (abaixo) .. 81

Figura 17 - Diagramas PTT para esmalte (A e B) e dentina (C e D) de dentes anteriores (A e C) e posteriores (B e D), quando I = de 0 a 2,2°C; II = de 2,2 a 5,5°C; e, III = acima de 5,5°C ... 84

Figura 18 - Esquema representando o seccionamento do dente molar decíduo em quatro partes, previamente ao embutimento em resina epóxica ... 94

Figura 19 - Eixo de translação x-y-z de alta precisão (A) e posicionamento dele com a metade do disco (B) .. 95

Figura 20 – Embutimento de cada corpo-de-prova (3 meias coroas e 3 meias porções radiculares) em resina acrílica quimicamente ativada .. 97
Figura 21 – Lixamento lateralmente de cada corpo-de-prova (E – esmalte; e, D – dentina) para expor a profundidade de cada microcavidade ... 97

Figura 22 – Três zonas definidas para observar as características resultantes da irradiiação laser nos tecidos duros dentais .. 99

Figura 23 – Superfície de corpos-de-prova de esmalte (A) e dentina (B) com as microcavidades (aumento de 13 vezes) .. 99

Figura 24 – Vista comparativa entre esmalte (A) e dentina (B), mantendo o mesmo tempo de exposição (5 segundos) e potência média (200mW), sob aumento de 500X 100

Figura 25 – Vista comparativa entre esmalte (A) e dentina (B), mantendo o mesmo tempo de exposição (15 segundos) e potência média (350mW), sob aumento de 500X 101

Figura 26 – Vista comparativa entre microcavidades na mesma meia coroa, mantendo o tempo de exposição (10 segundos) e substrato (esmalte), variando a potência média (A - 200, B - 300 e C - 350mW, respectivamente) (500 vezes de aumento) ... 102

Figura 27 – Vista comparativa entre microcavidades no mesmo corpo-de-prova, mantendo a potência média (200mW) e o tecido-alvo (esmalte), variando o tempo de exposição (A - 5, B - 10 e C - 15 segundos, respectivamente) (500X de aumento) .. 102

Figura 28 – Vista comparativa entre microcavidades no mesmo corpo-de-prova (meia porção radicular), mantendo o tempo de exposição (5 segundos) e o substrato (dentina), variando a potência média (A - 200, B - 300 e C - 350mW, respectivamente) (500X de aumento) .. 103

Figura 29 – Vista comparativa entre microcavidades no mesmo corpo-de-prova, mantendo a mesma potência média (200mW) e substrato (dentina), variando o tempo de exposição (A - 5, B - 10 e C - 15 segundos, respectivamente) (500X de aumento) 104
Figura 30 – Vista comparativa entre microcavidades mantendo o tempo de exposição (10 segundos), variando o substrato (esmalte acima e dentina abaixo), variando o nível de potência média (A e C – 200mW, B e D – 350mW, respectivamente) (500X de aumento) ... 105

Figura 31 – Médias dos diâmetros para as microcavidades em esmalte 106

Figura 32 – Médias dos diâmetros para as microcavidades em dentina 107

Figura 33 – Médias das profundidades de todas as microcavidades 107

Figura 34 – Diversos formatos para os perfis das secções longitudinais das microcavidades em esmalte ... 108

Figura 35 – Diversos formatos para os perfis das secções longitudinais das microcavidades em dentina ... 108

Figura 36 – Coleção de todos os volumes de material removido obtidos 109

Figura 37 - Diâmetros observados em esmalte e expandidos 111

Figura 38 – Comparação entre os diâmetros de ablação em dentina e em esmalte, quando o tempo de exposição foi de 5 segundos ... 113

Figura 39 – Profundidade em função do tempo de exposição, em dentina 113

Figura 40 - Profundidade em função do tempo de exposição, para o esmalte 114

Figura 41 – Taxa de ablação: material removido em função do tempo (volume/tempo) para diferentes fluências \((F \ [J/cm^2] = \ E \ por \ pulso \ [J] / \ Área \ do \ "spot" \ [cm^2]) \) ... 115

Figura 42 – Restauração Classe I (ou moderada de localização 1, segundo Mount - Porto et al. - 2002) em resina composta fraturada: A – sob isolamento absoluto; B – removendo com laser de Er:YAG (200mJ e 10Hz, focalizado); e, C – preparo e modificação seletivos ... 121

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas. 14
Figura 43 – Fotomicrografia de exemplos de microestruturas de resinas compostas utilizadas neste experimento: A) microparticulada (Araujo et al. - 2001); B) híbrida (Z100 – 3M/EUA) (3M restaurador Z100 – 199?); e, C) compactável (Alert – Jeneric Pentron/EUA - 500X – IFSC/USP) .. 125

Figura 44 - Amostra posicionada no eixo de translação x-y-z(A) na distância focal(B) .. 130

Figura 45 – As três amostras (discos) com os corpos-de-prova após confecção das microcavidades com laser de Er:YAG sob todos os parâmetros escolhidos .. 131

Figura 46 – Micromorfologia comparativa entre esmalte e dentina de decíduos (A e B) e dentes permanentes (C e D), após irradiiação com o laser de Er:YAG empregando a energia por pulso de 300mJ, taxa de repetição de 10Hz e tempo de exposição de 10 segundos (fluência de 64,4J/ cm² e intensidade de 6,44W/ cm²) .. 133

Figura 47 – Fotomicrografias com 1000X de aumento: esmalte de dentes decíduos irradiados pelo laser de Er:YAG variando a energia por pulso em 100 (A), 200 (B), 300 (C) e 400mJ (D), respectivamente .. 134

Figura 48 – Fotomicrografias com 1000X de aumento do esmalte de dentes permanentes após irradiiação com laser de Er:YAG, variando a energia por pulso em 100 (A), 200 (B), 300 (C) e 400mJ (D), respectivamente .. 136

Figura 49 – Fotomicrografias com 1000X de aumento de dentina de dentes decíduos após a irradiiação com laser de Er:YAG, variando a energia por pulso em 100 (A), 200 (B), 300 (C) e 400mJ (D), respectivamente .. 137

Figura 50 – Fotomicrografias com 1000X de aumento de dentina de dentes permanentes após irradiiação com laser de Er:YAG, variando a energia por pulso em 100 (A), 200 (B),
300 (C) e 400mJ (D - setas indicativas para os prolongamentos odontoblásticos), respectivamente ... 139

Figura 51 – Valores de diâmetros em função da energia por pulso, considerando esmalte de dentes decíduos e permanentes .. 141

Figura 52 – Valores dos diâmetros em função da variação da energia por pulso, considerando a dentina de dentes decíduos e permanentes .. 142

Figura 53 – Valores das profundidades em função da variação da energia por pulso considerando esmalte de dentes decíduos e permanentes 143

Figura 54 – Valores das profundidades em função da variação da energia por pulso, considerando dentina de dentes decíduos e permanentes .. 145

Figura 55 – Valores dos volumes de material removido em função da variação da energia por pulso, considerando esmalte de dentes decíduos e de permanentes 145

Figura 56 - Valores dos volumes de material removido em função da variação de energia por pulso, considerando dentina de dentes decíduos e de permanentes 146

Figura 57 – Análise de variância considerando tipo de tecido nas linhas (esmalte e dentina), tipo de dente nos blocos (decíduo e permanente) e diferentes energias nas colunas (100, 200, 300 e 400mJ) (C = colunas; L = linhas; B = blocos) .. 147

Figura 58 – Sequência operatória para confecção das pastilhas: A – placa metálica com 5 moldes com 2,0mm de profundidade e 8,0mm de diâmetro; B – morsa para prensar e acomodar a resina sem excessos; e, C – fotopolimerização com lâmpada halógena 152

Figura 59 – Pastilhas após a irradiação com as microcavidades sendo preparadas para avaliação sob MEV ... 155
Figura 60 – Microcavidades em resinas compostas (microparticulada - A, híbrida - B e compactável - C) resultantes da irradiiação com o laser de Er:YAG com 300mJ, 10Hz durante 10 segundos e focado, sem imersão em água (aumento de 80 vezes) 157

Figura 61 – Microcavidades nas resinas compostas microparticulada - A, híbrida - B e compactável - C) resultantes da irradiiação de laser de Er:YAG com 300mJ, 10Hz e durante 10 segundos, após 4 dias de imersão em água (70 vezes de aumento) 157

Figura 62 – Microcavidades em resinas compostas (microparticulada - A, híbrida - B e compactável - C) resultantes da irradiiação com laser Er:YAG com 300mJ, 10Hz durante 10 segundos e focado, após 7 dias de imersão em água (70 vezes de aumento) 158

Figura 63 – Superfícies da resina composta microparticulada iradiadas com laser de Er:YAG sob 10Hz e 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com aumento de 1000X (sem tempo de imersão em água – zero dias) ... 159

Figura 64 – Superfícies da resina composta híbrida iradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (sem tempo de imersão em água – zero dias) ... 160

Figura 65 - Superfícies da resina composta compactável iradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (sem tempo de imersão em água – zero dias) ... 161

Figura 66 - Superfícies da resina composta microparticulada iradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200,
C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após quatro dias de tempo de imersão) ... 162

Figura 67 - Superfícies da resina composta híbrida irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após quatro dias de tempo de imersão) ... 163

Figura 68 - Superfícies da resina composta compactável irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após quatro dias de tempo de imersão) ... 164

Figura 69 – Superfícies da resina composta microparticulada irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após sete dias de tempo de imersão) ... 165

Figura 70 – Superfícies da resina composta híbrida irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após sete dias de tempo de imersão) ... 166

Figura 71 - Superfícies da resina composta compactável irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após sete dias de tempo de imersão) ... 167
Figura 72 – Os diâmetros de ablação observados para cada tipo diferentes de resina composta (A – microparticulada; B – híbrida; e, C – compactável) durante equivalentes condições de tempo de imersão em água ... 168

Figura 73 – A profundidade de penetração da ablação é apresentada para cada tipo de resina composta (A – microparticulada; B – híbrida; e, C – compactável) ... 170

Figura 74 – Profundidades para equivalentes condições de imersão em água (A – zero dia; B – quatro dias; e, C – sete dias) ... 171

Figura 75 – O volume de material removido em função da energia por pulso para cada tipo de resina composta (A – microparticulada; B – híbrida; e, C – compactável) 172

Figura 76 – Volume de material removido considerando os tempos de imersão em água (A – zero dia; B – quatro dias; e, C – sete dias) ... 173

Figura 77 - Análise de variância considerando tempo de imersão em água nas linhas (zero, 4 e 7 dias), tipo de resinas compostas nos blocos (microparticulada, híbrida e compactável) e diferentes energias nas colunas (100, 200, 300 e 400mJ) (C = colunas; L = linhas; B = blocos) .. 174

Figura 78 – Gráfico de colunas mostrando que cada coluna corresponde a um corpo-de-prova; cada cor corresponde a um tipo de resina composta; e, os tempos de imersão foram quatro, como mostrado na legenda ... 175

Figura 79 – Um aspecto geral típico para a área ablacionada para as superfícies consideradas nesse trabalho, resultantes da irradiação com laser de Er:YAG utilizando 10Hz e 300mJ durante 10 segundos (A – dentina de decíduo – 60 vezes de aumento; B – resina compactável – 80 vezes de aumento) ... 187
Figura 80 – Diâmetros de microcavidades ablacionadas em esmalte e em dentina, considerando os tipos de dentes separadamente: A – dentes decíduos, e B – dentes permanentes ... 189

Figura 81 – As medidas de profundidade de ablação para dentes decíduos (A) e permanentes (B) .. 190

Figura 82 – O volume total ablacionado para dentes permanentes (A) e decíduos (B) ... 190

Figura 83 – Resultados para os principais parâmetros de ablação em função da energia por pulso comparando os três tipos de resinas compostas (5A – diâmetro; 5B – profundidade; e, 5C – volume) .. 191

Figura 84 – Diâmetro, profundidade de penetração e volume ablacionado para esmalte de decíduos em comparação às mesmas medidas para as três resinas utilizadas 194

Figura 85 – Diâmetro, profundidade de penetração e volume ablacionado para dentina de decíduos em comparação às mesmas medidas para as três resinas utilizadas 195

Figura 86 – Diâmetro, profundidade de penetração e volume ablacionados para esmalte de permanentes em comparação às mesmas medidas para as três resinas utilizadas 197

Figura 87 – Diâmetro, profundidade de penetração e volume ablacionados para dentina de permanentes em comparação às mesmas medidas para as três resinas utilizadas 198

Figura 88 – Esquema básico dos componentes de um sistema laser 211

Figura 89 – Coerência: a) fonte de luz coerente; b) fonte de luz não-coerente (Low level laser in odontology – 199?) ... 214

Figura 90 – Forma de operação: a) contínua; b) chaveada; e, c) pulsada (Baxter–1994) ... 215

Figura 91 – Curvas para um laser de rubi pulsado Q-Swiched (Young – 1998). Sempre que se ultrapassar o limiar, haverá emissão de um pulso ... 218
Figura 92 – Estrutura de um órgão dental (E: esmalte; D: dentina; P: polpa; C: cemento; Li: ligamento periodontal; G: gengiva; OA: osso alveolar) (Della Serra; Ferreira - 1981) ... 221

Figura 93 – Desenho esquemático de um elemento dental primeiro molar superior direito: CO – porção coronária; R – porção radicular; A e v – face vestibular; B e m – face mesial; C e o – face linguai; X – face oclusal; VM – raiz vestibulo-mesial; VD – raiz vestibulo-distal; P – raiz palatina (modificado de Sicher; Tandler – 1981) ... 221

Figura 95 – Fotomicrografia da dentina com 5000X de aumento e após ataque com ácido fosfórico 35% ... 223

Figura 96 – Aparelhos de laser de baixa intensidade (Multi Laser, Laser Beam – Rio de Janeiro; e Twin Laser, MMOptics – São Carlos) .. 233

Figura 97 – Aparelhos de laser de alta intensidade Aparelhos de laser de alta intensidade (A – Pulse Máster 600 LE, American Dental Technologies – EUA; B – Twin Light, Fotona Medical Lasers – Slovenia) .. 234

Figura 98 – Chave de segurança de um aparelho laser de baixa (à esquerda) e de alta (à direita) intensidade (dispositivo removível) 236

Figura 99 – Pedal com proteção lateral ... 237

Figura 100 – Equipe profissional e paciente utilizando óculos apropriados para proteção do laser em uso .. 238

Figura 101 – Placa de advertência para as portas do consultório 239

Figura 102 - Isolamento absoluto e sugador de alta potência durante irradiação com laser de alta intensidade ... 241

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
LISTA DE TABELAS

Tabela I – Valores de características térmicas dos tecidos duros dentais esmalte e dentina, segundo Craig (1993) .. 70

Tabela II – Composição das resinas compostas utilizadas neste experimento 122

LISTA DE ABBREVIATURAS E SÍMBOLOS

nm – nanômetros
Nd:YAG – neodímio-ítrio-alumínio-granada
ps – picosegundos
ns – nanosegundos
mW – miliwatts
mm – milímetros
mm³ – milímetros cúbicos
μm – micrômetros
μm³ – micrômetros cúbicos
mg – miligramas
Al₂O₃ – óxido de alumínio (alumina)
CO₂ – dióxido de carbono
J – joules
E - energia
cm² – centímetros quadrados
W – Watts
Hz – Hertz (pulsos por segundo)
MEV – microscópio eletrônico de varredura
FDA – “Food and Drug Administration”
EDX – energia dispersiva de raios-X
CW – continuous wave
Z1 – zona um (do material removido)
Z2 – zona dois (intermediária)
Z3 – zona três (ao redor da perfuração)
°C – graus centígrados ou graus Celsius
μ – micron ou micra
% – porcentagem
s – segundos
mJ – milijoule
Er:YAG – érbio – ítrio – alumínio – granada

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas. 22
ErCr:YSGG – érbio – crômio – ítrio –
enxofre – gálio – granada
Ho:YLF – hólmio – ítrio – lítio - flúor
GaAlAs – gálio – alumínio – arsênio
→ - para
p. ex. – por exemplo
λ - comprimento de onda
L – distância entre os dois espelhos da
cavidade ressonante
c – velocidade da luz no vácuo
ν - freqüência
Δω - largura de banda
N – número inteiro
Tp – largura do pulso
PTT – potência – tempo – temperatura
E – esmalte
D – dentina
P – polpa
PVC - poli vinil cloreto
F – fluência
UV – ultravioleta
C – cimento
Li – ligamento periodontal
G – gengiva
AO – osso alveolar
BIS-GMA – bisfenol glicidil metacrilato
TEG-DMA – trietileno glicol
dimetacrilato
EDGMA – etileno glicol dimetacrilato
Φ - diâmetro
p – potência
t – tempo
~ - aproximadamente
ξ - proporcional
Q – “quality” (qualidade)
OH – grupo hidroxila (oxigênio e
hidrogênio)
π - “pi” (3,14)
Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Resumo

O laser de alta intensidade é aceito atualmente como um instrumento satisfatório para remoção seletiva e precisa dos tecidos dentais cariados. Se corretamente usado, os lasers minimizam a perda de tecido sadio além de promoverem conforto aos pacientes. O conhecimento dos aspectos básicos da ablação a laser de tecidos dentais e materiais odontológicos pode conduzir ao desenvolvimento de um protocolo de parâmetros que possam permitir a remoção seletiva de tecidos cariados e resinas insatisfatórias preservando o tecido dental sadio.

Os lasers de Nd:YAG, no regime de picossegundos, não estão ainda disponíveis para uso clínico odontológico. Sendo assim, estudos que permitam o máximo de informações relacionadas a esse sistema e ao órgão dental são bem-vindos, para estabelecer normas e parâmetros seguros para sua utilização, num futuro breve, na prática clínica. Três experimentos empregando o laser de Nd:YAG no regime de picossegundos foram executados: o mapeamento térmico, análise micromorfológica e cálculo da taxa de ablação, todos no nível de esmalte e de dentina, e considerando como elementos-alvo, os dentes deciduos. O estudo de mapeamento térmico pode determinar regiões de operação nas quais não ocorre um aquecimento deletério à polpa dental de dentes deciduos. Com relação aos aspectos micromorfológicos provenientes da interação laser-tecido de dentes deciduos, podemos observar os efeitos colaterais no nível de esmalte mais acentuados do que no nível da dentina. Enquanto a taxa de profundidade de penetração em dentina parece crescer com o progresso do tempo, para o esmalte o comportamento é o oposto. O volume ablacionado de forma geral é mais alto em dentina quando comparado ao do esmalte, o que resulta em uma taxa de ablação mais alta também.
Com relação à remoção de tecidos cariados, o laser de Er:YAG já tem se mostrado como um instrumento seguro e muito eficiente, porém não se trata do único procedimento corriqueiramente realizado na clínica: a remoção ou modificação total ou parcial de restaurações de resinas compostas já polimerizadas tem se tornado uma das práticas mais executadas no dia-a-dia. Sendo assim, empregar esse laser com esse propósito inicia um estudo necessário para conhecermos os aspectos básicos resultantes da ablação a laser das resinas compostas. Os dois últimos experimentos, aqui apresentados, propuseram investigar a taxa de ablação e os aspectos micromorfológicos da ablação com o laser de Er:YAG dos tecidos duros dentais normalmente mais envolvidos em Dentística Restauradora, esmalte e dentina, provenientes tanto de dentes decíduos quanto de permanentes, e também de resinas compostas restauradoras fotopolimerizáveis de três tipos diferentes: microparticulada, híbrida e compactável. Diferentes condições de trabalho foram utilizadas para analisar a real influência da ablação em resinas compostas com laser de Er:YAG: diferentes energias por pulso (100, 200, 300 e 400mJ) e tempos de imersão em água (zero, 4 e 7 dias). E os resultados nos permitiram concluir que o nível de energia por pulso foi o único fator que de fato pode influenciar a taxa de ablação. O tempo de imersão em água não influenciou de forma estatisticamente significante a taxa de ablação das resinas e os aspectos micromorfológicos resultantes se mostraram dependentes do tipo de estrutura e composição química diferente em cada resina composta aqui escolhida para ser estudada, bem como dos tecidos duros dentais. Para finalizar, cruzando os dados obtidos nos dois últimos experimentos empregando o laser de Er:YAG, foi-nos possível encontrar parâmetros para uma ablação que, de fato, possa ser diferencial e seletiva para remoção exclusiva das resinas compostas. A técnica proposta parece ser muito satisfatória para o tecido esmalte, tanto para dentes decíduos quanto para os dentes permanentes, enquanto que ainda para
dentina não foi possível estabelecer tais parâmetros. Porém, investigando e entendendo os mecanismos envolvidos, um novo dado foi encontrado com relação a ablação a laser desses compósitos: a água parece não ser a mediadora na ablação pelo laser de Er:YAG, talvez então, esse achado possa agora contribuir para refinhar os parâmetros seletivos, considerar o fator característica óptica do tecido-alvo e condições de irradiação, tais como, focalização e diâmetro do feixe laser e presença e quantidade de água no “spray”, para esmalte e estabelecer aqueles para a dentina, tanto em relação aos dentes decíduos quanto aos permanentes.

O objetivo principal foi alcançado, mostrando a viabilidade em preservar ainda mais estruturas de tecidos duros dentais sadios, tratando-os, de fato, e empregando instrumentos que interagem de formas diferenciadas, mostrando uma capacidade em identificar, segundo parâmetros aqui estabelecidos, o material que deva ser removido ou modificado sem resultar em danos colaterais prejudiciais ao órgão dental, e aos tecidos sadios que devem ser sempre conservados integros no meio bucal.
Abstract

Laser is now established as a suitable tool for the selective and precise removal of carious dental tissue. If correctly used, lasers minimize the losses of healthy tissue besides the comfort that it can promote to patients. The knowledge of basic aspects of laser ablation of dental tissues and materials can lead to the development of a set of parameters that may allow selective removable of decayed tissues and dissatisfactory resin preserving healthy dental tissue.

Nd:YAG lasers in picosecond regime are not available to dentistry clinical uses yet. Because of that, studies able to allow much information related with this laser system and dental organ are welcome. It could establish safe parameters and rules to its utilization in a brief future in a clinical practice. Three experiments employing Nd:YAG picosecond pulsed laser were executed: thermal map out, micromorphological analysis and ablation rate calculation, all of them considering enamel and dentin, as target-tissues, and, from primary teeth. Thermal map out study resulted in safety operative regions where there are not detrimental heating to dental pulp of primary teeth. Considering micromorphological aspects as result of laser-tissue interaction in primary teeth, we could observe that collateral damage at the level of enamel more evident than in dentin. While the rate of penetration depth in dentin seems to scale up as the time progress, for enamel the behavior is the opposite. The overall ablated volume is higher in dentin when compared to enamel, which results in a higher ablated rate as well.

With relation to decayed tissues, Er:YAG laser has been well established as an efficient and safety tool, however it is not an unique common clinical procedure everyday in offices, total or partial removal or modification of composite resins restorations have became one clinical practice priority. In this manner, to employ this laser system to this proposal seems
adequate and starts a necessary research to understand the basic features of laser ablation of composite resin.

The last two experiments, presented here, have purposed to investigate ablation rate and micromorphological aspects when dental hard tissues, enamel and dentin, from primary and permanent teeth, are irradiated by Er:YAG laser, besides, photo curable restorative composite resins of three kind of type were irradiated too: microfiller, hybrid and condensable. Different conditions of work were used to evaluate the real influence of composite resins ablation with Er:YAG laser under different energies per pulse (100, 200, 300 and 400mJ) and immersion time in distilled water (zero, 4 and 7 days).

The results allowed concluding that the unique variable factor able to influence statistically the ablation rate of composite was the energy per pulse. The immersion time in water did not influence statistically the ablation rate of resins and the resulted micromorphological aspects showed a dependence considering structure type and chemical composition; they are different to each kind of choose composite studied here, it seems occur even with dental hard tissues.

To conclude, combining obtained data from the two cited above experiments with Er:YAG laser, it was possible found parameters to result in a differential and selective ablation, removing exclusively composite resins.

The proposed technique seems to be much adequate, however while this idea seems to apply well for enamel of primary and permanent teeth at the present stage it does not apply well for primary or permanent dentin. For dentin, the composition and content of water makes the Er:YAG laser ablation equal as superior in rate compared in the three used resins.
After understanding the resulted interactions between lasers and substrates, there is an interesting suggestion to search for a more convenient laser system to ablate composite resin. Also, the overall shape of ablation rate indicates that the water flux may well be an important variable to be investigating on the ablation rates.

Maybe, like this, this finding could contribute to refine the selective parameters to prevent the useless ablation of enamel and dentin from primary and permanent teeth.
Quando vence uma batalha, o guerreiro comemora.

Esta vitória custou momentos difíceis, noites de dúvidas,
intermináveis dias de espera.

Desde os tempos antigos, celebrar um triunfo faz parte do
próprio ritual da vida: a comemoração é um rito de passagem.
Os companheiros olham a alegria do guerreiro da luz, e pensam:
“por que faz isto? Pode decepcionar-se em seu próximo combate.
Pode atrair a fúria do inimigo”.

Mas o guerreiro sabe o motivo de seu gesto.
Ele se beneficia do melhor presente que a vitória é capaz de
trazer: confiança.

Celebra hoje sua vitória de ontem, para ter mais forças na
batalha de amanhã.

Paulo Coelho
1. INTRODUÇÃO E ESTABELECIMENTO DO PROBLEMA

A evolução das várias áreas da saúde depende da interação de novos materiais e instrumentos, juntamente com o desenvolvimento de técnicas para sua melhor utilização. Na Odontologia, o que se pode notar é um avanço e desenvolvimento de materiais e não das técnicas.

Os sistemas biológicos são constituídos de tecidos muito diferenciados sob vários aspectos, sendo um deles suas características ópticas intrínsecas. Os instrumentos terapêuticos deveriam ser capazes de identificar o tecido ou células que necessitam de tratamento, ou seja, deveriam ser "inteligentes", interagindo distintamente com esses tecidos ou células. Esse, com certeza, seria um passo importante e decisivo para os procedimentos clínicos-odontológicos, alterando uma filosofia terapêutica secular.

O órgão dental, nosso principal alvo terapêutico, se constitui em uma entidade muito sensível às agressões físicas (aquecimento e resfriamento) e mecânicas (instrumento de corte pouco preciso, por exemplo).

A utilização da luz laser aparece neste contexto para permitir um novo caminho ao pesquisador e ao clínico, buscando viabilizar procedimentos com maior eficiência em menor tempo, sem causar injúrias colaterais.

O que se percebe até o momento é o uso do laser para se fazer uma lapidação das técnicas já consagradas. A íntima relação e o reconhecimento das possibilidades que ele proporciona estão inspirando os estudiosos a encontrar caminhos diferentes para a terapia não-invasiva neste terceiro milênio, através da luz laser.

O fascínio que o laser exerce sobre os cientistas explica-se por suas características excepcionais: monocromáticidade, pequena divergência, coerência espacial e temporal,
intensa energia ou intensa potência, pulsos ultra-curtos, possibilidade de ajuste em diferentes comprimentos de onda, etc. As propriedades de intensidade e direitividade dos lasers são familiares a qualquer observador, pois elas se manifestam imediatamente; já outras propriedades, como a monocromaticidade e a coerência, exigem uma análise mais aprofundada. Daí a necessidade de que mesmo o clínico se dedique aos estudos básicos do laser e sua interação com os tecidos biológicos, antes de iniciar as aplicações em pacientes.

Vários são os mecanismos possíveis de interação entre laser e tecido biológico, no entanto, é importante e condição “sine qua non”, conhecer as características intrínsecas de cada material. É possível, através de técnicas atuais, estudar esses processamentos altamente seletivos, analisando os efeitos dos lasers nesses substratos. Pensando assim, são, realmente, as características ópticas dos tecido-alvo os principais pontos de discussão que permitiriam uma interação diferenciada e seletiva com os diferentes lasers.

Mediante as necessidades vigentes, uma linha de pesquisa buscando o laser mais eficiente e mais seletivo para os tecidos dentais e materiais odontológicos, sem resultar em danos colaterais irreversíveis, torna-se alvo fundamental e essencial no presente momento.

A Dentística, como uma especialidade odontológica, é definida como a arte e a ciência do diagnóstico, tratamento e prognóstico de todos aqueles defeitos dos elementos dentais que não requerem recobrimento total para sua correção; da restauração da forma, função e estética; da manutenção da integridade fisiológica desses elementos em relação harmoniosa com os tecidos duros e moles adjacentes; contribuindo para a saúde geral e o bem-estar do paciente. Como então o feixe laser, uma energia luminosa com características especiais poderia contribuir para o refinamento dos procedimentos clínicos já bem estabelecidos nessa especialidade?

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Os lasers de alta intensidade, dentro da Dentística, têm inovado no sentido de introduzir um novo conceito de remoção e preparo de tecidos alterados: a seletividade ultraconservadora. Esses lasers permitem um procedimento altamente localizado e preciso, os preparos pontuais, impossíveis de serem executados com outro tipo de instrumental.

No nível dos tecidos duros dentais, esse fato já é bem conhecido quando lasers contínuos e pulsados em regimes de pulsos longos são empregados. A nossa pergunta é: existiriam lasers capazes de proporcionar micropreparos e com alta seletividade também no nível de dentes decíduos, reconhecidamente menos resistentes mecanicamente; e após, investigar as interações qual ou quais sistemas lasers seriam mais adequados em proporcionar essa “alta seletividade” na remoção de certos materiais odontológicos, como das restaurações estéticas em resinas compostas insatisfatórias? Ser-nos-ia possível remover exclusivamente essas restaurações antigas, sem remover ou ablacionar o tecido dental sadio?

Esta Tese de Doutoramento busca estabelecer a Dentística Fotônica Ultra-Conservadora. Os experimentos foram conduzidos utilizando dois sistemas lasers promissores em termos de remoção seletiva, um laser de pulsos curtos, capaz de cortar com maior precisão, e outro, já de uso clínico-odontológico, de pulsos longos, capaz de remover com efetividade e através da ablação-fria mediada por água. Didaticamente a tese foi dividida em duas partes de Pesquisa Aplicada: a primeira parte, em que se procura demonstrar a viabilidade de um sistema laser de pulsos curtos, ainda de uso exclusivamente laboratorial, simulando em dentes decíduos microcavidades; e a segunda parte, em que a idéia é sugerir uma nova técnica de remoção altamente seletiva de material compósito de uso clínico, buscando a preservação de tecido duro dental, durante a substituição de restaurações estéticas insatisfatórias. No entanto, ambas objetivam a mesma busca:

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
remoção seletiva e precisa, propondo a ablação clínica diferencial, com um sistema laser já bem conhecido, laser de Er:YAG 2940nm e pulsado no regime de microsegundos, e outro, pouco explorado cientificamente em nível odontológico, o laser de Nd:YAG 1064nm e pulsado no regime de picosegundos, que tem demonstrado grande capacidade em ablacionar precisamente e sem danos colaterais.
2. **UMA REVISÃO DO TEMA E OS SISTEMAS LASERS AQUI UTILIZADOS**

O laser é uma excepcional fonte de radiação, capaz de produzir, em bandas espectrais extremamente finas, intensos campos eletromagnéticos coerentes no intervalo que se estende do infravermelho remoto ao ultravioleta. Não mais que alguns processos físicos simples concorrem para o funcionamento de um laser.

A utilização de diferentes lasers nas estruturas duras dos dentes tem sido investigada há várias décadas. As primeiras descrições da aplicação em Odontologia foram publicadas em 1964 por Stern e Sognnaes, os quais reportaram que o esmalte dental poderia ser vaporizado pelo laser de Rubi (Al₂O₃). No entanto, consideráveis danos foram observados no tecido dental: formação de cavidades, no qual o esmalte se apresentava fundido e vitrificado e a dentina com sinais de carbonização. Outros estudos foram então realizados com os lasers Nd:YAG e CO₂, porém danos semelhantes foram encontrados, mesmo que em diferentes níveis, dependendo dos parâmetros utilizados em cada tipo de laser.

Vários sistemas lasers têm estado sob intensa investigação para a remoção e preparo dos tecidos duros dentais. O uso dessa energia luminosa, como substituta dos instrumentos mecânicos em muitas aplicações em tecidos duros, é ainda fortemente debatido. Uma das objeções mais fortes se constitui na lenta taxa de remoção de material, e, em vários casos, no inaceitável dano colateral usualmente causado pelo superaquecimento. Apesar disto, a grande seletividade e possibilidade em preservar o tecido sadio, durante seu uso, torna o laser um instrumento altamente pesquisado hoje.

Mais recentemente, vários experimentos têm demonstrado que pulsos ultracurtos no domínio de subpicosegundos promovem uma combinação de efeitos termomecânicos que superam algumas das objeções ao uso de um laser como instrumento removedor (Stern e
Usando os parâmetros apropriados de operação, lasers com pulsos ultra-curtos podem se comportar melhor do que instrumentos convencionais, incluindo alguns dos lasers pulsados comercialmente já disponíveis na Odontologia. A exploração e otimização nos parâmetros dos lasers disponíveis podem promover a remoção de certas objeções ao amplo uso dos lasers. O uso de lasers de pulsos ultracurtos para ablação de dentes previne o superaquecimento e é uma alternativa para a remoção mecânica de material; além de minimizar o volume desse material removido, resulta em um processo ablativo altamente seletivo (Marion, Kim – 1999; Lizarelli et al. – 1999; Lizarelli et al. – 2000).

Apesar dos primeiros lasers empregados em saúde terem sido os de regime contínuo (CW), atualmente os lasers empregados na área da saúde constituem, na sua grande maioria, em lasers pulsados. Esta escolha advém das características adequadas encontradas nesses lasers pulsados. Todos os lasers de alta intensidade entregam uma grande quantidade de energia, ou seja, se for permitido que eles interajam um tempo longo com o tecido alvo, eles acabarão por conferir um grande efeito térmico. Dessa forma, um laser contínuo que tem um tempo muito longo de interação com o tecido, a menos que seja desligado, resultará em maior energia entregue ao sistema com maior efeito térmico, sem permitir um tempo para que ocorra relaxação térmica desse tecido irradiado.

Esse fato, para um elemento dental, torna muito difícil a aplicação de um laser contínuo para preparos cavitários, devido ao excessivo calor e das dificuldades em dissipar o mesmo por parte do órgão dental. Um laser contínuo, muito provavelmente, dissipá-lo resultará em grandes trincas ao longo do elemento dental e poderá levar à necrose pulpar.

Muito mais interessantes para as aplicações biomédicas são os lasers pulsados (Marion, Kim – 1999; Neev – 2001). Nesses lasers, a emissão somente ocorre após haver
amplificação suficiente da energia luminosa dentro da cavidade, e então, em um pulso é liberado o feixe contendo uma potência de pico altíssima. Esses lasers pulsados, além de entregarem uma energia muito maior, o tempo que interagem um tempo muitíssimo menor com o tecido-alvo, permitindo que na maior parte do tempo o tecido dissipe o calor, resfriando-se. Dessa forma, não há acúmulo de calor nem aumento da temperatura. Esses lasers conferem uma ação mais eficiente e menos danosa.

O tempo que o laser fica interagindo com o tecido é denominado de largura do pulso. Atualmente os lasers de uso odontológico apresentam largura de pulso da ordem de microsegundos. Clinicamente, apresentam a grande vantagem em relação à agressão mecânica convencional (baixa e alta rotação) para preparos cavitários. Um laser de microsegundos gera uma menor agressão mecânica do que uma broca carbide ou uma ponta diamantada em alta rotação (Andrade – 2002). No entanto, ainda esses sistemas, não são capazes de apresentarem, microscopicamente, características interessantes, tais como a completa ausência de trincas e fusão superficial do tecido, ou mesmo definição nas bordas do corte. A geração de calor, mesmo que localizada e superficial, ou seja, o aquecimento do tecido irradiado, ocorre mesmo com um laser de Er:YAG, que resulta em efeito fotomecânico. O laser de Er:YAG, atualmente o mais indicado para finalidade de preparos cavitários, ablação através do aquecimento da água presente no tecido (Hibst et al. – 1988; Paghdiwala et al. – 1993), mas não é capaz de impedir o colabamento do conteúdo orgânico do tecido remanescente (Kataumi et al. – 1998), e isso acaba por conferir, ainda que em uma escala muito menor, um efeito colateral térmico e modificação da estrutura original do elemento dental.

A idéia passa a interessar ao cirurgião-dentista, pois o laser se torna capaz de remover tecido duro sem carbonizar, sem trincar, produzindo preparos cavitários com bordas bem
definidas, mantendo, assim, as características morfológicas originais do tecido. Isto tudo sempre buscando a remoção seletiva, tanto de conteúdos orgânicos quanto de conteúdos inorgânicos. Esse fenômeno está presente quando são empregados lasers com pulsos ultra-curtos.

Clinicamente, os lasers de pulsos ultra-curtos começaram a ter respostas para uso em 1996 com Neev et al.. De uma forma geral, esses lasers poderiam então ser investigados com quatro diferentes objetivos em mente:

- Remoção mínima (em termos de volume de material removido) de tecido, ocorrendo uma ablação precisa. Ex: escultura da córnea.
- Remoção modesta (em termos de volume de material removido) de tecido, promovendo uma ablação precisa. Ex: remoção de cáries, cirurgias neurológicas.
- Ablação sem precisão. Ex: cirurgias ortopédicas, ressecção de tumores.
- Terapias sem ablação. Ex: terapia fotodinâmica.

Enquanto os sistemas lasers operando no regime de pico e de femtossegundos continuam sendo investigados em nível laboratorial, como um laser de alta intensidade, já comprovadamente bem estabelecido em Dentística Restauradora poderia estar contribuindo de forma significativamente superior aos instrumentos mecânicos convencionais?

O laser de Er:YAG se constitui num laser de estado sólido, cujo meio ativo é um “garnet” ou granada (material que localmente tem alguma ordem estrutural e depois vai perdendo) de ítrio e alumínio, dopado com érbio, sendo assim sua principal linha de emissão se dá em 2940 nm. Trata-se de radiação infravermelha com um laser-guia vermelho (díodo semicondutor). Em 1988, foi primeiramente descrito (Hibst; Keller -1988) como um laser capaz de ablacionar esmalte e dentina através do efeito fotomecânico, ou seja, a luz promovendo um efeito mecânico através do aquecimento da água do tecido.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
irradiado, que expande e vaporizando remove partes desse tecido. Apresentando uma taxa de ablação bastante satisfatória (Hibst; Keller – 1989; Li et al. – 1992; Majaron et al. – 1998) e capaz de aumentar a proporção Ca/P (Tanji - 1998), tem sido bem indicado dentro da Dentística principalmente para os casos de preparos cavitários ultraconservadores, remoção de restaurações antigas em resinas compostas, modificação superficial de esmalte e de dentina, apesar de não substituir o condicionamento com ácido fosfórico (Groth – 1997; Lizarelli et al. – 2000). É bem absorvido pela água e pela hidroxiapatita (Young et al. – 2000), sendo, portanto o laser mais indicado para os tecidos duros dentais quando a intenção primeira for à confecção de preparos cavitários seletivos e pontuais (Lizarelli et al. – 1998; Lizarelli et al. – 1999; Lizarelli et al. – 2000).

O laser de Er:YAG trata-se de um sistema para uso multidisciplinar, contudo tem suas maiores e mais empregadas indicações dentro da Dentística Restauradora. São indicações: limpeza de sulcos e fissuras (Hossain et al. - 2000); desgaste superficial pré-colagem; preparos cavitários pontuais (Cozean et al. - 1997); remoção de restaurações em resina composta insatisfatórias; e, modificação superficial de restaurações antigas para reparo delas (Blum - 2001).

Substituir restaurações estéticas diretas insatisfatórias é um dos procedimentos mais comumente executados na clínica diária. Sabe-se que, mesmo se utilizando uma ponta diamantada nova e de granulação mais fina, é muito difícil prevenir a remoção de tecido duro dental sadio. Isso significa que os instrumentos rotatórios sob alta velocidade não são capazes de remover exclusivamente o material restaurador insatisfatório. Os lasers de efeito fotomecânico, como Er:YAG, ErCr:YSGG e Ho:YLF são capazes de ablacionar e remover partes dos materiais compósitos.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Portanto, interessante e necessário, no momento clínico e científico atual, é investigar a ablação seletiva e diferencial não somente de tecido alterados e/ou cariados, mas também de materiais restauradores estéticos, e as resinas compostas representam muito bem como material mais comumente empregado na clínica, já que o nível de prevenção à doença cárie tem aumentado grandemente, bem como a busca por tratamentos estéticos, por parte dos pacientes. Parece lícito então afirmar que, dentro das necessidades clínicas atuais, encontrar instrumentos menos agressivos aos tecidos sadios dentais e mais seletivos aos materiais restauradores estéticos insatisfatórios constitui em uma das linhas de pesquisas mais urgentes a ser investigada. Iniciando com sistemas lasers já bem conhecidos como o laser de Er:YAG, que tem demonstrado certa seletividade por tecidos cariados, mas também explorando um sistema pouco conhecido, mas que devido às características intrínsecas, como o laser de Nd:YAG em picossegundos, pode representar um novo instrumento muito eficiente dentro dos nossos consultórios.

Definir parâmetros clínicos seguros com esses sistemas lasers altamente promissores contribui clinicamente e cientificamente implementando a Microdentística e estabelecendo a Dentística Fotônica Ultraconservadora.
2.1 ABLAÇÃO A LASER

Os lasers são fontes únicas de energia caracterizadas por sua pureza espectral, coerência espacial e temporal, e alta intensidade média e de pico. Cada uma dessas características os tem conduzido a aplicações que têm as vantagens dessas qualidades-lasers. Por exemplo, a coerência espacial permite a emissão de um feixe laser altissimamente colimado, resultando em irradiações com alvos altamente específicos.

Dentro da área da saúde, vários sistemas lasers podem ser empregados. Primeiramente é preciso classificar os sistemas lasers quanto ao nível de excitabilidade que poderá estar causando no tecido-alvo biológico. Uma vez a radiação absorvida pelo tecido, ele poderá estar atuando em nível molecular excitando elétrons ou partes da molécula. Se essa excitabilidade for relativamente pequena, ou seja, se se tratar de um laser de baixa intensidade poderá ocorrer uma bioestimulação ou bioinibição para as reações químicas e fisiológicas naturais desse tecido; contudo, caso se tratar de um laser de alta intensidade, a energia depositada nesse tecido-alvo será tão grande a ponto de romper ligações químicas dessas moléculas ou mesmo remover elétrons, resultando no rompimento desse tecido. Essa é a diferença básica entre um laser de baixa intensidade, que regula as funções fisiológicas celulares, e um laser de alta intensidade, que rompe tecido através do corte, ablação, coagulação e vaporização do mesmo.

Lasers de alta intensidade, HILT (high intensity laser treatment), têm a capacidade de remover partes de materiais e de tecidos biológicos através dos fenômenos de adsorção e de ablação. A indução-laser para desorpção (o oposto de "sorção") e ablação resulta da

* Segundo Webster's (1991) sorpção é um ato de sorver algo para dentro de um todo sem descaracterizar esse todo.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
conversão de uma fotoexcitação eletrônica ou vibracional dentro da energia cinética de deslocamento nuclear, conduzindo a uma ejeção de átomos, íons, moléculas, e mesmo porções de uma superfície de um material.

Haglund Jr. (1998) define a desorpção induzida por laser como a ejeção de partículas sem modificação mesoscópica detectável na composição de uma superfície ou estrutura, com uma partícula produzida em função linear de densidade de excitação eletrônica ou vibracional e sem um efeito dinâmico significante na pluma de partículas que deixam na superfície. Por outro lado, ablação-laser é um processo de crepitação no qual a taxa de remoção de material tipicamente excede um décimo da monocamada por pulso, a superfície é estrutural e composicionalmente modificada em escalas mesoscópicas, e as partículas produzidas estão em funções superlineares de densidade de excitação, ou seja, em grandes quantidades de energias depositadas. A formação da pluma de ablação – uma fraca pluma ionizada com um gás expandido de baixa densidade – adiciona à ablação-laser as complicações de interação de superfície, dinâmica gasosa e indução fotoquímica a laser.

Segundo Fried (2000), existem três mecanismos de interação entre laser de alta intensidade e tecido duro dental: vaporização explosiva, ejeção hidrodinâmica e ablação explosiva termo-mecânica mediada por água, descritos a seguir:

1 - Por Vaporização Explosiva entende-se uma vaporização térmica e expulsão de gotas fundidas de material aquecido acima do ponto de fusão e vaporização à pressão atmosférica. A fusão é quase instantânea, ocorre em escalas de tempo menores do que picosegundos, uma vez que o ponto de fusão tenha sido atingido. A vaporização, em contraste, tem uma taxa cinética limitada, e ocorre somente na interface, durante o rápido aquecimento pelos lasers pulsados e somente na área restritamente irradiada. Se o sólido não é poroso, a temperatura internamente se eleva acima da temperatura de vaporização,
resultando em uma expansão explosiva. O tecido duro dental é poroso, isso significa que esse fenômeno até pode ocorrer, mas dentro dos poros particularmente nos contornos dos prismas. A pressão aumenta nos poros, devido à liberação de gases na subsuperfície, e pode exceder o estresse de fratura do material, podendo remover explosivamente partes do material. São exemplos os lasers de CO₂ e de Nd:YAG nos regimes CW e pulsado em microsegundos;

2 - O mecanismo de Ejeção Hidrodinâmica é tipicamente observado quando metais são abacionados por lasers de pulsos curtos. A rápida fusão cria grandes forças de expansão devido à mudança de volume do material sob fusão. A expansão do líquido vai em oposição à energia e tensão de superfície do líquido;

![Diagrama de ejeção de substratos dentais](image)

Figura 1 - Ablação de esmalte e dentina, permitindo a ejeção da fase mineral sem modificação.

3 - Enfim, a Ablação Explosiva Termo-Mecânica (mediada por água) (Fig. 1) é o mecanismo mais comum de ablação dos tecidos duros dentais. Durante o rápido
aquecimento, a água inertemente confinada pode criar pressões subsuperficiais enormes que podem resultar em uma remoção explosiva da matriz mineral ao redor. Esse fato pode ocorrer a temperaturas abaixo do ponto de fusão da fase mineral do esmalte, portanto, provavelmente, não ocorre mudança da estrutura cristalina do tecido irradiado. O laser de Er:YAG é um exemplo desse tipo de interação. Vários estudos sobre ablação de tecidos duros indicam que grandes partículas são ejetadas em alta velocidade a partir do tecido irradiado, o que grandemente suporta o mecanismo explosivo mediado por água.

Um outro mecanismo para ablação de tecidos e materiais se constitui na Ablação Mediada por Plasma. Trata-se de uma forma de remoção através da geração de um efeito fotoelétrico superficialmente no tecido-alvo. Pulsos curtos e ultracurtos têm um tipo de interação com o tecido através do efeito fotoelétrico. Esses sistemas lasers contêm intensidades muito elevadas por pulso; isso permite que, ao atingir a superfície do tecido-alvo, seja capaz de remover alguns poucos elétrons livres localizados nela. Isso gera uma avalanche eletrônica, uma vez que esse impacto colisional acelera tais elétrons acima do potencial de ionização. Esses elétrons passíveis de serem removidos dessa forma apresentam uma energia cinética maior do que a energia de ligação presente no tecido-alvo; portanto, a próxima colisão com elétrons ligados (tecido-alvo) resultará em um evento de ionização, gerando uma nuvem gasosa (plasma ionizado). A excitação de pulsos curtos resulta em menor volume aquecido que também induz à diminuição da energia limiar necessária para ablação. Essa é a principal razão do porquê que se obtém uma razoável taxa de ablação para picosegundos utilizando fluências menores do que aquelas convencionalmente usadas nos sistemas pulsados em nanosegundos (Lizarelli et al. – 2000). Um problema comum na ablação por pulsos é a formação de plasma que se localiza próximo à superfície. O plasma é formado, na maioria das vezes através do processo de
ionização multifotônica e acaba por bloquear a subsequente energia luminosa. O plasma formado pelos pulsos curtos é altamente energético. Esse plasma de alta energia, formado pelos pulsos curtos, age como um agente de ataque, removendo material pelo bombardeamento iônico à superfície. Esse mecanismo está de acordo com o fato da estrutura prismática do esmalte ser preservada mesmo dentro da região ablacionada, para o caso dos pulsos no regime de picossegundo, ou mesmo uma boa revelação dos túbulos, no caso da dentina. A figura 2 representa esquematicamente esse mecanismo (Mourou; Liu – 1997).

Figura 2 – Uma avalanche eletrônica é gerada devido à ionização por impacto colisional (Mourou; Liu – 1997).

O laser de Er:YAG emitindo em 2940nm tem, nesse comprimento de onda, sua mais alta absorção pela água presente no tecido-alvo. O mais provável modelo para atingir a água e outros líquidos é o seguinte: a radiação laser absorvida aumenta a temperatura do líquido e pressão, então isso deforma e enfraquece as ligações de hidrogênio. O resultado é uma alteração no equilíbrio entre as ligações fortes e fracas de hidrogênio em direção às...
fracas. A absorção da banda de valência corresponde ao deslocamento dos grupos OH\(^-\) na direção das mais altas frequências, e, esse fenômeno é acompanhado pela simultânea redução na intensidade da banda. O resultado é uma degradação na estabilidade do comprimento de onda de 2940nm, que sob condições normais está mais próximo da máxima absorção (Vodop'yanov – 1990).

O modelo de ablação por evaporação e ejeção não de trata de um conceito novo, mas há muito tem sido usado para descrever a ablação de metais, e mais recentemente de tecido biológicos. Inicialmente ocorre um mecanismo físico que determina a deposição de energia e, então no tecido biológico a absorção da radiação. Durante a ablação ocorre a formação de líquido na superfície do tecido-alvo, isso quando o material que está sendo ablacionado pode ser fundido, fenômeno que aumenta a eficiência da ablação e da profundidade da deposição de energia. Isso não se aplica à ablação por mecanismos fotoquímicos, nos quais os produtos são formados diretamente pela decomposição do tecido-alvo, por exemplo, a ablação de alguns polímeros pela luz UV (Zweig – 1991).

Com respeito aos mecanismos de formação de plasma quando se compara pulso curto e longo, para pulsos curtos a intensidade de limiar para a formação de plasma é mais alta do que para pulsos longos. Como uma conseqüência disso, o bloqueio plasmático é muito mais forte do que para pulsos mais longos. Nesse caso, parte da energia no pulso é refletida diminuindo a eficiência do processo. Esse problema pode ser minimizado quando pulsos mais curtos são empregados. Ocorre uma deposição muito maior de energia no material-alvo com pulsos mais curtos. Além disso, para pulsos mais curtos intensidades mais altas podem ser obtidas permitindo uma ruptura mais facilitada durante a ablação (Lizarelli et al. – 2000).
2.2 OS LASERS DE Nd:YAG E Er:YAG – SISTEMAS UTILIZADOS NESTA PESQUISA

2.2.1 O LASER DE PICOSSEGUNDOS

Para o laser de Nd:YAG em picossegundos Q-switched e mode-locked (Antares 76-s, Coherent, Palo Alto, CA) (Figs. 3 e 4), que foi o sistema utilizado nos experimentos apresentados nesta Tese, a largura do trem de pulso é de 200ns, e a frequência pode ser de 5 a 2000Hz, a chave permanece fechada por 13ns e aberta por 200ps (Fig. 5) e a perda ocorre em torno de 10%. No caso do laser aqui utilizado no regime de picossegundos, a distância entre pulsos é de 13ns, enquanto a largura de cada pulso é de 70ps. Na figura 3, um desenho esquemático da parte interna desse laser de picossegundos, pode-se observar a complexidade do sistema, a começar pelo formato em “U” da cavidade ressonante. Quanto maior a distância entre os espelhos (TL), maior a energia acumulada dentro da cavidade a cada oscilação completa do feixe (Tpopulação invertida).

![Diagrama do Antares 76-s](image)

Pela figura 5 (gráfico) podemos observar que o trem de pulso está diretamente relacionado à chave Q (Q-Switching), enquanto que cada pulso dentro desse trem de
pulsos, com duração de 70ps e separados por 13ns, está relacionado com o travamento dos modos (Mode-Locking).

Figura 4 – Laser de Nd:YAG no regime de picossegundos (Antares 76-s, Coherent, USA) externa (A) e internamente (B) – cavidade ressonante em “U”.

Em vista do exposto acima, a largura do pulso dada pelo Q-Switched depende do tempo decorrido durante a abertura da chave e o tempo que toda a população demora a decair.
Os lasers com pulsos ultracurtos, tendo um pulso com duração nominal da ordem de 10^{-12} ou menos, foram originalmente desenvolvidos como propostas para realizar medidas espectroscópicas e de condutividade elétrica em plasma denso (Strickland; Mourou – 1985; Ng et al. – 1986; Price et al. – 1995). À medida que esses lasers foram se tornando mais acessíveis, características únicas de ablação passaram a ser notadas (Oraevsky et al. – 1996). De forma geral, abaixo de 1ps, o mecanismo físico para remoção do material deixa de ser dominado por processos térmicos, tipo vaporização, e entra em uma região conhecida como ablação mediada por plasma. O ponto-chave então é entender que o material é ablacionado sem apreciável dano térmico e mecânico às regiões vizinhas (Neev et al. – 1996).

2.2.2 O LASER DE Er:YAG

Podemos considerar um laser no regime de microsegundos, como no caso do laser de Er:YAG aprovado para preparos cavitários em Odontologia, como uma referência para longos pulsos, onde a ablação é dominada pela absorção de calor no material: o material é aquecido até o ponto-de-ebulição para ser vaporizado, e uma vez vaporizado, é explosivamente ejetado da superfície, ocasionando uma cratera irregular. Em muitos materiais, a alta temperatura nos tecidos vizinhos conduz à formação de trincas devido ao choque térmico e à mudança das características morfológicas originais das áreas ao redor; adicionalmente aos efeitos térmicos, maiores mudanças podem ocorrer devido ao choque mecânico decorrentes da ejeção muito intensa do material (Marion; Kim – 1999).

O equipamento com o sistema laser de Er:YAG escolhido para utilização nesta Tese foi o Twin Light (Fotona Medical Lasers, Slovenia) (Fig. 6A). Tal aparelho opera no comprimento de onda de 2940nm (infravermelho médio), apresenta energia por pulso
máxima de 500mJ, intervalo de frequências de 2 a 15Hz (pulsos por segundo) e largura ou duração de pulso de 200 a 450μs. Seu sistema de entrega constitui em um braço articulado com espelhos internos, e, sua extremidade, em ponta ativa, permite um diâmetro para o feixe laser mínimo de 700μm. Trata-se de uma ponta não-contato, que durante treinamento de cirurgiões-dentistas clínicos utilizamos a analogia com “a broca invisível” sugerida por Eduardo (1995) para facilitar o entendimento da importância da distância focal (Fig. 6B). Quando o laser é emitido, juntamente com a radiação, um “spray“ de água e ar é liberado, para otimizar a ablação do tecido-alvo e resfriar o campo operatório.

Figura 6 – A) Laser de Er:YAG (Twin Light – Fotona Medical Lasers, Slovenia); e, B) ponta ativa não-contato (janela em safira).
Em contraste com esses lasers em microsegundos, os, de picossegundos, formam um plasma na superfície constituindo íons e elétrons acelerados. A remoção átomo-por-átomo não envolve disrupção mecânica dos tecidos vizinhos, além disso, como o calor que é liberado através da condução de fôtons necessitando de um tempo maior ou pelo menos igual ao tempo da duração do pulso para ocorrer, os efeitos térmicos são mínimos e o aquecimento ocorre somente em áreas extremamente localizadas (Marion; Kim – 1999). As partículas aceleradas, que constituem o plasma, promovem um tipo de “plasma etching” (ataque por plasma), eficiente na remoção das camadas mais superficiais.

Um esquema comparativo da interação de lasers de pulsos longos (nanosegundos) e ultracurtos (picosegundos) pode ser visualizado na figura 7.

Figura 7 – Ablação com lasers de pulsos ultra-curtos em comparação aos pulsos longos (adaptado de Marion; Kim – 1999).

Nessa breve explicação do funcionamento básico de lasers, que possam estar produzindo pulsos com larguras da ordem de micro e de picosegundos, fica claro que pode
ser melhor, ao invés de se ter uma baixa energia durante um tempo longo interagindo com o tecido para remover porções dele, ter energias muito mais altas durante um tempo muito mais curto. A eficiência para a ablação do tecido será aumentada, e, não haverá tempo suficiente para os efeitos colaterais térmicos e mecânicos ocorrerem no tecido remanescente.
2.3 Referências Bibliográficas

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas. 54

22-LIZARELLI, R. F. Z.; TANJI, E. Y.; CICONELLI, K. P. C.; PALUCCI, M. A Tratamento de cárie inicial com laser de alta densidade de energia de Er:YAG.

Abação a laser de substratos dentais: esmalte, dentina e resinas compostas.

Abação a laser de substratos dentais: esmalte, dentina e resinas compostas. 57

O guerreiro raramente sabe o resultado
de uma batalha quando esta acaba...
Examina seu coração e pergunta: “combati o bom combate?”
Se a resposta é positiva, ele descansa.
Se a resposta é negativa,
ele pega a sua espada
e começa a treinar de novo.

Paulo Coelho
3. EXPERIMENTOS COM O LASER DE Nd:YAG OPERANDO NO REGIME DE PICOSSEGUNDOS

Qual será o absurdo de hoje que será a verdade de amanhã?

Alfred North Whitehead
A técnica de utilização clínica para os lasers de pulsos ultracurtos encontra-se ainda em desenvolvimento. Algumas barreiras, como preço e tamanho do equipamento, manipulação do feixe e taxa de ablação, necessitam ainda serem adaptadas ou melhoradas para garantir vantagens com relação ao custo-benefício. Contudo, já são evidentes as vantagens que lasers no regime de picossegundos, podem promover aos tecidos biológicos, principalmente aos tecidos duros, tão frágeis aos choques térmicos e mecânicos.

Diante disso e sendo os resultados grandemente satisfatórios no tocante à precisão e seletividade desse sistema laser em particular, fica clara a importância de se explorar e estudar, mais profundamente, a interação do laser de Nd:YAG no regime de picossegundos também com os dentes decíduos.

Os dentes decíduos têm algumas particularidades quanto à sua anatomia, microestrutura e quantidade de água em sua composição. A câmara pulpar é mais volumosa, o que facilita as exposições pulpares acidentais que fatalmente evoluem para tratamento endodôntico; o esmalte apresenta-se sem uma estruturação prismática como...
ocorre nos dentes permanentes, ou seja, trata-se do esmalte aprismatico, aparentemente desorganizado e, portanto menos resistente às forças mecânicas. Por fim, a dentina dos dentes deciduos apresenta uma maior densidade de túbulos, sendo eles de secção bastamente volumosa, além disso, micro-canais estão comumente presentes, apresentando prolongamentos de tecido pulpar para dentro da massa dentinária (Sumikawa et al. – 1999; Liu et al. – 2000), fator que aumenta a permeabilidade dentinária e consequentemente a quantidade de água presente nesse tecido.

A permeabilidade aumentada dos dentes deciduos é confirmada por Linden et al. (1986), para EDTA e clorexidina em relação aos permanentes; e Groeneveld et al. (1975) já haviam mostrado que o desenvolvimento in vitro de cáries é inversamente proporcional ao nível de mineralização do tecido duro; fato esse confirmado, posteriormente por Featherstone; Mellberg (1981) e Shellis (1984). Wilson; Beynon (1989) que compararam e concluíram que, de fato, o nível de mineralização dos dentes deciduos é menor do que dos dentes permanentes.

Ripa et al. (1966) descreveram a camada não-prismatico ou aprismatico (em esmalte de deciduos) como uma camada contínua, tendo em média 30μ de espessura. Contudo, mais recentemente, Abramovich (1999) reportou que, na verdade, trata-se de uma camada com prismas dispostos em outra direção, prismas que se direcionam paralelamente entre si, em uma zona superficial de aproximadamente 30μm, sendo uma continuação da zona subjacente, da qual se podem individualizar as formações prismáticas, e na qual os cristais adotam diferentes orientações.

Os dentes deciduos demonstram ser mais frágeis do que os dentes permanentes, pelo acima exposto. Esse fato motiva a busca por instrumentos mais delicados e precisos,
sistemas que compõem, hoje em dia, a Microdentística. Nesse sentido, existem disponíveis no mercado, técnicas mais conservadoras e menos traumáticas como o ART ("atraumatic restorative treatment", segundo Parajara; Leal - 2002), tratamentos químicos à base de aminoácidos (Carisolv – Medi Team, Sweden, por exemplo) (Damaschke et al. – 2002), e os tratamentos físicos, tais como jatos de abrasão a ar (Freedman - 1994) e lasers de alta intensidade. Dentro da laserterapia de alta intensidade, o laser de indicação mais adequado para promover uma ablação mais seletiva tem demonstrado ser o laser de Er:YAG, promovendo a “ablação-fria”, devido ao sistema de entrega simultâneo com jato de água-ar e por interagir, preferencialmente, com a água do tecido-alvo. Por outro lado, um outro sistema laser, sem uso comercial disponível para a Odontologia, trata-se dos lasers de pulsos curtos e ultracurtos, emitidos quando a largura dos pulsos, da ordem de pico (10^{-12} segundos) e de femtossegundos (10^{-15} segundos), têm duração menor do que aquela necessária para a difusão de ondas térmicas nos tecidos adjacentes ao alvo.

As diferenças estruturais entre os dentes decíduos e permanentes sugerem que os decíduos possam ser mais susceptíveis à sensibilidade e ao trauma, pela presença da camada aprismática do esmalte, e permitam mais facilmente a transmissão de substâncias nocivas através dos túbulos dentinários de número aumentado além de mais calibrosos.

Em se tratando do uso de lasers de alta intensidade para ablacionar tecidos duros dentais, estudos considerando os dentes deciduos são pouco numerosos (Arrastia et al. – 1995; Borges et al. – 1999; Brugnera Jr. et al. – 1999; Myaki – 1999; Yamada et al. – 2001; Kohara et al. - 2002), associado a esse fato não é possível encontrar os achados, na literatura científica, do emprego de lasers operando no regime de pulsos curtos e ultra-curtos para modificar e/ou ablacionar esses dentes decíduos.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Parece ser interessante o estudo desses dois sistemas lasers interagindo com os dentes decíduos, o primeiro por se tratar de um instrumento comprovadamente seletivo, e o segundo, com base em trabalhos prévios (Lizarelli et al. – 1999, 2000a, 2000b), por ser capaz de ablacionar preferencialmente as porções orgânicas dos tecido duros, sem promover efeitos mecânicos nos tecidos circunvizinhos, sendo de contornos mais precisos.

Com o objetivo de motivar o estudo dos aspectos micromorfológicos resultantes da interação dos lasers de Nd:YAG operando em picossegundos e de Er:YAG operando em microsegundos, uma análise comparativa, sob MEV, entre esmalte e dentina de permanentes e decíduos, atacados quimicamente com ácido fosfórico para revelar a estrutura original, foi realizada. A região escolhida foi a vertente interna da face oclusal, para esmalte, e a dentina da porção média da coroa foi exposta com disco de carborundum em ambos os tipos de dentes. A figura 8 apresenta as diferenças histológicas registradas.

Na figura 8, fica fácil visualizar as diferenças estruturais existentes e citadas entre os dentes decíduos e os dentes permanentes. À esquerda, observamos esmalte (acima) e dentina (abaixo) de um molar decíduo, e do lado direito, o mesmo de uma molar permanente. É possível observar que enquanto o esmalte de permanente apresenta uma estrutura organizada em prismas uniformemente dispostos lado a lado, o esmalte de decíduo, por outro lado, mostra uma camada desorganizada, aprismática, de aparência amorfa. Com relação à dentina, fica claro que o número de túbulos dentinários por área parece ser maior nos decíduos do que nos permanentes.

Na dissertação de mestrado e nos trabalhos resultantes dela (Lizarelli – 1999; 2000a; 2000b) alguns achados inéditos permitiram discussões interessantes (Figs 9 e 10) objetivando a ablação ultra-conservadora com alta definição das margens das microcavidades.

Abaixo a laser de substratos dentais: esmalte, dentina e resinas compostas.
Figura 8 – Fotomicrografia de esmalte (acima) e dentina (abaixo) de dentes decíduos (do lado esquerdo) e permanentes (do lado direito) após ataque químico com ácido fosfórico a 35% (5000X).

Na figura 9 é possível uma rápida avaliação comparativa entre A e B, quando as fotos mostram microcavidades resultantes da ablação com um laser de Nd:YAG, porém, em A o mesmo operava no regime de nanosegundos (10^{-9} segundos) e em B, em picosegundos (10^{-12} segundos). Fica claro que quanto menor a largura de pulsos, melhor é a definição das bordas da microcavidade e mais eficiente e precisa a ablação; não havendo uma interação que prime pelo efeito fototérmico, permite que a remoção do material ocorra em função das regiões de menor resistência, contorno de prismas, no caso do esmalte, e removendo o “smear layer”, no caso da dentina. A figura 9C mostra em um aumento maior (5000X) o detalhe de B, no qual é possível distinguir os contornos dos prismas de esmalte.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Figura 9 – Microcavidades confeccionadas por lasers de Nd:YAG operando no regime de nanosegundos, sob aumento de 200X (A) e picosegundos, sob aumento de 200X (B) e sob aumento de 5000X (C).

Confirmando a possibilidade real da ablação a laser mais definida e eficiente com ele operando em picosegundos, o próximo passo foi confeccionar micropreparos cavitários, em esmalte (Fig. 10A) e em dentina (Fig. 10B e C). Outros achados reforçaram a viabilidade desse sistema na busca de umaodontística operatória fotônica ultraconservadora. As bordas sem a presença de Z2 (zona intermediária) em esmalte, demonstram uma ablação “limpa”, sem alteração colateral dos tecidos circundantes, destruindo o “mito” de que preparos cavitários com lasers são sempre “feios” e sem definição. E mais, em dentina, além de remover o “smear layer”, o laser de Nd:YAG, operando no regime de picosegundos, “amplia” a abertura dos túbulos em até 6 vezes, o que muito inspira a possibilidade em melhorar o microembracimento dos sistemas adesivos resinosos, visando à adaptação mais eficiente dos materiais restauradores.

Todos esses resultados serviram de motivação e incentivo para o estudo do laser de Nd:YAG, operando no regime de picosegundos, também em dentes decíduos.
Figura 10 – Diferentes vistas para micropreparos executados com laser de Nd:YAG picossegundos em esmalte, sob aumento de 100X (A) e em dentina, sob aumento de 5000X (B e C).

Seguindo a metodologia desenvolvida por nosso grupo em Lizarelli et al. (1999) e Lizarelli et al. (2000a), microcavidades em dentes decíduos, em nível de esmalte e de dentina seriam importantes de serem estudadas, para se observar a viabilidade clínica. Porém, antes de estabelecer uma nova técnica clínica, faz-se necessário determinar os parâmetros seguros de trabalho, no caso, os parâmetros para irradiiação com o laser no regime de picossegundos, visando à preservação da integridade do órgão dental.

Portanto, a proposta deste capítulo foi realizar três experimentos:

1º - Mapeamento térmico na interação do Laser de Picossegundos com Dentes Decíduos: análise dos efeitos do laser de picossegundos, sob os mesmos parâmetros empregados para confecção das microcavidades, tendo um efeito sobre o aquecimento ou variação da temperatura gerada no nível de câmara pulpar, quando o laser era focado em dentes decíduos, tanto em nível de esmalte quanto em nível da dentina. A alteração da

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
temperatura pulpar foi registrada e analisada, inclusive em relação ao tempo de relaxação térmica necessária;

2º - Análise micromorfológica de microcavidades: Os aspectos micromorfológicos da região ablationada têm se mostrado completamente diferentes para pulsos mais curtos do que para pulsos mais longos, quando as mesmas condições de energia e potência médias são mantidas. As mudanças estruturais promovidas pela ablação a laser nos tecidos duros dentais poderão determinar até mesmo o tipo de material restaurador mais indicado, além de informar muito sobre o tipo de interação que de fato está ocorrendo. Sob parâmetros pré-determinados de energia, microcavidades foram confeccionadas em esmalte e em dentina, em dentes deciduos, e analisadas sob microscopia eletrônica de varredura; e,

3º - Análise da taxa de ablação: a taxa de ablação é determinada pela quantidade de material removido pelo laser num determinado tempo, e está também relacionada à fluência (J/cm²) de irradiação. Lasers em tecidos duros dentais podem modificar a estrutura em nível molecular, mas, principalmente, são indicados para fazer a remoção seletiva das partes alteradas ou infectadas do elemento dental. Dessa forma, é importante determinar em qual taxa de ablação determinado instrumento, no caso o laser, remove tecido dos dentes deciduos e permanentes, visando à indicação do sistema para uso clínico em Dentística Restauradora. Foi realizada uma análise comparativa da taxa de ablação entre dentes deciduos e permanentes, tanto em nível de esmalte quanto em nível de dentina.
3.1 Referências Bibliográficas

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
3.2 MAPEAMENTO TÉRMICO NA CÂMARA PULPAR DE DENTES HUMANOS DECÍDUOS EXPOSTOS AO LASER DE Ná:YAG, OPERANDO NO REGIME PULSADO DE PICOSSEGUNDOS

A primeira preocupação com a biossegurança no uso de sistemas lasers reside no calor gerado durante a irradição. O calor gerado pelo laser na superfície coronária poderá difundir-se para a polpa causando danos pulpares irreversíveis. Por essa razão, a análise da temperatura intrapulpar precede a todas as aplicações seguintes.

Durante os procedimentos usuais em Dentística, injurias térmicas normalmente ocorrem, principalmente durante a confecção de preparos cavitários. Várias pesquisas têm relatado a resposta pulpar ao calor gerado pelos instrumentos rotatórios, de alta ou de baixa velocidade, com ou sem refrigeração externa (Zach; Cohen – 1962, 1965; Nyborg; Brannstrom – 1968), apresentando elevação aceitável de calor intrapulpar, ou seja, até quantos graus esse tecido, altamente vulnerável e confinado, poderia dissipar o calor gerado sem gerar sequelas irreversíveis.

Porém, além de ser importante conhecermos essa variação e a necessidade ou não de refrigeração externa, é necessário realizarmos um estudo em nível de esmalte e também em nível da dentina, uma vez que esses dois distintos tecidos de revestimento e de proteção à polpa, apresentam calor específico, condutibilidade e difusibilidade térmicas muito diferentes, provavelmente, em virtude de suas distintas composições químicas e microestruturas. Sendo calor específico de uma substância a quantidade de calor necessário para elevar a temperatura de 1g (grama) da substância em 1°C; condutibilidade térmica de uma substância, a quantidade de calor (em calorias ou joules) por segundo que passa por um corpo com 1,0cm de espessura, com uma secção de 1,0cm², quando a variação da
temperatura é de 1°C; e, sendo difusibilidade térmica uma medida que descreve a taxa pela qual um corpo, com uma temperatura não-uniforme, atinge o equilíbrio. Essas medidas para esmalte e dentina estão discriminadas na tabela I:

Tabela I – Valores de características térmicas dos tecidos duros dentais esmalte e dentina, segundo Craig (1993).

<table>
<thead>
<tr>
<th>Substrato/ Medida</th>
<th>Calor Específico (cal/g °C)</th>
<th>Conductibilidade Térmica (cal/seg. cm²) (°C/cm)</th>
<th>Difusibilidade Térmica (mm²/seg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmalte</td>
<td>0,18</td>
<td>0,0022</td>
<td>0,469</td>
</tr>
<tr>
<td>Dentina</td>
<td>0,28</td>
<td>0,0015</td>
<td>0,183</td>
</tr>
</tbody>
</table>

Brown et al. (1970) encontraram, para o esmalte, uma conductibilidade térmica quase 50% mais alta em relação à dentina, e uma difusibilidade térmica, cerca de 2,5 vezes mais alta. Esses achados demonstram que a condução do calor é muito mais rapidamente estabelecida no esmalte do que na dentina. Também Craig; Peyton (1961) já haviam relatado que a condutividade térmica na dentina é mais baixa que no esmalte, em torno de 45%.

Segundo Zach e Cohen (1965), a termogênese pulpar, durante os procedimentos restauradores, são dependentes das variações de temperatura. Até um aumento da temperatura pulpar em 2,2°C, nenhuma mudança histológica aparente foi observada, com relação ao grupo controle. Até uma variação de 5,5°C, aspiração de núcleos odontoblásticos para dentro dos túbulos dentinários, vasos sanguíneos intensamente hiperêmicos e estroma edemaciado puderam ser observados, denotando uma intensa inflamação pulpar podendo evoluir para necrose do tecido. Com uma variação de 11,11°C, ocorre completa destruição...
pulpar. Portanto, segundo esse clássico estudo de 1965, a elevação de temperatura pulpar durante os procedimentos em tecidos duros, esmalte e dentina, não deve ultrapassar 5,5°C.

Um laser de alta intensidade atua através do aquecimento do tecido-alvo, seja interagindo com ele através de efeitos fototérmicos ou fotomecânicos. Vários estudos conduzidos para analisar a elevação da temperatura pulpar, durante a irradiação com lasers indicados para tratamentos dos tecidos duros dentais, esmalte e dentina, têm contribuído para estabelecer parâmetros seguros de operação clínica (White et al. – 1992; White et al. – 1994; Glockner et al. – 1998; Kurachi et al. – 1999; Fried et al. – 2001; Gouwn-Soares et al. – 2001), porém nenhum desses relatos explorou o uso de um laser de alta intensidade pulsado no regime de picossegundos.

Uma vez que não existem evidências científicas publicadas sobre as mudanças de temperatura na câmara pulpar, durante a irradiação com laser pulsado em picossegundos, a proposta dessa nossa investigação foi quantificar as mudanças de temperatura na câmara pulpar quando dentes deciduos, anteriores e posteriores, foram irradiados com laser de Nd:YAG pulsado no regime de picossegundos, tanto em nível de esmalte quanto em nível
de dentina; tendo como objetivo final determinar os parâmetros seguros de operação a serem utilizados na confecção de microcavidades.

Nós iniciamos a descrição desse experimento considerando a metodologia empregada seguida da apresentação dos resultados, e, finalmente, nos foi possível construir diagramas mostrando as regiões dos parâmetros seguros para operação sem causar danos térmicos.

Materiais e Métodos

Nesse estudo, foram utilizados dez dentes decíduos hígidos esfoliados: cinco molares (dentes posteriores) e cinco incisivos (anteriores). Os dentes foram obtidos de uma clínica odontológica de Cirurgia da Faculdade de Odontologia de Araraquara - UNESP com um protocolo aprovado pelo comitê de ética. Os dentes foram mantidos em um meio apropriado (solução de cloreto de sódio a 0,9%) para evitar desidratação.

A porção radicular foi removida com um disco de carborundum (Dentorium International Inc., NY, EUA) aproximadamente 2,0mm abaixo da junção amelo-cementária e perpendicular ao longo eixo do dente. Um alargamento da entrada para a câmara pulpar foi realizado utilizando ponta diamantada cilíndrica longa (KG Sorensen, Brasil) e brocas de Gattes-Glidden (Maillefer, Suíça), a partir do acesso resultante da remoção da porção radicular. O esvaziamento pulpar foi realizado com o auxílio de brocas esféricas longas (Fava, Brasil) em baixa velocidade (Dabi Atlante, Brasil), removendo todos os remanescentes de tecido pulpar.

Então, uma pasta térmica (Implastec, Votorantim – São Paulo) foi injetada através de uma seringa especial para aplicação de cimento a base de hidróxido de cálcio (Calen, SS White, Brasil) e agulhas longas (Jon, Brasil) para dentro da câmara pulpar, visando a promover um contato térmico satisfatório durante a transferência de calor a partir das...
paredes da câmara para o dispositivo de captação de mudanças de temperatura. Esse dispositivo, um termímetro de alta precisão (Model 120-202 EAJ, Fenwal Electronic, Milford, MA) (Fig. 11), que tem um tempo de resposta da ordem de microsegundos, foi então adaptado de forma a ficar envolvido por essa pasta térmica e localizado bem no centro da câmara pulpar, como indicado na figura 12.

![Termímetro com régua milimetrada](image)

Figura 11 - Termímetro de alta precisão ao lado de uma régua milimetrada (Model 120-202 EAJ, Fenwal Electronic, Milford, MA).

Foi utilizado um sistema laser comercial Nd:YAG com pulsos de largura da ordem de picossegundos (Antares - Coherent, USA) (Figs. 3 e 4). Trata-se de um sistema com bombeio CW, chave Q e com acoplamento de modos. Os pulsos são emitidos em trens de pulsos, sendo que cada um possui 20 pulsos separados por 13,2ns e taxa de repetição de 15Hz, com largura de 70ps e comprimento de onda de 1064nm.

Os parâmetros de operação escolhidos foram: potência média variando nos valores de 200, 300 e 350mW, com respectivas fluências de 25,5; 38,2 e 44,6J/cm² e intensidades de 0,255; 0,382 e 0,446W/cm². A taxa de repetição fixa mantida em 100Hz, lentes com
distância focal de 12,0cm, permitindo uma área de secção transversal do feixe em torno de
100μm de diâmetro, quando focalizado sobre a superfície dental.

Figura 12 – Esquema do primeiro molar decíduo com o termíster posicionado e pronto para ser irradiado.

Para reproduzir a temperatura do meio bucal nós criamos um sistema (Fig. 13) composto de um banho térmico de 37°C, já utilizado em outros experimentos (Kurachi et al. – 1999; Medeiros – 2001) no qual o dente permanecia parcialmente imerso na água. Por causa disso, parte da energia térmica era dissipada no banho, mantendo uma conexão mais próxima da realidade.

O feixe laser foi focado por lentes biconvexas (f = 12,0cm que produzem uma área de secção transversal com a metade da cintura gaussiana próxima de 50μm). Como o tempo de exposição ou de irradiação foi fixado em 30 segundos, o total de pulsos resultou em uma energia variando de 0,06J a 0,105J. Considerando 2,0W ≈ 100μm (com a metade da cintura gaussiana) obtêm-se uma fluência entregue da ordem de 7×10^4J/cm2 a 3×10^5J/cm2.
Figura 13 - Sistema experimental: “a boca artificial”. Um recipiente de vidro simulando as condições de umidade e de condução térmica no meio bucal para o elemento dental. O elemento a ser investigado é fixado em um suporte de acrílico e permanece parcialmente submerso em água aquecida e mantida a 37°C.

Figura 14 – Irradiação laser em esmalte e dentina. O feixe laser foi focalizado no centro da face vestibular (esmalte) e no centro da parede axial do preparo Classe V (dentina).
Os dentes foram expostos ao laser de picossegundos em esmalte e em dentina. Três leituras para cada nível de potência média (200, 300 e 350mW), mantendo o mesmo tempo de irradiação de 30 segundos, foram medidas dentro da câmera pulpar, através do registro de sinais elétricos gerados no termíster de alta precisão. Para esmalte, o feixe laser foi focalizado no centro da superfície vestibular de cada dente. Após todas as leituras de temperatura em esmalte, utilizando uma ponta diamantada no. 1091 (KG Sorensen, Brasil) em alta rotação (KaVo, Alemanha), um preparo cavitário Classe V (2,0 X 2,0 X 2,0mm) foi realizado, buscando atingir 2,0mm de profundidade, em relação à superfície externa do dente, então o laser foi focalizado dentro dessa cavidade para tornar possível a tomada de alteração de temperatura quando o laser irradia a superfície de dentina (Fig. 14).

A exposição do laser foi feita sem nenhum mecanismo adicional de refrigeração (água ou ar). Todos os aparelhos utilizados no experimento e em posição de uso podem ser visualizados na figura 15.

![Diagrama de aparelho experimental]

Figura 15 – Aparato experimental.
Os valores de temperatura foram medidos pelo termímetro em intervalos de tempo de 1 segundo. As três leituras, para cada nível de potência média, foram repetidas para cinco elementos de cada grupo de dentes (posteros e anteriores) e dos valores obtidos, salvos em computador através de um programa especialmente desenvolvido para o experimento, foram calculadas as médias de aquecimento e de resfriamento para cada situação.

Os resultados foram colocados em gráficos, nos quais mudanças de temperatura são demonstradas em função da evolução temporal do experimento. Desses gráficos várias informações podem ser obtidas.

Resultados

Gráficos específicos da evolução da temperatura durante o aquecimento por 30 segundos pela irradiação do laser e o subsequente período de resfriamento são mostrados na figura 16, para esmalte e dentina de dentes anteriores e posteriores. Os três diferentes níveis de potência são considerados.

A primeira parte das curvas obtidas descrevem o aumento até o máximo de temperatura medida dentro da câmara pulpar, para cada potência. Essa parte de aumento da temperatura corresponde à evolução de tempo de 0 a 30 segundos. A segunda parte das curvas obtidas nos gráficos, corresponde ao resfriamento logo após o término do tempo de exposição do laser, e então importantes aspectos quando à difusão térmica do elemento dental para o banho térmico podem ser discutidos.
Figura 16 – Curvas de aquecimento e de resfriamento de cada potência média considerando superfícies de esmalte (à esquerda) e dentina (à direita) de dentes anteriores (acima) e posteriores (abaixo).
Para o esmalte de dentes anteriores e posteriores, os gráficos obtidos são representados nas figuras 16A e 16C. Curvas semelhantes são obtidas para dentina dos diferentes dentes decíduos. As curvas das figuras 16B e 16D mostram a evolução da temperatura para dentina. Enquanto para esmalte (Fig. 16A e 16C), o tempo de evolução das curvas é muito dependente da potência usada para cada percurso investigado, para a dentina, as diferenças não são muito evidentes e se confundem durante a parte de aquecimento com somente uma suave diferença durante a parte de resfriamento.

Considerando os dentes anteriores, enquanto em esmalte a máxima variação de temperatura pode alcançar valores a partir de 2,2\(^{\circ}\)C (com potência media de 200mW) até 5,5\(^{\circ}\)C (com 350mW), enquanto em dentina essa variação parece ser menor e localizada dentro de um pequeno intervalo em torno de 3,0\(^{\circ}\)C. Para dentes posteriores, variações em torno de 1,2\(^{\circ}\)C a 2,2\(^{\circ}\)C foram observadas. Diferenças devido à variação da anatomia dos dois tipos de dentes são esperadas, de qualquer forma.

Discussão

Atentando para a continuação da curva na parte de resfriamento, parece claro que para dentes anteriores existe um rápido resfriamento no início seguido por um período lento de queda. Para os dentes posteriores, o resfriamento obedece a quase que um decaimento dependente mais linear do que exponencial. Esses resultados podem ser explicados baseados no volume coronário e da quantidade de dentina remanescente que é maior nos dentes posteriores e estão de acordo com os de Craig (1993) que reporta ter o tecido dentinário condutividades térmicas mais baixas do que o esmalte.
Esses achados também estão de acordo com os de Brown et al. (1970), Craig; Peyton (1961) e Craig (1993), em seus estudos sobre propriedades térmicas do esmalte e da dentina.

Para discutir os aspectos térmicos obtidos, nós apresentaremos os resultados de uma forma alternativa. Uma vez que nosso principal objetivo é mapear as condições operacionais que não causarão danos térmicos aos tecidos, nós criamos diagramas que combinam informações de potência-tempo-temperatura. Esses diagramas foram chamados “Diagramas PTT”. Nós consideramos três regimes de variações de temperatura: abaixo de 2,2°C, entre 2,2°C e 5,5°C, e acima de 5,5°C, com base no trabalho de Zach e Cohen (1965). Nos diagramas PTT, as zonas representam essas variações de temperatura.

As três regiões mencionadas anteriormente estão representadas em forma de diagrama. Região I mostra todas as possíveis combinações de tempo de exposição e potências médias quando a temperatura esperada é menor do que 2,2°C para a câmara pulpar, que é a zona mais segura de operação. Região II corresponde à combinação de parâmetros, quando a variação de temperatura está acima de 2,2°C, mas não superior a 5,5°C. Essa região II constitui a chamada zona crítica de operação, porque a máxima temperatura está muito próxima para causar danos permanentes ao tecido dental, porém se trata de uma zona segura. Região III representa a combinação de parâmetros proibidos para operação que, certamente, promoverão uma variação de temperatura acima de 5,5°C com boa chance de danos irreversíveis no tecido pulpar.

Alguns diagramas PTT para os vários dentes investigados são mostrados na figura 17 (A, B, C e D).

É interessante notar que características térmicas do dente dependem fortemente do tipo de dente (anatomia), o diagrama refletirá também esse fato. A predominância de cada
região está intrinsecamente correlacionada com o tipo de elemento dental envolvido, e, concorda com Ottl et al. (1992) que dizem existir uma correlação entre aumento de temperatura na câmara pulsar e a camada residual de dentina. Os diagramas PTT são de grande ajuda porque nos permitem escolher os corretos parâmetros para aplicações clínicas seguras. É preciso enfatizar que esses diagramas são exclusivamente considerados e aplicáveis quando do uso do sistema laser Nd:YAG operando no regime de picossegundos (Antares, Coherent – com bombeamento CW Q-switched e com acoplamento de modos) e com suas características de operação (pulsos com duração de 70ps emitidos em 1064nm, em trens de pulso, contendo em torno de 20 pulsos separados por 13,2ns).

A

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Figura 17 – Diagramas PTT para esmalte (A e B) e dentina (C e D) de dentes anteriores (A e C) e posteriores (B e D), quando I = de 0 a 2,2°C; II = de 2,2 a 5,5°C; e, III = acima de 5,5°C.

Com relação às variações relativamente pequenas observadas com dentina para os vários níveis de potência média, pode se relaciona-las com a constituição orgânica da mesma quando comparada ao esmalte, o que resulta em uma transferência de calor deficiente, no local de ablação, mais alta durante a irradiação laser.

Com relação à parte de resfriamento dos nossos resultados, podemos considerar o decaimento da temperatura em uma escala logarítmica. Isso é apresentado nas várias curvas da figura 16. O decaimento não é exponencial. No início ocorre uma queda bastante rápida e acentuada e logo depois essa queda se torna lenta. Se, no entanto, considerarmos a parte do decaimento próxima a uma curva exponencial (\(T = T_0 e^{-\nu t} \)) poderíamos obter as
características do tempo de decaimento (τ). Para esmalte de dentes anteriores, obtivemos τ ~ 45 segundos (± 15s), independentemente da potência média empregada. No caso de dentina de dentes anteriores, contudo, o valor de τ está na ordem de 33 segundos (± 6s), mostrando um decaimento mais rápido quando comparado àquele que ocorre no esmalte.

Para dentes posteriores, obtivemos τ ~ 85 segundos (± 20s) para esmalte e em torno de τ ~ 170 segundos (± 30s) para dentina. A enorme diferença nas características de tempo de decaimento (resfriamento) entre dentes anteriores e posteriores está muito relacionada às diferenças anatômicas entre eles, muito mais do que devido às variações constitucionais (estrutural e química). Se o material irradiado fosse homogêneo, o logaritmo da função:

\[T = T_0 e^{-t/τ} \]

seria uma reta, como o resultado foi uma curva, se trata de um material não-homogêneo, o que é uma verdade, uma vez que os elementos dentais assim o são, como são os tecidos biológicos de forma geral. As variações na anatomia correspondem aos diferentes volumes de tecido dentinário resultando em geometrias distintas e, consequentemente, diferentes padrões térmicos de dissipação.

Para justificar o maior valor no desvio padrão, consideramos o fato de que o aumento da temperatura local depende do coeficiente de absorção e da capacidade térmica do tecido duro dental. Como três leituras foram feitas para cada potência e para cada tecido-alvo, sem mudar a superfície irradiada, o valor alto de desvio padrão, provavelmente resultou da alteração nas características de absorção do esmalte e da dentina, para cada leitura feita no mesmo local, ou seja, para cada potência média o mesmo local era irradiado.

Considerando nossas condições experimentais, alguns parâmetros seguros de potência média e tempos de exposição podem ser escolhidos:

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
1 – para a ablação de esmalte de dentes decíduos anteriores, a potência média de 350mW, pode ser usada por um tempo máximo ininterrupto de 40 segundos; enquanto que com 200mW, esse tempo aumenta para 152 segundos;

2 – para a ablação esmalte de dentes decíduos posteriores, empregando a potência média de 350mW um tempo máximo de exposição de até 87 segundos, e com a potência média mais baixa de 200mW, um tempo máximo de exposição de 187 segundos;

3 – para dentina de dentes anteriores decíduos, uma potência média de 350mW pode ser empregada até 74 segundos de tempo de exposição, e diminuindo para 200mW de potência média, o tempo aumenta para 100 segundos ininterruptos; e,

4 – e finalmente, para dentina de dentes decíduos posteriores, a potência média mais alta de 350mW pode ser utilizada durante um tempo de exposição de 94 segundos, enquanto que a potência média mais baixa de 200mW durante 190 segundos ininterruptos de exposição.

Conclusões

Em conclusão, apresentamos aqui curvas típicas e diagramas PTT quando a ablação de dentes decíduos anteriores e posteriores foram considerados resultantes do uso do laser de Nd:YAG, operando no regime de picossegundos, focado em superfícies de esmalte e de dentina. Regiões seguras (Regiões I e II) para procedimentos clínicos foram determinadas variando os níveis de potência média.

Mesmo tendo sido utilizado um sistema laser operando no regime de pulsos curtos, e, portanto, segundo vários trabalhos publicados, não resultando em aquecimento excessivo do tecido-alvo, esse trabalho demonstrou que as características anatômicas e também a quantidade remanescente de dentina contribuem para a satisfatória dissipação de calor

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
gerado devido à interação laser-tecido duro dental, e, portanto, também devem ser consideradas, portanto esse trabalho é um começo para o uso de laser de Nd:YAG, operando pulsado no regime de picossegundos, em termos de mapeamento térmico. Outros esforços laboratoriais são necessários para definir as respostas histológicas pulpares, quando usados diferentes níveis de potência média e tempos de exposição, complementando assim os estudos de ablação de tecidos duros dentais com laser de picossegundos. Contudo, por enquanto, acreditamos que o laser Nd:YAG, operando em picossegundos, é um instrumento seguro para a ablação dentes decíduos, considerando a resposta às alterações de temperatura a nível de câmara pulpar.

3.3 Referências Bibliográficas

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

14- GLOCKNER, K. RUMPLER, J.; EBELESEDER, K.; STADTLER, P. Intrapulpal temperature during preparation with the Er:YAG laser compared to the conventional

3.4 ABLAÇÃO DE DENTES DECÍDUOS COM O LASER DE PICOSSEGUNDOS

A diminuição na duração dos pulsos minimiza os efeitos de aquecimento e introduz novos mecanismos de ablação tais como aqueles mediados por plasma (Chen; Liu – 1999; Marion; Kim – 1999).

Pelo exposto do experimento anterior, o laser de Nd:YAG, operando no regime de picossegundos, pode ser utilizado, com segurança, para ablacionar dentes decíduos. Como demonstrado por nosso grupo em uma publicação mais recente (Lizarelli et al. – 2000), o laser de Nd:YAG, com travamento de modos, foi capaz de resultar em novos acessos para a ablação de tecidos duros dentais, esmalte e dentina.

Um outro trabalho comparativo, entre lasers operando com pulsos em nano e picossegundos, em condições equivalentes, os resultados mostraram aspectos muito diferentes na ablação (Chen; Liu – 1999; Lizarelli et al. – 1999). Em primeiro lugar, a morfologia da região ablacionada demonstra ser mais bem controlada com picossegundos do que com nanosegundos. Devido a ausência de danos nas áreas adjacentes, confeccionar microcavidades com o laser de picossegundos a Odontologia, em especial, para o tratamento de dentes decíduos. Nesse sentido, pouco tem sido apresentado na literatura científica, discutindo a ablação de decíduos com relação a esmalte e dentina. Devido as diferentes constituições químicas e estruturais, não parece obvio que os mesmos parâmetros de operação empregados na confecção de microcavidades em dentes permanentes sejam válidos para os dentes decíduos.

Seguindo a mesma linha de trabalho (Lizarelli et al. – 1999, 2000), o presente experimento aqui apresentado descreve a taxa de ablação e os aspectos micromorfológicos resultantes da irradiação com o laser de Nd:YAG, operando no regime de picossegundos.
quando dentes decíduos são considerados os alvos. Para simplificar a análise, esmalte e dentina foram estudados separadamente. Este trabalho juntamente com os anteriormente desenvolvidos, quando dentes permanentes foram considerados, oferecem condições para se discutir possíveis aplicações clínicas do laser de Nd:YAG, no regime de picossegundos em Dentística.

Uma vez determinados os parâmetros seguros de operação, quanto à elevação da temperatura intrapulpar o principal objetivo foi estudar características micromorfológicas e ablacionais, resultantes da interação laser-tecido, quando esmalte e dentina de dentes decíduos foram irradiados pelo sistema laser de pulsos curtos Nd:YAG 1064nm.

Esse capítulo aborda a análise in vitro da interação da radiação de um laser de Nd:YAG, no regime de picossegundos em dentes decíduos esfoliados, quanto à taxa de ablação e micromorfologia.

Materiais e Métodos

Quatro dentes molares decíduos recém-extraídos ou esfoliados foram utilizados neste estudo. Foram excluídos aqueles que apresentassem quaisquer alterações nas superfícies linguais e/ou vestibulares (cáries, restaurações, defeitos, por exemplo). Os dentes foram obtidos da clínica de cirurgia da FOAr-UNESP, com aprovação do Comitê de Ética. Os dentes foram mantidos em meio úmido apropriado (solução de cloreto de sódio a 0,9%, a 37°C) para evitar desidratação.

Para melhor entendimento, todos os dentes foram cortados em quatro partes (Fig. 18). Primeiramente, porção coronária e porção radicular separadas, e em segundo lugar, cada uma dessas porções foi dividida longitudinalmente em duas metades. Ao final, cada molar resultou em duas meias coroas e duas meias porções radiculares.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

93
Cada parte foi embutida em resina epóxica (Crystal Plus, Brasil) dentro de um anel de PVC com 4,0cm de diâmetro. Duas amostras em forma de disco foram o resultado final, sendo uma com as meias-coroas e outra com as meias-porções radiculares. As amostras coronárias foram desgastadas e polidas utilizando discos Sof-Lex sequenciais (3M) para remoção de possíveis restos de resina sobre as superfícies-alvo, enquanto as amostras radiculares (dentina) foram desgastadas com lixas d’água sequenciais (até nº 600) para expor a superfície dentinária.

Figura 18 – Esquema representando o seccionamento do dente molar decíduo em quatro partes, previamente ao embutimento em resina epóxica.

Para realizar os experimentos, cada amostra foi dividida em duas metades: metade para ser analisada sob microscopia eletrônica de varredura (MEV) e a outra metade para observação em microscópio óptico, com a finalidade de medir a profundidade de cada microcavidade, lateralmente.
Após o preparo das amostras, quatro meias coroas e quatro meias porções radiculares foram observadas sob MEV, enquanto o restante dos corpos-de-prova dos molares deciduos irradiados foi observado sob microscopia óptica convencional.

As amostras foram irradiadas pelo mesmo laser de Nd:YAG, operando no regime de picosegundos (Antares, Coherent, Palo Alto - EUA), apresentado no experimento anterior de mapeamento térmico.

Metade de cada disco contendo os corpos-de-prova foi fixada em um eixo preciso de translação x-y-z (Modelo A LH, Starret) permitindo o correto posicionamento dos corpos-de-prova (Fig. 19), quando o feixe laser era focalizado, perpendicularmente, à superfície dental.

![Imagem A](imageA) ![Imagem B](imageB)

Figura 19 – Eixo de translação x-y-z de alta precisão (A) e posicionamento dele com a metade do disco (B).

As superfícies dentais preparadas foram expostas ao laser focado produzindo 75 microcavidades em esmalte e 61 em dentina, nas superfícies linguais e/ou vestibulares de três meias coroas e das três meias-porções radiculares (sendo uma de cada utilizada para
acertar os parâmetros e a distância focal, como um corpo-de-prova piloto). Nenhum sistema externo de resfriamento foi usado, além do natural resfriamento do meio (laboratório em torno de 20°C). A área de secção transversal do feixe foi fixada durante o experimento e foi estimada como tendo um diâmetro de 75µm, controlado pelo sistema de lentes usado para focar o feixe laser (posicionado em torno de 12,0cm do tecido-alvo). O sistema picosegundos operou com 100Hz de taxa de repetição, e duração de pulso de 70ps. Foram escolhidos três diferentes níveis de potência média: 200, 300 e 350mW, os mesmos escolhidos para o mapeamento térmico. O tempo de exposição foi variado em 5, 10 e 15 segundos para cada um dos níveis de potência considerados. Isso resultou em 3 repetições de tempo para cada potência.

Após a irradiação, os corpos-de-prova foram tratados seguindo a sequência de soluções alcoólicas para desidratação dos mesmos (70, 80, 90 e 100%), permanecendo 10 minutos em cada solução, preparo necessário previamente à observação sob MEV. Além dessa desidratação, todos os corpos-de-prova foram cobertos com uma camada de ouro com espessura de 20,0nm visando a facilitar a observação das mudanças superficiais pela ablação do laser. O microscópio eletrônico de varredura utilizado foi o Digital DSM 960 (Zeiss, Alemanha).

Sob o MEV, foram observados os aspectos morfológicos e geométricos das microcavidades confeccionadas, além de medir o diâmetro de cada uma delas para auxiliar no cálculo da taxa de ablação.

Para avaliar a profundidade da região ablacionada, os outros 6 corpos-de-prova (3 meias coroas e 3 meias porções radiculares) foram irradiados de forma que todas as microcavidades no mesmo corpo-de-prova resultasse em uma única linha vertical. Após
exposição ao laser, inicialmente cada corpo-de-prova foi embutido em resina acrítica incolor (Vipi Flash – Dental Vipi Ltda., São Paulo, Brasil) (Fig. 20), em seguida, desgastado lateralmente com lixas d’água (nos. 200, 400 e 600) (Fig. 21) para expor longitudinalmente cada microcavidade confeccionada.

Figura 20 – Embutimento de cada corpo-de-prova (3 meias coroas e 3 meias porções radiculares) em resina acrítica quimicamente ativada.

Figura 21 – Lixamento lateralmente de cada corpo-de-prova (E – esmalte; e, D – dentina) para expor a profundidade de cada microcavidade.
Utilizando um microscópio convencional de reflexão de luz (aumento de 40X) foi possível avaliar a profundidade total de cada microcavidade. Quando os corpos-de-prova foram lixados tornou-se possível visualizar o perfil longitudinal de cada microcavidade. A geometria da microcavidade-laser foi registrada através de desenhos manuais esquemáticos. Dessa forma, de posses dos diâmetros medidos sob o MEV e das profundidades obtidas sob microscópio por reflexão de luz, o volume do material removido pôde ser calculado, considerando-se tempo de exposição, potência média e tecido-alvo.

Resultados

1 – Aspectos Morfológicos

Para facilitar a apresentação dos resultados, foi adotada uma classificação previamente utilizada por nosso grupo nos experimentos do Mestrado (Lizarelli et al. - 1999), quando a interação laser-tecido foi dividida em três zonas (Fig. 22). A primeira zona (Z1) corresponde à área de tecido removido pela ablação-laser. A segunda área (Z2) corresponde à região intermediária entre a porção removida (primeira zona) e a região onde o material não foi afetado. Finalmente, a terceira zona (Z3) corresponde à superfície original. A extensão e os aspectos de cada zona são uma importante caracterização da interação laser-tecido.

A figura 23 mostra os aspectos de dois corpos-de-prova, uma meia coroa (esmalte) e uma meia porção radicular (dentina), locais em que é possível observar toda a superfície irradiada com várias microcavidades ablacionadas a laser. É interessante observar que a presença de trincas foi causada, provavelmente, pelo método de desidratação e não pelos choques criados pela interação do laser com os tecidos, uma vez que as trincas aparecem
raramente, não determinando um padrão de comportamento, além disso, não têm origem nas microcavidades.

Figura 22 – Três zonas definidas para observar as características resultantes da irradiação laser nos tecidos duros dentais.

Figura 23 – Superfície de corpos-de-prova de esmalte (A) e dentina (B) com as microcavidades (aumento de 13 vezes).

A figura 24 mostra uma vista comparativa entre esmalte e dentina, mantendo o mesmo tempo de exposição de 5 segundos e o mesmo nível de potência média em 200mW.
com um aumento de 500X. Fica claro que uma intensa Z2 é observada somente na superfície de esmalte. A microcavidade em dentina aparece como uma microcavidade bem delineada, com pouca evidência de Z2.

Figura 24 – Vista comparativa entre esmalte (A) e dentina (B), mantendo o mesmo tempo de exposição (5 segundos) e potência média (200mW), sob aumento de 500X.

O tecido circunvizinho parece estar sendo preservado. Enquanto é possível observar uma microcavidade muito definida em dentina, um aspecto diferente é visto em esmalte, no que a microcavidade se apresenta com bordas irregulares, denotando um claro efeito no tecido circunvizinho.

A figura 25 mostra uma vista comparativa entre esmalte e dentina para o tempo de exposição de 15 segundos e potência média de 350mW, sob aumento de 500 vezes. Com relação a Z2, a mesma está presente no esmalte com um aspecto levemente diferente da figura anterior quando uma potência mais baixa foi empregada, contudo novamente em dentina, não é possível observar Z2. Em dentina, aparecem algumas trincas que podem
estar associadas à natureza anisotrópica desse tecido. As margens da microcavidade em
dentina são muito bem definidas.

Figura 25 – Vista comparativa entre esmalte (A) e dentina (B), mantendo o mesmo
tempo de exposição (15 segundos) e potência média (350mW), sob aumento de 500X.

A figura 26 mostra uma vista comparativa entre microcavidades em esmalte
confeccionadas no mesmo corpo-de-prova (mesma meia coroa), mantendo o tempo de
exposição de 10 segundos, variando a potência média nos três diferentes níveis (A - 200, B
- 300 e C - 350mW, respectivamente) (500X de aumento). A caracterização, considerando
que as três zonas e semelhante entre as três microcavidades, Z2 está presente em todas elas
e de forma semelhante, com aparente descolamento e deslocamento para Z1. Contudo, o
aumento no nível de potência média parece promover um aumento em Z1, quando o
observamos, possivelmente indicando maior área ablacionada, e, provavelmente maior que
a área do feixe laser.
Figura 26 – Vista comparativa entre microcavidades na mesma meia coroa, mantendo o tempo de exposição (10 segundos) e substrato (esmalte), variando a potência média (A - 200, B - 300 e C - 350mW, respectivamente) (500 vezes de aumento).

Figura 27 – Vista comparativa entre microcavidades no mesmo corpo-de-prova, mantendo a potência média (200mW) e o tecido-alvo (esmalte), variando o tempo de exposição (A - 5, B - 10 e C - 15 segundos, respectivamente) (500X de aumento).

A figura 27 mostra uma típica vista comparativa entre microcavidades no mesmo corpo-de-prova (mesma meia coroa), mantendo a mesma potência média (200mW) e tecido-alvo (esmalte), variando o tempo de exposição (A - 5, B - 10 e C - 15 segundos,
respectivamente) (500X de aumento). Aparentemente, o diâmetro se mantém constante, mesmo com o aumento do tempo de exposição, contudo Z2 mais irregular destacando-se da margem e deslocando-se em direção à Z1.

A figura 28 mostra uma vista comparativa entre microcavidade, na mesma meia porção radicular (dentina como tecido-alvo), mantendo o tempo de exposição (5 segundos), e o substrato (dentina), variando a potência média (A - 200, B - 300 e C - 350mW, respectivamente) (500X de aumento). Fica claro observar que o aumento da potência média resulta em mudanças nas margens das microcavidades: no nível de 200mW, Z2 e trincas não estão presentes e as margens estão muito definidas; com 300mW, trincas estão presentes e alguns grânulos de ressolidificação cobrindo as margens; finalmente, com 350mW, além da presença dos grânulos sobre as margens, é possível observar mesmo dentro da microcavidade a fusão do substrato.

A B C
Figura 28 – Vista comparativa entre microcavidades no mesmo corpo-de-prova (meia porção radicular), mantendo o tempo de exposição (5 segundos) e o substrato (dentina), variando a potência média (A - 200, B - 300 e C - 350mW, respectivamente) (500X de aumento).

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
A figura 29 mostra uma vista comparativa entre microcavidades no mesmo corpo-de-prova (meia porção radicular), mantendo a potência média (200mW) e substrato (dentina), variando o tempo de exposição (A - 5, B - 10 e C - 15 segundos, respectivamente) (500X de aumento). Comparativamente à situação acima mencionada, o diâmetro de Z1 parece não variar nesse caso. Usando a potência média mais baixa, na dentina, o laser de picosegundos parece não ser capaz de aumentar a área de material removido, à medida em que o tempo aumenta. Além disso, as margens tornam-se indefinidas e em algumas partes (Fig. 29C) podem ser destacadas da superfície como algumas lascas.

Figura 29 – Vista comparativa entre microcavidades no mesmo corpo-de-prova, mantendo a mesma potência média (200mW) e substrato (dentina), variando o tempo de exposição (A - 5, B - 10 e C - 15 segundos, respectivamente) (500X de aumento).

A figura 30 mostra uma vista comparativa entre microcavidades mantendo o mesmo tempo de exposição (10 segundos), variando o substrato (esmalte acima e dentina abaixo) e variando o nível de potência média (A e C – 200mW, B e D – 350mW, respectivamente)
(500X de aumento). Aspectos muito diferentes são observados. Z2 está presente em esmalte (A e B) e trincas estão presentes em dentina (C e D).

Figura 30 – Vista comparativa entre microcavidades mantendo o tempo de exposição (10 segundos), variando o substrato (esmalte acima e dentina abaixo), variando o nível de potência média (A e C – 200mW, B e D – 350mW, respectivamente) (500X de aumento).
2 – Taxa de Ablação

Para medir a taxa de ablação, deve-se observar o volume de material removido que resulta das medidas dos diâmetros da região na qual houve, de fato, a remoção (microcavidade), sob o MEV, da profundidade e do perfil longitudinal da microcavidade, sob microscópio de reflexão de luz.

Figura 31 – Médias dos diâmetros para as microcavidades em esmalte.

A média dos diâmetros medidos, para todas as condições utilizadas nesse experimento, sob MEV, estão resumidas nas figuras 31 e 32, e os resultados serão explorados durante a discussão. As profundidades de todas as microcavidades (sob microscopia por reflexão de luz) são apresentadas na figura 33. A dentina mostra valores médios mais altos para a penetração da ablação quando comparada ao esmalte.
Figura 32 – Médias dos diâmetros para as microcavidades em dentina.

Figura 33 – Médias das profundidades de todas as microcavidades.
As formas observadas para as microcavidades, com relação ao perfil da secção longitudinal, apresentam uma variedade de formatos esféricos e cônicos. A figuras 34 e 35 apresentam dois corpos-de-prova, um em esmalte e outro em dentina com os formatos mais comumente observados.

Figura 34 – Diversos formatos para os perfis das secções longitudinais das microcavidades em esmalte.

Figura 35 – Diversos formatos para os perfis das secções longitudinais das microcavidades em dentina.
As diversas formas de todas as microcavidades foram observadas em conjunto com as dimensões medidas através dos volumes obtidos de material removido. A figura 36 resume essa coleção de volumes medidos.

Figura 36 – Coleção de todos os volumes de material removido obtidos.

Discussão

Com relação aos aspectos micromorfológicos apresentados nas figuras 23 a 30, é possível observar que os dentes decíduos tanto quanto os dentes permanentes (Lizarelli et al. – 1999; 2000) apresentam diferenças intrínsecas quando dentina e esmalte são irradiados. Normalmente, os efeitos colaterais em esmalte são muito mais acentuados, mostrando uma notável presença de Z2. Parece que devido à constituição predominantemente mineral do esmalte, a interação com o laser pode se dar a altas
temperaturas com subsequente formação de plasma e redeposição do material ablacionado, formando Z2.

Por outro lado, a constituição mais orgânica da dentina promove uma absorção e vaporização mais rápida, resultando em ejeção do material a baixas temperaturas, evitando o bloqueio plasmático e outros efeitos. O resultado é uma região, ou microcavidade, ablacionada mais bem definida e com margens mais regulares em dentina, quando comparada ao esmalte, e com aquecimento bem localizado em Z1.

Aumentando o tempo de exposição em esmalte, diâmetros maiores resultaram justamente por remover maior quantidade de material. Por outro lado, potências médias mais altas resultaram em Z2 mais largas, como uma consequência do alto nível de resolidificação na superfície próxima a área ablacionada (Z1), devido à formação do bloqueio pelo plasma evitando que o material removido fosse ejetado para fora do campo operatório. Resultados semelhantes são observados na dentina, porém sempre com bem menor evidência de Z2.

Em ambos os substratos (esmalte e dentina) a região ablacionada ou microcavidade preserva a forma do feixe de luz incidente; esse fato não está presente durante a exposição desses tecidos-alvo ao laser operando no regime de nanosegundos, como previamente investigado (Lizarelli et al – 2000).

Para discutir os diâmetros observados, as curvas apresentadas nas figuras 31 e 32 foram expandidas e o resultado é mostrado em detalhe na figura 37.
Figura 37 - Diâmetros observados em esmalte e expandidos.

Para um tempo específico de exposição, o diâmetro da região ablacionada mostra crescimento constante com a elevação do nível de potência média. Esse fato pode ser interpretado considerando que a intensidade do perfil do feixe laser é Gaussiano, e, que as maiores potências correspondem às maiores intensidades na extremidade Gaussiana, e, com um conseqüente efeito de maior ablação. Considerando-se o esmalte, para um nível específico de potência média, o diâmetro também mostra um crescimento, quanto maior for o tempo de exposição. É importante ser observado que todos os pontos convergem para o mesmo valor de diâmetro, quando a potência tende a zero. O ponto de convergência mostra um valor de diâmetro em torno de $\Phi_0 \sim 83\mu m$, o que é próximo do valor estimado para a secção transversal do feixe laser focado de 75μm. A partir desses pontos, torna-se possível dizer que o diâmetro da região ablacionada obedece a uma equação experimentalmente obtida como:

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Entende-se p como a potência do laser dada em mW, e, t é o tempo de exposição em segundos. É importante lembrar que essa equação é válida somente para uma específica configuração e condições do laser empregados nesse experimento. Apesar disso, é interessante saber que é possível representar esse tipo de ablação-laser de tecidos duros dentais por uma equação bem estabelecida.

Para a dentina, a análise não se mostra assim tão simples (Fig. 32). O aumento do tempo de exposição parece adicionar uma nova capacidade de ablação, de forma que os pontos convergem para um mesmo ponto, quando a potência tende a zero. Longos tempos de exposição parecem abrir o diâmetro da microcavidade mais rapidamente do que um comportamento linear.

Comparando-se dentina e esmalte, quando o tempo de exposição foi de 5 segundos (Fig. 38), para o mesmo valor de potência média, a dentina mostra diâmetros maiores que em esmalte. Esse fato provavelmente ocorre em conseqüência da constituição mais orgânica da dentina, resultando em uma interação mais severa com o laser.
Figura 38 – Comparação entre os diâmetros de ablação em dentina e em esmalte, quando o tempo de exposição foi de 5 segundos.

Figura 39 – Profundidade em função do tempo de exposição, em dentina.
Considerando-se a profundidade do material removido, novamente, parece que o laser pode ir mais profundo em dentina que em esmalte. As profundidades obtidas, para vários valores de potência média, em função do tempo de exposição, podem ser extraídas das figuras 39 e 40. A velocidade de penetração na dentina parece aumentar em função do aumento do tempo de exposição. Isso provavelmente se dá devido ao aumento da absorção da superfície ablationada, à medida que o laser atinge essa superfície. A profundidade em função do tempo é mostrada na figura 39. Um fato intrigante é que para a dentina, quando o tempo é zero, a profundidade também é zero, e, sofre um rápido aumento no começo da exposição, nivelando-se, após os primeiros segundos, e, depois, novamente, volta crescer. Esse fato ainda não é possível de ser explicado. Talvez porque momentaneamente as características de interação entre laser e tecido-alvo mudem, e, após certo tempo, em torno de 5 segundos, ocorra a remoção dessa camada resultante temporária.

Figura 40 - Profundidade em função do tempo de exposição, para o esmalte.

![Diagrama de Ablação x Fluência](image)

Figura 41 – Taxa de ablação: material removido em função do tempo (volume/tempo) para diferentes fluências (F [J/cm²]= E por pulso [J] / Área do “spot” [cm²]).

Acreditamos fortemente que as diferenças nos comportamentos de esmalte e de dentina em função da progressão do tempo para a profundidade da ablação, sendo os dentes decíduos os substratos em estudo, as diferenças estejam principalmente, relacionadas à
constituição orgânica desses tecidos-alvo. É importante relembrar que o comportamento é válido para as condições desenvolvidas no presente experimento. Pesquisas mais elaboradas são necessárias para esclarecer vários pontos deste experimento.

Todos os resultados dos diâmetros de ablação e das profundidades de todas as microcavidades estão combinados na figura 36. Está claro que mantendo todos os parâmetros, o volume de material removido em função da potência média do laser para esmalte de dentes decíduos é menor do que para dentina. Cinco segundos de irradiação em dentina remove mais material do que 15 segundos de irradiação em esmalte. Tais resultados reforçam as observações já discutidas considerando esmalte e dentina. A figura 41 apresenta a taxa de ablação (volume de material removido em função do tempo de exposição) para diferentes fluências. Considerando-se o diâmetro do feixe laser focado ("spot") com 83μm medido da figura 37, o cálculo da potência média de 350mW para 5 segundos nesse "spot" de 83μm em diâmetro resulta em 3,2 \(10^4\)J/cm\(^2\). Nessa potência média mais alta de 350mW, a taxa de ablação está indicada na figura 41. Como esperado, a taxa de ablação é mais alta no início, passando a diminuir quanto mais energia é depositada no tecido-alvo. A dentina mostra um valor mais alto de taxa de ablação, chegando quase a um fator de 2. Sendo assim, dentina e esmalte de dentes decíduos parecem manter um comportamento semelhante ao dos dentes permanentes. Com o aumento da fluência, a velocidade da remoção de material diminui, tendendo a um valor constante, que para o esmalte poderia ser extrapulado como \(0,2\)μm\(^3\) x \(10^{-6}\)/s e para a dentina \(0,4\)μm\(^3\) x \(10^{-6}\)/s.
Conclusões

Neste experimento foram investigados os aspectos fundamentais quando o laser de Nd:YAG, operando no regime de picosegundos interage com dentes decíduos. A micromorfologia e a taxa de ablação para dentes permanentes já haviam sido exploradas previamente (Lizarelli et al. – 1999; 2000), todavia, existem várias peculiaridades inerentes aos dentes decíduos que precisam ser consideradas. Os aspectos micromorfológicos apresentados pelos dentes decíduos após exposição a esse sistema laser resultaram em efeitos colaterais em esmalte mais evidentes e acentuados do que em dentina. Enquanto a taxa de profundidade de penetração em dentina parece aumentar com o progresso do tempo de exposição, para o esmalte o comportamento é o oposto. O volume de material removido é mais alto em dentina quando comparado ao do esmalte, o que resulta em uma taxa de ablação também mais alta em dentina.

 Poucos trabalhos científicos têm sido realizados considerando a interação do laser com os dentes decíduos. Os resultados desse experimento exploraram uma situação bastante específica: o uso de um laser sem uso comercial ainda e operando em um regime de pulsos pobremente estudado em Odontologia. Todavia, esses resultados são interessantes o suficiente ou para motivar em outros experimentos nessa linha de pesquisa.
3.5 Referências Bibliográficas:

4. EXPERIMENTOS COM O LASER DE Er:YAG

Por que essa magnífica ciência aplicada, que poupa tanto trabalho e torna a vida mais fácil, nos traz pouca felicidade?

A resposta é simples: porque ainda não aprendemos a usá-la com sensibilidade.

Albert Einstein
Existem algumas situações clínicas em que se faz necessário atuar com os instrumentos rotatórios de corte sobre a restauração em resina composta já fotopolimerizada, tais como: acabamento e polimento, substituição, remoção e reparo. Nesses casos, todo o corpo de resina composta ou parte dele é removido ou modificado, permitindo que uma nova colagem possa ser executada, por exemplo, diretamente sobre o tecido dental duro (esmalte ou dentina) ou sobre essa nova superfície de resina composta modificada mecanicamente; ou mesmo, expondo as superfícies duras dentais sem resultar em excessivos danos colaterais, como quando da remoção dos restos de resina composta após retirada dos "brackets" ortodônticos. Os instrumentos, convencionalmente, empregados para essas finalidades são: canetas de alta e de baixa velocidade, e, especialmente para os reparos, jato de abrasão a ar com óxido de alumínio.

Com o surgimento dos lasers de alta intensidade para ablação de tecidos duros (Er:YAG, ErCr:YSGG, Ho:YAG; Ho:YLF, por exemplo), a capacidade deles em remover total ou parcialmente tecido duros dentais e resinas compostas fotopolimerizadas já pode ser demonstrada clinicamente. Dessa forma, estabelece-se aqui a necessidade de se conhecer a micromorfologia resultante da irradiação com esses lasers sobre tipos representativos de resinas compostas, analisando-se também a taxa de ablação, sob parâmetros seguros de operação clínica.

O sistema laser de Er:YAG está estabelecido como um instrumento capaz de promover uma remoção seletiva e precisa de tecidos dentais cariados. Esse tipo de remoção/ablação minimiza a perda de tecido sadio, por ser seletivo, e promove uma sessão mais confortável aos pacientes, pela ausência de vibração e aquecimento. Apesar disso, a taxa de ablação é mais baixa do que a resultante do uso de brocas em canetas de alta

Remover tecido dental cariado não constitui o único procedimento clínico em que instrumentos de corte e remoção são requisitados, uma outra aplicação muito comum trata-se a remoção ou modificação de restaurações antigas em resina composta, que se apresentem insatisfeitas por algum motivo, tais como manchamento, cárie reincidente, fratura, entre outros. Apesar dos instrumentos convencionais empregados serem atualmente bem adaptados a essas situações, não deixam de ser procedimentos mecânicos incômodos à remoção de tecidos cariados, além de não serem seletivos para o material restaurador.

Figura 42 – Restauração Classe I (ou moderada de localização 1, segundo Mount Porto et al. - 2002) em resina composta fraturada: A – sob isolamento absoluto; B – removendo com laser de Er:YAG (200mJ e 10Hz, focalizado); e, C – preparo e modificação seletivos.

Nesse contexto, a possibilidade da remoção precisa dessas resinas compostas insatisfeitas resultaria em vantagens primando pela preservação dos tecidos sadios. Utilizar lasers para essa proposta torna necessário, primeiramente, o conhecimento das
características básicas da ablação a laser das diferentes classes de resinas compostas. Tal informação está basicamente ausente na literatura científica, tornando difícil a progressão das aplicações clínicas nessa direção. O conhecimento desses aspectos básicos da ablação a laser das resinas pode permitir o desenvolvimento de um protocolo de parâmetros que permitirão a remoção seletiva dessas restaurações, preservando os tecidos dentais sadios. De certa forma, todos os sistemas lasers disponíveis para as aplicações clínicas dentais podem ser usados para essa finalidade. Entretanto, porque o laser de Er:YAG corresponde ao sistema mais amplamente explorado atualmente em Odontologia, parece ser conveniente iniciar essa linha de pesquisa com sistema mencionado, além disso, clinicamente o emprego dele sugere essa real possibilidade em aplicação, tanto para remoção quanto para modificação de restaurações em resina composta (Fig. 42).

A proposta deste capítulo foi analisar in vitro a interação fotomecânica de um laser de Er:YAG com os tecidos duros dentais mais comumente tratados em Dentística Restauradora, esmalte e dentina, e também com resinas compostas fotopolimerizáveis. Este capítulo é composto de três experimentos e da proposta de uma técnica diferencial:

- Ablação de esmalte e dentina humanos de dentes permanentes e decíduos com laser de Er:YAG;
- Ablação de resinas compostas com o laser de Er:YAG microsegundos;
- Avaliação diferencial e comparativa das taxas de ablação entre substratos dentais: esmalte, dentina e resinas compostas; e,
- Proposta de uma nova técnica para remoção de restaurações insatisfatórias em resinas compostas.

Dentro desses experimentos, alguns aspectos básicos foram analisados, tais como:
1º - Estudo micromorfológico: Análise micromorfológica das superfícies de esmalte e de dentina provenientes de dentes deciduos e permanentes; e de três classes diferentes de resinas compostas, após irradiação com laser de Er:YAG. A avaliação foi realizada sob microscopia eletrônica de varredura e através de fotografias digitais dos aspectos micromorfológicos das cavidades resultantes após irradiação. Foram analisadas bordas e superfície interna quanto às características de definição de corte, rugosidade e região estrutural de ablação;

2º - Taxa de ablação: Cálculo da taxa de ablação dos tecidos-alvo acima citados, após irradiação com laser de Er:YAG. Uma comparação entre os volumes de material removido foi executada, sob mesmos parâmetros e condições de irradiação, e na forma de gráficos foi possível a discussão efetiva dos resultados; e,

3º - Alteração de massa de resinas compostas por imersão em água: devido à capacidade de absorver água que uma massa polimerizada de resina composta possui, e, pelo fato do laser de Er:YAG ablacionar através do aquecimento da água presente no tecido-alvo, foi analisada a massa de amostras das três marcas comerciais de resinas compostas escolhidas para os experimentos 1 e 2, após imersão em água destilada sob temperatura de 37°C, nos períodos de zero dias, 4, 7 e 30 dias; com a finalidade de verificar se há influência na taxa de ablação quanto à alteração de massa por sorpção de água. Segundo Craig (1993), a sorpção de água pelas resinas de microparticuladas é maior do que pelas resinas híbridas, devido à fração volumétrica mais alta de polímero (matriz). A qualidade e a estabilidade do agente ligante silano são importantes para minimizar a deterioração da união entre as cargas e a matriz, e, consequentemente, quantidade de água absorvida. A água aborvida, ou pelo menos a maior parte, confina-se nos espaços da matriz orgânica, portanto, antes de atingir o silano. Tem sido postulado que a sorpção de água não
é de todo danosa, por aliviar, parcialmente, o estresse da contração de polimerização, e que corresponde à expansão associada com a incorporação da água à partir dos fluidos orais, e talvez pudesse contrariar essa contração. Medindo o ganho de água à partir de 15 minutos após a polimerização inicial, a maioria das resinas requer 7 dias para atingir o equilíbrio e cerca de 4 dias para mostrar a maior parte da expansão. Resinas compostas, com partículas finas (em torno de 0,5-3,0 \(\mu\)m), têm os valores mais baixos de sorção de água (0,3 a 0,6 mg/cm\(^2\)), do que as microparticuladas (0,04 – 0,2 \(\mu\)m) que absorvem em torno de 1,2 a 2,2 mg/cm\(^2\)), e ainda exibem menor expansão quando expostas à água. As híbridas absorvem água de forma intermediária às finas e microparticuladas ou microfinas.

Porém, atualmente, o que determina o ganho de água é a qualidade e a quantidade da fase orgânica.

Foram eleitas três marcas comerciais de resinas compostas que pudessem representar as classes mais utilizadas clinicamente. A resina composta microparticulada Durafil VS (Kulzer – Alemanha), a resina composta híbrida Z100 (3M – EUA) e a recentemente lançada resina composta compactável Alert (Jeneric-Pentron – EUA). A microestrutura de cada uma dessas resinas escolhidas pode ser analisada na figura 43, bem como a composição de cada uma na tabela II.

O objetivo maior desse capítulo foi propor uma técnica diferencial para a substituição de restaurações insatisfatórias em resinas compostas, empregando o laser de Er:YAG.
Figura 43 – Fotomicrografia de exemplos de microestruturas de resinas compostas utilizadas neste experimento: A) microparticulada (Araujo et al. - 2001); B) híbrida (Z100 – 3M/EUA) (3M restaurador Z100 – 1997); e, C) compactável (Alert – Jeneric Pentron/EUA - 500X – IFSC/USP).

Tabela II – Composição das resinas compostas utilizadas neste experimento:

<table>
<thead>
<tr>
<th>Resina Compostas</th>
<th>Matriz</th>
<th>Carga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microparticulada - Durafil VS (Heraeus Kulzer)</td>
<td>Bis-GMA e TEG-DMA</td>
<td>Grãos pré-curados de dióxido de sílica com dimensão de 0.02-0.07 μm.</td>
</tr>
<tr>
<td>Híbrida - Z100 (3M)</td>
<td>Bis-GMA e TEG-DMA</td>
<td>Partículas de sílica e zircónia com dimensão de 0.01-3.5 μm.</td>
</tr>
<tr>
<td>Compactável - Alert (Jeneric Pentron)</td>
<td>Polycarbonato dimetacrilato.</td>
<td>Partículas de boro-silicato de alumínio com dimensão de 0.7μm, micropartículas de óxido de sílica com dimensão de 0.01-0.07μm, e fibras de vidro com óxido de magnésio e óxido de alumínio com diâmetro de 6-10 μm e comprimento de 40-80 μm.</td>
</tr>
</tbody>
</table>

4.1 Referências Bibliográficas

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

4.2 ABLAÇÃO DE ESMALTE E DENTINA HUMANOS DE DENTES PERMANENTES E DECÍDUOS COM LASER DE Er:YAG

Introdução

O mecanismo de interação entre o laser de Er:YAG e os tecidos dentais obedece à ablação explosiva termo-mecânica mediada por água (Fried – 2000), como já discutido anteriormente.

Estudos prévios têm demonstrado que o laser de Er:YAG, tanto em esmalte quanto em dentina, resulta em superfícies irradiadas com características particulares (Hibst et al. – 1988; Keller; Hibst – 1989; Tokonabe et al. – 1999).

A avaliação micromorfológica tem sido realizada considerando os dentes permanentes como substrato ou tecido-alvo, e isso implica que, como já citado, pouca informação científica discutindo os aspectos resultantes da interação desse sistema laser com dentes decíduos, tenha sido reportada (Brugnera Jr. et al. – 1999; Yamada et al. – 2001; Kohara et al. – 2002). Como a ablação a laser é seletiva para porções orgânicas do tecido duro dental, um estudo sistemático com respeito a ablação com laser de Er:YAG em dentes decíduos, em nível de esmalte e dentina, se faz necessário.

Já está amplamente aceito que esmalte e dentina de dentes decíduos apresentam um grau de mineralização menor do que os permanentes (Wilson; Beynon – 1989). Como as crianças têm sido os maiores beneficiários da laserterapia nos consultórios odontológicos, atualmente, torna-se condição obrigatória estudar e entender os efeitos comparativos desse tipo de sistema com esmalte e com dentina, em relação aos mesmos tecidos de dentes permanentes.
Esse primeiro experimento teve como objetivos avaliar os aspectos micromorfológicos bem como a taxa de ablação de esmalte e de dentina resultantes da irradiação com o laser de Er:YAG, considerando comparativamente dentes permanentes e deciduídos.

Materiais e Métodos

Onze dentes deciduídos recém-extraídos ou esfoliados e seis dentes terceiros molares permanentes foram incluídos nesse experimento. Os dentes foram escolhidos quando não apresentavam nenhum tipo de alteração nas superfícies linguais e vestibulares, tais como caries, restaurações, defeitos. Os dentes foram obtidos da Clínica do Departamento de Cirurgia da Faculdade de Odontologia de Araraquara – UNESP. Os dentes foram mantidos sempre em meio apropriado para evitar a desidratação (solução de cloreto de sódio 0,9%, a 37\(^\circ\)C).

Para melhor entendimento, todos os dentes foram cortados em quatro partes. Primeiramente, os dentes foram divididos em coroa e porção radicular, cada um; em segundo lugar, todas as partes foram divididas longitudinalmente em duas. Ao final, tinham-se 2 meias coronas e 2 meias porções radiculares de cada elemento dental. As porções radiculares dos dentes permanentes foram excluídas desse estudo. Os corpos-de-prova foram organizados em 3 grupos (permanentes, coronas de deciduídos e raízes de deciduídos) e fixados com resina epóxica Cristal dentro de um anel de PVC com 4,0cm de diâmetro. Resultando em 3 discos, sendo 2 com meias coronas (deciduídos e permanentes) e a outra com meias porções radiculares (dentes deciduídos). As amostras foram desgastadas com lixas d'água (até no. 600) sob água corrente, para obtenção de superfícies mais planas para facilitar o acoplamento do laser na interação com o tecido-alvo.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
O sistema laser de Er:YAG utilizado foi o Twin Light (Fotona Medical Lasers, Slovenia) com comprimento de onda de 2940nm, máximo de energia por pulso de 500mJ, taxa de repetição de 2 a 15Hz, largura de pulso entre 200 e 450μs, sistema de entrega com braço articulado, peça-de-mão com janela de safira e feixe não-contato com área de “spot” focalizado (área do feixe focalizado sobre o tecido-alvo) de aproximadamente 0,466mm².

Os parâmetros escolhidos para uso foram: 10Hz, laser focado (12,0mm de distância do tecido-alvo), duração do tempo de exposição de 10 segundos, e variação dos níveis de energia de 100, 200, 300 e 400mJ; com as respectivas fluências de 21,5 ; 42,9 ; 64,4 e 85,8J/cm²; e intensidade de 2,15 ; 4,29 ; 6,44 e 8,58W/cm².

As amostras foram coladas, através de fita adesiva dupla face, em um eixo de alta precisão x-y-z de translação (Fig. 44A), enquanto a caneta do laser de Er:YAG foi presa em uma garra metálica, para facilitar a irradiação focalizada com o laser (Fig. 44B).

Figura 44 - Amostra posicionada no eixo de translação x-y-z (A) na distância focal (B).
Em cada corpo-de-prova, três microcavidades com os mesmos parâmetros foram preparadas, totalizando 247 microcavidades, sendo 128 em decíduos (64 em esmalte e 64 em dentina) e 119 em permanentes (54 em esmalte e 65 em dentina), 9 foram perdidas por diversas razões (limite amelo-dentinário, borda do corpo-de-prova, por exemplo) (Fig. 45).

![Figura 45](image_url)

Figura 45 – As três amostras (discos) com os corpos-de-prova após confecção das microcavidades com laser de Er:YAG sob todos os parâmetros escolhidos.

Todas as microcavidades foram medidas sob microscópio de reflexão de luz, tomando-se nota dos diâmetros e das profundidades de cada microcavidade. O cálculo dos volumes de materiais removidos foi realizado utilizando esses dados obtidos sob um aumento de 40 vezes, no microscópio convencional.

Em seguida, alguns corpos-de-prova foram selecionados aleatoriamente (um corpo-de-prova de cada tipo de tecido-alvo: esmalte de decíduos, dentina de decíduo e permanente) e receberam a preparação para permitir observação sob MEV. Os aspectos micromorfológicos foram analisados sob MEV e as principais características podem ser observadas nas figuras 46 a 50.
Resultados e Discussão

Para a análise micromorfológica das microcavidades, o mesmo esquema adotado para os resultados com o laser de Nd:YAG picosegundos foi utilizado (Lizarelli et al. - 1999), as três zonas de ablação mostradas na figura 22. Recordando, a primeira zona (Z1) corresponde à área de tecido removido pela ablação-laser; a segunda área (Z2) corresponde a região intermediária entre a porção removida (primeira zona) e a região onde o material não foi afetado, finalmente, a terceira zona (Z3), corresponde à superfície original. A extensão e os aspectos de cada zona são importantes para a caracterização da interação laser-tecido.

A figura 46 mostra 4 microcavidades produzidas pelo laser de Er:YAG com a energia por pulso de 300mJ com 10Hz e durante 10 segundos (fluência de 64,4J/ cm² e intensidade de 6,44W/ cm²). A e B mostram os aspectos micromorfológicos de esmalte e dentina de deciduos; C e D mostram esmalte de dentina de dentes permanentes. Foi possível observar a presença de pouca Z2 em A e em B, Z2 não está presente nas duas microcavidades em permanentes (esmalte e dentina, C e D). Contudo, fica claro observar que Z1, a zona de fato ablacionada, é a área que mais se diferencia entre as 4 microcavidades aqui apresentadas. A e D mostram uma Z1 bem definida e limpa, o formato de meia esfera está bem fácil de visualizar. Por outro lado, B mostra uma Z1 com retorno do material ablacionado e ejetado, com características de porção mineral desidratada e aglutinada, provavelmente o sugador de alta potência não tenha sido capaz de retirar do campo operatório, totalmente, o material irradiado e ejetado durante a irradiação, que pode ser conseqüência da formação da pluma (água, ar, laser, minerais intactos ejetados, em alta velocidade) intensa. O resultado foi a redeposição do material no fundo da microcavidade. Finalmente, C mostra uma microcavidade muito superficial, isto significa que o laser

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
provavelmente encontrou muito mais dificuldade para remover esmalte de permanente, denotando a resistência maior desse tipo de tecido-alvo, sob esses mesmos parâmetros.

Figura 46 – Micromorfologia comparativa entre esmalte e dentina de decíduos (A e B) e dentes permanentes (C e D), após irradiação com o laser de Er:YAG empregando a energia por pulso de 300mJ, taxa de repetição de 10 Hz e tempo de exposição de 10 segundos (fluência de 64,4J/cm² e intensidade de 6,44W/cm²).
Figuras 47 a 50 mostram os aspectos micromorfológicos de esmalte e dentina de decíduos e de permanentes sob MEV, quando o aumento foi de 1000X.

Figura 47 – Fotomicrografias com 1000X de aumento: esmalte de dentes decíduos irradiados pelo laser de Er:YAG variando a energia por pulso em 100 (A), 200 (B), 300 (C) e 400mJ (D), respectivamente.
As figuras 47 e 48 mostram superfícies de esmalte após a irradiação, variando a energia por pulso. Na figura 47, os aspectos micromorfológicos dos dentes decíduos são apresentados. É claro notar em 47A, quando a energia foi de 100mJ (a mais baixa escolhida), a superfície irradiada com um aspecto muito diferente, das demais. Parece que a profundidade obtida não foi suficiente para remover completamente a camada não-prismática ou aprismática, resultando em uma superfície sem as características mais comumente encontradas após irradiação com esse laser, ou seja, de exposição dos contornos de prismas. Como se trata de uma camada não-prismática ou, como se sabe, com prismas em várias direções, o aspecto visualizado é coerente, uma vez que apresenta característica desorganizada e sem definição prismática.

Aumentando a energia por pulso para 200mJ, a superfície resultante passa a ser característica mostrando ausência provavelmente da camada não-prismática, e que a profundidade atingida foi maior que a espessura dessa camada. Aumentando mais o nível de energia por pulso para 300 e 400mJ, os aspectos micromorfológicos não parecem ser tão diferentes de 200mJ, mostram o corte da camada prismática nos contornos dos prismas, aspecto bastante peculiar e anteriormente apresentado em outros trabalhos publicados (Brugnera Jr. et al. – 1999).

Por outro lado, os dentes permanentes (Fig. 48) mostram um aspecto muito semelhante entre si, independente da energia por pulso empregada. Aspectos típicos podem ser observados sob as quatro diferentes energias, a ablação respeitando as regiões de menor resistência: contornos de prismas, no caso do esmalte.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Figura 48 – Fotomicrografias com 1000X de aumento do esmalte de dentes permanentes após irradiação com laser de Er:YAG, variando a energia por pulso em 100 (A), 200 (B), 300 (C) e 400mJ (D), respectivamente.
Figura 49 – Fotomicrografias com 1000X de aumento de dentina de dentes decíduos após a irradiação com laser de Er:YAG, variando a energia por pulso em 100 (A), 200 (B), 300 (C) e 400mJ (D), respectivamente.

Na figura 49, é possível observar detalhes muito mais interessantes, com relação à dentina irradiada de decíduos. Quando a energia por pulso é de 100mJ, não é possível
remover o "smear layer", permanecendo ocluídos os túbulos dentinários, inclusive. Aumentando a energia por pulso (200 a 400mJ) o "smear layer" passa a ser completamente removido inclusive os "smear plugs" que normalmente obstruem a entrada dos túbulos dentinários. À medida que o nível de energia aumenta, também o número de túbulos abertos aumenta. Quando a energia é a mais alta (400mJ) (Fig. 49D), a superfície dentinária resultante demonstra que o laser parece ter realizado uma ablação, preferencialmente na região intertubular. Essa ablação preferencial evidencia a dentina peritubular, dando a impressão de túbulos projetados. Esse achado concorda com o de Yamada et al. (2001), que empregaram energia por pulso e taxa de repetição mais baixos (120mJ e 2Hz).

Finalmente, a figura 50 mostra os aspectos micromorfológicos da dentina de dentes permanentes. O fato semelhante àquele que ocorre com a dentina de deciduos também aqui pode ser observado: o "smear layer" foi removido, porém com todas as quatro energias por pulso e existe uma ablação preferencial pela dentina intertubular, evidenciando a dentina peritubular. A figura 50D mostra um corte longitudinal dos túbulos dentinários, mostrando que alguns prolongamentos odontobásticos provavelmente foram "sugados" para fora (setas indicativas na Fig. 50), fenômeno muito comum quando do uso de alta rotação sem água/ar em preparos cavitários, o que denota um maior aquecimento gerado pelo laser, quando a energia foi de 400mJ.
Figura 50 – Fotomicrografias com 1000X de aumento de dentina de dentes permanentes após irradiiação com laser de Er:YAG, variando a energia por pulso em 100 (A), 200 (B), 300 (C) e 400mJ (D – setas indicativas para os prolongamentos odontoblastícos), respectivamente.

As superfícies irradiadas de esmalte apresentaram diferentes aspectos entre os dentes decíduos e permanentes. Comparando-se dentes decíduos e permanentes, percebe-se que os
decíduos mostram uma Z1 mais lisa, os permanentes apresentam uma Z1 mais rugosa. Isso ocorre devido às distintas composições estruturais e químicas de cada um. Enquanto os dentes decíduos, com a camada aprismatico mais superficial, facilita o acoplamento do laser e, portanto, a ablação inicial, os permanentes, opostamente, apresentam uma resistência maior inicialmente devido à sua alta organização prismática; além disso, quanto menor o grau de mineralização menos resistente o material será ao laser, portanto os dentes decíduos apresentam características que, de fato, facilitam sua ablação desde o início da interação da luz com a sua superfície de esmalte, permitindo uma ablação mais uniforme.

Para a dentina, ambos os tipos de dentes mostram aspectos equivalentes, uma vez que estruturalmente não há uma grande distinção entre eles, porém, como existe uma densidade maior de túbulos dentinários nos decíduos, e, também uma maior ação do laser na dentina intertubular, menos mineralizada, a ablação, provavelmente, poderá ser maior nos dentes decíduos, fato que será discutido mediante cálculo da taxa de ablação.

As figuras 51 e 52 apresentam gráficos dos valores dos diâmetros medidos em função da variação da energia por pulso, considerando esmalte e dentina de dentes permanentes e decíduos. Aumentando a energia por pulso, os valores dos diâmetros claramente aumentam também. Como a dimensão do “spot” (área da secção transversal do feixe laser focado sobre a superfície-alvo) não aumenta em função do aumento da energia por pulso, fica claro que maiores energias por pulso geram microcavidades com diâmetros maiores também. O diâmetro da ablação aumenta rapidamente no início e lentamente diminui o seu aumento à medida que o tempo progride, mostrando um tipo de comportamento de saturação, já mostrado em trabalhos prévios empregando o laser de Nd:YAG, operando no regime de picossegundos (Lizarelli et al. – 1999). O aumento do diâmetro da região ablacionada (Z1) devido à elevação da energia por pulso tem várias contribuições. Como a interação do laser
de Er:YAG com os tecidos se dá através do efeito explosivo termomecânico, a partir da interação do laser com gotas de água presentes na região ablationada, mais energia por pulso promove maiores explosões e consequentemente maior ablação do tecido. Além disso, o efeito de processos não-lineares (quando a luz modifica o material com o qual ele está interagindo) permite que o sistema se comporte como uma lente desfocalizando a luz e consequentemente resultando em diâmetros maiores de ablação.

![Diagrama de diâmetros em função da energia](image)

Figura 51 – Valores de diâmetros em função da energia por pulso, considerando esmalte de dentes decíduos e permanentes.

Outro importante aspecto é que, extrapolando-se as curvas do gráfico para $E (\text{mJ}) = 0$, no início é possível encontrar um diâmetro próximo do diâmetro do feixe laser. Considerando no esmalte, que de fato o diâmetro encontrado está próximo do diâmetro inicial (700μm), todavia, ao se considerar as microcavidades em dentina, o diâmetro inicial é muito maior do que o diâmetro estimado. Esse fato mostra que o diâmetro da região ablacionada ($Z1$) não obedece a uma linha reta em função da variação da energia por pulso.
A dependência do diâmetro pela energia por pulso pode ser uma curva com concavidade negativa. Esse resultado poderá ser explicado porque Z1 é aquela região onde a aceleração das moléculas de água ocorre e não em toda a área iluminada.

Figura 52 – Valores dos diâmetros em função da variação da energia por pulso, considerando a dentina de dentes decíduos e permanentes.

As figuras 53 e 54 mostram as profundidades em função da variação de energia por pulso, considerando esmalte e dentina de dentes permanentes e decíduos. A profundidade é outro parâmetro geométrico importante. Ambos os gráficos das figuras 53 e 54 mostram-nos claramente.
Figura 53 – Valores das profundidades em função da variação da energia por pulso considerando esmalte de dentes decíduos e permanentes.

A profundidade, em função da variação de energia por pulso, tanto para dentes decíduos quanto para permanentes, pode, ser extraída das figuras 53 e 54. A profundidade de penetração em esmalte parece aumentar à medida que a energia se eleva também. Isso provavelmente se dá devido ao aumento da absorção da superfície irradiada que vai tendo suas características ópticas modificadas pelo laser.

Como já citado, enquanto a energia por pulso foi 100mJ, a camada não-prismática ainda se mostrava presente (Fig. 47A). Pelo gráfico da figura 53, considerando esmalte como tecido-alvo, é possível observar que a profundidade atingida em esmalte de decíduos quando a energia é de 100mJ, atinge uma faixa de valores entre 0,25 e 0,4μm; essa faixa corresponderia aos achados de Abramovich (1999) que diz que a camada não-prismática apresenta uma espessura em torno de 30μm. Aumentando a energia por pulso para 200mJ, tanto pela micromorfologia quanto por este mesmo gráfico da figura 53, uma profundidade
em torno de 0,65mm é atingida, portanto confirmando o fato da ausência da camada não-prismática.

Considerando os dentes deciduos, as curvas são mais enfáticas. Abaixo da camada aprismática o esmalte mostra uma microestrutura diferente, mais organizada.

Comparando os tipos de tecidos, esmalte e dentina, quanto à profundidade do material removido, percebe-se que o laser atinge mais profundamente a dentina do que o esmalte.

No caso dos dentes permanentes, as curvas são mais suaves. As diferenças de comportamento são muito mais evidentes para a profundidade de ablação que aumenta quando os valores de energia por pulso também aumentam.

Para a dentina (Fig. 54), a profundidade de ablação mostra um comportamento completamente diferente daquele observado no esmalte. Agora a penetração da ablação é mais profunda no início, crescendo lentamente à medida que a energia aumenta, mostrando um comportamento típico de saturação descrito previamente (Lizarelli et al. - 1999). Esse comportamento é semelhante ao mostrado na maioria dos estudos sobre a ocorrência do bloqueio pelos produtos da ablação.

Abação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Figura 54 – Valores das profundidades em função da variação de energia por pulso, considerando dentina de dentes decíduos e permanentes.

Figura 55 – Valores dos volumes de material removido em função da variação de energia por pulso, considerando esmalte de dentes decíduos e de permanentes.
Figura 56 - Valores dos volumes de material removido em função da variação de energia por pulso, considerando dentina de dentes deciduos e de permanentes.

Os valores resultantes dos volumes de materiais removidos foram submetidos aos testes estatísticos de análise de variância (Fig. 57) e Tukey. Quando todos os fatores de variação (tipo de dentes, tipo de tecido e energias por pulso) foram comparados entre eles, existiu uma diferença estatística em nível de 1%. Isso significa que todos os fatores de variação podem influenciar nos volumes de materiais removidos de forma significante, ou seja, existe apenas a probabilidade de 1% em se encontrar o mesmo valor de volume removido resultante quando pelo menos um dos fatores de variação muda.

Segundo o Teste de Tukey, avaliando esses valores de volumes removidos aos pares e considerando o nível de significância de 5%, não houve diferença estatisticamente significante entre todos os pares de tipo de tecido (esmalte e dentina) e tipo de dente (decíduo e permanente). Esse é um interessanté achado. Significa que ao fixar o valor da energia por pulso, mudar tipo de dente e/ou tipo de tecido não influenciaria no volume de
material removido de forma estatisticamente significante. Dessa forma é possível entender que apenas um dos três fatores de variação, de fato, seja capaz de influenciar estatisticamente os volumes de materiais removidos: a energia por pulso. As figuras 55 e 56 mostram as curvas considerando esses fatores.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Soma de Quadr.</th>
<th>G.L.</th>
<th>Quadr. Médios</th>
<th>(F)</th>
<th>Prob.(H0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre colunas</td>
<td>19.9594</td>
<td>3</td>
<td>6.6531</td>
<td>571.25</td>
<td>0.000 %</td>
</tr>
<tr>
<td>Entre linhas</td>
<td>0.1027</td>
<td>1</td>
<td>0.1027</td>
<td>6.62</td>
<td>0.421 %</td>
</tr>
<tr>
<td>Entre blocos</td>
<td>4.1295</td>
<td>1</td>
<td>4.1295</td>
<td>254.57</td>
<td>0.000 %</td>
</tr>
<tr>
<td>Inter. CxL</td>
<td>0.0508</td>
<td>3</td>
<td>0.0169</td>
<td>1.46</td>
<td>23.199 %</td>
</tr>
<tr>
<td>Inter. LxB</td>
<td>1.9456</td>
<td>1</td>
<td>1.9456</td>
<td>167.05</td>
<td>0.000 %</td>
</tr>
<tr>
<td>Inter. CxB</td>
<td>0.8981</td>
<td>3</td>
<td>0.2994</td>
<td>25.71</td>
<td>0.004 %</td>
</tr>
<tr>
<td>Inter. CxLxB</td>
<td>0.0420</td>
<td>3</td>
<td>0.0140</td>
<td>1.20</td>
<td>31.383 %</td>
</tr>
<tr>
<td>Resíduo</td>
<td>0.9317</td>
<td>80</td>
<td>0.0116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variação total</td>
<td>28.0599</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 57 – Análise de variância considerando tipo de tecido nas linhas (esmalte e dentina), tipo de dente nos blocos (decíduo e permanente) e diferentes energias nas colunas (100, 200, 300 e 400mJ) (C = colunas; L = linhas; B = blocos).

Ainda segundo o teste de Tukey, tanto os tipos de dente quanto os tipos de tecido apresentam semelhança entre si. Quando a energia é o fator avaliado, não existe diferença estatisticamente significante entre 100 e 200mJ; entre 100 e 300mJ; entre 200 e 300mJ; e, entre 300 e 400mJ. Contudo, existe uma diferença estatisticamente significante ao nível de 5% quando se compara 400mJ com os níveis de energia por pulso de 100 e 200mJ. Esses resultados significam que fixando os outros dois fatores de variação (tipo de dente e tipo de
tecido) a energia de 400mJ mostra volumes de materiais removidos estatisticamente diferentes daqueles proporcionados pelas energias de 100 e 200mJ. Quando a energia de 400mJ por pulso é empregada, os volumes de materiais removidos são os maiores.

Conclusões

Fazendo-se uma análise comparativa final entre decíduos e permanentes, com relação aos parâmetros de ablação, os aspectos morfológicos de todos os substratos foram investigados. A taxa de ablação de dentina é maior que do esmalte, e a remoção de tecidos provenientes dos dentes decíduos é maior que dos dentes permanentes. Esses achados parecem ter uma relação direta com a quantidade de água presente no tecido-alvo, que facilitaria a ação do laser de Er:YAG. O parâmetro que mostrou, de fato, neste estudo, ser capaz de modular o volume de material removido foi a energia por pulso, a maior energia (400mJ) permitiu a maior taxa de ablação, independente do tipo de dente (decíduo ou permanente) ou de tecido (esmalte ou dentina).

Outros estudos, variando tempo e taxa de repetição, por exemplo, são necessários para complementar os achados aqui expostos.
4.3 Referências Bibliográficas

4.4 ABLAÇÃO DE RESINAS COMPOSTAS COM O LASER DE Er:YAG
MICROSSEGUNDOS

A proposta deste experimento foi investigar a taxa de ablação e os aspectos morfológicos resultantes nas superfícies de três diferentes tipos de resinas compostas após irradiação com o laser de Er:YAG.

Como o laser de Er:YAG interage com os tecidos através do efeito explosivo termomecânico, quando ele é absorvido pela água presente na região de ablação, a forma pela qual a matriz e carga são compostas e unidas quimica e estruturalmente, tornam-se tópicos de interesse para a investigação através do uso de diferentes tipos de resinas, podendo ter forte influência na taxa de ablação.

Materiais e Métodos

Utilizando um molde metálico, 60 pastilhas de formato cilíndrico (diâmetro de 8,0mm e espessura de 2,0mm) foram confeccionadas. Três diferentes materiais foram escolhidos: uma resina microparticulada (Durafil VS, Heraeus Kulzer, Germany) cor A20 (lote A30122), uma resina híbrida (Z100, 3M, USA) cor A2 (lote OWN 2003-05), e uma resina compactável (Alert, Jeneric Pentron, USA) cor A2 (lote 39722 2002-12). A composição de cada uma está apresentada na tabela II.

A microparticulada e a híbrida têm o mesmo tipo de matriz, Bis-GMA e TEG-DMA. As cargas são diferentes: a microparticulada (Durafil VS) tem grãos pré-polimerizados de dióxido de silício (0,02-0,07 μm de diâmetro) e a híbrida (Z100) tem sílica e zircônio com 0,01-3,5 μm de diâmetro.
A compactável apresenta composição química e estrutural bem diferentes das outras duas. A matriz tem policarbonato dimetacrilato com cargas de micropartículas de óxido de silício (0,01-0,07μm de diâmetro), silicato de boro alumínio (0,7μm de diâmetro), e, de fibras de vidro e de óxido de magnésio e alumínio com diâmetro de 6-10μm e comprimento entre 40 e 80μm.

O procedimento para preparar as pastilhas foi completamente descrito em um trabalho prévio (Kurachi et al – 2000) e está resumidamente representado na figura 58.

![Imagens](image)

Figura 58 – Sequência operatória para confecção das pastilhas: A – placa metálica com 5 moldes com 2,0mm de profundidade e 8,0mm de diâmetro; B – morsa para prensar e acomodar a resina sem excessos; e, C – fotopolimerização com lâmpada halógena.

Foi postulado que a absorção de água, pela restauração de resina composta após polimerização, não é de toda danosa, e, que a expansão correspondente associada com a captação da água dos fluidos orais poderia compensar parcialmente o estresse residual da contração de polimerização (Fan et al. – 1985). Nas medidas de expansão higroscópica iniciadas 15 minutos após a polimerização inicial, a maioria das resinas requer 7 dias para
 alcançar o equilíbrio, porém após 4 dias, mostra o máximo de expansão. Em 4 dias, ocorre absorção de água pela resina composta, porém a mesma somente se difunde pela massa total dentro dos 7 dias. Um dos fatores de variação deste experimento se constituiu no tempo de imersão em água para então verificar essa afirmação, para observar a influência desse fenômeno na ablação a laser.

No entanto, antes disso era preciso realizar um experimento à parte, medindo essa incorporação de água na massa de resina dentro desse período de 7 dias, em termos de peso, para as três diferentes resinas, já que Craig (1993) mostrou que as resinas compostas híbridas tem uma absorção de água mais baixa do que as microparticuladas. As híbridas têm menor fase orgânica.

Então, a metodologia desse experimento 4.2 envolveu 2 partes: uma parte em que cinco pastilhas de cada tipo de resina (microparticulada, híbrida e compactável) foram pesadas aos zero dias, aos 4 dias de imersão em água, aos 7 dias e aos 30 dias; e uma segunda parte onde quinze pastilhas de cada tipo de resina foram confeccionadas e ablançadas, segundo os tempos de imersão em água acima citados (zero – sem imersão, 4 e 7 dias). Na verdade, ambos experimentos foram realizados concomitantemente.

As pastilhas de resina foram polimerizadas convencionalmente com um aparelho fotopolimerizador dotado de uma lâmpada halógena (KM200R, K&M, São Carlos, Brasil) durante o tempo de 40 segundos para a resina híbrida e 20 segundos para as outras duas, seguindo as instruções dos fabricantes. Após a cura, cinco pastilhas de cada resina composta (totalizando 15 pastilhas) foram separadas das outras (45 pastilhas).

Essas quinze pastilhas foram pesadas em uma balança de alta precisão (Metter AE 163 - Micronal - São Paulo, Brasil) e depois foram imersas em água a 37°C. Então nos tempos de 4, 7 e 30 dias, as pastilhas foram pesadas, novamente, para a verificação do
possível ganho de massa pela incorporação de água dentro do corpo de resina. Cada pastilha, previamente à pesagem, era removida do recipiente (com água destilada a 37°C), com tampa, com o auxílio de uma pinça clínica e colocada alguns segundos sobre uma folha dupla de papel absorvente, para que o excesso de água fosse removido das superfícies de cada pastilha. Após a pesagem, novamente retornavam para os devidos recipientes e para a estufa.

As outras 45 pastilhas foram confeccionadas para que o experimento de ablação, propriamente dito, fosse executado. Foram 15 pastilhas de cada tipo de resina (microparticulada, híbrida e compactável) sendo que cada 5 seriam consideradas para cada tempo de imersão em água (zero dias, 4 e 7 dias). Se a análise da massa pela incorporação de água demonstrasse diferença estatisticamente significante, então os outros tempos de imersão também seriam avaliados sob ablação a laser. O tempo zero de imersão foi importante para demonstrar as características logo após a polimerização.

O laser empregado neste experimento foi o mesmo do experimento anterior, o sistema laser de Er:YAG (Twin Light, Fotona Medical Lasers, Slovenia) que opera no regime de microsegmento com duração de pulso entre 200 e 450μs, emitindo comprimento de onda de 2940nm, máximo de energia por pulso de 500mJ, taxa de repetição ou frequência de pulsos de 2 a 15Hz. Apresenta um sistema de entrega com braço articulado, peça-de-mão com janela de safira e feixe não-contato com área de “spot” focado de aproximadamente 0,466mm².

Os parâmetros escolhidos para uso foram: 10Hz, laser focado (12,0mm de distância do tecido-alvo), duração do tempo de exposição de 10 segundos, e variação dos níveis de
energia de 100, 200, 300 e 400mJ; com as respectivas fluências de 21,5 ; 42,9 ; 64,4 e 85,8J/cm²; e intensidade de 2,15 ; 4,29 ; 6,44 e 8,58W/cm².

Cada corpo-de-prova foi ablacionado em 12 pontos, sendo três repetições para cada valor de energia por pulso. A figura 59 mostra um grupo de 9 pastilhas, após terminado o experimento, que foram escolhidas para observação sob MEV. Foram escolhidas aleatoriamente 3 pastilhas para tipo de resina, cada uma representada no disco da figura 59 na linha vertical, da esquerda para a direita, os três tipos de resinas (microparticulada, híbrida e compactável) e na linha vertical, de cima para baixo, os três diferentes tempos de imersão em água (zero, 4 e 7 dias).

![Figura 59 - Pastilhas após a irradição com as microcavidades sendo preparadas para avaliação sob MEV.](image)

O disco ou amostra com os corpos-de-prova foi confeccionado unindo as pastilhas com resina epótica (Cristal Plus, São Paulo, Brasil), foi desidratado em estufa a 50°C por 24 horas e então recebeu uma cobertura com 20nm de ouro para observações no microscópio eletrônico de varredura (DSM 960, Zeiss Jena, Alemanha).

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
O diâmetro e a profundidade de Z1, assim como no experimento anteriormente apresentado, foram obtidos opticamente sob microscópio de reflexão de luz, sob o aumento de 40 vezes, e serão utilizados para a determinação do volume ablacionado e subsequentermente a massa de material removido. O volume de material removido foi calculado usando uma fórmula que considerava a microcavidade como parte de uma esfera, apresentada como:

\[
V \ (\text{mm}^3) = \frac{(\pi/3)}{} \cdot \left(\frac{D^3}{2} \right) (3R - D)
\]
em que \(R = 1/2d \ (d^2 + D^2/4) \); "D" sendo o diâmetro e "d" sendo a profundidade.

Resultados

Os resultados podem ser divididos em três grupos. Primeiramente, os aspectos morfológicos de Z1, considerando cada tipo de resina, os tempos de imersão pré-estabelecidos e também as diferentes energias por pulso.

Nas figuras 60, 61 e 62, são mostrados os aspectos macroscópicos da região ablacionada (Z1) quando a energia por pulso foi de 300mJ, 10Hz, durante 10 segundos e focado, variando o tempo de imersão em água destilada a 37°C em zero, 4 e 7 dias.

Aspectos característicos da ablação tais como regularidade e formato das microcavidades, podem ser obtidos à partir das observações das figuras.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Figura 60 – Microcavidades em resinas compostas (microparticulada - A, híbrida - B e compactável - C) resultantes da irradiação com o laser de Er:YAG com 300mJ, 10Hz durante 10 segundos e focado, sem imersão em água (aumento de 80 vezes).

Figura 61 – Microcavidades nas resinas compostas (microparticulada - A, híbrida - B e compactável - C) resultantes da irradiação de laser de Er:YAG com 300mJ, 10Hz e durante 10 segundos, após 4 dias de imersão em água (70 vezes de aumento).
Figura 62 – Microcavidades em resinas compostas (microparticulada - A, híbrida - B e compactável - C) resultantes da irradiação com laser Er:YAG com 300mJ, 10Hz durante 10 segundos e focado, após 7 dias de imersão em água (70 vezes de aumento).

Ob maiores aumentos, a microestrutura da região ablacionada (1) pode ser observada nas figuras 63 a 71. A figura 63 mostra a microestrutura com 1000 vezes de aumento variando os níveis de energia por pulso, sem período de imersão em água. Resultados e equivalentes são apresentados nas figuras 6 e 6 para resina híbrida e compactável, respectivamente.

Efeito observado da ablação-laser para diferentes níveis de energia por pulso, claramente, particular para cada tipo de resina composta a ui escolhida e muito dependente da energia por pulso depositada.

As figuras 66, 67 e 6 mostram as resinas compostas microparticulada, híbrida e compactável sob as mesmas condições, após 6 dias de tempo de imersão em água destilada a 37°C, com o aumento de 1000.
Figura 63 – Superfícies da resina composta microparticulada irradiadas com laser de Er:YAG sob 10Hz e 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com aumento de 1000X (sem tempo de imersão em água – zero dias).
Figura 64 – Superfícies da resina composta híbrida irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (sem tempo de imersão em água – zero dias).
Figura 65 - Superfícies da resina composta compactável irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (sem tempo de imersão em água – zero dias).
Figura 66 - Superfícies da resina composta microparticulada irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após quatro dias de tempo de imersão).
Figura 67 - Superfícies da resina composta híbrida irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após quatro dias de tempo de imersão).
Figura 68 - Superfícies da resina composta compactável irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após quatro dias de tempo de imersão).
E as figuras 69, 70 e 71 mostram as resinas compostas microparticulada, híbrida e compactável, sob as mesmas condições, após 7 dias de imersão em água destilada a 37ºC, com 1000X de aumento.

Figura 69 – Superfícies da resina composta microparticulada irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após sete dias de tempo de imersão).
Figura 70 – Superfícies da resina composta híbrida irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após sete dias de tempo de imersão).
Figura 71 - Superfícies da resina composta compactável irradiadas com o laser de Er:YAG sob 10Hz e durante 10 segundos, variando os níveis de energia (A = 100, B = 200, C = 300 e D = 400mJ, respectivamente) com 1000 vezes de aumento (após sete dias de tempo de imersão).

Em todos os corpos-de-prova (pastilhas), as microcavidades obtidas pela irradiação mostravam um formato lembrando parte de uma esfera.
Inicialmente, os diâmetros das regiões ablacionadas foram medidos de cada corpo-de-prova. Para simplificar a comparação, na figura 72 são apresentados os diâmetros medidos das microcavidades dos três tipos de resinas, em cada uma das três condições de imersão.

Figura 72 – Os diâmetros de ablação observados para cada tipo diferentes de resina composta (A – microparticulada; B – híbrida; e, C – compactável) durante equivalentes condições de tempo de imersão em água.
A profundidade de cada microcavidade foi também medida. A figura 73 apresenta a profundidade de ablação para as diferentes resinas compostas.

As figuras 72 e 73 apresentam características individuais para cada material e condições (energia por pulso e tempo de imersão em água). E a figura 72, o diâmetro de ablação observado para diferentes tipos de resina durante equivalentes condições de imersão.

É interessante notar na Fig. 72C que diferentemente da ausência de imersão em água (curva de zero dia) as curvas para 4 e 7 dias de imersão em água, até uma energia por pulso de 200mJ, a água incorporada parece dificultar a ablação, ou seja, parece que energias abaixo de 200mJ por pulso, são completamente absorvida pela água presente na massa, o que sugere a possibilidade e viabilidade da diminuição do fluxo de água no jato que é emitido pelo aparelho laser, durante a irradiiação.

A profundidade de penetração de ablação está apresentada para cada tipo de resina composta na figura 74 (A, B e C).

Intercomparação para equivalentes condições de imersão permitiu construir os gráficos das figuras 75 e 76, nos quais os volumes das porções removidas de material são mostrados considerando os diferentes tipos de resinas compostas e, também, os diferentes tempos de imersão em água das pastilhas.
Figura 73 – A profundidade de penetração da ablação é apresentada para cada tipo de resina composta (A – microparticulada; B – híbrida; e, C – compactável).
Figura 74 – Profundidades para equivalentes condições de imersão em água (A – zero dia; B – quatro dias; e, C – sete dias).
Figura 75 – O volume de material removido em função da energia por pulso para cada tipo de resina composta (A – microparticulada; B – híbrida; e, C – compactável).
Figura 76 – Volume de material removido considerando os tempos de imersão em água (A – zero dia; B – quatro dias; e, C – sete dias).

Todas as informações relacionadas às superfícies ablacionadas, forma e profundidade de penetração da microcavidade produzida, o volume de material removido em função da

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
energia por pulso para cada tipo de resina composta, são apresentados nas figuras 75 e 76. Condições equivalentes permitiram a comparação através desses gráficos.

Os valores resultantes de volume de material removido foram submetidos aos testes estatísticos de análise variância (Fig. 77) e Tukey. Quando todos os fatores de variação foram comparados entre eles, bem como aos pares (interação), existiu uma diferença estatisticamente significante no nível de 1%. Isso significa que todos esses fatores podem influenciar o volume de material removido de forma significante.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Soma de Quadrados</th>
<th>G.L.</th>
<th>Quadr Médios (F)</th>
<th>Prob (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre colunas</td>
<td>70.2812</td>
<td>3</td>
<td>23.427</td>
<td>0.0005</td>
</tr>
<tr>
<td>Entre linhas</td>
<td>0.1162</td>
<td>2</td>
<td>0.0581</td>
<td>0.9555</td>
</tr>
<tr>
<td>Entre blocos</td>
<td>5.3896</td>
<td>2</td>
<td>2.6948</td>
<td>0.0000</td>
</tr>
<tr>
<td>Interacção CxL</td>
<td>0.1920</td>
<td>6</td>
<td>0.0320</td>
<td>0.0079</td>
</tr>
<tr>
<td>Interacção LxB</td>
<td>0.1501</td>
<td>4</td>
<td>0.0375</td>
<td>0.0836</td>
</tr>
<tr>
<td>Interacção CxB</td>
<td>1.1111</td>
<td>6</td>
<td>0.1852</td>
<td>0.0003</td>
</tr>
<tr>
<td>Interacção CxLxB</td>
<td>0.1706</td>
<td>12</td>
<td>0.0142</td>
<td>0.3494</td>
</tr>
<tr>
<td>Resíduo</td>
<td>0.7787</td>
<td>144</td>
<td>0.0054</td>
<td></td>
</tr>
<tr>
<td>Variação total</td>
<td>78.1895</td>
<td>179</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 77 - Análise de variância considerando tempo de imersão em água nas linhas (zero, 4 e 7 dias), tipo de resinas compostas nos blocos (microparticulada, híbrida e compactável) e diferentes energias nas colunas (100, 200, 300 e 400mJ) (C = colunas; L = linhas; B = blocos).

Aplicando o teste de Tukey, ao nível de 5%, não existe diferença estatisticamente significante entre todos os pares de tempo de imersão em água e tipos de resinas compostas, apenas para os diferentes níveis de energia por pulso, sendo o único fator capaz de influenciar o volume de material removido nas resinas compostas. Também o nível de

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

174
energia por pulso de 400mJ apresentou o único valor maior do que o valor crítico de Tukey, enquanto que todos os outros níveis de energia (100, 200 e 300mJ) foram semelhantes entre si. Isso significa que quando a energia por pulso de 400mJ é empregada, os volumes de material removido são maiores.

Com relação à primeira parte deste experimento, os valores resultantes de medida de peso das pastilhas, verificando o ganho de massa durante os diferentes tempos de imersão em água destilada a 37°C, foram submetidos ao teste estatístico não-paramétrico de Friedman. O teste mostrou que existe uma diferença estatisticamente significante no nível de 1% entre os tipos de resinas compostas, contudo, não existiu diferença estatisticamente significante entre os tempos de imersão em água. O resultado da medida de ganho de massa é resumido no gráfico da figura 78.

Figura 78 – Gráfico de colunas mostrando que cada coluna corresponde a um corpo-de-prova; cada cor corresponde a um tipo de resina composta; e, os tempos de imersão foram quatro, como mostrado na legenda.
Discussão

Inicialmente serão discutidos os aspectos morfológicos resultantes da região ablacionada. De um modo geral, é possível notar que o aspecto da região ablacionada é muito regular. As margens apresentadas nas fotomicrografias da figura 60 são muito bem definidas para os três tipos de resinas compostas. Isso revela que a ablação a laser desse tipo de material apresenta-se uniforme provavelmente como conseqüência da homogeneidade do próprio material. Existem, todavia, pequenas variações para cada tipo de resina composta, que podem ser justificadas como conseqüência das diferentes energias de ligação de cada tipo delas demonstrando distintas resistências à ablação. Maior coesão no material resultará em maior resistência à ablação.

Quando as pastilhas foram mantidas em água destilada por 4 e 7 dias, figuras 61 e 62, mostraram pequena diferença nas características morfológicas. Primeiramente, no aumento menor, é possível verificar todas as margens das microcavidades (70 vezes de aumento) e a área de ablação como um todo, para permitir uma comparação entre os tamanhos de todas elas. As margens são bem definidas novamente. Os aspectos gerais considerando quatro dias de imersão em água, parecem um pouco diferentes. As áreas ablacionadas para todas as resinas compostas parecem ser mais resistentes ao laser, como a massa dos corpos-de-prova estava muito mais túrgida com água, esse excesso poderia estar resultando em um bloqueio durante a ablação. Como confirmado por Craig (1993), a maior parte da expansão da resina devido a sorpção de água, ocorre nos primeiros 4 dias, entretanto, a água absorvida, provavelmente, se mantém nas camadas mais superificiais do material, sem difundir completamente para dentro da massa do material. Após 7 dias, essa água absorvida poderia se acomodar para dentro da massa de resina composta resultando em um equilíbrio da distribuição da água.
Esse fenômeno provavelmente se reflete nos aspectos morfológicos mostrados na figura 61. A água em excesso após 4 dias permite uma intensa interação e consequente absorção do laser de Er:YAG. A presença intensa de água evita a ablação do tecido-alvo. Essa água excessiva, provavelmente, absorve muito mais o laser agindo como um bloqueio para o laser agir diretamente ablcionando a massa de resina composta.

Por outro lado, após 7 dias, a água está incorporada e faz parte da massa de resina composta. A homogeneidade resultante desse equilíbrio apresenta um material muito mais uniforme e ocasionando uma ablação a laser mais uniforme após 7 dias de imersão (Fig. 63). A figura 62 mostra uma característica muito semelhante à da figura 63: bordas mais definidas, margens mais definidas, superfícies de Z1 mais homogêneas, detalhes mais evidentes nas resinas híbridas (62B). A água incorporada parece mediar o mecanismo de ablação, assim como nos tecidos duros dentais.

Os aspectos gerais da área ablaclonada revelam um comportamento muito particular da resina sob a irradiação laser. Parece que a resina híbrida é mais facilmente removida pelo laser de Er:YAG do que a microparticulada e a compactável. Esse fato pode ser consequência da microestrutura da microparticulada, que tem toda a sua resistência relacionada à matriz polimérica, que ao ser ablaclonada permite que as micropartículas se desprendam da massa de resina e se percam. Ambos os tipos de resina apresentam o corpo formado por polímero com partículas dispersas (microparticulada e híbrida) e mostram aspectos equivalentes. A resina compactável, nesse aspecto, parece ser pelos resultados macroscópicos, mais resistente à ablação-laser.

Sob maiores aumentos utilizando o MEV, observa-se que para cada tipo de resina resulta em uma diferente microestrutura de Z1 (região ablaclonada). A topologia apresentada nas figuras 63, 66 e 69 mostra que a resina composta microparticulada,
considerando os três tempos de imersão em água, claramente que a resina dá indicação de que durante a ablação-laser a matriz polimérica é removida, deixando para trás os espaços previamente ocupados pelas micropartículas. Aumentando a energia no pulso do laser parece não ocorrerem mudanças nos aspectos gerais, mas uma maior modificação ocorre no polímero.

Para a resina composta híbrida (Figs. 64, 67 e 70), a microestrutura da superfície irradiada não apresenta uma modificação radical entre a menor e a maior energia empregadas por pulso, exceto pelo fato de que com baixa energia por pulso de laser, as partículas maiores podem ser observadas, enquanto que sob maiores energias, a regularidade da superfície parece ser dominante.

Em ambos os casos acima descritos, microparticulada e híbrida, a baixa energia de coesão mostra-se como uma aparente regularidade, claramente localizada na área ablacionada, sem evidências de que houve dificuldades na remoção do material.

Por outro lado, a resina composta compactável (Figs. 65, 68 e 71) apresentou dificuldades de comportamento perante a ablação-laser, diferentemente das outras resinas. Nesse caso, a baixa energia por pulso parece produzir pouco efeito no material. A energia do laser não produz suficiente força que supere a força de coesão do material e inicie a ablação. Ao se aumentar a energia parece que ocorre uma superação nessa aparente barreira coesiva, expondo a heterogeneidade da estrutura. Como a presença de fibras de vidro torna-se evidente, mesmo mantendo o aspecto geralmente observado de parte de esfera para as microcavidades, o formato das fibras é preservado. Aumentando a energia, claramente ocorre um rompimento dessas barreiras, removendo com maior facilidade o material polimérico entre as fibras; com a energia por pulso mais alta aqui utilizada, evidências
claramente que o conjunto de fibras de vidro está sendo desalojado podem ser visualizadas nas fotomicrografias.

Está claro que a resistência oferecida pela resina compactável não está presente nas resinas microparticulada e híbrida, fato que poderá ser constatado na análise da quantidade de ablação, abordado na discussão.

Considerando o diâmetro da área ablacionada, figura 72, o resultado mostra que o comportamento é semelhante para todas as resinas. Extrapolando para energia-zero por pulso E (mJ) = 0, permitirá verificar que o diâmetro iluminado será da ordem de 0,75 a 0,80mm, que está consistente com o diâmetro normal do feixe tido em torno de 0,7mm. Claramente, o diâmetro de ablação aumenta com o aumento da energia do laser, mostrando uma tendência à saturação com valores da ordem de 1,2mm. O aumento da energia por pulso é conseqüência do melhor uso da energia na periferia do “spot” do feixe de laser. Energias mais altas nessas bordas do feixe promovem inicialmente uma liberação de energia mais semelhante à parte quente do feixe (centro), dessa forma promovendo mais ablação. A curvatura, mostrando a diminuição progressiva na taxa de diâmetro aumenta com a energia, sendo provavelmente conseqüência da quantidade limitada de água na região iluminada, o que está intrinsecamente relacionado ao mecanismo de ablação do laser de Er:YAG. Observando os gráficos da figura 73, fica claro que para todas as resinas o período de imersão em água não afeta severamente a área ablacionada. Poderia ser esperado que, com a incorporação da água, a absorção da radiação laser aumentasse também, resultando em maior ablação. Mas não parece ser o caso. A figura 74 mostra que em quase todas as situações, a profundidade removida é a menor para as resinas compactáveis quando comparada com as outras. Isso é mesmo muito mais evidente nos detalhes da figura 74A, quando os corpos-de-prova não tinham sido imersos em água previamente à ablação a laser.
Esse fenômeno é conseqüência da estrutura apresentada anteriormente. A resina compactável, tendo as fibras de vidro, apresentam melhor resistência para a remoção do material. Por outro lado, a resina híbrida mostra, em todas as condições, ser a mais fácil de ser ablacionada com relação à medida de diâmetro. Isso parece estar relacionado completamente e também com a estrutura. A variedade de dimensões nas partículas de carga torna o material facilmente de ser abrasionado, desgastado, desalojando essas partículas e removendo cada vez mais maiores quantidades da matriz.

Considerando a profundidade de penetração (figuras 73 e 74) os resultados mostram a existência de uma energia por pulso mínima necessária ("threshold energy per pulse" ou limiar de ablcação por pulso) (Fig. 74) para iniciar a penetração. Isso é mais evidente nas resinas compactáveis, mas está presente também nas resinas microparticulada e híbrida. Novamente, parece não produzir nenhum efeito o tempo de imersão em água, para os diferentes períodos de imersão. Isso acrescenta uma clara indicação de que a água não foi completamente incorporada à massa da resina ou que então um outro mecanismo de interação entre laser e resina composta esteja presente durante a ablação. O comportamento geral observado para a penetração parece ser o seguinte: a partir do zero, a velocidade de penetração parece ser baixo até o valor de energia mínima necessária (E_{th}), em que a taxa de penetração rapidamente cresce. Após esse rápido crescimento, a profundidade de penetração parece continuar aumentando com uma taxa que diminui com o aumento da energia, novamente (semelhante ao diâmetro analisado) com uma provável saturação, mesmo com menor evidência do que no caso do diâmetro. De novo, o efeito de nivelamento na penetração pode ter uma causa de bloqueio por vários fatores. Em primeiro lugar, a quantidade de água interagindo com o laser pode promover somente um poder máximo de ablação. Em segundo lugar, aumentando a energia por pulso, aumenta-se o
poder da ablação, mas a capacidade do sistema para ejectar o material ablacionado é também limitada causando um tipo de efeito de saturação. A figura. 73 (sem imersão) mostra um gráfico com várias características importantes em relação à ablação de resina com o laser de Er:YAG. Para todas as condições de operação, pode se estimar um valor de energia mínima de ablação \(E_{th} \) para cada resina. Isso pode ser feito através do prolongamento da parte mais alta da inclinação das curvas. Como indicado na figura 73, para cada resina um valor de energia mínima necessária: \(E_{th} \) (híbrida) \(\sim 55\)mJ (fluência de 11,8J/cm\(^2\) e intensidade de 1,18W/cm\(^2\)), \(E_{th} \) (microparticulada) \(\sim 80\)mJ (fluência de 17,2J/cm\(^2\) e intensidade de 1,72W/cm\(^2\)) e \(E_{th} \) (compactável) \(\sim 110\)mJ (fluência de 23,6J/cm\(^2\) e intensidade de 2,36W/cm\(^2\)). Esses valores de limiar (”threshold”) indicam as condições de coesão da resina. Claro que a híbrida mostra a coesão menor comparado às outras, enquanto a compactável apresenta a mais alta. Isso pode ser esclarecido com os achados de Luo et al. (1998) que avaliaram o efeito da porosidade da partícula na resistência à abrasão e, concluiu, que as partículas porosas, preparadas através da reação sol-gel, mostram somente algumas partículas de carga que prometem melhorar a resistência ao desgaste das resinas fotopolimerizáveis. As cargas da resina Z100 (3M) são produzidas como um resultado de reação química sol-gel.

O resultado da maior resistência à ablação para as compactáveis, seguidas das microparticuladas e híbridas, está, de fato, de acordo com a morfologia observada presente na microestrutura após a irradiação com laser, sob várias condições, e com Berlin et al. (1986), que afirmam que no caso de compósito polimérico com reforço de fibras, o mecanismo de transmissão de estresse da matriz para as fibras é dependente da configuração da partícula.
Para todas as energias, os gráficos, considerando os valores de material removido das três resinas, não mostram mudanças. Novamente os diferentes tempos de imersão não causam nenhum efeito no comportamento demonstrado nas figura 76.

As figuras 75 e 76 mostram os resultados dos volumes de material removido em função da energia por pulso. Os gráficos refletem curvas semelhantes de profundidade de penetração. Novamente, para o volume existe uma energia mínima necessária (E_{th}) por pulso para iniciar o processo de remoção de material. A partir da energia zero, o volume parece estar abaixo dessa energia mínima necessária para iniciar a ablação, quando então o volume aumenta rapidamente. Logo após esse rápido aumento, o volume parece continuar aumentando com a taxa que diminui com o aumento da energia, com a possível saturação, semelhante ao que acontece com a profundidade de penetração.

A energia mínima necessária (E_{th}) mostra que existe uma energia capaz de superar o bloqueio formado pelas partículas removidas e ejetadas (pluma), atingindo as moléculas mais internas, e, aumentando rapidamente o volume de material removido.

De acordo com a análise estatística e com os achados experimentais, considerando o ganho de massa das resinas quando imersas em água, novamente, o tempo de imersão em água não tem a capacidade de influenciar e resultar em diferenças estatisticamente significantes nos volumes de material removido. Talvez porque quando a resina composta é ablacionada pelo laser de Er:YAG a água não seja o fator intermediário que comumente é considerado no mecanismo de ablação desse sistema laser: ablação explosiva termomecânica mediada por água, no caso dos tecidos duros serem os tecidos-alvo. Os resultados apresentados aqui parecem mostrar um novo achado quando o laser de Er:YAG remove resina composta polimerizada, o mecanismo de ablação envolvido parece ser o de vaporização explosiva seguido de ejeção hidrodinâmica. Uma rápida fusão cria grandes...
forças de expansão devido a mudanças de volume do material já fundido. A expansão do líquido se opõe à energia de superfície dele ou da tensão superficial. Essas forças contrárias combinadas com a estrutura resultante da resina criam protrusões superficiais, resultantes da aceleração das porções removidas e ejetadas na superfície.

Com relação ao ganho de massa como resultado dos tempos de imersão das pastilhas em água destilada a 37°C, a figura 78 mostra um diagrama resumindo os valores medidos. De acordo com a análise estatística, o tempo de imersão em água não foi um fator determinante para a taxa de ablação, considerando cada tipo de resina composta. A figura 75 também confirma que existe uma influência para a taxa de ablação, considerando os diferentes tipos de resinas compostas, microparticulada, híbrida e compactável. Esses achados suportam os períodos estudados para os tempos de imersão em água e os tipos de resinas escolhidos para o experimento da medida da taxa de ablação.
Conclusão

A proposta desse experimento foi investigar a taxa de ablação e os aspectos morfológicos resultantes do uso do laser de Er:YAG nos três tipos de resinas compostas aqui investigadas, microparticulada, híbrida e compactável. Diferentes condições foram estabelecidas buscando simular as influências reais na ablação de resinas compostas restauradoras com o laser de Er:YAG, tais como: diferentes energias por pulso (100, 200, 300 e 400mJ) e tempo de imersão em água (zero, 4 e 7 dias).

Os achados aqui apresentados permitem concluir que:

1 – a energia por pulso é o único fator de variação que pode influenciar a taxa de ablação para todos os três tipos de resinas compostas aqui estudadas;

2 – os aspectos micromorfológicos resultantes da irradiação com laser de Er:YAG dependem da composição química e da estrutura de todos os tipos de resinas compostas;

3 – a incorporação de água, dentro da massa de resina composta não é um fator importante para a ablação a laser para todos os tipos de resinas compostas usadas nesse estudo.

Em conclusão, os achados aqui apresentados mostraram um mecanismo diferente para a ablação de resinas compostas, trata-se de um importante passo na pesquisa para o uso de um sistema laser mais conveniente para ablacionar e remover a resina composta utilizando um mecanismo real de remoção seletiva envolvido nesse procedimento: a vaporização explosiva seguida da ejeção hidrodinâmica.
4.5 Referências Bibliográficas

4.6 ABLAÇÃO DIFERENCIAL E COMPARATIVA ENTRE SUBSTRATOS DENTAIAS: ESMALTE, DENTINA E RESINAS COMPOSTAS

Após entender os mecanismos envolvidos na ablação dos tecidos duros dentais, esmalte e dentina, normalmente tratados em procedimentos de Dentística e, também, analisar a interação do sistema laser de Er:YAG com os grupos mais representativos de resinas compostas restauradoras, nos foi possível pensar na análise comparativa entre os dois últimos experimentos descritos, buscando a provável ablação diferencial, promovida por esse tipo de laser, nesses diferentes tecidos-alvo.

Um dado interessante sobre a vantagem em se utilizar o laser para ablacionar seria a possibilidade em desenvolver um preparo cavitário conservador envolvendo a remoção de resinas antigas, preservando a estrutura dos tecidos dentais, esmalte e dentina. Em outras palavras, a possibilidade de sugerir uma técnica utilizando laser em que a ablação da resina fosse mais rápida do que dos tecidos duros dentais, poderia assim trazer-se vantagens do laser sobre as técnicas mecânicas convencionais. O primeiro passo necessário para essa proposta é investigar, de uma forma comparativa, a taxa de ablação e as propriedades das resinas compostas em relação ao esmalte e à dentina.

Neste presente experimento, damos continuidade às investigações prévias, agora comparando as características da remoção do material resina composta, dos três grupos, microparticulada, híbrida e compactável, e esmalte e dentina de dentes decíduos e permanentes. E, finalmente, será proposta uma nova técnica para remoção seletiva e exclusiva de resina composta, com mínimo efeito no tecido duro dental sadio.

As medidas realizadas em separadas nos experimentos anteriormente descritos foram reavaliadas em conjunto. Quando o laser de Er:YAG irradiou os tecidos-alvo, o fluxo de
água foi regulado como sendo de 0,14ml/s (ou 8,4ml/min). Wigdor et al.(1993) apud Wigdor et al. (1995) realizaram um estudo comparativo da ablação de resinas compostas com laser de Er:YAG, analisando a taxa de ablação e a alteração da temperatura na superfície do material. Os fatores de variação foram a fluência, a energia por pulso e o fluxo de água. Relataram que com uma fluência de 60J/cm², a taxa de ablação era a mesma independente do fluxo de água, contudo, para que a temperatura não excedesse 5,5°C, a energia por pulso deveria permanecer entre 222 e 341mJ desde que o fluxo de água fosse de pelo menos 5,45ml/min.

Os aspectos típicos para a área ablacionada para as superfiícies consideradas neste experimento são representados na figura 79. Eles todos consistem em regiões circulares.

Figura 79 – Um aspecto geral típico para a área ablacionada para as superfícies consideradas nesse trabalho, resultantes da irradiação com laser de Er:YAG utilizando 10Hz e 300mJ durante 10 segundos (A – dentina de decíduo – 60 vezes de aumento; B – resina compactável – 80 vezes de aumento).
Comparando dentes decíduos e permanentes, nós observamos que o esmalte mostra uma superfície mais lisa para os primeiros e mais rugosa para os últimos. Isso ocorre devido à composição de cada tipo de dente, mais ou menos mineralizado. A característica orgânica dominante dos dentes decíduos torna possível uma remoção de material mais uniformemente. Para os dentes permanentes, a estrutura rígida prismática consideravelmente modifica a resistência da superfície a ablação produzindo os aspectos anteriormente mostrados. Para a dentina, ambos os tipos de dentes mostram aspectos equivalentes, somente com uma penetração mais pronunciada nos dentes decíduos, fato que será discutido mais detalhadamente aqui.

Os aspectos gerais para a ablação de resinas compostas, são equivalentes com poucas peculiaridades visíveis para cada tipo. Enquanto para a resina híbrida a região ablacionada é lisa, para a compactável e microparticulada ela parece ser mais rugosa, o quê pode se dar em conseqüência da composição. A resina híbrida aqui utilizada é mais facilmente removida, aumentando rapidamente a quantidade de partículas ejetadas e permitindo que a energia laser acelere essas partículas, o resultado é um maior polimento interno da microcavidade.

A microparticulada tem grãos contendo dióxido de sílica, enquanto a resina compactável possui micropartículas de dióxido de sílica junto com fibras de vidro de oxido de magnésio e alumínio. Maiores aumentos podem revelar esses aspectos mais detalhadamente.

Como todas as microcavidades obtidas apresentaram um formato próximo da parte de uma esfera, inicialmente os diâmetros das regiões ablacionadas foram medidos e em seguida as profundidades, para que, na sequência, o volume fosse calculado, apresentando o volume de material removido.
Considerando o mesmo tipo de dente, os diâmetros medidos para as regiões ablacionadas são mostrados na figura 80 (A – dentes decíduos e B – dentes permanentes).

Na figura 81 (A e B), nós mostramos as medidas de profundidade de ablação. Essas medidas foram realizadas sob microscópio de reflexão de luz.

Com os valores de profundidade e diâmetro de cada microcavidade, e conhecendo o perfil delas, o volume total ablacionado em função da energia por pulso pode ser determinado. A figura 82 apresenta esses achados considerando os dentes permanentes e decíduos.

Finalmente, previamente à discussão, nós apresentamos nossos resultados para os principais parâmetros de ablação em função da energia por pulso, comparando os três tipos
de resinas entre si. Os resultados para cada uma das resinas, considerando diâmetro da área ablacionada, profundidade e volume do material removido, são apresentados na figura 83 (A, B e C).

Figura 81 – As medidas de profundidade de ablação para dentes decíduos (A) e permanentes (B).

Figura 82 – O volume total ablacionado para dentes permanentes (A) e decíduos (B).
Figura 83 – Resultados para os principais parâmetros de ablação em função da energia por pulso comparando os três tipos de resinas compostas (5A – diâmetro; 5B – profundidade; e, 5C – volume).
Discussão

Nós iniciaremos nossa discussão fazendo uma análise comparativa entre dentes permanentes e decíduos, em relação aos parâmetros de ablação. Os aspectos morfológicos já foram explorados em vários trabalhos publicados, porém enfoques diferentes serão considerados aqui. A figura 80 (A e B) mostra que o diâmetro da região abalicionada é sempre maior para a dentina do que para o esmalte, em ambos os tipos de dentes. Esse fato, como já intensamente afirmado, pode ser explicado pelo alto conteúdo de água na dentina facilitando a ação do laser de Er:YAG, que tem seu principal mecanismo de absorção envolvendo a água. Novamente, a predominante composição orgânica em dentina torna mais baixa a resistência do tecido ao laser, em relação ao esmalte. Essa diferença parece ser mais acentuada nos dentes deciduo.

Em ambos os casos, o diâmetro ablacionado cresce com a energia depositada por pulso, com a tendência à saturação com altos valores. Energias mais altas por pulso permitem à extremidade do perfil gaussiânico do laser agir da mesma forma que a parte central, no entanto aumentando o diâmetro da região de interação. A tendência para saturação é, provavelmente, conseqüência da quantidade limitada de água presente no sistema. Ambos os tipos de dentes apresentam diâmetro de ablação que extrapolam para o diâmetro nominal do feixe laser quando a energia é zero.

Considerando a profundidade de penetração (figura 81 - A e B), ocorre um crescimento à medida que a energia aumenta, sem mostrar alguma evidência de saturação para o intervalo de energias por pulso estudado. Os dentes decíduos mostram que tecnicamente não há diferenças entre a profundidade de penetração em dentina e esmalte, enquanto que para os dentes permanentes ocorre uma considerável diferença. A curva para a dentina de permanente mostra um maior contraste da do esmalte, explicando a diferença
apresentada na figura 81B, o que não parece ser o caso para os dentes decíduos. A figura 82 (A e B) apresenta os aspectos gerais de ablação dos efeitos combinados de profundidade e diâmetro. Os resultados são apresentados na figura 82 (A e B) e representam aquelas curvas. Para os dentes permanentes, o volume de ablação, e, consequentemente a taxa de material removido podem ser cinco ou sete vezes mais alto para dentina do que para esmalte. Esse fato pode ser dependente da energia por pulso empregada. No entanto, parece ser mais acentuado à medida que a energia cresce.

As considerações para a ablação de resina propriamente dita já foram discutidas previamente. Nós, contudo, vamos diretamente agora analisar a ablação das resinas em comparação aos tecidos duros dentais. Para evitar confusão, compararemos cada tipo de resina composta com dentes decíduos e dentes permanentes separadamente.

A figura 84 (A, B e C) apresenta todos os diâmetros juntos, profundidades de penetração e volumes de ablação, considerando esmalte de dentes decíduos e as três resinas, microparticulada, híbrida e compactável. Como podem ser observadas, para esmalte de decíduos, todas as três medidas realizadas resultantes da ablação são mais altos para as três resinas, exceto para a híbrida no intervalo de energia por pulso de 150 a 350mJ, do que para os tecidos dentais. O laser penetra menos no esmalte do que nas resinas no intervalo de energia por pulso de 0 a 300mJ, produzindo como consequência principal maior facilidade para remover a resina composta em comparação ao esmalte de decíduos. Nessa situação, a restauração ultra-conservadora utilizando o laser pode ser realizada porque preservará o tecido dental sadio, removendo preferencialmente a resina composta. A figura 84C mostra que nesse sentido, a resina composta híbrida parece ser a única que melhor se aplica à nossa proposta, enquanto que a compactável fica completamente
marginalizada, uma vez que a taxa de ablação é só levemente mais alta, quando comparada ao esmalte de dentes decíduos.

Figura 84 – Diâmetro, profundidade de penetração e volume ablacionado para esmalte de decíduos em comparação às mesmas medidas para as três resinas utilizadas.
Figura 85 – Diâmetro, profundidade de penetração e volume ablacionado para dentina de decíduos em comparação às mesmas medidas para as três resinas utilizadas.

Para a dentina de dentes decíduos (figura 85 - A, B e C), a situação não é favorável como para o esmalte de decíduos. Enquanto a profundidade de penetração nas resinas (de

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas. 195
todas as tipos) parece ser maior do que para a dentina de decíduos, quando o diâmetro na forma da região ablacionada é considerado, a taxa de material removido (representada pelo volume ablacionado) é favorável para a técnica de ablação diferencial somente para resina híbrida, e isso está restrito para o intervalo de energia de zero a 300mJ. Fora desse intervalo, para as resinas microparticulada e compactável, a taxa de ablação para a dentina apresenta comparativamente o mais alto valor.

Com relação ao esmalte de permanentes, a situação comparativa está apresentada na figura 86 (A, B e C). Enquanto para o diâmetro ablacionado parece existir diferença perceptível apenas para o tecido dental e as resinas, a profundidade de penetração nas resinas é notavelmente maior do que no esmalte de permanentes.

As conseqüências dessa considerável diferença com o remanescente dental para os aspectos gerais de volumes ablacionados (Fig. 86C), no caso de esmalte de permanentes, um procedimento conservador em que a resina seja, preferencialmente, removida, resulta na manutenção da integridade do tecido dental original, sendo assim uma alternativa bem sucedida.

Para todos os três tipos de resinas aqui consideradas, a taxa de ablação é em torno de 2 a 3 vezes maior do que para o esmalte permitindo, com segurança, a remoção desses materiais com pouco efeito no esmalte.
Figura 86 – Diâmetro, profundidade de penetração e volume ablacionados para esmalte de permanentes em comparação às mesmas medidas para as três resinas utilizadas.
Figura 87 – Diâmetro, profundidade de penetração e volume ablacionados para dentina de permanentes em comparação às mesmas medidas para as três resinas utilizadas.

Novamente, a situação não é favorável quando a dentina de permanentes é considerada (Fig. 87 - A, B e C). Nesse caso, o diâmetro, a penetração e a forma ablacionados não são muito diferentes e, como consequência, o aspecto geral é basicamente

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
o mesmo tão alto quanto aqueles para as resinas, dependendo da região usada de energia. Abaixo de 150mJ, pequenas diferenças são notadas. Acima de 150mJ, a remoção, claramente, maior da dentina de permanente tem uma taxa mais alta, quando comparada aos três tipos utilizados de resinas compostas nesse trabalho.

Sendo assim, para a dentina de permanentes, a técnica de ablação diferencial a laser não funcionaria apropriadamente.

Conclusão

Nós propusemos, nesse experimento, uma nova técnica ultraconservadora para a ablação a laser com grande aplicação na Dentística, em que restaurações antigas feitas em resina composta pudessem ser preferencialmente removidas preservando o tecido dental original. A técnica é baseada nas diferenças entre as taxas de ablação das resinas compostas em relação aos tecidos dentais.

Enquanto essa ideia parece ser bem aplicável para esmalte de dentes deciduos e permanentes, por outro lado parece não ser muito bem aplicável para a dentina de deciduos e permanentes. Para a dentina, a composição e a quantidade de água torna a ablação com laser de Er:YAG igual ou superior à taxa apresentada pelos três tipos de resinas compostas, com exceção para a resina composta híbrida aqui utilizada.

É necessário complementar esse estudo para que a técnica seja mais precisa e possa também beneficiar o tecido dentinário. Talvez uma alternativa seja variar, com segurança, o fluxo de água durante a irradiação.
4.7 Referências Bibliográficas

4.8 PROPOSTA DE UMA NOVA TÉCNICA PARA REMOÇÃO SELETIVA DE RESTAURAÇÕES INSATISFATÓRIAS EM RESINAS COMPOSTAS

Em algumas situações clínicas específicas os instrumentos convencionais não são capazes de realizar satisfatoriamente a remoção preferencial de restaurações antigas ou insatisfatórias de resina composta, ou mesmo restos de material resinoso nas superfícies lisas de esmalte, no caso de remoção de “brackets” ortodônticos ou “splints” periodontais.

Os experimentos empregando o laser de Er:YAG no regime de microsssegundos, de uso clínico, aqui realizados e discutidos, representam uma nova forma para utilização desse sistema laser buscando uma ablação diferencial seletiva.

Os parâmetros mais adequados foram encontrados, em termos de energia por pulso e tipo de resina (composição química e estrutural). Parece que empregar uma energia de 300mJ, com frequência de 10Hz, fluência de 64,4J/cm², quando o fluxo de água é de 8,4ml/min, ao nível de esmalte, tanto de dentes deciduos quanto de permanentes, permite uma preservação bastante significativa de estrutura dental sadia. Apesar de existirem outros instrumentos pouco agressivos de uso clínico, tais como, pontas multi-laminadas e jatos abrasivos, talvez não poderão estar conferindo, em última análise, certa resistência ácida ao tecido, ou mesmo evitando o aparecimento de trincas, como demonstrado um estudo

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.

Apesar do laser de Er:YAG apresentar uma interação fotomecânica mediada pela água durante o processo de ablação de tecidos duros dentais, no caso da remoção das resinas compostas parece ocorrer pouca remoção mecânica mediada, de fato, pela água. Na verdade, parece ocorrer também uma absorção direta do laser pelo material resinoso, gerando um aquecimento que resultará em vaporização do mesmo, além de uma modificação local superficial, dificultando a ablação subsequente, em alguns casos, levando a um comportamento de saturação, semelhante aos achados com o laser de Nd:YAG operando no regime de picossegundos ao ablaracion esmalte e dentina de dentes permanentes (Lizarelli et al. – 1999).

Trabalhos complementares são necessários, variando o fluxo de água com seguranças, por exemplo, como já mencionado, e mesmo analisando a interação desses materiais compósitos com outros sistemas lasers, em regimes de pulsos curtos ou ultracurtos, por exemplo, já que esses últimos já representam a capacidade ultraconservadora para realizar micropreparos cavitários em tecidos duros dentais.

Outras situações clínicas, que ainda não têm indicações muitas claras para emprego dos lasers de alta intensidade, e que podem ser consideradas beneficiáveis pela idéia aqui defendida e tão relevante quanto às acima mencionadas, seriam o tratamento das manchas brancas e também de superfícies resinosas ou de ionômeros de vidro modificados por resina para recolagem de novas restaurações, ou mesmo de superfícies dentais já modificadas e que necessitam receber nova colagem, sem perda significativa de tecido sadio, como recolagem de “brackets” ortodônticos.
Os aparelhos de laser de Er:YAG são realidade em alguns consultórios brasileiros. Apesar da dificuldade de aquisição do equipamento, sabemos que se trata de um instrumento com capacidade de elevar a qualidade dos procedimentos usuais em Dentística. Entretanto, não basta executar com plenitude as indicações já bem estabelecidas, é preciso questionar e, de forma curiosa e desprendida, buscar novas aplicações do sistema para que o paciente seja ainda o maior beneficiado da laserterapia.

A técnica aqui proposta, viabiliza uma nova aplicação desse sistema laser, já consagrado para preparos cavitários seletivos e pontuais. Essa nova técnica complementa as demais e brinda a Odontologia da era Adesiva com uma nova Fase: a Microdentística Fotônica, quando a luz, especialmente controlada, permite procedimentos muito menos agressivos e ultraconservadores, preservando ainda mais a estrutura dental sadia.
4.9 Referências Bibliográficas

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
5. CONSIDERAÇÕES FINAIS

O laser tem se mostrado como um instrumento único na Odontologia. Somente esse novo instrumento é de fato capaz de promover a ablação seletiva e ultraconservadora, sendo, muitas vezes, atraumático aos tecidos biológicos.

Apesar da grande variedade de sistemas lasers capazes de promover a ablação de tecidos e materiais, são necessários estudos profundos para entender os mecanismos de interação e os aspectos resultantes deles, que cada tipo de laser apresenta em cada tipo de material, biológico ou não.

Mediante os aspectos específicos resultantes, é possível adaptar as situações clínicas aos sistemas lasers, e vice-versa, uns aos outros, buscando uma melhora na qualidade do tratamento odontológico, ou seja, objetivando concretizar a Microdentística Fotônica, resultando em remoções ou modificações de tecidos patológicos ou de materiais restauradores insatisfatórios, com precisão, sem resultar em danos colaterais e, principalmente, preservando a estrutura sadia e original dos tecidos duros dentais, esmalte e dentina, tanto de dentes deciduos quanto de permanentes.

Os lasers de Nd:YAG, no regime de picossegundos, não estão ainda disponíveis para uso clínico odontológico. Sendo assim, estudos que permitam o máximo de informações relacionadas a esse sistema e ao órgão dental são bem-vindos, para estabelecer normas e parâmetros seguros em sua utilização, num futuro breve, na prática clínica.

Três experimentos empregando o laser de Nd:YAG no regime de picossegundos, foram executados durante o curso de Doutoramento e foram aqui apresentados: o mapeamento térmico, análise micromorfológica e cálculo da taxa de ablação, todos no nível de esmalte e de dentina, considerando como elementos-alvo, os dentes deciduos.
O estudo de mapeamento térmico pôde determinar regiões de operação nas quais não ocorre um aquecimento deletério à polpa dental de dentes deciduos. Diagramas PTT (potência – tempo – temperatura) foram construídos, considerando dentes anteriores e posteriores. Quando o laser de Nd:YAG picosegundo pulsado foi focado nas superfícies de esmalte e dentina, regiões seguras (I e II) para procedimentos clínicos foram determinadas variando o nível de potência e tempo de exposição.

Este estudo da alteração da temperatura pulpar foi complementado com os experimentos micromorfológico e de taxa de ablação, estabelecendo assim como o laser de Nd:YAG, no regime de picossegundos pode, com segurança, remover tecido dental, esmalte e/ou dentina, dos dentes deciduos, de forma satisfatória e seletiva.

Com relação aos aspectos micromorfológicos provenientes da interação laser-tecido de dentes deciduos, podemos observar os efeitos colaterais em esmalte mais acentuados do que em dentina. Enquanto a taxa de profundidade de penetração em dentina parece crescer com o progresso do tempo, para o esmalte o comportamento é o oposto. O volume ablacionado de forma geral é mais alto em dentina quando comparado ao do esmalte, o que resulta em uma taxa de ablação mais alta também.

Os estudos, acima citados, utilizando o laser de picossegundos, obedecem a uma sequência lógica e necessária dos estudos anteriores realizados durante o curso de Mestrado, nos quais a nossa preocupação foi analisar de forma inovadora um novo sistema laser para procedimentos corriqueiros como os preparos cavitários, buscando a conservação de tecido sadio e a viabilização de um novo instrumento para ablação também dos materiais restauradores insatisfatórios, preservando os tecidos sadios, esmalte e dentina.

Tendo-se em vista o crescimento e avanço das técnicas e procedimentos preventivos para a doença cárie, tem crescido o interesse, por parte dos pacientes, independente do sexo.
ou situação sócio-econômica, nos tratamentos estéticos e cosméticos. O material mais popularmente empregado é a resina composta, pelo custo e facilidade de manipulação.

Dessa forma, a investigação da probabilidade em se utilizar a alta-seletividade e precisão desse laser de pulsos curtos na remoção das resinas compostas, que necessitam serem substituídas ou retiradas, parece abrir uma nova linha de pesquisas avançadas para refinamento dos procedimentos em Dentística Restauradora.

Entretanto, buscando aliceres mais sólidos com relação à utilização clínica, um sistema laser já bem estabelecido dentro da prática clínica odontológica, como o laser de Er:YAG, poderia ser inicialmente estudado para remoção seletiva e diferencial desses materiais restauradores, permitindo um melhor entendimento dos processos envolvidos. Com relação à remoção de tecidos cariados, o laser de Er:YAG já tem se mostrado como um instrumentos seguro e muito eficiente, porém não se trata do único procedimento corriqueiramente realizado na clínica, a remoção ou modificação total ou parcial de restaurações de resinas compostas, já polimerizadas, tem se tornado uma das práticas mais executadas no dia-a-dia. Sendo assim, empregar esse laser com esse propósito exige um estudo, necessário para conhecemos os aspectos básicos resultantes da ablação a laser das resinas compostas.

Os dois últimos experimentos, aqui apresentados, propuseram investigar a taxa de ablação e os aspectos micromorfológicos da ablação com o laser de Er:YAG dos tecidos duros dentais, normalmente, mais envolvidos em Dentística, esmalte e dentina, provenientes tanto de dentes decíduos quanto de permanentes, e também de resinas compostas restauradoras fotopolimerizáveis de três tipos diferentes: microparticulada, híbrida e compactável. Diferentes condições de trabalho foram utilizadas para analisar a real influência da ablação em resinas compostas com laser de Er:YAG: diferentes energias.
por pulso (100, 200, 300 e 400mJ) e tempos de imersão em água (zero, 4 e 7 dias). E os resultados nos permitiram concluir que o nível de energia por pulso foi o único fator que de fato pode influenciar a taxa de ablação. Os tempos de imersão em água, aqui escolhidos, não influenciaram de forma estatisticamente significante a taxa de ablação das resinas, além disso, os aspectos micromorfológicos resultantes se mostraram dependentes do tipo de estrutura e composição química diferente em cada resina composta aqui escolhida para ser estudada, bem como dos tecidos duros dentais.

Para finalizar, cruzando os dados obtidos nos dois últimos experimentos empregando o laser de Er:YAG, nos foi possível encontrar parâmetros para uma ablação que, de fato, possa ser diferencial e seletiva na remoção exclusiva das resinas compostas. A técnica proposta parece ser muito satisfatória para o tecido esmalte, tanto para dentes decíduos quanto para os dentes permanentes, enquanto que ainda para dentina não foi possível estabelecer tais parâmetros. Porém, investigando e entendendo os mecanismos envolvidos, um novo dado foi encontrado com relação à ablação a laser desses compósitos: a água parece não ser a mediadora na ablação pelo laser de Er:YAG, talvez então, esse achado possa agora contribuir para refinhar os parâmetros seletivos para esmalte e estabelecer aqueles para a dentina, tanto com relação aos dentes decíduos quanto aos permanentes.

Após otimizar o emprego do laser clinicamente viável como o laser de Er:YAG para a técnica diferencial para resinas compostas, será possível fazer o mesmo com o laser de pulsos curtos e ultracurtos, nos regimes de pico e de femtossegundos, precisando ainda mais essas interações laser-material estético de forma ultraconservadora.

Estudar os aspectos micromorfológicos dos tecidos duros e materiais dentais resultantes da irradiação com diferentes sistemas lasers, permite a descoberta de novas indicações clínicas. O estudo da ablação a lasers, em Odontologia, tem se mostrado ainda
inesgotável no tocante às diferentes possibilidades que diferentes regimes e parâmetros de operação promovem. Nossa pesquisa complementou um estudo com o laser de Nd:YAG picossegundos proporcionando a abertura para uma nova linha de pesquisa para estudo da ablação seletiva e diferencial de materiais restauradores dentais não-metálicos e não-cerâmicos com o laser de Er:YAG, linha de estudo de alta aplicabilidade nos procedimentos clínicos diários.

Os experimentos foram conduzidos utilizando dois sistemas lasers promissores em termos de remoção seletiva: um laser de pulsos curtos, capaz de cortar com maior precisão, e outro, já de uso clínico-odontológico, capaz de remover com efetividade através da ablação-fría mediada por água.

O objetivo principal foi alcançado, mostrando a viabilidade em preservar ainda mais estruturas de tecidos duros dentais sadios, tratando-os, de fato, e empregando instrumentos que interagem de formas diferenciadas, mostrando uma capacidade em identificar, segundo parâmetros aqui estabelecidos, o material que deva ser removido ou modificado sem resultar em danos colaterais prejudiciais ao órgão dental, e aos tecidos sadios que devem ser sempre conservados íntegros no meio bucal.
Os guerreiros da Luz com frequência perguntam o que estão fazendo aqui.

Muitas vezes acham que suas vidas não têm sentido.

Por isso são Guerreiros da Luz.

Porque erram, porque perguntam, porque continuam a procurar um sentido.

E terminarão encontrando.

Paulo Coelho
6. ANEXOS

6.1 ANEXO A: CONCEITOS BÁSICOS DA FÍSICA DO LASER

Para que um laser possa funcionar, devem ser satisfeitas, simultaneamente, três condições fundamentais (Fig. 88). Em primeiro lugar, é necessário dispor de um meio ativo, ou seja, de uma coleção de átomos, moléculas ou íons, emissores de radiação na parte óptica do espectro. Em segundo lugar, deve ser satisfeita uma condição conhecida sob o nome de inversão de população. Esta condição, geralmente não preenchida em nosso ambiente natural, é gerada por um processo de excitação denominado bombeamento: ela transforma o meio ativo em meio amplificador de radiação. Finalmente, é indispensável dispor de uma reação óptica para que o sistema composto por ela e pelo meio ativo seja a sede de uma oscilação laser.

A cavidade ressonante contém o meio ativo. O meio ativo pode ser de estado sólido (cristal ou diodo semicondutor), líquido ou gasoso. Nas extremidades da cavidade existem espehlos, sendo um totalmente reflector e o outro parcialmente reflector. Uma fonte externa de energia funciona como o bombeamento necessário para estimular o meio ativo.

![Diagrama do sistema laser](image)

Figura 88 – Esquema básico dos componentes de um sistema laser.
A cavidade ressonante do laser apresenta uma condição de ressonância tal em que \(N\lambda/2 = L \), sendo “\(L \)” a distância entre os dois espelhos, “\(N \)” um número inteiro e “\(\lambda \)” o comprimento de onda de ressonância (o comprimento de onda determina a cor do laser e se constitui a linha principal de emissão do referido meio ativo). Observamos que a cavidade laser pode ressonar em um número muito grande de comprimentos de onda. Na verdade, esse número está fortemente limitado pela largura da raia natural da fluorescência, mas mesmo assim obteremos uma radiação monocromática (Maillet – 1987). Isso significa que dentro da cavidade ressonante o meio ativo emite alguns comprimentos de onda distintos, porém apenas um será o selecionado resultando no feixe laser emitido.

Todavia, o campo elétrico em uma cavidade laser, forma um padrão de onda estável numa forma análoga às ondas vibracionais geradas num barbante extremamente esticado em ambos os lados. Somente certas frequências, determinadas pela geometria da cavidade, podem ressonar e extrair energia do meio amplificador (Eastham – 1989), resultando na emissão de uma radiação monocromática.

O bombeamento realizado por uma fonte externa de energia promove, no meio ativo, o fenômeno conhecido como inversão da população: os elétrons da camada de valência do meio absorvem a energia bombeada e saltam para um nível atômico mais externo. Como esse segundo nível está mais distante da influência do núcleo, a energia dele é maior. Quando o primeiro elétron, de um dos átomos do meio, decai, retornando ao primeiro nível com menor energia, liberando um fóton, esse fóton acaba por excitar o decaimento nos demais átomos, que já estavam no estado excitado. Isso gera um processo em cascata e em crescimento geométrico, resultando na emissão estimulada de radiação.
Em outras palavras, a onda eletromagnética incidente induz uma polarização do meio que passa a oscilar numa frequência óptica. Quando a fase da oscilação e a da polarização defasam em relação à fase da onda eletromagnética incidente, a energia perdida dessa onda é absorvida pela polarização e a onda sofre uma perda; ao contrário, se a fase da polarização é coerente em relação à onda eletromagnética incidente, então ocorre um ganho e a onda é amplificada. O ganho mostra que a densidade de fôtons que populam o nível mais superior deve ser maior do que do nível mais baixo, sendo então positivo. Essa condição é chamada inversão da população (Iga – 1994).

Como a cavidade do laser é composta por espelhos nas extremidades, essa radiação é amplificada, ou seja, os fôtons emitidos por estimulação entram em fase (todos os fôtons assumem uma mesma direção constituindo-se em fluorescência) e permitem que ocorra um ganho a cada “viagem” completada dentro da cavidade.

Quando essa amplificação atinge um limiar de energia dentro da cavidade, na dependência do meio ativo, ocorre um vazamento de fôtons pelo espelho parcialmente refletor, e então se tem a emissão do feixe laser.

O resultado é um feixe laser. LASER consiste em uma luz com características especiais, e as quatro mais importantes, dentro das aplicações do laser em tecidos biológicos, são: alta intensidade, monocromaticidade, coerência temporal e espacial e colimação.

A coerência espacial e temporal é determinada pelo fato dos fôtons emitidos estarem em fase, permitindo que as ondas eletromagnéticas que, por sua vez, apresentam comprimentos de onda idênticos, caminhem paralelamente no tempo e no espaço, quando ocorre coincidência de picos e vales (Fig. 89).
Figura 89 – Coerência: a) fonte de luz coerente; b) fonte de luz não-coerente (Low level laser in odontology – 199?).

Essas ondas eletromagnéticas coerentes resultarão então em um feixe altamente colimado, ou seja, todas as ondas caminham na mesma direção e, portanto, diferentemente de fontes ordinárias de luz, não há difusão da energia luminosa, pelo contrário, ocorre uma intensificação dessa energia, resultando em uma luz com alta intensidade.

1. MODOS DE OPERAÇÃO

Existem três principais formas de operação, ou de emissão do feixe laser: forma contínua ou CW, chaveada e pulsada. Para lasers que operam de forma contínua, ou seja, lasers contínuos (CW), considerando-se apenas dois níveis de energia, o mais externo e energético, e o mais interno e de menor energia. Os lasers contínuos apresentam uma interação contínua da luz com o tecido-alvo, ou seja, uma vez ligado, o laser começa a ser emitido e somente deixa de interagir quando desligado.

Uma outra forma de operação se constitui nos lasers chaveados. Nessa forma de emissão, a potência pico não é alterada, contudo a potência média é diminuída, ou seja, a emissão e consequentemente a interação da luz com a matéria passam a ser interrompidas.
periodicamente. Esses lasers chaveados permitem, a um sistema de alta intensidade, um menor aquecimento do tecido-alvo, e a um sistema de baixa intensidade um possível aumento nos efeitos fotoestimuladores.

E o terceiro tipo ou forma de operação de um laser se dá quando dentro da cavidade, em que dispositivos especiais permitem uma maior concentração de energia, resultando na emissão de pulsos com potência pico muito superior às mais altas atingidas com os outros dois tipos de operação. Para a produção dos lasers pulsados, com pulsos longos ou curtos, ocorrem outros fenômenos mais complexos dentro da cavidade laser.

A figura 90 mostra gráficos esquematizando as três formas de operação para os sistemas lasers (Baxter – 1994).

![Figura 90 – Forma de operação: a) contínua; b) chaveada; e, c) pulsada (Baxter – 1994).](image)

Segundo Brito Cruz (2000) alguns fenômenos físicos são recorrentes na área de geração e aplicação de pulsos ultracurtos de laser, constituindo a base da maioria dos sistemas em uso. São eles:

- Acoplamento de modos (Mode Locking);
- Dispersão da velocidade de grupo;

- Automodulação da fase; e,

- Ganho saturável.

O fundamento da geração de pulsos ultracurtos com lasers está no controle dos modos de oscilação de uma cavidade ressonante. Num laser com cavidade ressonante de comprimento "L", é possível a oscilação de modos longitudinais do campo eletromagnético, cujas frequências são dadas por \(v = \frac{N c}{2L} \), em que "c" é a velocidade da luz e "N" é um número inteiro. Quantos e quais desses modos longitudinais realmente oscilam, quando o laser está em operação, depende do particular tipo da cavidade, dos eventuais elementos de limitação de modos existentes e da largura de faixa do ganho do meio laser utilizado.

Para geração de pulsos ultracurtos é necessário o estabelecimento de uma situação de acoplamento de modos (mode-locking), nos quais as fases relativas e as amplitudes dos vários modos oscilantes são mantidas constantes no tempo.

1.1 Mode-locking ou acoplamento de modos

O intuito de acoplar ou travar os modos longitudinais, que estão em fase dentro da cavidade ressonante do laser, objetiva evitar as interferências destructivas dos modos longitudinais, fator que comprometeria a estabilidade do feixe emitido quanto à largura espectral e duração de pulso.

Portanto, acoplar os modos longitudinais, fase e amplitudes dos modos oscilantes, tornando-os constantes no tempo, permite gerar pulsos curtos da ordem de picosegundos (1 ps = 10^{-12}s).
O acoplamento ou travamento de modos é dependente do ganho do material (meio ativo). A largura de ganho ou banda, que é dada por $\Delta \omega_1 = 2\pi \Delta \nu_1$, é inversamente proporcional à largura de pulso.

Logo, conforme a Transformada de Fourier, quanto maior o número de frequências (largura da banda) menor será a largura do pulso: $T_p \times \Delta \omega_1 = 1$. Dessa forma, para se obter pulsos curtos ($\sim T_p$) devem-se escolher meios ativos com maior largura de banda ($\Delta \omega_1$). Ex: laser de corante rodamin.

O acoplamento de modos pode ser ativo ou passivo. O primeiro ocorre quando o modulador está localizado dentro da cavidade, mas é acionado externamente. O segundo, passivo, é o da utilização de um elemento óptico não-linear acionado pela própria luz do laser.

A idéia final do Mode-Locking é modular as perdas do laser numa mesma frequência: $\omega = \pi c / L$, em que “L” é a distância entre os dois espelhos da cavidade ressonante.

Se houvesse uma chave dentro da cavidade e ela estivesse fechada por muito tempo, ficando aberta por um curto período de tempo a cada $T = 2\pi / \omega$, as perdas seriam altas e muitos modos seriam “filtrados”. Porém, quando um pulso chega à chave e a encontra aberta, ele poderá ser amplificado e então emitido.

Desta forma, o acoplamento de N modos longitudinais leva à formação de um trem de pulso com duração individual de $1/\sqrt{N}$ da separação entre os pulsos. A separação entre os pulsos é dada pelo tempo de circulação do pulso na cavidade, $T_c = 1/\nu_c = 2L/c$. O aumento de modos acoplados leva então a uma redução na duração do pulso obtido.
1.2 Q-switched ou chave q

A chave Q, de “quality” (qualidade em inglês), é um aparatvo usado para melhorar a qualidade da emissão estimulada dentro da cavidade ressonante do laser.

O princípio de funcionamento consiste em deixar o bombeamento efetuar-se para além do limiar de funcionamento, e permitir a emissão laser apenas quando tal bombeamento tiver prosseguido até um nível suficiente. Produz-se assim um pulso de energia muito maior que no caso do funcionamento CW; e logo em seguida encerra-se a emissão. Resultam desse processo pulsos de curta duração (da ordem do nanosegundo a algumas dezenas de nanosegundos), com consideráveis potências de pico (Fig. 91). Então, pela figura 91, fica claro que o meio é bombeado e quando o nível superior é populado com um N acima do limiar, um pulso intenso é emitido (observar o alinhamento desses dois eventos na figura). A proibição ou permissão de emissão é produzida por variação brutal do coeficiente de supertensão da cavidade. Todos os processos de desencadeamento ou destravamento utilizados consistem em introduzir um dispositivo que atenua ou obtura a passagem da radiação no cavidade (Maillet – 1987).

![Diagrama de potência do bombeio, inversão da população e potência de saída em função do tempo.](image)

Figura 91 – Curvas para um laser de rubi pulsado Q-Swiched (Young – 1998). Sempre que se ultrapassar o limiar, há emissão de um pulso.
O chaveamento do laser impede que o fóton iniciante, que poderia excitar o decaimento, chegue ao espelho, amplificando e estimulando toda a população armazenada, decaindo-a. Isso significa que o chaveamento ou Q-Switched permite um acúmulo maior de átomos no estado excitado, com o objetivo de decair uma população muito maior e de uma única vez, gerando uma energia maior. Esse processo converte quase toda a energia armazenada nos átomos bombeados para o nível superior em fôtons que agora circulam no ressonador.

Referências Bibliográficas

6.2 ANEXO B: TECIDOS DUROS DENTAI S ESMALTE E DENTINA

Na concepção atual, o dente é considerado como parte de um órgão muito importante e complexo: o órgão dental, constituído pelo elemento dental e pelo periodonto. Enquanto o periodonto, ou estruturas de sustentação é composto por: cimento, membrana periodontal, tecido gengival e processo ósseo alveolar; o dente, propriamente dito, é constituído por um tecido conjuntivo frouxo – a polpa – protegida e contida por dois tecidos mineralizados, a dentina e o esmalte (Fig. 92) (Della Serra; Ferreira – 1981).

A maioria dos procedimentos operatórios odontológicos tem como os alvos principais esmalte e dentina. Essas duas estruturas, ao mesmo tempo tão unidas e tão diferentemente constituídas, compartilham uma função comum a participar ativamente como a “terceira articulação” dentro do sistema estomatognático, segundo Della Serra; Ferreira – 1981.

Dessa forma, o cirurgião-dentista, como prioridade em todos os tratamentos operatórios, deve proteger esmalte e dentina de ações desnecessárias, sejam elas fisiológicas ou não.

Para facilitar a descrição dos procedimentos realizados diretamente no órgão dental, existe uma nomenclatura especializada utilizada comumente pelos cirurgões-dentistas. Essa nomenclatura visa a classificar as porções do órgão dental, diferenciadamente para cada tipo de elemento dental.

Nos experimentos aqui descritos alguns elementos dentais foram utilizados, dentes deciduos anteriores (incisivos) e posteriores (molares), como também alguns dentes permanentes (molares). O desenho esquemático apresentado mostra um primeiro molar humano superior (Fig. 93), e representa como os elementos dentais são classificados em partes.
Figura 92 – Estrutura de um órgão dental (E: esmalte; D: dentina; P: polpa; C: cemento; L: ligamento periodontal; G: gengiva; OA: osso alveolar) (Della Serra; Ferreira - 1981).

Figura 93 – Desenho esquemático de um elemento dental primeiro molar superior direito: CO – porção coronária; R – porção radicular; A e V – face vestibular; B e M – face mesial; C e O – face lingual; X – face oclusal; VM – raiz vestibulo-mesial; VD – raiz vestibulo-distal; P – raiz palatina (modificado de Sicher; Tandler – 1981).
Enquanto o esmalte apresenta 96% de sua composição em material inorgânico e 4% em água e material orgânico, a dentina, menos mineralizada, apresenta cerca de 70% de compostos inorgânicos e água e 30% de material orgânico. Apesar de serem constituídos de minerais semelhantes, o esmalte é semipermeável e com espessura máxima entre 2,0 a 2,5 mm. É o tecido calcificado mais duro do organismo tornando-se altamente quebradiço quando perde sua base de dentina sadia (Bhaskar – 1978). Dessa forma, a dentina funciona como um elemento amortecedor dissipando os esforços mastigatórios exercidos sobre o esmalte. Assim, quando atuamos em uma ou em outra estrutura, sempre ambas estarão recebendo sempre esse estímulo em conjunto.

O esmalte é formado por bastões ou prismas, por bainha dos prismas e em algumas regiões, por uma substância interprismática cimentante. Um modelo mais comum é um prisma em forma de fechadura ou de uma pâ (Fig. 94A), na qual é possível visualizar os “corpos” ou “cabeças” envolvidas pela substância interprismática. Num corte longitudinal (Fig. 94B) podemos visualizar esses prismas por outra dimensão, quando então as “caudas” ficam alinhadas de forma adjacente umas das outras, e entre elas, também, a substância interprismática cimentante.

A dentina se constitui numa matriz de fibras colágenas dispostas numa rede irregular que se calcifica, sendo elas mascaradas pelos cristais de hidroxiapatita. Portanto a dentina amadurecida apresenta-se repleta de túbulos, que contêm os prolongamentos citoplasmáticos das células chamadas odontoblastos, que depositam dentina, envolvidos pela matriz intertubular e reforçados pela dentina peritubular, mais mineralizada que a anterior (Fig. 79). Enquanto os corpos celulares dos odontoblastos permanecem dentro da polpa dental, de forma enfileirada em toda a periferia, os seus prolongamentos citoplasmáticos, com característica muscular, ocupam o interior dos túbulos dentinários.
(uma célula por túbulo) envolvidos por um fluido que mantém a homeostase sinestésica do meio (Nakabayashi; Pashley – 1999).

Figura 95 – Fotomicrografia da dentina com 5000X de aumento e após ataque com ácido fosfórico 35%.
Os principais constituintes minerais dos tecidos duros dentais, esmalte e dentina, são água, cálcio e fósforo. A proporção Ca/P de elementos sadios é de aproximadamente da ordem de 2. Microanálises do esmalte dental humano sadio mostram que a concentração de Ca e de P aumenta, ligeiramente, à partir da junção amelo-dentinária para a superfície do esmalte. A proporção Ca/P de esmalte e dentina é intermediada pelo fosfato octacálcico, \(\text{Ca}_3\text{H}_2\text{(PO}_4\text{)}_6 + \text{H}_2\text{O} \) e pela hidroxiapatita, \(\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 \). Ocasionalmente encontram-se compostos como oxalato de Ca, oxalatos hidratados de Ca e calcita (carbonato de Ca). Com relação aos compostos orgânicos, esses tecidos duros são principalmente constituídos de proteínas e colágeno (Lazzari – 1978).

Então, anatomicamente o elemento dental apresenta o tecido pulpar “protegido” dos agentes externos pelo esmalte e pela dentina. Contudo, esse fato faz com que essa polpa esteja confinada a um espaço restrito, resultando em uma quase inexistente submissão do tecido pulpar aos traumas externos, isso significa que, concordando com Goodis et al. (1989), a polpa estando revestida pelas paredes dentinárias duras, e, sendo constituída por uma grande quantidade de tecido conectivo e com um pequeno suprimento sanguíneo, não possui a possibilidade de desenvolvimento de circulação colateral, que poderia aliviar o calor e a invasão de toxinas, por exemplo. Dessa forma, e por essas razões, a polpa é uma parte do órgão dental muito vulnerável durante e após procedimentos restauradores extensos. Agressões pulpares podem ser causadas principalmente pelo calor, desidratação, exposição química, e infecções bacterianas, todos eles dados como cumulativos (Langeland; Langeland – 1965).
Referências Bibliográficas

6.3 ANEXO C: MATERIAIS RESTAURADORES DENTAI RESINAS COMPOSTAS

Quando partes de tecido duro (esmalte e dentina) do elemento dental são perdidas por diversas razões (cáries, traumas, defeitos congênitos, e outros), mas a estrutura remanescente suporta uma restauração direta, vários são os materiais restauradores que podem ser indicados. Trata-se de procedimentos de Dentística Restauradora, onde, atualmente, são as resinas compostas fotopolimerizáveis, material altamente estético e que dispõe uma série de opções em termos de resistência e cores a escolher, que se constituem no material restaurador de eleição.

Apresentadas por Bowen na década de 60 (Bowen - 1962), as resinas compostas têm sido o material restaurador mais utilizado dentro dos consultórios odontológicos. Trata-se de um material compósito, de fase dispersa, sendo a carga a parte inorgânica e, a matriz, a parte orgânica. É resultante de uma mistura de monômeros ou macromoléculas orgânicas que possuem grupos acrílicos (terminais) e epóxicos (mediais) dando origem à parte orgânica; a carga inorgânica é unida à matriz através de uma agente silano adicionado com o objetivo de garantir a resistência desse material.

Cada marca comercial apresenta uma composição diferente e sigilosa, contudo a maioria das resinas compostas tem sua matriz orgânica composta por BIS-GMA (bisfenol glicidil metacrilado) ou uma poliuretana, que compõe o corpo da resina, TEG-DMA (trietileno glicol dimetacrilato) e EDGMA (etileno glicol dimetacrilato) para diminuir a viscosidade do sistema resinoso. Quando houver poliuretana no lugar do BIS-GMA, são outros compostos que poderão ser encontrados na matriz, tais como, os oligoetilenoglicóis de metacrilato. Quanto à parte inorgânica, as cargas, que diferem muito quanto forma e dimensão, inicialmente foram utilizadas fibras e esferas de vidro, mas no final da década de 70 partículas de quartzo passaram a dominar as composições, seguidas de partículas de
silica coloidal e vidros de bário, boro, zinco e estrônio. Além do agente silânico de união (metacriloxi-propil-trimetoxy-silano) que cobre a superfície das cargas permitindo sua união à matriz, outros componentes tais como ativadores e inibidores de fotopolimerização, radiopacificadores e estabilizadores também fazem parte das resinas compostas, contudo em quantidades bem menores.

Clinicamente, na atualidade, as resinas compostas poderiam ser classificadas em três categorias distintas: resinas compostas microparticuladas, híbridas e compactáveis. A primeira apresenta como carga partículas de dimensão micrométrica (de 0,01 a 0,4 μm) se constituindo em um material homogêneo, uma vez que todas as partículas têm tamanhos semelhantes; é o material eleito para a restauração de dentes anteriores e para restaurações subgengivais, em que a lisura de superfície é mais importante que a resistência às forças mastigatórias. As resinas híbridas se caracterizam por apresentarem uma composição da porção de cargas realmente híbrida, ou seja, cargas de dimensões muito diferentes, desde 0,01 até 1,0μm, caracterizando-se por uma microestrutura bastante heterogênea; trata-se de um material indicado tanto para dentes anteriores quanto para dentes posteriores, por apresentar resistência à compressão razoavelmente alta (em torno de 448MPa) e lisura de superfície aceitável esteticamente. A terceira classe de resinas compostas aqui identificadas não se constitui em um material composto de fase dispersa (matriz mole e cargas dura dispersas na matriz) como os outros dois, diferentemente, as resinas compostas compactáveis se caracterizam por serem um compósito reforçado por fibras, ou seja, sua resistência às forças mastigatórias não advêm somente do tamanho das cargas, mas também da forma fibrosa delas; trata-se de um possível material para substituição do amálgama de prata, portanto, é indicado para dentes posteriores com grande perda de estrutura; enfim, as

Referências Bibliográficas

6.4 ANEXO D: BIOSSEGURANÇA NA UTILIZAÇÃO DE SISTEMAS LASERS EM CONSULTÓRIO ODONTOLÓGICO

Tão importante quanto o procedimento cirúrgico em si, é a manipulação dos materiais, a anti-sepsia, a desinfecção e paramentação dos profissionais e do ambiente cirúrgico, além do preparo dos pacientes. A adoção de medidas de controle possibilita um eficiente combate a infecções, contaminações e acidentes.

Uma década atrás, o primeiro laser feito especificamente para odontologia era introduzido. Alguns anos antes, cirurgiões dentistas já usavam o laser para cortar tecido mole; além disso, lasers já estavam disponíveis em áreas cirúrgicas de hospitais durante os anos 80.

Hoje, existem oito diferentes comprimentos de onda de laser com aplicações cirúrgicas odontológicas disponíveis nos EUA. De fato, os lasers odontológicos estão sendo usados mundialmente em uma série de estudos laboratoriais e clínicos.

Já internacionalmente proposto e aceito, é condição obrigatória a presença e participação de um físico durante o uso clínico e laboratorial dos lasers, por outros profissionais. Esse físico, conhecido como "Laser Safety Officer", é o responsável tanto pelo bom funcionamento do equipamento laser como também pela orientação dos profissionais da área de saúde e dos pacientes quanto às regras de segurança, antes, durante e após o procedimento operatório em si.

Seguindo essa filosofia, as principais regras de segurança para o uso de lasers, tanto de baixa quanto de alta intensidade, serão aqui apresentados, buscando difundir, com responsabilidade, esse importante e recente instrumento terapêutico, o feixe laser.

As aplicações clínicas encontradas são as mais variadas, dependentes da intensidade, comprimento de onda e modo de operação do laser utilizado no tecido alvo.
No caso dos lasers de baixa intensidade, é possível promover a biomodulação das funções celulares, alterando a funcionabilidade da célula e/ou a sua capacidade de replicação.

Já os lasers de alta intensidade são utilizados em procedimentos cirúrgicos, cortando, cauterizando, vaporizando, enfim, removendo porção dos tecidos biológicos.

Mediante a necessidade de encontrar parâmetros seguros de utilização, tanto considerando a dosimetria como a escolha do tipo de laser para cada procedimento clínico, fica evidente a importância no relacionamento interdisciplinar entre diversos profissionais. A colaboração entre profissionais das áreas da saúde, como Medicina, Odontologia e Biologia, e de exatas, como Física e Engenharia, cada um contribui com sua experiência particular. O resultado desse relacionamento é a formação de uma equipe capacitada para atender demandas tão amplas quanto as indicações dos sistemas lasers atualmente em uso.

O tratamento com laser em pacientes deve estar embarcado em pesquisas que apresentem tratamentos com segurança e eficácia comprovadas. O método indicado não pode ser baseado no lucro financeiro e/ou melhora da reputação do operador. Uma atenção adicional do pesquisador é revisar os parâmetros de um laser específico para otimizar o seu uso sempre, ou seja, estar em constante atualização com as pesquisas recentes.

A FDA (Food and Drug Administration), que é, nos Estados Unidos, o órgão responsável pela área da saúde, tem estabelecido normas para proteger pacientes, e essas normas devem ser seguidas. As normas são estabelecidas pela FDA, baseadas em pesquisas controladas provando o valor dos lasers pelos resultados destas pesquisas.

Existe uma grande necessidade, no presente, de um processo formativo que eduque os profissionais da Odontologia sobre o potencial uso do laser. Esta formação inicialmente deve apenas ser de natureza teórica, cobrindo a física e a segurança básica do laser e os seus
efeitos do laser nos tecidos biológicos. Este treinamento didático é tão essencial que os profissionais podem adquirir um firme conhecimento da física e das interações dos lasers com tecidos antes do treinamento prático. O treinamento prático, tanto in vitro como in vivo em laboratório, é importante para experimentar diferentes comprimentos de onda sob diferentes parâmetros de energia, buscando a melhor combinação para tratar determinadas patologias. (Harvey et al. -1995)

A proposta deste artigo foi coletar dados na literatura sobre a segurança para o uso de diversos tipos de lasers e propor um protocolo para o uso clínico.

Classificação dos lasers

A biossegurança no uso dos sistemas lasers em áreas médicas, inclui não somente um conhecimento dos riscos em relação ao uso dos aparelhos, mas também um conhecimento dos níveis de cuidado existentes, além de um completo entendimento e controle das medidas de segurança (Miserendino et al.-1995).

Para a discussão da laser-segurança, é fundamental que se tenha o entendimento da classificação dos lasers.

Listemos então as classes dos sistemas laser:

- Classe I: não emitem níveis prejudiciais de radiação. Ex: scanner de supermercado, CD players e CDROM;

- Classe II: provocam injúrias aos olhos através de exposição crônica; Classe IIa: causam danos aos olhos através de observação direta por tempo excessivo. Ex: laser pointers;
- Classe III: em alguns casos o reflexo de fechar as pálpebras é suficiente para garantir a proteção; Classe IIIb: são perigosos quando observados diretamente. Ex: lasers de baixa intensidade para uso terapêutico;

- Classe IV: são perigosos, oferecem risco aos olhos e à pele, e podem também causar incêndios. Ex: todos os lasers de alta intensidade.

Os lasers de classe I, II, IIa, podem ser usados sem restrições, sem treinamento ou qualificação especial do usuário, porém não se deve expor à radiação laser desnecessariamente.

A operação normal de um laser classe IIIa, segue os mesmos critérios dos lasers classe I e II, mas cuidados especiais podem ser necessários caso de faça o uso de instrumentos ópticos, como por exemplo um microscópio.(Barat – 2000)

De acordo com os sistemas de classificação do CDRH (Center for Devices And Radiological Health) e do ANSI (American National Standards Institute), os lasers Classe IV são equipamentos que apresentam riscos biológicos também por reflexão difusa. Os tipos de riscos que podem ser encontrados numa prática clínica de odontologia são: injúria ocular, danos a tecidos, riscos respiratórios, fogo e explosão, além de choque elétrico (Miserendino et al. – 1995).

Tipos de lasers

Existem diversos tipos de Lasers que podem ser classificados em duas categorias: os lasers de baixa intensidade e os lasers de alta intensidade ou cirúrgicos.

Os Lasers de baixa intensidade (Fig. 96) possuem um efeito eminentemente analgésico, antiinflamatório e biomodulador, sendo utilizados como nos casos de aftas, herpes labial, queilites angular, trismos, parestesia, hipersensibilidade dentinária, pós-cirurgias, pós-intervenções endodônticas. Como efeitos da laserterapia pode-se citar os aumentos da microcirculação local e da velocidade da cicatrização. A existência da fotoestimulação pelos lasers de baixa potência, tópico tão controverso e pouco entendido antes de 1980, tem sido objeto de intenso estudo científico. A aplicação clínica demonstra a evidência factual então obtida onde extensivas discussões dos mecanismos de ação da luz visível monocromática e infra-vermelho nos fotorreceptores primários de células e organismos têm encantado tanto os profissionais clínicos quanto os pesquisadores.
Figura 97 – Aparelhos de laser de alta intensidade (A – Pulse Máster 600 LE, American Dental Technologies – EUA; B – Twin Light, Fotona Medical Lasers – Slovenia).

Com base em pesquisas mais recentes, os Lasers de alta intensidade (Fig. 97) podem ser indicados na prevenção de cárie, bem como no tratamento da hipersensibilidade dentinária, limpeza e selamento de fôssulas e fissuras (através da redução microbiana), na remoção da porcentagem final de tecido cariado, corte e plastia do tecido gengival, no tratamento de herpes labial e aftas, de redução microbiana no interior dos canais, apicectomias e preparos cavitários, e também no selamento dos túbulos dentinários. Nos tecidos moles existe a facilitação na simultaneidade do corte e da hemostasia, enquanto que nos tecidos duros o feixe laser é seletivo aos processos patológicos (Lizarelli –2000).
Acidentes

Os acidentes ocorridos durante o uso de sistemas lasers têm várias causas, tais como: o procedimento de alinhamento dos espelhos, a alta voltagem (choques elétricos), a não utilização de proteção ocular, o mau funcionamento do equipamento, entre outros (University - 2000).

Uma outra classe de riscos envolve a inalação potencial de materiais prejudiciais à saúde que podem ser liberados no ar como resultado de uma aplicação cirúrgica de lasers. Estes materiais podem ser liberados na forma de fumaça ou pluma gerada através da interação térmica do laser com o tecido biológico ou através de um escape acidental de produtos químicos ou gases tóxicos do próprio laser. A geração da fumaça ou da pluma durante uma cirurgia pode ser um risco para a equipe de operação e também para os pacientes, pois a inalação dessas substâncias é extremamente prejudicial ao sistema respiratório. A emissão da fumaça ou pluma durante uma cirurgia a laser ocorre como resultado da desidratação de tecidos e aquecimento de resíduos da substância sólida a temperaturas suficientes para combustão. Neste processo, o oxigênio que está presente no ar, combinado com elementos do tecido atingido forma uma variedade de subprodutos, muitos deles são nocivos.

A contaminação por esses materiais pode ser controlada por ventilação, evacuação, ou outros métodos de proteção respiratória. (Miserendino et al. –1995)

Protocolo proposto com os cuidados fundamentais para o uso clínico

A proteção pessoal, isto é, das pessoas envolvidas no uso do laser, consiste basicamente no uso dos óculos de proteção que atenuam o feixe a que se submetem (Maillet - 1987).
As pessoas que estão frequentemente expostas ao risco laser, ou aqueles que sofrem uma exposição excessiva, devem ser submetidas regularmente a uma supervisão médica oftalmológica, afim de que se detecte qualquer dano ocular que possa ter ocorrido. Esta preocupação com a visão é proveniente do fato de que os mais graves acidentes são aqueles ocorridos com os olhos, pois a radiação atinge a retina após sofrer uma amplificação de um fator 100 000. Além disso, o risco ocular está presente em praticamente todos os tipos de lasers. (Maillet - 1987)

A segurança deve ser observada em diferentes níveis, a saber:

1- do equipamento:

Algumas precauções devem ser tomadas para garantir a segurança do equipamento:

- quando desligado, aconselha-se manter o equipamento dentro de um armário;
- a chave-de-segurança deve ser conectada apenas quando se for utilizar o aparelho (Fig.98);

Figura 98 – Chave de segurança de um aparelho laser de baixa (à esquerda) e de alta (à direita) intensidade (dispositivo removível).
em caso de lasers que emitem radiação infravermelha, deve-se verificar a presença e a eficiência da luz-guia;

- se o equipamento for acionável por pedal, preferir pedais com proteção lateral para evitar a emissão acidental do laser (Fig. 99);

Figura 99 – Pedal com proteção lateral.

deve ser feita a revisão do equipamento semestralmente por técnicos autorizados.

2 - do profissional/ equipe auxiliar

Em relação ao profissional e sua equipe auxiliar, devemos abordar os seguintes aspectos para garantir uma conduta clínica segura:

- a capacitação e a reciclagem científica permanente;
- escolha da dosimetria indicada para cada caso clínico individualmente;
- uso da proteção ocular: os óculos de proteção atenuam o feixe a que são submetidos (Fig.100) (Maillet - 1987);
- paramentação completa (luvas, máscara, gorro e avental) para evitar contaminações.

![Image](image_url)

Figura 100 – Equipe profissional e paciente utilizando óculos apropriados para proteção do laser em uso.

Do paciente:

Para a segurança do paciente:

- o mesmo deve ter conhecimento dos princípios básicos da laserterapia como tratamento e das alternativas de tratamento;
- dar autorização por escrito para receber a laserterapia;
- utilizar proteção ocular durante todo o procedimento clínico (Fig.100).

Do consultório:

Em relação ao consultório, deve-se:
- verificar o bom funcionamento da rede elétrica que alimenta o aparelho; é recomendado ainda, o uso de um estabilizador de voltagem;
- devem ser colocados avisos de alerta à radiação laser na(s) porta(s) do consultório: uma placa indicadora informando a classe do aparelho e advindo sobre o perigo da exposição ao feixe (Fig.101) (Maillet - 1987);

![Figura 101 – Placa de advertência para as portas do consultório.]

Do procedimento

O bom andamento do procedimento clínico depende de alguns fatores:

- diagnóstico correto;

- ausência de materiais retores no campo operatório: recomenda-se o uso de instrumentos não refletores durante o manuseio do laser, visto que alguns instrumentos odontológicos são capazes de produzir reflexões do feixe que podem resultar em danos a tecidos biológicos tanto no operador quanto no paciente (Miserendino et al. - 1995);

- acompanhamento do caso por pelo menos 12 meses;
- observação das contra-indicações.

Dosimetria laser

Segundo a classificação já estabelecida quanto à potência pico máxima do aparelho, bem como do efeito biológico resultante, regras de segurança específicas devem ser seguidas.

1 - lasers de baixa intensidade

Ao se fazer o uso dos lasers de baixa intensidade, deve-se observar:

- escolher o comprimento de onda mais indicado para cada patologia;
- escolher a dose adequada para bioestimulação ou para bioinibição;
- se a paciente for gestante, evitar direcionar o laser para o feto;
- não irradiar áreas em hemorragia;
- cautela ao irradiar áreas infectadas;
- não irradiar área com hipoestesia ao calor e/ou dor;
- evitar as linhas epífiseais em crianças;
- evitar irradiar crianças com menos de 2 anos de idade;
- não irradiar gânglios simpáticos;
- quando o paciente for cardiopata, evitar a região cardíaca;
- não irradiar nervos vagos;
- evitar irradiar as gônadas; e,
- ser cauteloso com pacientes cujos reflexos são obtundentes.

2 - laser de alta intensidade

No uso de laser de alta intensidade deve-se tomar os seguintes cuidados:
- sempre utilizar, durante a irradiação, a bomba de sucção de alta potência, pois há vaporização de tecido biológico (Fig.102);

- durante o uso dos lasers de efeito térmico, sem refrigeração acoplada (Nd:YAG, diodo semicondutor, CO₂) utilizar o jato de ar da seringa tríplice continuamente sobre o tecido alvo que está sendo irradiado para evitar o superaquecimento do mesmo;

- quando do uso de lasers de efeito fotomecânico (Er:YAG, ErCr:YSGG, Ho:YAG) resfriar e umedecer o tecido alvo com água destilada ou soro fisiológico;

Figura 102 - Isolamento absoluto e sugador de alta potência durante irradiação com laser de alta intensidade.

- sempre que possível utilizar os lasers sob isolamento absoluto (Fig.102), o isolamento relativo é indicado na ausência do absoluto ou durante procedimento cirúrgico para proteção dos tecidos circunvizinhos, evitando que o laser atinja áreas indesejadas;
- manter o equipamento em “stand by” após escolher os parâmetros de energia até o início da irradiação;

- escolher os parâmetros mínimos de energia necessários para cada procedimento; e,

- utilizar máscara de proteção dupla para evitar aspiração acidental da pluma.

É de essencial importância o uso de medidas de segurança em todo e qualquer procedimento odontológico; quando se trata do uso de lasers para tais procedimentos, devemos tomar cuidados extras.

A biossegurança-laser é extremamente importante para evitar acidentes e evitar diminuir o descrédito da laserterapia, mostrando que, apesar de se tratar de uma terapia muito recente na área da Odontologia, é de fácil e ampla aplicabilidade.

Miserendino et al. (1998) abordam um aspecto muito importante quando diz que “a biossegurança no uso de sistemas lasers em áreas médicas inclui não só o conhecimento dos riscos em relação ao uso dos aparelhos, mas também um conhecimento dos níveis de cuidados existentes, além de um completo entendimento e controle das medidas de segurança”, pois como a luz laser é um fenômeno com características especiais, faz-se necessário o conhecimento dessas características, para que se possa ter uma boa proteção contra os riscos oferecidos pela luz laser. Devemos considerar então, a importância de alguns fatores: a classificação dos lasers, os tipos de lasers utilizados nas áreas médicas e os tipos de acidentes que podem ocorrer. Além de conhecer as principais medidas de segurança que devem ser tomadas para evitar a ocorrência de qualquer tipo de acidente relacionado ao laser.

Em se tratando do uso clínico, devemos lembrar que cuidados fundamentais devem ser seguidos particularmente por cada participante do procedimento: o equipamento, a equipe profissional e o paciente.
Com relação aos lasers de baixa intensidade não existem relatos na literatura sobre acidentes. Mas no nosso protocolo, existem ressalvas, sugestões para prevenir a facilidade de resultados não desejados. Isso se deve ao fato dessa terapia LILT (low intensity laser therapy) estar ainda em ampla discussão. Os resultados laboratoriais in vitro são bem sucedidos, e os resultados clínicos apresentam um prognóstico muito favorável, contudo faltam ainda dados científicos capazes de interligarem eficientemente os resultados clínicos e laboratoriais.

Com relação aos lasers de alta intensidade (HILT), fica claro aqui, no protocolo, que cada sugestão tem sua função bem definida. Desses lasers, os resultados laboratoriais e clínicos estão bem estabelecidos, com resultados satisfatórios. Muito se conhece da interação desses lasers com o tecido biológico, por isso fica lícita a facilidade em numerar os requisitos básicos para a prevenção de resultados clínicos desfavoráveis.

No Brasil ainda não existe regulamentação para o uso do laser na área médica, por isso costuma-se utilizar as regras de segurança vigentes internacionalmente. A participação de um físico para orientar e zelar pelo bom funcionamento do equipamento é uma delas, as demais foram aqui enumeradas.

Fez-se neste artigo um breve enfoque dos principais níveis de cuidados que devem ser seguidos para garantir o bom andamento de uma prática clínica em que se faz o uso de um ou mais sistemas lasers.

Com base na revista da literatura e na experiência laboratorial e clínica, pudemos concluir que:

1- Durante um procedimento odontológico, uma atenção especial deve ser dada às medidas de segurança;
2- É importante o conhecimento dos princípios básicos de funcionamento e da interação laser-tecido;

3- Para o bom uso de um sistema laser na clínica odontológica, é condição obrigatória seguir um protocolo que zele pela segurança do equipamento, da equipe profissional e do paciente;

4- A participação de um físico acompanhando os procedimentos clínicos é necessária para manter o bom uso e manutenção dos equipamentos;

5- Faz-se necessário que se crie, no Brasil, uma regulamentação do uso clínico do laser, pelos órgãos responsáveis na área da saúde, estabelecendo um conjunto de normas a serem seguidas em nível nacional; e,

6- É importante que as pessoas que adquiram um equipamento laser para uso clínico se façam conhecedor das principais medidas de segurança que foram aqui citadas.

Referências Bibliográficas:

5. UNIVERSITY of Waterloo Safety Office. Laser Safety Manual (online)
(http://www.cmp.uwaterloo.ca/infohs/lasermanual/documents/tblcont.html)

Capturado em 11-05-00

7 APÊNDICES

7.1 CARTA DE APROVAÇÃO DO COMITÊ DE ÉTICA

UNIVERSIDADE ESTADUAL PAULISTA
CÂMPUS DE ARARAQUARA
FAC ULDADE DE ODONTOLOGIA

Rus Humaitá, 1880 - 14801-803 Araraquara-SP - FONE: (0xx16) 2016434 - FAX: (0xx16) 2016433

Araraquara, 11 de Dezembro de 2001

Ofício CEP-FO/CAr. n° 283/2001

Senhora Pesquisadora:

Atenciosamente

Profª Drª MIRIAN APARECIDA ONOFRE
Vice-Coodenador do Comitê de Ética em Pesquisa da Faculdade de Odontologia

Ilma. Sra.

C. D. ROSANE DE FÁTIMA ZANIRATO LIZARELLI
Pesquisadora Responsável

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas. 246
7.2 ARTIGOS ACEITOS PARA PUBLICAÇÃO EM REVISTAS INTERNACIONAIS

ARBITRADAS

7.2.1.1 – Carta de Aceite

Dear Dr. de F.Z. Lizarelli:

I am pleased to inform you that we would like to publish your manuscript, referenced above, in Lasers in Surgery and Medicine.

The attached form requires the signature of all authors. Please return it to me just as soon as possible. Without the return of these we are unable to move forward in the publishing process.

Thank you for the opportunity to publish your work.

Robert H. Gross, D.M.D., M.D.
Editor-in-Chief

signed in absence

Publisher: WILEY-LISS
605 Third Avenue, New York, NY 10158-0012, Tel (212) 850-8800, Fax (212) 850-8988

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Ablation Rate and Micromorphological Aspects With Nd:YAG Picosecond Pulsed Laser on Primary Teeth

Rosane de P. Z. Lizarelli, MSc, MSc,1 Lilian T. Moriyama, and Vanderlei R. Bagnato, PhD
Instituto de Pós-Curso de São Carlos-USP, Av. Trabalhador Sosarenses, 400, São Carlos-SP, Brazil

Background and Objectives: We have investigated the fundamental aspects of Nd:YAG laser at the picosecond pulse regime interacting with primary teeth. Because little is present in the literature concerning specific laser ablation for primary teeth with respect to enamel and dentin, this work may open perspectives for new investigations.

Study Design/Method: Using a picosecond Nd:YAG laser, different power levels (200, 500, and 350 mW) and different exposition times (8, 10, and 15 seconds) were considered.

Results: Micro-morphological aspects of the laser-tooth interaction showed collateral effects in enamel more accentuated than in dentin. Penetration depth in dentin seems to scale up in rate as the time of application progresses, for enamel the behavior is the opposite. The overall ablated volume is higher in dentin when compared with enamel, which results in a higher ablated rate as well. Consensus: Specific ablation characteristics are observed in either dentin or enamel. Lasers Surg. Med. 30:1–9, 2002. © 2002 Wiley-Liss, Inc.

Keywords: dentin; enamel; features; material; removal; short pulse; volume

INTRODUCTION

Laser is now established as a suitable tool for the selective and precise removal of carious dental tissues. It minimizes the loss of healthy tissue and promotes a great deal of comfort to patients. Laser procedures are normally well tolerated and there is reduced pain due to noise and vibration, normally associated with the high-speed drill (1–7).

Today, the most used laser in dentistry operates in the pulsed regime with pulse duration ranging from millisecond to nanosecond. Q-switched Nd:YAG normally operates in 300 nanoseconds while Nd:YAG free-running presents operation in the 1 millisecond regime. Down to nanosecond pulse duration is normally referred to as short-pulsed laser. In this regime of operation, the main mechanism of ablation occurs through vaporization. Larger pulses up to microsecond range generate much heat during the ablation process and normally find application in dentistry with constraints and limitations. Collateral damaged material by thermal effects is commonly present. The laser pulse duration is an important parameter due to the fact that in this time frame heat diffusion plays a very important role in the interaction mechanism involving light and tissue. The excess heating may have strong side effects, since the temperature in the inner part of tooth can reach values superior to 10°C of variation with a great chance of permanent damage. Shortening the pulses minimizes heating effects and introduces new mechanisms like plasma-mediated ablation (8,9).

Below nanosecond pulse duration, the regime is called ultra-short pulses. In this category lies the picosecond lasers. Niu et al. (10) first reported experiments on the dental tissue ablation with picosecond laser pulses, showing that Nd:YLF were a viable alternative for caries removal. As demonstrated by our group in recent publication (11), picosecond Nd:YAG mode-locked laser has enabled new approaches to ablating dental hard tissues.

Comparative work between nanosecond and picosecond laser pulses operating in equivalent condition shows very different aspects related to ablation (8,12). First of all, the morphology of the ablated region shows to be better controlled with picosecond than with nanosecond. Due to absence of damage on the adjacent areas, drilling with picosecond shows to be a promising tool in dentistry. In special, it could be seen as an important application for the treatment of primary teeth. In this sense, little is presented in the literature concerning specific laser ablation for primary teeth with respect to enamel and dentin. Due to the different constitution of primary teeth, it is not obvious that one can use existing data available for permanent teeth to be applied for primary ones.

Following our line of work (11,12), we present here the ablation rate and micromorphology of ablated primary teeth. In this study, it is shown that picosecond laser irradiation in the picosecond regime when primary teeth are considered.

To simplify our analysis, we have considered enamel and dentin separately. This work together with previously done work considering permanent teeth shall provide the

© 2002 Wiley-Liss, Inc.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas. 248
7.2.2.1 – Carta de Aceite

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas. 249
Temperature response in the pulpal chamber of primary human teeth exposed to Nd:YAG laser operating on picosecond pulsed regime

R. F. Z. Lizarelli, DDS, MSc*; L. T. Moriyama; and V. S. Bagnato, PhD
Instituto de Física de São Carlos – USP.

*Address reprint requests to:
R. F. Z. Lizarelli and V. S. Bagnato
Instituto de Física de São Carlos – USP.
P. O. Box 369
CEP 13560-900 São Carlos – SP – Brasil
E-mail: rosnellizarelli@ig.com.br

ABSTRACT

Objective: This study was conducted to analyses temperature variation in pulpal chamber using operative parameters of Nd:YAG picosecond pulsed laser to promote ablation in enamel and dentin of primary teeth. Summary Background Data: Several studies reported the temperature rise in pulpal chamber during laser irradiation. Since there are no reports about pulp chamber temperature changes during irradiation with picosecond pulsed laser, the purpose of our investigation is to quantify the intrapulpal temperature changes following picosecond pulsed Nd:YAG laser irradiation of enamel and dentin of primary teeth. Methods: In this study, we have used ten intact primary exfoliated teeth: five molars and five incisors. We used a commercial laser system Antares (Coherent) – Cw-pumped Q-switched and mode-locked Nd:YAG laser, changing average power levels (200, 300 and 350mW) operating with 100ps pulse duration. Results: Typical plots show differences between heating and cooling of enamel and dentin of anterior and posterior teeth. While for enamel the time evolution curves are very dependent of used power for the investigated range (from 200 to 350mW of average power), for dentin the differences are not so evident. Observing temperature enhancement for each power, we have been able to analyze operational conditions where temperature changes do not exceed 5.5°C. PTT (power-time-temperature) diagrams for clinical operations are determined varying power level and exposition time. Through the heating-cooling cycle we could extract conventional heating and cooling time for enamel and dentin. Conclusion: We have shown that Nd:YAG picosecond pulsed laser is a safety tool for primary teeth ablation in a broad range of operational parameters.

Key words: primary – temperature – enamel - dentin – Nd:YAG – laser – picosecond

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
A ciência, em sua totalidade, não é nada mais do que o refinamento do pensamento.

Albert Einstein
UMA TESE É UMA TESE

Mário Prata
(www.sulsites.com/e-tese/cronica.asp)

As teses são todas maravilhosas. Em tese. Você acompanha uma pessoa meses, anos, séculos, defendendo uma tese. Palpitantes assuntos. Tem tese que não acaba nunca, que acompanha o elemento para a velhice. Tem até teses pós-morte.

O mais interessante na tese é que, quando nos contam, são maravilhosas, intrigantes. A gente fica curioso, acompanha o sofrimento do autor, anos a fio. Aí ele publica, te dá uma cópia e é sempre - sempre - uma decepção. Em tese. Impossível ler uma tese de cabo a rabo.

São chatíssimas. É uma pena que as teses sejam escritas apenas para o julgamento da banca circunspecta, sisuda e compenetrada em si mesma. E nós?
Sim, porque os assuntos, já disse, são maravilhosos, cativantes, as pessoas são inteligentíssimas. Temas do arco-da-velha. Mas toda tese fica no rodapé da história. Pra que tanto sic e tanto apud? Sic me lembra o Pasquim e apud não parece candidato do PFL para vereador? Apud Neto.

E escrever uma tese é quase um voto de pobreza que a pessoa se autodecreta. O mundo para, o dinheiro entra apertado, os filhos são abandonados, o marido que se vire. Estou acabando a tese. Essa frase significa que a pessoa vai sair do mundo. Não por alguns dias, mas anos. Tem gente que nunca mais volta.

Orientados e orientandos (que nomes atuais!) são unânimes em afirmar que toda tese tem de ser - tem de ser! - daquele jeito. É pra não entender, mesmo. Tem de ser formatada assim. Que na Sorbonne é assim, que em Coimbra também. Na Sorbonne, desde 1257. Em Coimbra, mais moderna, desde 1290.

Ablação a laser de substratos dentais: esmalte, dentina e resinas compostas.
Em tese (e na prática) são 700 anos de muita tese e pouca prática. Acho que, nas teses, tinha de ter uma norma em que, além da tese, o elemento teria de fazer também uma tesão (tese grande). Ou seja, uma versão para nós, pobres teóricos ignorantes que não votamos no Apud Neto.

Ou seja, o elemento (ou a elementa) passa a vida a estudar um assunto que nos interessa e nada. Pra quê? Pra virar mestre, doutor? E daí? Se ele estudou tanto aquilo, acho impossível que ele não queira que a gente saiba a que conclusões chegou. Mas jamais saberemos onde fica o bicho da goiaba quando não é tempo de goiaba. No bolso do Apud Neto?

Tem gente que vai para os Estados Unidos, para a Europa, para terminar a tese. Vão lá nas fontes. Descobrem maravilhas. E a gente não fica sabendo de nada. Só aqueles sisudos da banca. E o cara dá logo um dez com louvor. Louvor para quem? Que exaltação, que encômio é isso?

E tem mais: as bolsas para os que defendem as teses são uma pobreza. Tem viagens, compra de livros caros, horas na Internet da vida, separações, pensão para os filhos que a mulher levou embora. É, defender uma tese é mesmo um voto de pobreza, já diria São Francisco de Assis. Em tese.

Tenho um casal de amigos que há uns dez anos prepara suas teses. Cada um, uma. Dia desses a filha, de 10 anos, no café da manhã, ameaçou:
- Não vou mais estudar! Não vou mais na escola.

Os dois param - momentaneamente - de pensar nas teses.
- O quê? Pirou?
- Quero estudar mais, não. Olha vocês dois. Não fazem mais nada na vida. É só a tese, a tese, a tese. Não pode comprar bicicleta por causa da tese. A gente não pode ir para a praia por causa da tese.

Tudo é pra quando acabar a tese. Até trocar o pano do sofá. Se eu estudar vou acabar numa tese. Quero estudar mais, não. Não me deixam nem mexer mais no computador. Vocês acham mesmo que eu vou deletar a tese de vocês? Pensando bem, até que não é uma má ideia!

Quando é que alguém vai ter a prática idêia de escrever uma tese sobre a tese? Ou uma outra sobre a vida nos rodapés da história? Acho que seria um tesão.

FIM