RELAXAÇÃO DIPOLAR ELÉTRICA FOTOINDUZIDA
EM ALEXANDRITAS SINTÉTICA E NATURAL.

Rosa Maria Fernandes Scalvi

Tese apresentada à Área Interunidades do EESC, IFSC, IQSC, como parte dos requisitos para a obtenção do grau de “Doutor em Ciência e Engenharia de Materiais”.

Orientador: Prof. Dr. Máximo Siu Li

São Carlos
março de 2000
MEMBROS DA COMISSÃO JULGADORA DA TESE DE DOUTORADO DE
ROSA MARIA FERNANDES SCALVI, APRESENTADA A ÁREA
INTERUNIDADES EM CIÊNCIA E ENGENHARIA DE MATERIAIS, DA EESC-

COMISSÃO JULGADORA:

Prof. Dr. MÁXIMO SIU LI - Orientador (IFSC/USP)

Prof. Dra. REGINA HELENA PORTO FRANCISCO (IQSC/USP)

Prof. Dr. TOMAZ CATUNDA (IFSC/USP)

Prof. Dr. MARIO ERNESTO SIROLO VALERIO (UFS)

Prof. Dr. JOSÉ FERNANDO DIAZ CHUBACI (IF/USP)
Scalvi, Rosa Maria Fernandes
Relaxação Dipolar Elétrica Fotoinduzida em Alexandrita Sintética e Natural, 2000
154p
Tese (doutorado)—Instituto de Física de São Carlos, 2000.

Orientador: Prof. Dr. Máximo Siu Li

1. Alexandrita. 2. Relaxação Dipolar 3. Fenômenos Fotoinduzidos
I. Título
Ao meu filho Marcelo, cuja paciência e compreensão durante esses anos foram fundamentais para a realização deste trabalho.
AGRADECIMENTOS:

Ao Prof. Dr. Máximo Siu Li, pela orientação desse trabalho e pela compreensão e amizade.

Ao Prof. Dr. Tomáz Catunda, pela gentileza no empréstimo da amostra sintética de alexandrita.

A Profa. Dra. Regina Porto Franciso e ao Prof. Dr. José Alberto Giacometti, pela contribuição dada durante o Exame de Qualificação.

A Profa. Dra. Lígia de Oliveira Ruggiero, pela ajuda desde as primeiras medidas no laboratório, pelas sugestões e discussões.

Ao Klaus Petersen Junior do Instituto de Geociências da USP, pelas sugestões e por ceder-me amostras naturais de alexandrita oriundas do estado de Goiás.

A Profa. Dra. Ana Regina Blak, pelas poucas, porém muito proveitosas discussões e sugestões.

Aos colegas do Laboratório: Antônio Carlos Castro, Fábio Simões de Vicente, Luís Humberto C. Andrade, Cláudia Cândido, Cristina Tereza Ribeiro e Sandra Messadeq, pela boa vontade e disposição em ajudar uns aos outros, dividindo além de equipamentos, seus conhecimentos.

Aos colegas Frederico Ayres de Oliveira Neto, do IFUSP, e Diógenes Reyes Ardila, do grupo de Crescimento de Cristais do IFSC, pela atenção e boa vontade em ajudar-me.

Aos funcionários: (técnicos) José Heraldo Gallo, Cássio, João Frigo, Augusto, (bibliotecárias) Mara, Cibele, Neusa e Betânia; (secretárias) Isabel Sartori, Érica Signini e Wladerez Caiado; e aos funcionários das oficinas mecânica e de criogênia, pela atenção e boa vontade com que sempre fui recebida. E, aos técnicos Marcelo Francisco e Clever Chinaglia do CCDM-UFCar.

Aos colegas do Departamento de Física Unesp-Bauru, pelo apoio e pelos afastamentos concedidos.

A CAPES e PRONEX pelo auxílio financeiro.
Ao CNPq, FINEP e FAPESP.

E, de forma muito especial, agradeço a Elisabete Aparecida Andrello Rubo, pelo apoio, sugestões, discussões e principalmente pela sua amizade incondicional; ao Luís Vicente de Andrade Scalvi, pela sua paciência, ajuda e, acima de tudo, sua compreensão e a todos os meus familiares, pelo apoio e incentivo ao longo de minha vida, em especial minha mãe Irene, minha irmã Lydia Maria e minha sobrinha Mariana, que ajudaram a “segurar as pontas” nos momentos em que estive ausente.
ÍNDICE:

I – ÍNDICE DE FIGURAS .. III

II - ÍNDICE DE TABELAS ... VII

III – RESUMO .. IX

IV – ABSTRACT ... X

1 INTRODUÇÃO E OBJETIVOS ... 1

1.1 – INTRODUÇÃO .. 1

1.2 – OBJETIVOS DESTE TRABALHO. ... 9

2 CARACTERÍSTICAS DA ALEXANDRITA ... 10

2.1 - O “EFEITO ALEXANDRITA” .. 10

2.2 - ESTRUTURA CRISTALINA .. 15

2.3 - PROPRIEDADES FÍSICAS E O LASER DE ALEXANDRITA .. 18

3 MÉTODOS EXPERIMENTAIS ... 27

3.1 – PREPARAÇÃO DAS AMOSTRAS, MICROANÁLISE E ANÁLISE ESTRUTURAL 28

3.1.1 - PREPARAÇÃO DAS AMOSTRAS .. 28

3.1.2 - MICROANÁLISE POR EDX/WDX ... 31

3.1.3 - DIFRAÇÃO DE RAIOS-X .. 33

3.2 – TÉCNICAS EXPERIMENTAIS UTILIZADAS NA DETERMINAÇÃO DOS PARÂMETROS ESPECTROSCÓPICOS ... 34

3.2.1 - ABSORÇÃO ÓPTICA .. 35

3.2.2 - LUMINESCÊNCIA .. 38

3.3 - CORRENTE DE DESPOLARIZAÇÃO TERMICAMENTE ESTIMULADA - CDTE 40

3.3.1 - PRINCIPIOS BÁSICOS ... 41

3.3.2 - CDTE FOTOINDUZIDA ... 53

3.4 - TRATAMENTOS TÉRMICOS ... 58

4 RESULTADOS EXPERIMENTAIS ... 61

4.1 - MICROANÁLISE POR EDX/WDX .. 61

4.2 - DIFRAÇÃO DE RAIOS-X .. 66

4.3 - ABSORÇÃO ÓPTICA NA REGIÃO UV-VIS ... 69

4.4 - ABSORÇÃO ÓPTICA NO INFRAVERMELHO .. 76

4.5 - LUMINESCÊNCIA ... 78

4.6 - CORRENTE DE DESPOLARIZAÇÃO TERMICAMENTE ESTIMULADA 82

4.6.1 - COMPORTAMENTO DAS BANDAS DE CDTE PARA AS AMOSTRAS NATURAIS 85

4.6.2 - MEDIDAS DE CDTE PARA A AMOSTRA SINTÉTICA ... 95

4.7 - EFEITO DOS TRATAMENTOS TÉRMICOS .. 98

4.7.1 - CDTE APÓS OS TRATAMENTOS TÉRMICOS. ... 99
4.7.2 - ABSORÇÃO ÓPTICA APÓS TRATAMENTOS TÉRMICOS 108
4.7.3 - LUMINESCÊNCIA APÓS TRATAMENTOS TÉRMICOS 113
4.7.4 - DIFRAÇÃO DE RAIO X EM FUNÇÃO DE TRATAMENTOS TÉRMICOS .. 114
4.8 - CDTE FOTOINDUZIDA .. 117
4.8.1 - CDTEFI PARA A AMOSTRA SINTÉTICA 121
4.8.2 - CDTEFI PARA AS AMOSTRAS NATURAIS 128

5 CONCLUSÕES: .. 135
5.1 – IDENTIFICAÇÃO DAS AMOSTRAS ... 135
5.1.1 – COMPOSIÇÃO QUÍMICA E CARACTERIZAÇÃO ESTRUTURAL 135
5.1.2 – CARACTERIZAÇÃO ÓPTICA .. 136
5.2 – CORRENTE DE DESPOLARIZAÇÃO TERMICAMENTE ESTIMULADA 137
5.3 – EFEITOS DOS TRATAMENTOS TÉRMICOS 139
5.4 – MEDIDAS DE CDTEFI ... 140

6 TRABALHOS FUTUROS .. 142

7 REFERÊNCIAS: .. 145
4.7.2 - ABSORÇÃO ÓPTICA APÓS TRATAMENTOS TÉRMICOS........... 108
4.7.3 - LUMINISCÊNCIA APÓS TRATAMENTOS TÉRMICOS.......... 113
4.7.4 - DIFRAÇÃO DE RAIOS X EM FUNÇÃO DE TRATAMENTOS
 TÉRMICOS--- 114
4.8 - CDTE FOTOINDUZIDA ... 117
4.8.1 - CDTEFI PARA A AMOSTRA SINTÉTICA.. 121
4.8.2 - CDTEFI PARA AS AMOSTRAS NATURAIS... 128

5 CONCLUSÕES: ... 135
 5.1 – IDENTIFICAÇÃO DAS AMOSTRAS... 135
 5.1.1 – COMPOSIÇÃO QUÍMICA E CARACTERIZAÇÃO ESTRUTURAL 135
 5.1.2 – CARACTERIZAÇÃO ÓPTICA.. 136
 5.2 – CORRENTE DE DESPOLARIZAÇÃO TERMICAMENTE ESTIMULADA
 ... 137
 5.3 – EFEITOS DOS TRATAMENTOS TÉRMICOS 139
 5.4 – MEDIDAS DE CDTEFI .. 140

6 TRABALHOS FUTUROS... 142

7 REFERÊNCIAS: ... 145
ÍNDICE DE FIGURAS

Figura 1 - Ilustração do “Efeito Alexandrita” para um cristal natural lapidado...12

Figura 2 - (A) Estrutura do crisoberilo com a indicação dos eixos A, B e C. (B) Estrutura do crisoberilo projetada sobre (001), adaptada da referência [8]...16

Figura 3 - Espectro de absorção de alexandrita à temperatura ambiente. Para E || B, E || C, E || A. Adaptado da referência [27]...23

Figura 4 - Espectro de luminescência da alexandrita à temperatura ambiente mostrando as linhas S₁ e S₂ e R₁ e R₂. Adaptado da referência [28]...23

Figura 5 - Diagrama de níveis de energia para íons Cr³⁺ localizados sobre um plano de reflexão de alexandrita. Adaptado da referência [5]...24

Figura 6 - Diagrama esquemático do sistema de medidas de luminescência. Extraído da referência [69]...39

Figura 7 - Gráfico da função de Langevin L(x)...43

Figura 8 - (A) Representação esquemática do experimento de CDTE, mostrando os parâmetros campo elétrico (E), temperatura (T) e corrente (I), em função do tempo. (B) Esquema do movimento dos dipolos na amostra, correspondendo a situação física descrita em (A). Figura adaptada da referência [78]...46

Figura 9 - Esquema de medidas de CDTEFI. (I) incidência de luz quando o sistema de dipolos está previamente polarizado (T₀=300K) e congelado, (II) incidência de luz quando o sistema de dipolos está previamente não polarizado e congelado (T₀=77K)...56

Figura 10 - Esquema indicando as direções da incidência de luz e aplicação do campo elétrico na amostra...57

Figura 11 - Micrografia da amostra de alexandrita natural (AN4) mostrando fases distintas: (A) matriz, (B) quartzo e (C) mica62

Figura 12 - (A) Difratograma de Raios-X para a amostra natural AN4 e representação das três linhas mais intensas para uma amostra natural e uma amostra sintética obtidas nos ficheiros JCPDS [88], (B) Difratograma de raios X para uma amostra sintética obtido a partir do programa "Powder Cell". ...67
FIGURA 13 – ESPECTROS DE ABSORÇÃO ÓPTICA DAS AMOSTRAS SINTÉTICAS (AS1), NATURAL (AN3) E DA REFERÊNCIA [27] À 300K E 77K. AS INSERÇÕES MOSTRAM AS LINHAS VIBRÔNICAS LATERAIS DA BANDA A DE FORMA AMPLIADA ... 71

FIGURA 14 – ESPECTROS DE ABSORÇÃO ÓPTICA NO INFRARVERMELHO PARA AS1 E AN5, À 300K .. 77

FIGURA 15 – ESPECTROS DE EMISSÃO DAS AMOSTRAS DE ALEXANDRITA NATURAL (AN3) E SINTÉTICA (AS1), OBTIDOS À TEMPERATURA AMBIENTE, ATRAVÉS DE EXCITAÇÃO COM MLUV DO LASER DE KR+ ... 79

FIGURA 16 – ESQUEMA DA FORMAÇÃO DE DIPOLOS NA ALEXANDRITA: (A) DETALHES DE UM SÍTIO AL2 (LOCALIZADO NUM PLANO DE REFLEXÃO). (B) SÍTIO AL1 (LOCALIZADO SOBRE UM CENTRO DE INVERSÃO). ADAPTADO DA REFERÊNCIA [8] ... 84

FIGURA 17 – MEDIDAS DE CDTE PARA AMOSTRA AN1. PARA CURVA EM VERMELHO, \(T_p = 297 \) K E PARA CURVA EM PRETO, \(T_p = 170 \) K. \(E_p = 4,6 \) kV/cm PARA AMBAS AS CURVAS ... 87

FIGURA 18 – COMPORTAMENTO DA ÁREA SOB A BANDA DE CDTE EM FUNÇÃO DO CAMPO ELÉTRICO DE POLARIZAÇÃO PARA A AMOSTRA NATURAL AN2 .. 89

FIGURA 19 – MEDIDAS DE CDTE PARA A AMOSTRA AS3. (A) CURVA EXPERIMENTAL PARA \(T_p = 278 \) K. (B) CURVA EXPERIMENTAL PARA \(T_p = 189 \) K. AS CURVAS EM VERMELHO E AZUL REPRESENTAM O AJUSTE TEÓRICO PELO MÉTODO DE HAVRILIAK-NEGAMI .. 90

FIGURA 20 – CDTE PARA A AMOSTRA AS3 COM \(T_p = 189 \) K, \(E_p = 6,9 \) kV/cm E ELETRODOS DE OURO .. 93

FIGURA 21 – CDTE PARA A AMOSTRA AS1. (A) CURVA EXPERIMENTAL PARA \(T_p = 285 \) K. (B) CURVA EXPERIMENTAL PARA \(T_p = 167 \) K. PARA AMBAS \(E_p = 6,9 \) kV/cm. AS CURVAS VERMELHA E AZUL REPRESENTAM O AJUSTE TEÓRICO PELO MÉTODO DE HAVRILIAK-NEGAMI .. 96

FIGURA 22 – MEDIDAS DE CDTE PARA A AMOSTRA AN5 SEM TRATAMENTO TÉRMICO E APÓS TT1 (700 °C–5MIN), TT2 (800 °C – 5MIN), TT3 (900 °C – 5MIN), TT4 (1000 °C – 5MIN) E TT5 (1000 °C - 5HORAS). EM TODAS AS MEDIDAS \(T_p = 185 \) K .. 101

FIGURA 23 – MEDIDAS DE CDTE PARA A AMOSTRA AN5 APÓS TT3 (900 °C – 5MIN), TT4 (1000 °C – 5MIN) E TT5 (1000 °C - 5HORAS). EM TODAS AS MEDIDAS \(T_p = 175 \) K .. 101
Figura 24 – Medidas de CDTE para AN5 sem tratamento térmico. As curvas em vermelho e azul representam as distribuições dos parâmetros de relaxação obtidas a partir do método de Havrilak-Negami. 103

Figura 25 – CDTE para a amostra AN5 após TT1 (700 °C-5min). A curva em vermelho representa a distribuição obtida através do método de Havrilak-Negami. .. 104

Figura 26 - CDTE para a amostra AN5 após TT3 (900 °C-5min). As curvas em vermelho e azul representam a distribuição obtida através do método de Havrilak-Negami. .. 104

Figura 27 - CDTE para a amostra AN5 após TT4 (1000 °C-5min). As curvas em vermelho e azul representam a distribuição obtida através do método de Havrilak-Negami. .. 105

Figura 28 - CDTE para a amostra AN5 após TT5 (1000 °C-5h). As curvas em vermelho e azul representam a distribuição obtida através do método de Havrilak-Negami. .. 105

Figura 29 – Espectros de absorção óptica no UV-VIS para AN5 sem tratamento térmico e após TT1, TT2, TT3, TT4 e TT5... 108

Figura 30 – Espectros de absorção óptica, à temperatura ambiente, para a amostra natural AN5 após os tratamentos térmicos TT1, TT2, TT3, TT4 e TT5 e sem tratamento térmico .. 112

Figura 31 – Espectros de luminescência, à temperatura ambiente, para AN5 submetida aos tratamentos térmicos TT1, TT2, TT3, TT4, TT5 e sem tratamento térmico. ... 113

Figura 32 - Difragramas de raios X para a amostra natural AN4. (A) antes dos tratamentos térmico, (B) após TT1 = 700 °C por 15 minutos e (C) após TT5 = 1000 °C por 5 horas. .. 115

Figura 33- Fotografias das amostras de aalexandrita natural e sintética iluminadas com luz de lâmpada fluorescente e com laser de Kr sintonizado no multilinhas ultravioleta ... 118

Figura 34 - Espectro de absorção óptica da amostra sintética de aalexandrita mostrando as faixas de comprimentos de onda utilizados nas medidas de CDTEFI. ... 120

Figura 35 - CDTEFI para a amostra AS1 com Tφ=297K, Eφ=7,0kV/cm e B=0,08 K/s, incidindo luz MLUV à TNL .. 122

Figura 36 - CDTEFI para a amostra AS1, com Eφ=7,0kV/cm e luz MLUV por 2, 5 e 10 minutos em Tφ=77K, B=0,08 – 0,12K/s.. 124
FIGURA 37 - CDTEFI PARA A AMOSTRA AS1, COM $E_p=7,0$ kV/cm E LUZ MLVI POR 2, 5 E 15 MINUTOS EM $T_r=77$K, $b=0,08$ K/s. ... 124

FIGURA 38 – CDTEFI PARA A AMOSTRA AS1, COM $E_p=7,0$ kV/cm E MLBG POR 2, 10 E 15 MINUTOS EM $T_r=77$K, $b=0,08-0,09$K/s. ... 125

FIGURA 39 – CDTEFI PARA A AMOSTRA AS1, COM $E_p=7,0$ kV/cm E MLRD POR 2, 5 E 15 MINUTOS EM $T_r=77$K, $b=0,06-0,08$K/s. ... 125

FIGURA 40 – POSIÇÕES DAS BANDAS DE CDTE REFERENTES AO PROCESSO DE FORMAÇÃO DAS BANDAS COM IRRADIAÇÃO POR 5 MINUTOS, NO MLUV, MLVI, MLBG E MLRD ... 127

FIGURA 41 – CDTEFI PARA AMOSTRA AN3 COM $T_r=280$ K, $E_p=6,9$ kV/cm E $b=0,08$K/s, COM LUZ MLUV (PROCESSO I). ... 130

FIGURA 42 – CDTEFI PARA A AMOSTRA AN3 COM $T_r = 83$K, $E_p=6,9$ kV/cm E $b=0,08$K/s (PROCESSO II). ... 130

FIGURA 43 – CDTE FOTOINDUZIDA PARA AN3 COM ELETRÓDOS DE OURO, COM $T_r=190$K, $E_p=6,9$ kV/cm E $b=0,09$K/s (PROCESSO I). ... 131

FIGURA 44 – CDTE FOTOINDUZIDA PARA AN3 COM ELETRÓDOS DE OURO, COM $T_r=83$K, $E_p=6,9$ kV/cm E $b=0,08$K/s (PROCESSO II) ... 132

FIGURA 45 – CDTE FOTOINDUZIDA PARA AN5 COM ELETRÓDOS DE TINTA PRATA, $T_r=186$K E $b=0,08$K/s (PROCESSO I) ... 133
II - ÍNDICE DE TABELAS

TABELA 1 - ALGUNS RESULTADOS OB TikOS COM MEDIDAS DE EPR RELACIONANDO A MUDANÇA DE COR COM A CONCENTRAÇÃO DE Cr^{3+} E A TAXA RELATIVA DE Cr^{3+} NOS SÍTIOS Al₂ (LOCALIZADOS NUM PLANO DE REFLEXÃO) E Al₁ (LOCALIZADOS NUM CENTRO DE INVERSÃO). EXTRAÍDO DA REFERÊNCIA [13]. .. 13

TABELA 2 - POSIÇÕES OCUPADAS PELOS ÁTOMOS NA ESTRUTURA DO CRISOBERILIO EXTRAÍDO DA REFERÊNCIA [37] ... 17

TABELA 3- PROPRIEDADES FÍSICAS DA ALEXANDRITA OBTIDAS NA LITERATURA. 19

TABELA 4 – PROPRIEDADES DO LASER DE ALEXANDRITA COMPARADAS A OUTROS LASERES. \(\lambda_b \): LARGURA DA BANDA A MEIA ALTURA DA EMISSÃO; \(\alpha_s \): SEÇÃO DE CHOQUE DA EMISSÃO ESTIMULADA; \(N \): ÍNDICE DE REFRAÇÃO (PARA \(\lambda = 250\text{nm} \)); \(\varepsilon \): PERDA POR ESPALHAMENTO; \(\sigma \): TEMPO DE VIDA DA EMISSÃO ESPONTÂNEA. 20

TABELA 5- CARACTERÍSTICAS MACROSCÓPICAS DAS AMOSTRAS UTILIZADAS E TÉCNICAS EXPERIMENTAIS A QUE FORAM SUBMETIDAS. “AN” REFERE-SE AS AMOSTRAS NATURAIS E “AS” A AMOSTRA SINTÉTICA .. 30

TABELA 6- VÁRIOS TERMOS USADOS PARA ABSORÇÃO. EXTRAÍDO DA REFERÊNCIA [39] ... 37

TABELA 7 - COMPOSIÇÃO QUÍMICA PARCIAL DAS AMOSTRAS DE ALEXANDRITAS NATURAIS E SINTÉTICA OBTIDA ATRAVÉS DAS MICROANÁLISES POR EDX E WDX. A PARTIR DE 5 ÁREAS DIFERENTES DA MATRIZ DE ALEXANDRITA (REGIÃO A NA FIGURA 11). A CONCENTRAÇÃO DOS ELEMENTOS FOI MEDIDA EM PORCENTAGEM EM ÁTOMOS (AT.%). .. 64

TABELA 8- RESULTADOS DAS MEDIDAS DE ABSORÇÃO ÓPTICA, NO VISÍVEL, OB obtidos à TEMPERATURA AMBIENTE. \(\lambda \) INDICA AS POSIÇÕES DE MÁXimos de ABSORÇÃO, \(\alpha \) É O COEFICIENTE DE ABSORÇÃO CALCULADO A PARTIR DA EQUAÇÃO (5) E \(\Delta \lambda \) É A LARGURA A MEIA ALTURA DA BANDA DE ABSORÇÃO. .. 74

TABELA 9 - POSIÇÕES DAS LINHAS R NOS SÍTIOS LOCALIZADOS NUM PLANO DE REFLEXÃO (R₁ e R₂) e DAS LINHAS S NOS SÍTIOS LOCALIZADOS NO CENTRO DE INVERSÃO (S₁ e S₂) PARA AS AMOSTRAS AS1, AN3 E DA REFERÊNCIA [28] 80

TABELA 10- PARÂMETROS DE RELAXAÇÃO OB tikOS PARA AS1 e AN3 ATRAVÉS DO AJUSTE POR HAVRIKAKI-NEGAMIN. \(T_m \) É A TEMPERATURA MÁXIMA DE CADA UMA DAS Distribuições EM [K]; \(E_a \) É A ENERGIA DE ATivação EM [eV]; \(\tau_e \) É O TEMPO DE RELAXAÇÃO (x10^{14}) EM [S] E Q É A CARGA TOTAL DE POLARIZAÇÃO (x10^{10}) EM [C⁻¹]. ... 97

vii
TABELA 11 – RESULTADOS OBTIDOS A PARTIR DAS MEDIDAS DE CDTE PARA A AMOSTRA AN5 ANTES E APÓS OS TRATAMENTOS TÉRMICOS..................................102

TABELA 12 – PARÂMETROS DE RELAXAÇÃO OBTIDOS PARA AN5, ANTES E APÓS OS TRATAMENTOS TÉRMICOS, ATRAVÉS DO AJUSTE POR HN. T_m É A TEMPERATURA MÁXIMA DE CADA UMA DAS DISTRIBUIÇÕES EM [K]; E_a É A ENERGIA DE ATIVAÇÃO EM [eV]; τ_0 É O TEMPO DE RELAXAÇÃO (10^{14}) EM [s].106

TABELA 13 – RESULTADOS DAS MEDIDAS DE ABSORÇÃO ÓPTICA (UV-VIS) OBTIDOS À TEMPERATURA AMBIENTE, APÓS OS TRATAMENTOS TÉRMICOS DE AN5. λ SIGNIFICA AS POSIÇÕES DE MÁXIMOS DE ABSORÇÃO, α O COEFICIENTE DE ABSORÇÃO ÓPTICA E $\Delta\lambda$ É A LARGURA A MEIA ALTURA DA BANDA DE ABSORÇÃO ..109
III - RESUMO

Realizamos a caracterização elétrica de alexandrita (BeAl₂O₄:Cr³⁺), nas formas sintética e natural, através de medidas de Corrente de Despolarização Termicamente Estimulada (CDTE). Obtivemos evidências conclusivas do fenômeno de relaxação dipolar em ambos os tipos de amostra, e que as curvas experimentais devem ser ajustadas por uma distribuição contínua dos parâmetros de relaxação. Para a amostra sintética a banda de CDTE está centralizada em torno de 179K e para as naturais em 187 a 195K. Utilizando o método de Havriliak-Negami são necessárias duas distribuições continuas de Eₐ e τ₀ para ajustar as curvas experimentais, sendo que uma delas, em torno de 177 K, com Eₐ=0,56 eV e τ₀=1,2x10⁻¹⁴s está presente em ambos os tipos de amostras. As bandas de CDTE são atribuídas a dipolos do tipo impureza-vacância de oxigênio ou a deformação local da estrutura causada pela diferença de raio iônico entre os íons Cr³⁺ (0,615Å) e Al³⁺(0,535Å).

Também realizamos medidas de CDTE fotoinduzidas, onde as amostras são irradiadas com um laser sintonizado em comprimentos de onda entre 337,5 e 676,4nm. Verificamos que as bandas de CDTE podem ser “destruídas” ou “criadas” com a incidência de luz com diferentes condições iniciais de polarização.

Para ajudar a interpretação dos resultados de CDTE nós usamos outras técnicas de caracterização, tais como Absorção Óptica, Luminescência, Difração de Raios X e microanálises de EDX e WDX. Todas estas técnicas foram também aplicadas às amostras naturais após tratamentos térmicos consecutivos.
IV – ABSTRACT

We have done electrical characterization of natural and synthetic alexandrite (BeAl₂O₄:Cr³⁺), using the thermally stimulated depolarization current (TSDC) technique. We have obtained conclusive evidences of dipole relaxation in both kinds of samples. Besides, the experimental data must be fitted by a continuous distribution of relaxation parameters. For the synthetic sample, TSDC band has a peak about 179K and for natural samples, TSDC bands have peaks about 187K at 195K. Using Havriliak-Negami method, we need two continuous distributions of activation energy (Eₐ) and relaxation time constant (τ₀) to fit experimental data. One of these two curves, centered at 177K, is present for both kinds of samples and has Eₐ=0.56eV and τ₀=1.2x10⁻¹⁴s. TSDC bands are attributed to impurity-oxygen vacancy dipoles or local structure deformation caused by the difference between ionic radius of Cr³⁺ (0.615 Å) and Al³⁺ (0.535 Å) ions.

We have also carried out photo-induced TSDC, where samples are irradiated with a tunable laser with wavelength from 337.5nm to 676.5nm. We have observed that TSDC bands may be destroyed or created with illumination from different polarization conditions.

To help the interpretation of TSDC results we have used other techniques of characterization such as optical absorption, luminescence, X-ray diffraction, besides EDX and WDX microanalyses. All of these techniques were also applied to natural samples after consecutive annealing.
1 INTRODUÇÃO E OBJETIVOS

1.1 – INTRODUÇÃO.

Alexandrita, nome comum usado para o crisoberilo dopado com cromo (BeAl₂O₄·Cr³⁺), é uma gema rara e preciosa que apresenta propriedades peculiares, sendo a mais atraente delas a sua capacidade em mudar de cor, passando do verde na luz do dia ao vermelho quando incidimos luz artificial. Esse fenômeno é descrito na literatura como “efeito alexandrita” e nas últimas décadas tem sido muito estudado [1,2,3]. A alexandrita tornou-se tecnologicamente importante a partir de 1974, quando foi possível obtê-la na forma sintética, crescida pelo método de Czochralsky, como um material ativo para laser com características muito superiores a outros tipos de materiais, conforme descrito na literatura [4,5]. Um outro fator interessante no estudo desse material é o fato do Brasil ser, atualmente, um dos maiores fornecedores de crisoberilo e alexandrita, juntamente com o Sri Lanka, sendo que o Brasil apresenta produções mais promissoras com lavras, principalmente, nos estados de Minas Gerais, Bahia e Espírito Santo [6,7].

Esse material pertence ao sistema cristalino ortorrômico e ao grupo espacial Pnma (D₂h₁₆). Sua estrutura cristalina foi determinada pela primeira vez em 1926 por BRAGG & BROWN e refinada por FARREL em 1963 [8]. A estrutura do crisoberilo é hexagonal com empacotamento compacto (hcp), porém distorcida, de ions de oxigênio, com ions Al³⁺ e Be²⁺ ocupando sitios octaédricos e tetraédricos respectivamente. As distorções de uma estrutura hcp exata de ions de oxigênio
deslocados em relação ao eixo e causam o aparecimento de dois sítios coordenados octaédricamente: \(\text{Al}_1\), situado num centro de inversão e \(\text{Al}_2\), localizado num plano de reflexão. Sabe-se que \(\text{Al}_2\), por ser maior, é preferencialmente ocupado pelos íons \(\text{Cr}^{3+}\) e é o principal responsável pelas propriedades ópticas da alexandrita. Os espectros de emissão e absorção óptica têm sido investigados em diferentes condições, com ou sem polarização ao longo dos eixos cristalográficos e ainda em função de variações de pressão e temperatura, por exemplo [9,10,11].

Entretanto, a forma exata como ocorre a distribuição dos íons \(\text{Cr}^{3+}\) nos dois sítios distintos, \(\text{Al}_1\) e \(\text{Al}_2\), é desconhecida. Outras técnicas, além de absorção e emissão óptica, têm sido utilizadas no estudo de alexandritas, como Ressonância Paramagnética Eletrônica (EPR) [12,13,14] e Ressonância Magnética Nuclear (NMR) [15,16,17,18]. Medidas de EPR reportadas recentemente por RAGER et al[13] indicam que a distribuição de \(\text{Cr}^{3+}\) nos dois sítios de simetrias diferentes depende das concentrações desse íon na matriz de crisoberilo e também que essa distribuição, influenciando na intensidade de mudança de cor, ou seja, no “efeito alexandrita”. No trabalho de RAGER et al [13] são mencionados alguns resultados a respeito da taxa de concentrações relativas de \(\text{Cr}^{3+}\) nos sítios \(\text{Al}_1\) e \(\text{Al}_2\) reportados por diversos outros autores, como por exemplo, os resultados de BUKIN et al [19] indicando que para um aumento da concentração de 0,01% para 0,25% em peso de \(\text{Cr}_2\text{O}_3\), a fração de \(\text{Cr}^{3+}\) nos sítios \(\text{Al}_2\) diminui de 76% para 65%, no caso de alexandritas sintéticas e, em alexandritas naturais, com 0,15 e 0,5% em peso de \(\text{Cr}_2\text{O}_3\), BUKIN et al [19] determinaram a fração de \(\text{Cr}^{3+}\) em \(\text{Al}_2\) como 81% e 79%, respectivamente. Entretanto, de acordo com RAGER et al [13], a diminuição de \(\text{Cr}^{3+}\) em \(\text{Al}_2\) com o aumento de \(\text{Cr}_2\text{O}_3\) observada por BUKIN et al não é consistente com os dados de
FORBES et al [14] que deduziram, a partir de medidas de EPR, uma fração constante em torno de 78% de Cr$^{3+}$ nos sítios Al$_2$ para duas amostras de alexandritas crescidas pelo método de Czochralsky contendo 0,15 e 0,44% em peso de Cr$_2$O$_3$. Ainda de acordo com RAGER [13], PESTRYAKOV et al [20] observaram uma fração aproximadamente constante de 79-80% de Cr$^{3+}$ nos sítios Al$_2$ para diferentes amostras de alexandrita crescidas pelo método de Czochralsky. Além disso, muitas questões continuam sendo levantadas e investigadas a respeito das propriedades e características da alexandrita e muitos trabalhos têm sido apresentados, baseados principalmente na investigação de suas propriedades ópticas, magnéticas e termomecânicas mas, sem fazer nenhuma alusão às propriedades elétricas desse material.

Diante disso, apresentamos neste trabalho evidências conclusivas da ocorrência do fenômeno de relaxação dipolar elétrica que pode ser detectado através da técnica de Corrente de Despolarização Termicamente Estimulada- CDTE [21,22,23,24]. Essa técnica tem sido utilizada no estudo de muitos materiais, tanto dielétricos, como cristais iônicos e polímeros, havendo até trabalhos que reportam a utilização de CDTE em semicondutores. Nos processos de polarização e despolarização desses materiais, diversos tipos de fenômenos podem estar envolvidos como, por exemplo, orientação e desorientação de defeitos dipolares, distribuição não uniforme de portadores de carga iônica ou eletrônica, deslocamento de defeitos iônicos (vacâncias ou intersticiais) sobre distâncias macroscópicas e injeção de elétrons a partir dos eletrodos para dentro da amostra [25]. Outro tipo de fenômeno que pode estar envolvido nesses processos é a relaxação dipolar fotoinduzida, com a aplicação simultânea de um campo elétrico e irradiação da amostra. De forma geral, o estudo de fenômenos dipolares em sólidos envolve três pontos básicos:
1) a origem da formação de dipolos no material:

Alguns sistemas dipolares podem ser, por exemplo, os dipolos formados pelas próprias impurezas presentes no material, como os defeitos moleculares substitucional (OH, CN); defeitos atômicos substitucional (como Li⁺, Cu⁺ em KCl, KBr e KI, por exemplo) ocupando posições fora de centro; dipolos formados pelo deslocamento local dos vizinhos mais próximos devido a substituição de um íon da rede por uma impureza de maior tamanho e ainda, a presença de vacâncias como compensadoras de carga na estrutura cristalina do material que podem estar associadas a impurezas alovalentes formando um dipolo do tipo impureza-vacância (I-V), tímica nos haletos alcalinos dopados com metais divalentes.

2) os mecanismos de relaxação que podem estar presentes:

Esses mecanismos podem ser classificados basicamente, em dois tipos: os dipolos relaxam por ativação térmica ou os dipolos relaxam por tunelamento quanto-mecânico. No primeiro caso temos o deslocamento de uma posição de equilíbrio para outra entre dois poços de potencial i e j, ou seja, o íon, inicialmente numa posição de equilíbrio i, adquire energia térmica suficiente para vencer a barreira de potencial, passando para outra posição de equilíbrio j. O segundo caso envolve o tunelamento através da barreira de potencial.

3) a forma com que as curvas características da relaxação dipolar se apresentam:

Uma curva de CDTE pode ser singular e descrita por um uma distribuição discreta dos parâmetros de relaxação mas, geralmente sua forma é mais complexa e muitas vezes é composta por uma série de picos caracterizando uma sucessão de
relaxações na amostra estudada descrevendo uma distribuição contínua ou discreta dos parâmetros de relaxação envolvidos.

No caso da alexandrita, sabe-se que os ions Cr$^{3+}$ ocupam duas posições com simetrias diferentes, citadas anteriormente, Al$_1$ e Al$_2$, e estão ligados à ions de oxigênio ocupando três posições diferentes na rede, designadas O$_1$, O$_2$ e O$_3$ na estrutura cristalina, conforme é apresentado no capítulo 2 desse trabalho. Assim, a presença de vacâncias intrínsecas na estrutura cristalina desse mineral, tais como vacâncias de oxigênio, pode dar origem à formação de entidades dipolares do tipo impureza-vacância distribuídas aleatoriamente na alexandrita. Também podemos partir do pressuposto que a presença do Cr$^{3+}$ (raio iônico 0,615 Å) [26] ocupando sítios usualmente preenchidos pelos ions Al$^{3+}$ (raio iônico 0,535 Å) causam distorções da estrutura na vizinhança o que pode, em primeira análise, favorecer a formação de dipolos, fazendo desse material um interessante candidato a uma investigação do fenômeno de relaxação dipolar através da técnica de CDTE.

Assim, neste trabalho estudamos cristais de alexandrita sob as formas sintética e natural, e verificamos que ocorre uma distribuição de bandas de CDTE centralizadas em torno de 179 K, no caso da amostra sintética e 188 à 196 K no caso de amostras naturais.

A excelente qualidade óptica da amostra sintética utilizada nesse trabalho somada ao conhecimento de uma participação ativa dos ions Cr$^{3+}$ nos sítios Al$_2$ nas propriedades ópticas da alexandrita, nos levou também a investigar o fenômeno da relaxação dipolar através de um experimento de CDTE modificado, cujo procedimento básico foi iluminar as amostras a baixa temperatura com condições iniciais diferentes de polarização. Numa primeira condição os dipolos existentes se
encontram orientados numa direção preferencial devido a aplicação do campo elétrico externo, e numa segunda condição, sem polarização inicial, os dipolos encontram-se orientados aleatoriamente e nessa situação são congelados abaixando-se a temperatura na amostra até 77K, onde somente com a aplicação do campo elétrico não seria possível sua reorientação.

Assim, com essas medidas foi possível verificar também o fenômeno de relaxação dipolar fotoinduzida e considerar a possibilidade de que as bandas de CDTE devem ser atribuídas a uma distribuição contínua dos parâmetros envolvidos no processo de relaxação, ou seja, energia de ativação e tempo de relaxação, conforme é apresentado no capítulo 4 deste trabalho.

O cristal de alexandrita na forma sintética foi crescido pelo método de Czochralsky nos E.U.A. (Allied Signal Inc.). Resultados das Microanálises de Espectroscopia por Dispersão de Energia de Raios X (EDX) e Espectroscopia por Dispersão de Comprimentos de Onda de Raios X (WDX) realizadas, indicaram apenas traços de inclusões de irídio e uma concentração desprezível de Fe na matriz hospedeira. Assim, é possível utilizá-la como referência na análise dos resultados obtidos com as medidas de CDTE para as amostras naturais, as quais são oriundas do Estado de Minas Gerais e, cujas microanálises através das técnicas de EDX/WDX mostraram uma alta concentração de Fe e outras impurezas na matriz hospedeira, além do Cr$^{3+}$.

No presente trabalho, paralelo ao estudo das propriedades elétricas das alexandritas, contamos com o auxílio de investigações de suas propriedades ópticas, através de medidas de absorção óptica e luminescência, as quais puderam também dar garantia da qualidade das amostras naturais utilizadas. Os espectros obtidos de
absorção óptica na região do ultravioleta e visível, e emissão óptica, foram plenamente coincidentes com a literatura [27,28]. A análise estrutural das amostras naturais, através da técnica de Difração de Raios X, confirmou sua estrutura ortorrombica e os parâmetros de rede foram determinados e coincidentes com a literatura [29].

Por outro lado, as bandas de CDTE foram também investigadas em função de tratamentos térmicos variando-se a temperatura e o tempo de tratamento para as amostras naturais pois, conforme mencionado, somente essas apresentam quantidades significativas de outras impurezas em sua estrutura, com a presença de inclusões sólidas (mica e quartzo) e líquidas (detectadas no espectro de absorção óptica na região do infravermelho), que poderiam influenciar na investigação de suas propriedades elétricas. Foi observado que os tratamentos térmicos provocam uma alteração na forma e posição das bandas de CDTE, deslocando a banda para temperaturas diferentes dependendo da temperatura utilizada no tratamento térmico e dando origem a uma banda larga centralizada em torno de 178K, ou seja, mais próxima da banda de CDTE obtida para a amostra sintética.

Assim, em resumo, podemos dizer que a metodologia experimental utilizada nesse trabalho basicamente compreende três etapas: i) preparação das amostras, adequando-as à cada uma das técnicas experimentais utilizadas, com posterior identificação dos elementos presentes e obtenção de informações cristalográficas de interesse; ii) caracterização óptica das amostras com a determinação de parâmetros espectroscópicos e comparação com os apresentados na literatura e iii) caracterização elétrica das amostras com a determinação dos parâmetros de relaxação dipolar elétrica desse material, através da técnica de CDTE.
No capítulo 2 é apresentado um resumo das informações a respeito do material estudado, descrevendo o “efeito alexandrita”, sua estrutura cristalina, algumas propriedades físicas e características do laser de alexandrita e informações a respeito das propriedades ópticas desse material. No capítulo 3 descrevemos as técnicas experimentais utilizadas: Espectroscopia por Dispersão de Energia de Raios X e Espectroscopia por Dispersão de Comprimentos de Onda de Raios X (EDX e WDX), Difração de Raios X, Absorção Óptica na região espectral do ultravioleta, visível e infravermelho, medidas de Luminescência e principalmente, Corrente de Despolarização Termicamente Estimulada (CDTE) e CDTE fotoinduzida. No capítulo 4 são apresentadas as composições químicas relativas das amostras estudadas, obtidas por análises de EDX e WDX, e ainda os resultados obtidos na caracterização estrutural das amostras naturais, com a verificação de sua estrutura cristalina ortorrombica e parâmetros de rede, obtidos pela técnica de Difração de Raios X. Também são apresentados os resultados das medidas de Absorção e Emissão Óptica para ambos os tipos de amostras à temperatura ambiente e a 77K. O capítulo 4 se refere também as medidas de CDTE, descrevendo o comportamento das bandas, as quais são bem ajustadas quando levamos em conta a ocorrência de uma distribuição contínua de energia de ativação e tempo de relaxação, com as curvas teóricas calculadas pelo método proposto por HAVRILIAK e NEGAMI [30]. Nesse capítulo também são apresentados os resultados das medidas de CDTE em função dos tratamentos térmicos realizados para as amostras naturais e os resultados obtidos através das medidas de CDTE fotoinduzidas, as quais reforçam a ocorrência de uma distribuição contínua dos parâmetros de relaxação.
No capítulo 5 são apresentadas as conclusões a respeito da investigação das propriedades elétricas da alexandrita e, assim, com este trabalho pretendemos contribuir significativamente para uma maior compreensão das propriedades elétricas desse material que possui amplo potencial para aplicações científicas e tecnológicas.

1.2 – OBJETIVOS DESTE TRABALHO.

O principal objetivo que norteou este trabalho foi a utilização da técnica de Corrente de Despolarização Termicamente Estimulada (CDTE) para uma investigação sistemática da ocorrência da formação de dipolos em cristais de alexandrita (BeAl₂O₄: Cr³⁺) nas formas sintética e natural. A técnica de CDTE, até então não utilizada na caracterização de alexandritas, permite determinar os parâmetros envolvidos no processo de relaxação dipolar que ocorre nesse material, ou seja, energia de ativação (Eₜ) e tempo de relaxação (τₒ). Com os resultados obtidos é proposto um modelo que descreve a origem do fenômeno de relaxação dipolar em alexandritas. Além disso, diante do conhecimento prévio das características ópticas desse material, com os espectros de absorção óptica e luminescência bastante conhecidos na literatura, tivemos como objetivo a utilização de um método de medidas de CDTE modificado, o qual chamamos de medidas de CDTE fotoinduzidas, com o qual pudemos observar a "destruição" e a "formação" das bandas de CDTE quando as amostras são fotoexcitadas com um laser de Kr⁺ sintonizado em comprimentos de onda localizados sobre as bandas de absorção desse material.
2 CARACTERÍSTICAS DA ALEXANDRITA

Neste capítulo apresentamos algumas propriedades e características da alexandrita, as quais tem sido reportadas nas últimas décadas e que também nos motivaram a estudar esse material. Também são apresentadas as características do laser de alexandrita, cuja utilização e performance possuem uma vasta quantidade de trabalhos relevantes apresentados na literatura.

2.1 - O "EFEITO ALEXANDRITA".

O crisoberilo (BeAl₂O₄) [31] é um mineral relativamente comum e sua cor pode apresentar vários tons de verde ou amarelo. Seu nome, em grego [32], significa “berilo dourado” e no Brasil explora-se o crisoberilo desde o século XVIII, especialmente na região de Minas Gerais. A alexandrita é a variedade de crisoberilo contendo Cr³⁺ (BeAl₂O₄: Cr³⁺) e é uma gema extremamente rara e de alto valor comercial. As descobertas das primeiras jazidas de alexandrita ocorreram na Rússia em 1830 [1] e, de acordo com PETERSEN [33], dados atuais apontam Brasil e Sri Lanka como os maiores fornecedores dessa gema, com jazidas ocorrendo principalmente nos estados de Minas Gerais, Bahia e Espírito Santo. Dados de 1993 [6], indicam a mais rica concentração de alexandrita do mundo na mina de Hematita, próxima da cidade de Itabira, MG.

As alexandritas naturais ocorrem quando soluções ricas em Be, provenientes de corpos graníticos, pegmatíticos ou outras manifestações hidrotermais percolam
rochas ultramáficas que atuam como fonte de Cr [11]. Gemas naturais de alexandrita podem exibir faces (100) e (001) e raramente, faces menores (010) [1].

Uma das mais atraentes características da alexandrita¹ é sua capacidade em mudar de cor, passando do verde na luz natural para vermelho sob luz artificial. De acordo com SCHMETZER et al [2] como a cor representa uma superposição de todas as regiões do espectro não absorvidas sob a luz do dia, as cores de um mineral são geralmente determinadas pela posição do mínimo de absorção entre 508 e 476 nm, dependendo se ele é verde, azul esverdeado ou azul na região visível. No caso da exposição da alexandrita à luz de lâmpada incandescente e, portanto, rica em comprimentos de onda no vermelho, ocorre o seguinte: sendo a transmissão na região do vermelho (666 nm) maior do que na região do azul-verde, a cor vermelha no visível será mais pronunciada. Ao expor a alexandrita à luz natural (solar ou lâmpadas fluorescentes “luz do dia”), a parcela na região do vermelho muito menor nesse tipo de transmissão, permite a dominância da cor verde-azul visível [33]. Essa mudança de cor é um fator muito importante na avaliação comercial dessas gemas, sendo que para ser chamada alexandrita é preciso que essa mudança situe-se em torno de 30% e alcance um máximo de 90% [7]. O fenômeno da mudança de cor é conhecido na literatura como “efeito alexandrita” [5] e inúmeros trabalhos têm sido apresentados nas últimas décadas investigando esse fenômeno, tanto para a alexandrita quanto para outros minerais que apresentam o efeito de mudança de cor [33,34]. SCHMETZER et al [2] apresentam um estudo sobre a causa da mudança de cor em diversos minerais, através dos espectros de absorção óptica polarizados e apresentam características comuns do espectro de absorção dos sólidos do tipo alexandrita.

¹ O nome alexandrita foi dado em homenagem ao Czar Alexandre II da Rússia.
investigados. O “efeito alexandrita” é ilustrado na Figura 1 para um cristal natural lapidado disponível comercialmente.

Figura 1 – Ilustração do “Efeito alexandrita” para um cristal natural lapidado disponível comercialmente, extraído da referência [35].

Na literatura, a maioria dos autores atribuem esse efeito às concentrações relativas de Cr³⁺ nos dois sitios com simetrias diferentes presentes nesse mineral ("espelho" e "centro de inversão"), conforme é descrito por RAGER et al [13] e mencionado no capítulo 1 deste trabalho. Na Tabela 1 são apresentados alguns resultados obtidos por RAGER et al [13] os quais indicam que há uma dependência da mudança de cor com a concentração de Cr³⁺ e com a taxa relativa de Cr³⁺ nos sitios Al₁ e Al₂, determinada a partir de medidas de Ressonância Paramagnética Eletrônica (EPR).
Tabela 1 - Alguns resultados obtidos com medidas de EPR relacionando a mudança de cor com a concentração de Cr$^{3+}$ e a taxa relativa de Cr$^{3+}$ nos sítios Al$_2$ (localizados num plano de reflexão) e Al$_1$ (localizados num centro de inversão). Extraído da referência [13].

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Obtenção /localização</th>
<th>Cor sob luz natural</th>
<th>Mudança de cor</th>
<th>Microanálises (% em peso)</th>
<th>I(Cr$^{3+}$(Al$_2$)): I(Cr$^{3+}$(Al$_1$))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Czoehralski (Allied Corporation) EUA</td>
<td>Verde</td>
<td>Moderada à intensa</td>
<td>Fe$_2$O$_3$: 0.01</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.25</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Czoehralski (Inst. Geol. & Geophysics), Rússia</td>
<td>Verde brilhante</td>
<td>Fraca à moderada</td>
<td>Fe$_2$O$_3$: 0.12</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.16</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Cres. Fluxo (Inst. Geol. & Geophysics), Rússia</td>
<td>Verde</td>
<td>moderada</td>
<td>Fe$_2$O$_3$: 0.60</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.23</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Orissa, Índia</td>
<td>Verde intensa</td>
<td>intensa</td>
<td>Fe$_2$O$_3$: 1.34</td>
<td>Não determinada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.71</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lake Manyara, Tanzânia</td>
<td>Verde</td>
<td>moderada</td>
<td>Fe$_2$O$_3$: 0.93</td>
<td>Não determinada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.21</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hematita, Minas Gerais, Brasil</td>
<td>Verde muito brilhante</td>
<td>Não observada</td>
<td>Fe$_2$O$_3$: 1.31</td>
<td>Não determinada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.06</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Hematita, Minas Gerais, Brasil</td>
<td>Verde</td>
<td>moderada</td>
<td>Fe$_2$O$_3$: 1.04</td>
<td>Não determinada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.32</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Hematita, Minas Gerais, Brasil</td>
<td>Verde intensa</td>
<td>Intensa</td>
<td>Fe$_2$O$_3$: 1.22</td>
<td>Não determinada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr$_2$O$_3$: 0.45</td>
<td></td>
</tr>
</tbody>
</table>

No estudo feito por RAGER et al [13] o efeito alexandrita para os cristais naturais examinados, não pode ser correlacionado com as quantidades de Cr$^{3+}$ nos sitios Al$_1$ e Al$_2$, através de medidas de EPR, em razão de uma forte superposição das linhas de Fe$^{3+}$ com as linhas de Cr$^{3+}$(Al$_1$) nos espectros obtidos. RAGER et al apresentam apenas uma estimativa de que a taxa de Cr$^{3+}$(Al$_2$):Cr$^{3+}$(Al$_1$), muito provavelmente, aumenta com o aumento de concentração de Cr nos cristais naturais estudados. A única correlação com a intensidade de mudança de cor observada visualmente e a composição química das amostras naturais é a quantidade absoluta de cromo dos cristais. Esses autores também observaram que, para 18 amostras de alexandrita naturais oriundas da mina de Hematita2, no estado de Minas Gerais, Brasil, um aumento da intensidade da mudança de cor é correlacionado diretamente com a quantidade de Cr$_2$O$_3$, quando essa aumenta de 0.03 para 0.64 % em pesos nesses 18 cristais. Em alexandritas, principalmente as naturais, pode ocorrer também a presença de Fe$^{3+}$ substituindo os ions de Cr$^{3+}$ e, de acordo com a literatura, embora a concentração de Fe possa ter um certo efeito sobre a intensidade da mudança de cor, a quantidade total de Fe parece ser de menor influência sobre o efeito comparado com a concentração absoluta de cromo do cristal [13]. Alguns autores atribuem o fenômeno da mudança de cor à um efeito psico-físico do olho humano e cérebro ao invés de qualquer mudança abrupta nas propriedades do material [36].

2 Dados de 1993 apontam a mina de Hematita (também chamada Nova Era e Itabira), localizada a 20Km da cidade de Itabira, Minas Gerais, tendo a mais rica concentração de alexandrita do mundo [6].
2.2 - ESTRUTURA CRISTALINA

A Figura 2(a) mostra a estrutura do crisoberilo em três dimensões e a Figura 2(b) mostra sua estrutura projetada sobre o plano bc. O crisoberilo pertence ao sistema cristalino ortorrombico e ao grupo espacial Pnma com parâmetros de rede a=9,407 Å, b=5,4781 Å e c=4,4285 Å para BeAl₂O₄ dopado com 0,3 % em átomos de Cr³⁺ (alexandrita) e a=9,3929 Å, b=5,4735 Å e c=4,419 Å para BeAl₂O₄ (crisoberilo) [29]. Sua estrutura cristalina foi determinada pela primeira vez em 1926, por BRAGG & BROWN, e refinada por FARREL [8] em 1963 e pode ser visualizada como sendo, aproximadamente, hexagonal com empacotamento compacto (hcp), com célula unitária constituída por quatro moléculas, com oito íons de Al³⁺ (0,535 Å) ocupando sitos octaédricos distorcidos e quatro íons de Be²⁺ (raio iônico 0,45 Å) ocupando sitos tetraédricos distorcidos, formados com os íons de oxigênio localizados em planos perpendiculares ao eixo c [14,15,16,31]. As distorções de uma estrutura hcp exata de íons oxigênio dão origem ao aparecimento de dois sitos de simetria diferentes, onde os íons Al³⁺ são substituídos por Cr³⁺ (0,615 Å): um sítio, Al₁, situado num centro de inversão (simetria C₃) e um sítio, Al₂, localizado num plano de reflexão (simetria C₂) [4,14,16,29,31]. Na Tabela 2 são apresentadas as coordenadas das posições equivalentes dos íons presentes na estrutura do crisoberilo e também as posições em termos da notação de Wyckoff [37].
Figura 2 - (a) Estrutura do crisoberilo com a indicação dos eixos a, b e c.
(b) Estrutura do crisoberilo projetada sobre (001), adaptada da referência [8].
Tabela 2 – Posições ocupadas pelos átomos na estrutura do crisoberilo [37]

<table>
<thead>
<tr>
<th>átomo</th>
<th>Posição de Wyckoff</th>
<th>Posições equivalentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₁</td>
<td>4a 0,0,0;</td>
<td>½,0,½; ½,½,½.</td>
</tr>
<tr>
<td>Al₂, Be, O₁, O₂ (O₃)</td>
<td>4c x,½,0; x,½,0; x,½,0</td>
<td>½-x,½,½-z; ½+x,½,½-z</td>
</tr>
<tr>
<td></td>
<td>x,y,z; ½+x,½-y, ½-z</td>
<td>x,½+y,z; x,½-y, ½+z</td>
</tr>
<tr>
<td></td>
<td>x,y,z; ½-x,½+y, ½+z</td>
<td>x,½+y,z; x,½-y, ½+z</td>
</tr>
</tbody>
</table>

As distâncias interatômicas na estrutura do crisoberilo foram determinadas por FARREL [8] e os valores médios das distâncias entre os vizinhos mais próximos são (considerando O₁, O₂ e O₃) Al(1)-O= 1,890Å (simetria C₃) e Al(2)-O=1,934Å (simetria C₃) [2,14,36]. Uma característica de interesse é o fato do octaedro Al₂ ser preferencialmente ocupado pelos ions Cr³⁺, por ser maior do que Al₁. Entretanto, isso não impede que ions Cr³⁺ sejam incorporados na rede hospedeira também em Al₁. Assim, desde que o ion Cr³⁺ (r=0,615Å) ocupa um sitio usualmente preenchido pelos ions Al³⁺ (r=0,535Å), este entra em um sitio que é, portanto, 16% menor [38]. A presença do ion Cr³⁺ em tal sitio causaria uma especie de compressao da estrutura na vizinhança e afetaria a intensidade do parametro de desdobramento do campo cristalino, Δ. De acordo com HASSAN [36], tem-se a expressao:

\[
\Delta = \frac{Q(r^4)}{R^5}
\]

onde Q é a carga nos ligantes, r é o valor médio dos raios dos orbitais d e R é a distancia interatômica metal-ligante, a qual mostra que a divisao do campo cristalino é inversamente proporcional às distancias interatômicas elevadas a quinta. Quanto menor a distancia metal-ligante, maior o valor de Δ [39].
Na literatura são encontrados diversos trabalhos a respeito das propriedades estruturais do crisoberilo como, por exemplo, o trabalho de HAZEN [40], onde cristais de crisoberilo natural oriundos de Colatina no Espírito Santo são utilizados em métodos de medidas cristalográficas à altas pressões, documentando as mudanças estruturais que resultam em compressão anisotrópica.

Em alexandritas, como foi mencionado anteriormente, pode-se ter também, Fe\(^{3+}\) (0,645Å) substituindo os ions Al\(^{3+}\), localizados num plano de reflexão [10,31].

2.3 – PROPRIEDADES FÍSICAS E O LASER DE ALEXANDRITA.

Outras características importantes da alexandrita é o fato de possuir alta resistência mecânica e ser quimicamente estável [4]. Desde 1974, quando se tornou possível obter cristais sintéticos de alexandrita de bom tamanho e de boa qualidade óptica crescidos pelo método de Czochralski [41,42,43,44], a alexandrita tornou-se tecnologicamente importante como um meio ativo para laser de estado sólido sintonizável [4]. No crescimento pelo método de Czochralski, cadinhos de Ir, fornos cerâmicos de zircônia e atmosferas N\(_2\)-O\(_2\) são utilizados e os defeitos ópticos identificados nesses cristais são eficientemente eliminados ou controlados. As propriedades físicas da alexandrita são amplamente apresentadas na literatura e algumas delas estão resumidas na Tabela 3.
Tabela 3- Propriedades físicas da alexandrita obtidas na literatura.

<table>
<thead>
<tr>
<th>Propriedade</th>
<th>Valor</th>
<th>referências</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponto de fusão</td>
<td>1870 °C</td>
<td>[4,6,31,45]</td>
</tr>
<tr>
<td>Densidade</td>
<td>3.68-3.70 g/cm³</td>
<td>[4,6,31,45,46]</td>
</tr>
<tr>
<td>Dureza</td>
<td>8,5 Mohs</td>
<td>[6,47]</td>
</tr>
<tr>
<td>Módulo de Young</td>
<td>0,469x10¹² Pa</td>
<td>[4]</td>
</tr>
<tr>
<td>Condutividade Térmica</td>
<td>23 W/m °C</td>
<td>[4,45,48,49]</td>
</tr>
<tr>
<td>Coef. de expansão térmica</td>
<td>7,07x10⁻⁶ K⁻¹</td>
<td>[4,45]</td>
</tr>
<tr>
<td>Calor específico</td>
<td>0,83 J/gK</td>
<td>[45]</td>
</tr>
<tr>
<td>Índices de refração: linear</td>
<td>1,74</td>
<td>[45,49]</td>
</tr>
<tr>
<td>Não linear</td>
<td>2,0x10⁻²⁰ m²/W</td>
<td>[45,49]</td>
</tr>
</tbody>
</table>

A alexandrita é o terceiro material dopado com Cr³⁺, depois do Rubi e YAG:Cr, onde foi observada a ação laser. Entretanto, na alexandrita a ação laser ocorre não apenas nas linhas R, como nos dois primeiros, mas também na banda vibrônica onde o laser funciona como um sistema de 4 níveis e é sintonizável de 700 à 800 nm. Portanto, um dos méritos de alexandrita é o de ser usada como meio ativo de laser sintonizável contínuo, centralizado em 750nm e largura de 100 nm, com um baixo limiar de excitação para operar em sistema de 4 níveis à temperatura ambiente. Resumidamente, dentre outras características desse laser, tem-se operação com chaveamento Q ("Q-switch") de alta potência, excelentes propriedades físicas, e total simplicidade de operação, as quais combinam para fazer da alexandrita um laser de estado sólido sintonizável superior a outros tipos de lasers [5,48].
Algumas propriedades do laser de alexandrita em comparação a outros lasers são apresentadas na Tabela 4, e uma comparação mais detalhada, levando-se em conta também outros tipos de lasers além dos contidos nessa tabela, é feita por FABENI [5]. No trabalho reportado por PAYNE [50] é apresentada uma relação de 22 materiais hospedeiros dopados com Cr$^{3+}$ utilizados para operação laser de estado sólido, sendo que a melhor performance é atribuída ao laser de alexandrita. Portanto, desde que ocorreu a primeira operação do laser de alexandrita em 1974, com o 1º laser sendo patenteado por R.C.MORRIS e C.F.CLINE em 14/12/1976 [49], suas características e performance tem sido bastante investigadas e muitos esforços foram feitos para melhorá-lo, conforme é descrito por FABENI [5].

Tabela 4 – Propriedades do laser de alexandrita comparadas a outros lasers. $\Delta \lambda$: largura da banda a meia altura da emissão; σ_e: seção de choque da emissão estimulada; n: índice de refração (para $\lambda=250$nm); ε: perda por espalhamento; σ: tempo de vida da emissão espontânea.

<table>
<thead>
<tr>
<th>Hospedeiro laser</th>
<th>Alexandria</th>
<th>Al$_2$O$_3$: Ti</th>
<th>LiSAF:Cr</th>
<th>Vidro:Nd</th>
<th>YAG:Nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ central fundamental do laser (nm)</td>
<td>755</td>
<td>835</td>
<td>852</td>
<td>1053</td>
<td>1064</td>
</tr>
<tr>
<td>$\Delta \lambda$ (nm)</td>
<td>160</td>
<td>20</td>
<td>220</td>
<td>22</td>
<td>0,45</td>
</tr>
<tr>
<td>$\sigma_e (10^{-20} \text{cm}^2)$</td>
<td>0,5-5</td>
<td>41</td>
<td>4</td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>σ (µs)</td>
<td>270</td>
<td>3,2</td>
<td>67</td>
<td>330</td>
<td>230</td>
</tr>
<tr>
<td>n</td>
<td>1,74</td>
<td>1,76</td>
<td>1,41</td>
<td>1,54</td>
<td>1,82</td>
</tr>
<tr>
<td>ε (cm$^{-1}$)</td>
<td>0</td>
<td>0</td>
<td>0,002</td>
<td>0</td>
<td>0,002</td>
</tr>
</tbody>
</table>
O laser de alexandrita possui um amplo potencial para aplicações científicas e atualmente diversos trabalhos tem sido apresentados na literatura [49,51,52,53], como por exemplo, o de IMAI e ITO [47], que mostram a obtenção de um laser de alexandrita com pulso longo na região do ultravioleta. No sistema descrito por esses autores o laser é bombeado com uma lâmpada “flash” e atinge pulsos longos e sintonizáveis no UV com a utilização de um dobrador de frequência (cristal de BBO). O laser de alexandrita tem também excelentes aplicações na área médica, como por exemplo, na remoção de tatuagens e pêlos e na eliminação de veias varicosas, etc [54,55].

Os espectros ópticos de cristais dopados com Cr\(^{3+}\), que tem configuração eletrônica do Argônio mais três elétrons de valência na sub-camada 3d, tem sido extensivamente estudados, sendo os níveis de energia do Cr\(^{3+}\) bem conhecidos, tanto para o íon livre como para o íon submetido a um campo cristalino de simetria octaedrica [56,57]. As características dos espectros possibilitam importantes informações na compreensão das interações fundamentais entre os íons opticamente ativos e a rede hospedeira. Os dados sobre características espectroscópicas de alexandritas apresentados na literatura até 1978 são obtidos usualmente com cristais naturais e portanto, podem ser distorcidos pela presença de outras impurezas nessas amostras [43].

As propriedades espectroscópicas do Cr\(^{3+}\) em alexandrita são similares as do Cr\(^{3+}\) em outros óxidos hospedeiros com simetria octaedrica, como Al\(_2\)O\(_3\) e YAlO\(_3\). Todos eles tem duas linhas bem definidas \(^4\text{A} \leftrightarrow ^2\text{E}\) (linhas R) e duas bandas de absorção largas \(^4\text{T}_1\), \(^4\text{T}_2\). Entretanto, a intensidade e posição relativa dessas
transições variam de hospedeiro para hospedeiro. Em geral, se o Cr$^{3+}$ está num sítio que possui simetria de centro de inversão, as transições por dipolo elétrico entre estados na configuração $3d$ são proibidas. Como consequência, o íon Cr$^{3+}$ que reside numa simetria de centro de inversão, como YAlO$_3$, tem uma transição de dipolo magnético de zero-fônon fraca. As transições assistidas por fônons ou vibrônicas tendem também a ser mais fracas no sítio com simetria de centro de inversão do que no sítio sem simetria de inversão como em Al$_2$O$_3$. No caso da alexandrita, os espectros de absorção e luminescência mostram sinais relacionados ao Cr$^{3+}$ nos sítios localizados num plano de reflexão, sendo que somente esses íons são caracterizados por altas probabilidades de transições por dipolo elétrico, ao passo que Cr$^{3+}$ no sítio com simetria de centro de inversão suporta transições por dipolo magnético [58,59].

Os espectros de absorção óptica da alexandrita obtidos na literatura, são mostrados na Figura 3, e o espectro de emissão é mostrado na Figura 4. Na Figura 5 é apresentado o diagrama de níveis de energia do Cr$^{3+}$. De acordo com a literatura, as características qualitativas dos espectros ópticos, como o número de linhas e suas intensidades relativas, dependem das diferentes polarizações em que são obtidos os espectros, ou seja, E∥a, E∥b ou E∥c, onde a, b e c são os eixos principais do cristal.
Figura 3- Espectro de absorção de alexandrita à temperatura ambiente. O gráfico menor mostra as linhas R, com a linha sólida preta para $E \parallel b$, linha azul para $E \parallel c$ e linha vermelha para $E \parallel a$. Adaptado da referência [27].

Figura 4- Espectro de luminescência da alexandrita à temperatura ambiente mostrando as linhas do Cr$^{3+}$ nos sitios localizados sobre um centro de inversão (S_1 e S_2) e sobre um plano de reflexão (R_1 e R_2). Adaptado da referência [28].
Figura 5 – Diagrama de níveis de energia para íons Cr\(^{3+}\) localizados sobre um plano de reflexão de alexandrita. Adaptado da referência [5].

No espectro de absorção as bandas largas são associadas com transições a partir do estado fundamental \(^{4}A_2\) para os estados excitados \(^{4}T_2\) (banda em torno de 590 nm) e \(^{4}T_1\) (banda em torno de 420 nm). Essas transições envolvem mudanças nos orbitais do campo cristalino dos elétrons e são portanto, altamente sensíveis ao campo cristalino em torno do íon.

As linhas do Cr\(^{3+}\) nos sitios localizados em um plano de reflexão, linhas R\(_1\) e R\(_2\), aparecem precisamente no mesmo comprimento de onda, 680,4 e 678,5 nm.
respectivamente, em ambos os espectros, absorção e emissão, à temperatura ambiente. As linhas R são associadas com transições à partir do estado fundamental para o nível 2E, e envolvem pequenas mudanças nas funções de onda do elétron devido ao spin, sem mudanças nos estados do campo cristalino e portanto, aparecem como linhas estreitas [27].

No espectro de emissão as linhas S_1 e S_2, em torno de 695,8 e 689,9 nm são as transições de zero-fonon $^2T_1 \leftrightarrow ^4A_2$ e aparecem como linhas estreitas em 655,7, 649,3 e 645,2 nm, respectivamente, no espectro de absorção óptica.

As linhas estreitas aqui descritas têm suas intensidades bastante diferentes para diferentes polarizações e à baixa temperaturas [43]. SUCHOCKI et al [60] apresentam o espectro de absorção da alexandrita à temperatura de 12K e também os detalhes estruturais na região de 640 a 660 nm com variação de temperatura de 4 à 206K. Devido à simetria ortorrômica da alexandrita, o cristal é opticamente biaxial [1]. No diagrama de níveis de energia a intensidade do campo cristalino regula a posição do nível 2E (a qual gera a emissão da linha R estreita) com respeito à posição da banda de energia 4T_2 (a qual gera a emissão larga). Para intensidades de campo menores a banda 4T_2 é abaixada, modificando as posições da banda de emissão. Os níveis largos são as bandas laterais vibrônicas fortes das transições $^4A_2 \rightarrow ^4T_2$ e $^4A_2 \rightarrow ^4T_1$. O parâmetro que mede a força do campo cristalino é Dq/B, onde Dq é o acoplamento entre o campo cristalino eletrostático e o campo Coulombiano, e B é o parâmetro de Racah o qual leva em conta a interação elétron-elétron [5]. A partir da posição média do pico das bandas de absorção, os valores Dq e B podem ser calculados [61] e para alexandritas tem-se que 10Dq=1739 cm$^{-1}$ e B=650 cm$^{-1}$.
Na literatura são encontrados também, outros trabalhos investigando as propriedades ópticas da alexandrita, atribuídas principalmente aos íons de Cr³⁺ localizados nos planos de reflexão (Al₂). Por exemplo, no trabalho apresentado por SUN et al [62], é feita uma análise do decaimento da fluorescência da emissão de alexandrita com alta dopagem de Cr³⁺, com propósitos de aplicação para sensores ópticos. De acordo com os autores, um decaimento de exponencial dupla da emissão foi observado, diferindo da exponencial simples que ocorre para concentrações mais baixas do íon ativo Cr³⁺, e a origem do fenômeno foi investigada tanto experimentalmente como teoricamente, encontrando-se que o fenômeno vem do Cr³⁺ tanto nos sítios Al₁ como Al₂. Assim, em relação às propriedades ópticas da alexandrita, a bibliografia é bastante ampla e muitos trabalhos tem sido reportados nas últimas décadas e, no presente trabalho, tais propriedades também foram identificadas a fim de, principalmente, auxiliar na compreensão da caracterização elétrica, através de medidas de Corrente de Despolarização Termicamente Estimulada, as quais são feitas pela primeira vez em alexandritas.
3 MÉTODOS EXPERIMENTAIS

Nosso trabalho é centrado na investigação de alexandrita, através das medidas de Corrente de Despolarização Termicamente Estimulada (CDTE). No entanto, foi necessário a utilização de outras técnicas experimentais auxiliares com o intuito de fornecer subsídios necessários à interpretação dos resultados obtidos a partir de CDTE, conforme mencionado anteriormente. Assim, as três etapas descritas no início deste trabalho, preparação das amostras, no sentido de adaptá-las as diversas técnicas experimentais utilizadas, com posterior identificação dos elementos presentes e obtenção de informações cristalográficas de interesse (i), caracterização óptica das amostras com a determinação de parâmetros espectroscópicos (ii), e caracterização elétrica das amostras com a determinação dos parâmetros de relaxação dipolar elétrica desse material (iii) são correlacionadas e com isso obtemos um modelo que explica o comportamento de relaxação dipolar elétrica de alexandritas.

Neste capítulo é feita uma breve descrição das amostras utilizadas neste trabalho e a seguir são apresentadas as técnicas experimentais utilizadas na identificação da composição química das amostras (Espectroscopia por Dispersão de Energia de Raios X –EDX e Espectroscopia por Dispersão de Comprimentos de Onda de Raios-X – WDX), na análise estrutural (Difração de Raios-X), na caracterização óptica (Absorção e Emissão Óptica) e na caracterização elétrica (Corrente de Despolarização Termicamente Estimulada-CDTE). É dado maior destaque à técnica de CDTE por se tratar da principal ferramenta por nós utilizada na caracterização de alexandritas. As características que envolvem o estudo de diplos elétricos também são apresentados neste capítulo.
3.1 - PREPARAÇÃO DAS AMOSTRAS, MICROANÁLISE E ANÁLISE ESTRUTURAL

Nessa seção é feita uma abordagem dos procedimentos seguidos na preparação das amostras e também de alguns critérios adotados na escolha de quais amostras serão utilizadas em cada uma das técnicas experimentais que são apresentadas ao longo desse capítulo. As técnicas de EDX/WDX e difração de raios X são brevemente descritas, sendo que os principais objetivos na utilização dessas técnicas foram a determinação dos elementos presentes nas amostras e suas concentrações, através das microanálises elementares por EDX/WDX e a verificação dos parâmetros de rede das amostras naturais e de sua estrutura cristalina, através da técnica de difração de raios X, utilizando o método do pó [46,63].

3.1.1 - PREPARAÇÃO DAS AMOSTRAS

As amostras de alexandritas naturais são provenientes do Estado de Minas Gerais, sendo sua forma original bastante irregular, apresentando-se como pequenas pedras de aproximadamente 1 cm² e espessura em torno de 5 mm, de cor verde escura, passando ao vermelho claro quando expostas a luz de lâmpada incandescente, sendo esse um forte indício da qualidade de nossas amostras naturais que apresentaram mais de 50% de mudança de cor em seu volume, quando iluminadas com uma lanterna de lâmpada de tungstênio. As pedras apresentam incrustações que, em alguns casos, originam uma cor esbranquiçada e aspecto leitoso, deixando bastante evidente não serem um material puro, como era de se esperar de um cristal natural.
Uma das características desse material é o fato de possuir alta resistência mecânica, com 8,5 de dureza na escala de Mohs [6] e módulo de Young em torno de $0,469 \times 10^{12}$ Pa [4,10], e portanto difícil de ser cortado. Assim, para obtermos amostras com faces planas e paralelas recorremos ao uso de um disco diamantado para cortarmos as pedras, originando amostras de espessuras que variavam de 1,17 a 2,86 mm.

Uma das amostras foi lapidada manualmente com lixas finas # 400 e # 600, movimentando-se a amostra de forma a descrever um oito e alternando-se, periodicamente, a face lapidada e, no final do processo, foi feita a limpeza da amostra com acetona. Depois de lapidada a amostra foi polida utilizando-se uma politriz não comercial, em nosso próprio laboratório. A amostra foi fixada através de uma camada de cera de abelha previamente derretida, em uma peça cilíndrica de aço inox.

Aplicando-se uma pequena pressão sobre a amostra, inicia-se o polimento, utilizando-se nujol e carburundum 2000 entre a amostra e a base da politriz, que faz a amostra girar com frequência regulável. Por se tratar de um material bastante duro e resistente, o tempo destinado à lapidação e polimento foi relativamente grande, em torno de 24 horas e, uma das dificuldades encontrada ao se trabalhar com esse material é que ele tende a se esfarelar quando polido, o que provavelmente seja devido a existência de diversas outras impurezas presentes nas amostras, formando inclusões sólidas, cuja existência foi depois verificada. A tentativa de se lapidar e polir esse material advém da necessidade de termos amostras livres de rugosidade e imperfeições superficiais em, basicamente, todas as técnicas que planejamos utilizar. Por não dispormos de muitas amostras naturais, pois as pedras são relativamente pequenas e ainda, durante o corte com disco diamantado ocorrer um fator de perda relevante, as amostras foram
divididas de forma a serem utilizadas de acordo com suas características macroscópicas (tamanho, regularidade das faces e transparência) nas diferentes técnicas experimentais, conforme é apresentado na Tabela 5, onde as amostras naturais são designadas pela sigla “AN”.

No caso da alexandrita sintética foi utilizada uma única amostra, crescida nos E.U.A., por H.P. Jenssen e R.Morris (Allied Signal Inc.), pelo método de Czochralsky e gentilmente cedida pelo prof. Dr. Tomaz Catunda, do DFI-USP-São Carlos. A área dessa amostra é de aproximadamente 35 mm² e espessura de 2,32 mm e apresenta faces perfeitamente paralelas e brilho não metálico, de aparência translúcida⁴ esverdeada mudando para o vermelho quando exposta a luz de lâmpada incandescente. Na Tabela 5 a amostra sintética é designada “AS1”.

Tabela 5– Características macroscópicas das amostras utilizadas e técnicas experimentais a que foram submetidas. “AN” refere-se as amostras naturais e “AS” a amostra sintética.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Origem</th>
<th>Cor</th>
<th>Espessura (mm)</th>
<th>Técnicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN1</td>
<td>pedra 1</td>
<td>Verde opaca</td>
<td>1,92</td>
<td>Absorção/CDTE/EDX</td>
</tr>
<tr>
<td>AN2</td>
<td>pedra 2</td>
<td>Verde opaca</td>
<td>2,86</td>
<td>Absorção/CDTE</td>
</tr>
<tr>
<td>AN3</td>
<td>pedra 3</td>
<td>Verde translúcida</td>
<td>2,03</td>
<td>CDTE/Absorção/Fluorescência/EDX</td>
</tr>
<tr>
<td>AN4</td>
<td>pedra 3</td>
<td>Verde opaca</td>
<td>Irregular</td>
<td>EDX/WDX/Raios X</td>
</tr>
<tr>
<td>AN5</td>
<td>pedra 4</td>
<td>Verde translúcida</td>
<td>1,17</td>
<td>CDTE/Absorção/Luminescência/EDX</td>
</tr>
<tr>
<td>AS1</td>
<td>-</td>
<td>Verde translúcida</td>
<td>2,32</td>
<td>CDTE/Absorção/Fluorescência/EDX</td>
</tr>
</tbody>
</table>

⁴ Em Mineralogia é utilizado o termo “brilho vitreo”, para descrever a aparência de minerais com brilho não metálico (minerais que são claros etransmitem luz através de suas bordas delgadas) [46]
O conjunto de amostras escolhidas e apresentadas na Tabela 5, juntamente com as diversas técnicas experimentais citadas na última coluna, a que foram submetidas cada uma delas, foi determinado levando-se em conta que nas medidas de CDTE é necessário a utilização de amostras possuindo superfícies planas e paralelas, sendo as melhores amostras a AN3 e AN5. Estas amostras foram também utilizadas nas medidas de absorção óptica nas regiões do ultravioleta, visível e infravermelho por serem também, as mais transparentes. A fim de otimizarmos o uso das amostras disponíveis, a parte restante da pedra que originou a amostra AN3, foi chamada de AN4, com formato irregular, e portanto a única a ser utilizada em uma técnica destrutiva, como no caso da técnica de Difração de Raios X pelo método do pó.

As amostras AN1 e AN2, obtidas a partir de pedras diferentes, também foram utilizadas nas medidas iniciais de CDTE e absorção óptica na região UV-VIS, entretanto, por serem muito espessas e opacas, foram abandonadas após ter-se tentado a lapidação de AN1, como mencionado anteriormente. A amostra sintética, sendo única, foi submetida a todas as medidas de interesse, tomando-se o cuidado de não utilizá-la em análises destrutivas.

3.1.2 - MICROANÁLISE POR EDX/WDX

A microanálise através da técnica de Espectroscopia por Dispersão de Energia de Raios X (EDX) foi realizada para todas as amostras utilizadas, com exceção apenas da amostra AN2 (muito opaca e espessa). Achamos conveniente realizar essa análise de forma abrangente, por estarmos trabalhando com amostras
naturais e portanto, com possibilidades de apresentarem características microscópicas diferentes, o que poderia acarretar resultados não reprodutíveis de uma amostra para outra. Além da técnica de EDX, foi realizada também a microanálise através da técnica de Espectroscopia por Dispersão de Comprimentos de Onda de Raios X (WDX), na tentativa de se conseguir uma determinação mais completa da composição química de nossas amostras.

O termo microanálise origina-se da capacidade de realização de análises químicas elementares em volumes muito pequenos, da ordem de um micrômetro cúbico. A técnica de EDX é baseada na medição da energia do fôton emitido e possui resolução geralmente da ordem de 138 eV. A técnica de WDX identifica os elementos com base no comprimento de onda da luz emitida, sendo o comprimento de onda inversamente proporcional ao número atômico e tem resolução da ordem de 5 a 20 eV. A diferença básica entre as duas técnicas está nos detetores utilizados para a medida de intensidade de raios-X. Nos EDX os detetores são materiais semicondutores e possuem softwares bastante sofisticados para processamento dos sinais de intensidade dos raios-X. entretanto, mesmo que tal sistema produza análises bastante rápidas ele não possui a mesma resolução e precisão do WDX que, em geral, utiliza dois tipos de detetores em um mesmo dispositivo, denominados contador de fluxo proporcional (FPC) e contador proporcional vedado (SPC), sendo que cada detetor atua em uma faixa específica de emissão de raios X, e constituem sistemas mecânicos de alta precisão. Os detetores de EDX e WDX podem ser ajustados para permitir a passagem de sinais correspondentes a apenas um pico espectral, característico de determinado elemento. A análise pode ser qualitativa e quantitativa para elementos com número atômico, Z, maior do que 10, com limite de detecção a
partir de 100 ppm e apenas qualitativa para Z entre 5 e 10. A técnica de WDX tem sensibilidade até 100 ppm e a EDX de 1000 ppm. A sensibilidade é baixa para elementos leves em uma matriz pesada e a análise quantitativa é limitada a superfícies planas e polidas [64,65].

As análises de EDX foram realizadas no Laboratório de Microscopia do DFCM-IFSC/USP e WDX no Laboratório de Análise Microestrutural do CCDM/UFSCar-UNESP. A desvantagem no uso dessas técnicas foi a impossibilidade de uma análise quantitativa de linhas de elementos leves, como o berílio (Z=4) e, no caso do oxigênio (Z=8), embora tenha sido detectado por WDX, o erro associado a medida é considerado grande comparado aos elementos com Z > 10. A amostra sintética por ser perfeitamente plana e polida não necessitou de nenhuma preparação especial, além das necessárias às medidas de WDX/EDX, e a amostra natural AN4, por apresentar superfícies não planas foi embutida em uma resina e polida antes de ser submetida à análise de WDX. As análises de EDX/WDX são apresentadas no capítulo 4.

3.1.3 - DIFRAÇÃO DE RAIOS-X

O objetivo da utilização da técnica de Difração de Raios X, foi comprovar a estrutura cristalina ortorrombica das amostras naturais assim como confirmar seus parâmetros de rede.

A difração de raios X pelos cristais resulta de um processo em que os raios X são dispersos pelos elétrons dos átomos sem mudança de comprimento de onda (dispersão coerente ou de Bragg). Um feixe difratado é produzido por dispersão só
quando algumas condições geométricas, expressas pela lei de Bragg \((n\lambda=2d\sin\theta)\), são satisfeitas. A difração resultante de um cristal, compreendendo posições e intensidades das linhas de difração, é uma propriedade física fundamental da substância, servindo não só à identificação como também ao estudo de sua estrutura [63]. Portanto, a caracterização de minerais (ou fases) pode ser efetuada com o auxílio da difração de raios X sendo que, os espaçamentos interplanares (valores de \(d\)) constituem características físicas de um material, a exemplo da densidade, do índice de refração e etc.

Essas medidas foram realizadas no CCDM-UFSCar-UNESP, no Laboratório de Difração de Raios X. As condições de ensaio foram: intervalo \(2\theta\) de 5\(^o\) à 80\(^o\), fenda de divergência e fenda de antiespalhamento igual a 3\(^o\), passo de 0,033\(^o\), tempo de exposição de 1s, porta amostra giratório com velocidade de 120 rpm e monocromador secundário de grafite. O equipamento utilizado foi um Difratômetro Siemens D500 operando com a linha \(K\alpha\) de emissão do Cu e comprimento de onda 1,5406\(\text{Å}\) e os difratogramas resultantes foram processados pelo programa original do equipamento, sendo então realizada a indexação dos planos cristalográficos segundo a tabela do crisoberilo para a obtenção dos índices de Miller. Os difratogramas de raios X obtidos são apresentados no capítulo 4.

3.2 – TÉCNICAS EXPERIMENTAIS UTILIZADAS NA DETERMINAÇÃO DOS PARÂMETROS ESPECTROSCÓPICOS.

A realização de medidas ópticas nesse trabalho, conforme descrevemos a seguir, visam explorar, de forma conveniente, algumas propriedades ópticas já
conhecidas na literatura. Com isso, obtemos informações auxiliares para a interpretação dos resultados de CDTE.

3.2.1 - ABSORÇÃO ÓPTICA

A utilização desta técnica nos permite estudar propriedades ópticas de materiais, que são influenciadas pela presença de impurezas na rede hospedeira. A técnica de absorção óptica se refere à absorção, por uma amostra, de radiação eletromagnética com comprimentos de onda na faixa do infravermelho até o ultravioleta. A energia absorvida acusa transições entre os níveis de energia eletrônico dos átomos, centros de cor, etc., ou transições da banda de valência para a banda de condução. Através dessa técnica podemos obter a concentração de impurezas, N, utilizando a fórmula de SMÁKULA [66,67]:

\[
N = 0.87 \times 10^{17} \frac{n}{(n^2 + 2)^2} \cdot \frac{1}{1240} \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right) \cdot 2.303 \frac{D.O.}{fe} \quad (2)
\]

Nessa equação, \(n \) e \(f \), índice de refração para o pico da banda e força do oscilador, respectivamente, podem ser obtidos na literatura para diversos materiais; \(\lambda_1 \) e \(\lambda_2 \) (ambos em nm), comprimentos de onda que definem a largura a meia altura da banda, D.O., densidade óptica, são obtidos a partir do espectro de absorção e \(e \) (cm) é a espessura da amostra. A constante \(0.87 \times 10^{17} \text{ cm}^{-1} \) é utilizada considerando-se que a forma da curva obtida seja uma Gaussiana.
Sendo densidade óptica, D.O., ou absorbância definida como:

\[\text{D.O.} = \log_{10} \left(\frac{I_o}{I} \right) \]

onde \(I_o \) é a intensidade de luz transmitida por um cristal não dopado e \(I \) é a intensidade de luz de um cristal dopado.

A partir de resultados experimentais temos:

\[N = 2,303\sigma \frac{D.O.}{e} \]

onde \(\sigma (\text{cm}^2) \) é o inverso da seção de choque.

O coeficiente de absorção óptica (\(\alpha \)) pode ser calculado como:

\[\alpha = 2,303 \frac{D.O.}{e} \]

É interessante observar que, conforme descrito por BURNS [39], várias constantes têm sido utilizadas para expressar a absorção sendo que todas elas são baseadas na equação geral:

\[\log_{10} \left(\frac{I_o}{I} \right) = \alpha b \]

onde \(I_o \) é a intensidade da luz incidente, \(I \) é a intensidade da luz emergente, \(\alpha \) é a constante de absorção e \(b \) é uma constante que depende das condições da medida.

As numerosas constantes de absorção encontradas na literatura têm origem a partir da escolha de quantidades incorporadas na constante b. Alguns dos termos mais comuns usados para expressar absorção em minerais são resumidos na Tabela 6.
Tabela 6– Vários termos usados para absorção. * e é a espessura do material; C é a concentração das espécies absorvedoras [39].

<table>
<thead>
<tr>
<th>Termo</th>
<th>Símbolo</th>
<th>Equação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmissão</td>
<td>T</td>
<td>(T = I / I_0)</td>
</tr>
<tr>
<td>Absorção</td>
<td>A</td>
<td>(A = I - T = I / I_0)</td>
</tr>
<tr>
<td>Densidade óptica ou absorbância</td>
<td>D.O.</td>
<td>(D.O. = \log_{10}(I_0 / I))</td>
</tr>
<tr>
<td>Coeficiente de absorção ou coeficiente de extinção</td>
<td>(\alpha)</td>
<td>(\alpha = \log_{10}(I_0 / I_0)/e)</td>
</tr>
<tr>
<td>Coeficiente de extinção molar</td>
<td>(\varepsilon)</td>
<td>(\varepsilon = \log_{10}(I_0 / I)Ce)</td>
</tr>
</tbody>
</table>

Os espectros de absorção óptica foram obtidos utilizando-se um espectrofotômetro Cary 17, possuindo intervalo espectral de varredura de 185 a 2500 nm. As medidas de absorção na região UV-VIS foram realizadas à 300 K (TA) e 77 K (TNL). Nas medidas à temperatura de nitrogênio líquido utilizamos um dos criostatos não comerciais existente em nosso laboratório, que permite o resfriamento da amostra à temperatura de 77K, num curto espaço de tempo, da ordem de 5 à 15 minutos.

Também foram obtidos os espectros de absorção óptica na região do infravermelho (IV), utilizando-se um espectrofotômetro BOMEM DA8, no intervalo espectral de 2500 a 22222 nm (4000 a 450 cm\(^{-1}\)), à temperatura ambiente. As medidas na região do infravermelho servem, por exemplo, para o estudo de grupos moleculares que podem estar presentes em nossas amostras, como por exemplo H\(_2\)O.

Desde que eventuais processos térmicos possam alterar as características do material, como a formação de agregados, processos de difusão ou desagregação, utilizamos a técnica de absorção óptica no UV-VIS e IR, paralelamente às medidas.
de CDTE como ferramenta auxiliar na interpretação dos resultados obtidos com essas medidas. Nos espectros de absorção óptica na região do ultravioleta (UV) e visível (VIS) a resolução foi sempre igual à 0,5 nm e nos espectros de absorção óptica na região do infravermelho (IV) a resolução foi de 1,0cm⁻¹.

3.2.2 - LUMINESCÊNCIA

Os espectros de emissão óptica de alexandritas, tanto natural quanto sintética, são também bastante conhecidos [27]. Em vista disso, foram obtidos os espectros de luminescência para nossas amostras em primeiro lugar, com o objetivo de verificar o seu comportamento e então compará-lo com os espectros apresentados na literatura, certificando assim mais uma vez, a qualidade de nossas amostras, principalmente as naturais. Pudemos também realizar uma comparação das posições e intensidade das linhas de emissão entre os dois tipos de amostras utilizadas, natural e sintética, o que pode fornecer informações auxiliares importantes na interpretação das medidas de CDTE.

O arranjo experimental utilizado nas medidas de luminescência [68] foi montado em nosso próprio laboratório pelos alunos de pós-graduação Antônio Carlos de Castro e Fábio Simões de Vicente e, o diagrama esquemático simplificado [69] é mostrado na Figura 6. Foi utilizado como fonte de excitação um laser INNOVA COHERENT 200 de Kr⁺ sintonizado no multilinhas ultravioleta, (MLUV: 337,5nm, 350,7nm e 356,4nm), o qual provoca uma mudança de 100% na cor da amostra, excitando uma das bandas de absorção do Cr³⁺. O feixe do laser
sintonizado no MLUV, utilizado nas medidas de luminescência, corresponde às linhas de energia mais alta disponíveis em nosso laboratório.

Figura 6– Diagrama esquemático do sistema de medidas de luminescência. Extraído da referência [69].

O feixe do laser é direcionado por espelhos e focalizado na amostra por meio de uma lente e um outro espelho desvia o feixe, bombeando a amostra de modo que a geometria da luminescência fique paralela à fenda de entrada do monocromador, conforme é mostrado na Figura 6. A luz emitida é focalizada por uma lente objetiva e modulada por um “chopper” e a dispersão da luminescência é feita por um monocromador Thermo Jarrell Ash, com rede de difração de 1200g/mm e blaze de 500nm, medindo no intervalo de 380 à 900 nm, e detectado com uma fotomultiplicadora HAMAMATSU R446. O sinal é enviado para um lock-in ligado a um microcomputador que faz a aquisição do sinal gerado e também monitora o
posicionamento do motor de passo do monocromador. A luz do laser é filtrada conforme indicado no esquema da Figura 6, garantindo que o sinal detectado pelo monocromador é proveniente apenas da luminescência da amostra.

3.3 - CORRENTE DE DESPOLARIZAÇÃO TERMICAMENTE ESTIMULADA - CDTE

O objetivo principal que deu origem a este trabalho consiste na utilização de técnicas experimentais que proporcionem a caracterização elétrica de cristais de alexandrita. Na literatura, as propriedades elétricas desse material não são discutidas ou apresentadas, embora muitas questões a respeito de suas características, comportamento e utilização continuem sendo levantadas e investigadas. Nesse contexto, consideramos ser bastante interessante a aplicação em alexandritas da técnica de Corrente de Despolarização Termicamente Estimulada, CDTE, a qual tem sido largamente empregada no estudo de diversos materiais como por exemplo, sólidos iônicos (por exemplo, filmes e cristais de haletos alcalinos da família KCl, dopados com impurezas metálicas [70,71]), polímeros [72,73], óxidos [74] e até mesmo em semicondutores [75].

Assim, nesta seção, é dado ênfase à técnica de medidas de CDTE, a qual constitui a principal técnica utilizada neste trabalho e é feita uma descrição mais detalhada dos princípios básicos envolvidos e do procedimento experimental utilizado.
3.3.1 - PRINCÍPIOS BÁSICOS

Medidas de CDTE datam de 1936 quando FREI e GROETZINGER [25] propuseram incrementar a mobilidade de cargas congeladas pelo aquecimento suave de eletretos colocados entre dois eletrodos conectados a um medidor de corrente para detectar a corrente de descarga. A técnica foi depois amplamente utilizada por outros autores e todos eles faziam uso de um aumento de temperatura arbitrário e muitos estudos foram feitos com materiais complexos, como cera, resinas, cerâmicas e plásticos. Entretanto, as primeiras bases teóricas do fenômeno de corrente de despolarização estimulada termicamente foram introduzidas somente em 1964, por BUCCI e FIESCHI [21] com seus trabalhos sobre defeitos dipolares em cristais iônicos, sendo que, até então, os efeitos de polarização devido ao movimento iônico eram essencialmente estudados através de dois métodos: considerando-se a variação, no tempo, da corrente elétrica na amostra sujeita a um campo externo de, ou, por medidas de perdas dielétricas em função da temperatura. Essa técnica foi chamada inicialmente de “Termoconduetividade Iônica” ou “Termocorrente Iônica” (ITC) e desde então, muitos autores se dedicaram a investigar o fenômeno de relaxação dipolar usando procedimentos muitos similares entre si e muitos nomes diferentes foram dados ao mesmo tipo de medida. A técnica de CDTE mostrou ser um método bastante sensível e preciso na determinação de parâmetros físicos, como o tempo de relaxação (τ) associado aos defeitos, a energia de ativação (E_a) com que os defeitos se reorientam dentro do material hospedeiro e o tamanho do dipolo (p) responsável pela relaxação dipolar, em materiais sólidos, por meio de uma única medida. Um dos pré

4 Alguns termos encontrados na literatura são: “electret thermal analysis”, “thermally stimulated discharge”; “thermal current spectra”; “thermally stimulated depolarization”; “thermally activated depolarization”; [25].
requisitos para detectar o comportamento de defeitos em sólidos, através dessa
técnica, é que possuam comportamento clássico e apresentem características de
dipolo elétrico [76,77].

Assim, considerando um sistema de N diplos/cm³, sendo cada dipolo de
magnitude p, livres no espaço submetido a um campo elétrico E, a energia potencial
U do dipolo p será:

\[U = -pE = -pE\cos\theta \] (7)

onde \(\theta \) é o ângulo entre a direção do dipolo e a direção do campo. A polarização total
do sistema vem a ser:

\[P = Np\langle \cos\theta \rangle \] (8)

\(\langle \cos\theta \rangle \) representa o valor médio de uma distribuição em equilíbrio térmico, e pode
ser determinada através da distribuição de Boltzmann. A lei de distribuição de
Boltzmann que diz respeito à probabilidade relativa de encontrar um dipolo num
elemento de ângulo sólido d\(\Omega \) é proporcional a \(e^{-U/kT} \), onde \(k \) é a constante de
Boltzmann, e:

\[\langle \cos\theta \rangle = \frac{\int e^{-U/kT} \cos\theta d\Omega}{\int e^{-U/kT} d\Omega} \] (9)

integrando sobre o ângulo sólido, teremos:

\[\langle \cos\theta \rangle = \frac{\int_0^{\pi} 2\pi\cos\theta e^{pE\cos\theta/kT} d\theta}{\int_0^{\pi} 2\pi\cos\theta e^{pE\cos\theta/kT} d\theta} \] (10)
para simplificar o cálculo definimos $s=\cos \theta$ e $x=pE/kT$, de modo que:

$$
\langle \cos \theta \rangle = \frac{\int_{-1}^{1} e^{sx} ds}{\int_{-1}^{1} e^{sx} ds} = \coth x - \frac{1}{x}
$$

(11)

Este resultado define a função de Langevin $L(x)$ [76], cujo gráfico está representado na Figura 7.

![Figura 7 – Gráfico da função de Langevin $L(x)$](image)

É possível, então, observar que para valores $E>>kT$, o gráfico apresenta saturação, e para o caso contrário de $E<<kT$ a curva se ajusta a uma reta, isto é:

$$
L(x) = \coth x - \frac{1}{x} \approx \frac{x}{3} = \frac{pE}{3kT}
$$

(12)
A polarização do sistema de dipolos será então [78]:

\[P = np\langle \cos \theta \rangle = \frac{Np^2 E}{3kT} \] (13)

Para o caso em que o sistema de dipolos está dentro de um sólido, por exemplo monocristalino, é esperado que os dipolos se encontrem orientados aleatoriamente em direções preferenciais cristalográficas de equilíbrio, uma vez que o campo cristalino deve, de certa forma, interferir na reorientação dos dipolos. Considerando que cada dipolo possua g posições reorientáveis equivalentes de equilíbrio cristalográficos, teremos que a polarização pode ser reescrita da seguinte maneira:

\[P = Np\langle \cos \theta \rangle = \frac{Np \sum_{i=1}^{g} \cos \theta_i e^{-U_i/kT}}{\sum_{i=1}^{g} e^{-U_i/kT}} \] (14)

o sub-índice \(i \) representa a i-ésima posição de equilíbrio do dipolo.

O esquema do processo físico de CDTE é mostrado na Figura 8 e o método das medidas pode ser descrito da seguinte forma:

1) A amostra é primeiramente, polarizada em um campo elétrico \(E_p \) por um tempo \(t_p \), à uma temperatura de polarização \(T_p \). Essa temperatura deve ser tal que os dipolos ainda possam ser orientados estatisticamente com o campo elétrico aplicado no instante \(t_1 \), e não pode ser muito alta, de forma a impedir fortes contribuições de
carga espacial. Para assegurar uma boa polarização, devemos polarizar por um tempo \(t_p >> \tau(T_p) \).

2) Em seguida, a temperatura na amostra é abaixada a \(T_0 << T_p \), de forma que o tempo de relaxação dos dipolos é bastante longo, impossibilitando sua reorientação a baixa temperatura. Dependendo da situação que se queira estudar, \(T_0 \) pode ser temperatura de nitrogênio líquido ou temperatura de hélio líquido. Neste estágio podemos dizer que os dipolos encontram-se congelados e estatisticamente alinhados com o campo aplicado.

3) Após atingir a temperatura de hélio líquido (THL) ou a temperatura de nitrogênio líquido (TNL), o campo é retirado e um eletrômetro é ligado à amostra. Após esperar um certo tempo para que ocorra a descarga capacitiva inicial da amostra, esta é aquecida com uma taxa constante \(b = dT/dt \), e a corrente é registrada como uma função da temperatura. O tempo de relaxação fica cada vez mais curto e uma corrente de despolarização \(i(T) \) será detectada quando os dipolos perdem sua orientação de polarização preferencial. Durante o tempo em que este processo ocorre, a corrente primeiro aumenta exponencialmente até atingir um valor máximo e então cai rapidamente, chamamos esta corrente de despolarização termicamente estimulada ou termo-estimulada CDTE (ou ITC).
Figura 1- (a) representação esquemática do experimento de CDTE, mostrando os parâmetros campo elétrico (E), temperatura (T) e corrente (i), em função do tempo. Antes de aplicar o campo, a polarização é zero (0). Depois de aplicar o campo à T_p (1), um rápido aumento de I é detectado, seguido de um decaimento exponencial enquanto a polarização é feita. À T_0 o campo é removido (3). Sob aquecimento (4) um pico de corrente aparece. (b) esquema do movimento dos dipolos na amostra, correspondendo a situação física descrita em (a). Figura adaptada da referência [78].
Em nossas medidas foi utilizado um criostato óptico (Janis) modificado [71], onde a amostra é mantida em vácuo melhor do que 10^4 Torr. O campo elétrico de polarização teve seu valor definido de acordo com a espessura da amostra e o tempo de polarização foi de 5 min e, após esse tempo, as amostras foram resfriadas até TNL. Para detectar a corrente utilizamos um eletrômetro Keithley 6517A, acoplado a um microcomputador que registra os dados de temperatura, tempo e corrente. A taxa de aquecimento foi mantida em torno de 0,10 Ks$^{-1}$. O aquecimento na amostra foi feito através de uma resistência de 250 W, controlada manualmente e a temperatura é medida por meio de um termistor diodo de silício acoplado a um medidor digital OMEGA CYD201, colocado diretamente no dedo frio que suporta a amostra dentro do criostato. Os eletrodos nas amostras foram feitos pintando-se as faces maiores do cristal com tinta prata. A reprodutibilidade das medidas sobre diferentes amostras do mesmo cristal depende não somente da homogeneidade do cristal (sob o ponto de vista das impurezas) mas, também da qualidade dos eletrodos pintados.

A densidade de corrente $j(T)$ que ocorre durante o processo de aquecimento, com taxa constante b, num experimento de CDTE é dada por:

$$j(T) = \frac{p_0}{\tau_0} \exp \left(-\frac{E_a}{k_BT}\right) \exp \left[-\frac{1}{b}\int_{\tau_0}^{\tau} \exp \left(-\frac{E_a}{k_BT}\right) dT \right]$$

onde E_a(eV) é a energia da barreira de potencial que os dipolos precisam vencer para reorientar-se noutra direção durante a relaxação, ou seja, é a energia de ativação; k_B é constante de Boltzmann; τ_0 é o fator pré-exponencial para o tempo de relaxação de Arrhenius e b é a taxa de aquecimento.
No processo clássico de relaxação por ativação térmica, a dependência do tempo de relaxação com a temperatura é representada pela equação de Arrhenius:

\[\tau = \tau_0 \exp\left(\frac{E_a}{kT}\right) \]

(16)

onde \(1/\tau_0\) é a frequência vibracional do íon em torno de sua posição de equilíbrio e \(\exp(E_a/k_bT)\) é o fator estatístico de Boltzmann. Nesse caso o íon se desloca de uma posição de equilíbrio para outra, ou seja, se desloca entre dois poços de potencial \(i\) e \(j\), ao adquirir energia térmica suficiente para vencer a barreira de potencial.

Assim, analisando um pico de CDTE podemos obter as seguintes informações:

(1) a área delimitada pela função \(i(T)\) é proporcional ao número de dipolos de uma dada espécie presente na amostra. A área sob a curva de \(i[A]\) versus \(t[s]\) nos permite calcular a carga total da polarização \(Q\) [79]. Assim, desde que saibamos a concentração de dipolos \(N\) podemos obter o valor do momento de dipolo, a partir da equação 13, resultando em:

\[p = \left(\frac{3Qk_B T \nu e}{N E_p A_e} \right)^{1/2} \]

(17)

onde \(A_e (cm^2)\) é a área dos eletrodos e \(e (cm)\) é a espessura da amostra.

(2) o gráfico de

\[\ln \tau(T) = \ln \tau_0 + \frac{E_a}{k_B T} = \ln \left[\frac{\sigma i(t)}{i(T)} \right] - \ln i(T) \]

(18)

em função de \(1/T\) nos permite obter o valor da energia de ativação \(E_a\) e, consequentemente, da constante de tempo \(\tau_0\).
Cálculos de E_a e τ_0 a partir de picos de CDTE podem ser feitos por diversos métodos dos quais, muitos, são similares aos métodos utilizados em termoluminiscência [78]. Medidas de CDTE obedecendo um tratamento clássico de Debye, com um único tempo de relaxação, são raras e são encontradas por exemplo em alguns haletos alcalinos dopados com íons divalentes, onde cada dipolo impureza-vacância pode ser esperado para relaxar independentemente quando a concentração de impurezas é baixa. Inúmeros trabalhos sobre cristais iônicos, tipo NaCl, usando a técnica de CDTE existem na literatura e geralmente confirmam o comportamento de Debye.

O método proposto por BUCCI et al [23] é baseado em cálculos sucessivos de áreas parciais dos picos de CDTE, dando resultados com erros de $\pm 10\%$ nos valores de E_a. Esse método exige que se tenha um pico bem resolvido e uma boa estimativa da corrente de fundo. PRAKASH [80] em 1986, propôs um novo método o qual eliminava automaticamente a corrente de fundo e são obtidos valores de E_a com erros menores que $\pm 1\%$. A integral aparecendo na equação (15) não pode ser resolvida analiticamente, entretanto, através de integrações sucessivas por partes, uma expansão em série pode ser obtida. Assim, o método de Prakash baseia-se em levar em conta somente o primeiro termo dessa expansão, que pode serfeito se E/kT é grande. Nesse método a equação (15) é reduzida a:

$$i(T) = \frac{P_0}{\tau_0} \exp\left(-\frac{E_a}{k_BT}\right) \exp\left[-\frac{k_BT^2}{bE_a\tau_0} \exp\left(-\frac{E_a}{k_BT}\right)\right]$$

(19)

O método de Prakash foi então melhorado [81] levando-se em conta termos até 2^a. ordem na expansão da equação (15). Nesse caso, o pico de CDTE será dado por:
\[i(T) = \frac{P_0}{\tau_0} \exp \left(-\frac{E_a}{k_B T} \right) \exp \left[-\frac{k_B T^2}{b \tau_0 E_a} \left(1 - \frac{2k_B T}{E_a} \right) \exp \left(-\frac{E_a}{k_B T} \right) \right] \] (20)

e a intensidade de corrente máxima será:

\[i_m = \frac{P_0}{\tau_0} \exp \left(-\frac{E_a}{k_B T_m} \right) \exp \left(-1 + \frac{2k_B T_m}{E_a} \right) \] (21)

E assim, a função C(T) usada por Prakash é agora:

\[C(T) = \frac{i(T)}{i_m} = \exp \left\{ 1 + \frac{E_a}{k_B} \left(\frac{1}{T_m} - \frac{1}{T} \right) - \frac{T^2}{T_m^2} \left(1 - \frac{2k_B T}{E_a} \right) \exp \left(\frac{E_a}{k_B} \left(\frac{1}{T_m} - \frac{1}{T} \right) \right) - \frac{2k_B T_m}{E_a} \right\} \] (22)

onde \(i_m \) é a corrente máxima de despolarização e \(T_m \) é a temperatura máxima correspondente.

O modelo de Bucci et al descrito acima assume processos de relaxação discreta, cada um tendo energia de ativação e fator pré-exponencial bem definidos. Tal processo é muitas vezes chamado de "uma relaxação de Debye simples". De acordo com esse modelo, obtida a energia de ativação, pode-se calcular o tempo de relaxação \(\tau_0 \) através da seguinte expressão:

\[\tau_0 = \frac{k_B T_m^2}{bE_a} \exp \left(-\frac{E_a}{k_B T_m} \right) \] (23)

a qual é obtida derivando a expressão 15 em relação à temperatura e em seguida, maximiza-se tal expressão.

Entretanto, conforme já mencionado, uma curva de CDTE geralmente é complexa e muitas vezes é composta por uma série de picos caracterizando uma sucessão de relaxações na amostra estudada e dois tipos principais de problemas podem ser encontrados em sua análise: o primeiro é que podem existir dois picos
successivos que se superpõem parcialmente e então as duas relaxações não podem ser
separadas de uma maneira muito simples e o outro é que um pico individual pode ser
constituido por um grupo contínuo de relaxações e este não pode ser descrito por um
único tempo de relaxação e sim por uma distribuição de tempos de relaxação.

No caso de uma distribuição contínua de energia de ativação, a corrente de
despolarização é dada por:

\[j(T) = P_0 s \int_0^\infty \int s F(E) \exp \left[-\frac{E}{kT} - \frac{s}{b} \int \exp \left(-\frac{E}{kT'} \right) dT' \right] dE \] \hspace{1cm} (24)

E, no caso de uma distribuição contínua do fator pré-exponencial:

\[j(T) = P_0 \exp \left(-\frac{E}{kT} \right) \int_0^\infty \int s F(s) \exp \left[-\frac{s}{b} \int \exp \left(-\frac{E}{kT'} \right) dT' \right] ds \] \hspace{1cm} (25)

onde \(s=1/\tau_0 \), e \(F(E) \) e \(F(S) \) são as funções distribuições das energias de ativação e
fatores pré-exponencial.

Através dos resultados obtidos nesse trabalho foi verificada a necessidade de
um método de ajuste das curvas teóricas e experimentais considerando-se uma
distribuição contínua de tempo de relaxação e energia de ativação e então utilizamos
o método de Havriliak-Negami [30]. Nesse caso, a densidade de corrente é dada por:

\[J(T) = \frac{Q}{\tau_0} \int_0^\infty f(u) \exp \left[\left(u + \frac{E_a}{k_a T} \right) + \frac{k_a T^2}{\tau_0 b E_a} \exp \left[-\left(u + \frac{E_a}{k_a T} \right) \right] \right] du \] \hspace{1cm} (26)

sendo:
f(u) = \frac{\beta \theta}{\pi} \left[1 + 2 \cos \pi(1-\alpha) \exp[-u(1-\alpha)] + \exp[-2u(1-\alpha)]\right]^{-\frac{1}{2}} \quad (27)

onde:

\theta = \arctg \left(\frac{\sin(1-\alpha)}{\exp[u(1-\alpha)] + \cos \pi(1-\alpha)}\right) \quad (28)

Dependendo do tipo de distribuição envolvida (\tau_0 ou E_a), u será igual à:

\ln \frac{\tau_0}{\tau_{om}} \quad \text{ou} \quad u = \frac{E - E_m}{k_B T} \quad (29)

sendo \tau_{om} e E_m os valores mais prováveis de \tau_0 e E_a, respectivamente. O ajuste é feito variando \alpha, \beta, E_a e \tau_0.

Na literatura podemos encontrar inúmeros trabalhos descrevendo a interpretação das curvas de CDTE aplicadas a diversos materiais [82,83]. Os métodos utilizados na análise de curvas complexas de CDTE podem ser tanto experimentais, como o método de aquecimento parcial ou polarização fracional [84,85,86] quanto os baseados em cálculos numéricos para a decomposição da curva experimental de CDTE [87]. De acordo com a literatura [78] é encontrado que interações dipolo-dipolo dão origem a um processo de relaxação com uma distribuição de energias de ativação. Picos largos de CDTE, atribuídos a distribuições contínuas de energias de ativação ou fatores pré-exponencial, são comuns em polímeros, por exemplo. No caso de uma polarização distribuída, a forma e a temperatura do pico dependem fortemente da temperatura de polarização \text{T}_p e sobre o tempo que a amostra permanece polarizada antes de seu aquecimento.
De forma geral, os mais importantes parâmetros que podem ser conhecidos a partir de um processo de relaxação dipolar são: I) a energia de ativação \(E_a \), a qual está normalmente entre 1 e 100 kcal/mol, II) o fator pré-exponencial \(\tau_0 \), que é tipicamente da ordem de \(10^{-13} \text{ s}^{-1} \), III) a polarização de equilíbrio \(P_e \), a qual, via a função de Langevin, pode conduzir ao conhecimento da concentração de dipolos, \(N_d \), ou o momento de dipolo, \(p \), se uma ou outra quantidade é conhecida, e IV) eventualmente, a função de distribuição \(f(\tau) \).

3.3.2 - CDTE FOTOINDUZIDA

A alexandrita possui bandas de absorção bastante conhecidas que ocorrem na região visível do espectro (em torno de 590 e 420 nm,) e na região do ultravioleta (em torno de 265 nm) e são atribuídas aos íons de \(\text{Cr}^{3+} \) substituindo os íons \(\text{Al}^{3+} \) em dois sítios diferentes na estrutura cristalina. Supondo que a origem do fenômeno de relaxação dipolar nesse material tenha a participação dos íons de \(\text{Cr}^{3+} \), podemos esperar que exista uma influência da fotoexcitação desses íons presentes nas amostras, sobre o comportamento do processo de relaxação dipolar observado através da técnica de CDTE.

Assim, além das medidas de CDTE na sua forma convencional, conforme descrito anteriormente, foram realizadas também medidas de CDTE de uma forma modificada, onde é utilizado mais de um tipo de excitação das amostras, a fim de observar sua influência sobre o fenômeno de relaxação dipolar previamente identificado com as medidas usuais de CDTE. Este método consiste na fotoexcitação das amostras em uma temperatura na qual o sistema de dipolos já se encontre
plenamente congelado quer numa condição de polarização ou de despolarização. O método é chamado de CDTE Fotoinduzida (CDTEFI).

Uma representação esquemática do experimento de CDTEFI utilizado neste trabalho é apresentada na Figura 9. Em ambos os casos mostrados nessa figura temos a amostra sob as mesmas condições iniciais, ou seja, no estágio (1) a amostra se encontra no escuro, sem nenhum campo elétrico aplicado e mantida à temperatura ambiente. A diferença entre os dois processos, (i) e (ii) da Figura 9, tem origem no estágio (2) onde as condições iniciais antes de aplicar a fotoexcitação são diferentes para cada caso obedecendo os seguintes procedimentos:

(i) **O sistema de dipolos é previamente polarizado, orientado e congelado:**

Nesse caso, no estágio (2) a amostra é polarizada a uma temperatura T_p, onde os dipolos se encontram relaxando, por aplicação de um campo elétrico E_p, ou seja, o mesmo procedimento utilizado nas medidas usuais de CDTE. Em (3) a temperatura é abaixada rapidamente até 77K com o campo elétrico ainda aplicado. Após desligar o campo elétrico e esperar a corrente de descarga capacitiva, a amostra é irradiação com luz por 5 a 15 minutos (etapa 4). Em seguida, a amostra é retornada ao escuro e a temperatura é aumentada a uma taxa fixa (5). Neste processo a única modificação em relação a CDTE normal é a fotoexcitação da amostra a baixa temperatura, quando os dipolos já se encontram plenamente congelados numa condição de polarização.
(ii) O sistema de diplos previamente não polarizado e congelado orientado aleatoriamente:

Em (2) a amostra é levada, rapidamente, a partir da temperatura ambiente até 77K sem a aplicação do campo elétrico. Nessa temperatura, em (3), é aplicado o campo elétrico de polarização que, nesse caso, não poderia mudar a distribuição aleatória original dos diplos que se encontram congelados, mas, junto com o campo elétrico se incide luz na amostra por 2 a 15 minutos. Em seguida, na etapa (4) a amostra é retornada ao escuro e o campo elétrico é desligado, quando então se inicia o aquecimento da amostra a uma taxa fixa (5). Portanto, nesse caso a foto excitação é feita numa situação em que os diplos se encontram congelados e orientados aleatoriamente.

Podemos dizer que com o processo (i) pretendemos observar a ocorrência ou não de uma “destruição” das bandas de CDTE com a foto excitação da amostra e, com o processo (ii) observar a ocorrência ou não da “formação” das bandas de CDTE com a fotoexcitação. O arranjo experimental nas medidas de CDTEFI é exatamente o mesmo descrito na seção anterior com a única alteração de que agora, uma das janelas do criostato é de fluorita de modo a permitir a passagem do feixe de luz que irá incidir sobre a amostra da forma esquematizada na Figura 10.
Figura 9- esquema de medidas de CDTEFI. (i) incidência de luz quando o sistema de dipolos está previamente polarizado ($T_p=300K$) e congelado, (ii) incidência de luz quando o sistema de dipolos está previamente não polarizado e congelado ($T_p=77K$).
Figura 10 – Esquema indicando as direções da incidência de luz e aplicação do campo elétrico na amostra.

O estudo do efeito da fotoexcitação envolveu a utilização de várias linhas de emissão de um laser de Kr⁺, permitindo com isso, realizar uma investigação sistemática da dependência do comprimento de onda da excitação. As linhas de emissão foram: multilinhas ultravioleta (MLUV: 337,5; 350,7 e 356,4 nm), multilinhas violeta (MLVI:406,7; 413,1 e 415,4 nm), multilinhas verde-azul (MLBG:468,0; 476,2; 482,5; 520,8 e 530,9 nm) e multilinhas vermelho (MLRD:647,1 e 676,4nm).

O feixe é direcionado por espelhos e a intensidade da luz que chega na amostra é avaliada por um medidor de potência OPHIR OPTRONICS modelo DGX. Os comprimentos de onda acima foram escolhidos à partir do espectro de absorção óptica da alexandrita sintética, de forma a irradia a amostra em comprimentos de onda sobre as bandas de absorção. Ambos os processos descritos são observados em função do comprimento de onda utilizado e da potência do laser e, o processo (ii) foi realizado também em função do tempo de incidência de luz na amostra. Os resultados das medidas de CDTEFI são apresentados no capítulo 4.
3.4 - TRATAMENTOS TÉRMICOS.

Embora os tratamentos térmicos não estejam citados no início desse capítulo, quando foi descrita a metodologia experimental utilizada nesse trabalho, consideramos conveniente abordar esse assunto, ainda dentro do capítulo de procedimentos experimentais, uma vez que os resultados obtidos são apresentados para as amostras de alexandrita naturais em função de tratamentos térmicos realizados. Nosso objetivo, ao optarmos pela realização de tratamentos térmicos variando-se a temperatura e tempo de tratamento, foi observar sua influência sobre o comportamento de relaxação dipolar das amostras naturais, pois foi verificado com as microanálises de EDX e WDX, a presença de diversas outras impurezas nessas amostras, com inclusões de quartzo e mica, que poderiam interferir nas medidas de CDTE. Também as medidas de Difração de Raios-X, apresentadas no capítulo 4, indicam a presença dessas inclusões. Além disso, os espectros de absorção óptica na região do infravermelho apontaram a presença de H₂O e O-H.

Assim, as amostras AN3, AN4 e AN5 foram submetidas a tratamentos térmicos em uma mufla modelo CON3P-1800 da EDG, em atmosfera ambiente, variando-se o tempo de tratamento e temperatura. Para a amostra AN3 os tratamentos térmicos realizados foram de 700 °C por 15 minutos, 800 °C por 15 minutos, 900 °C por 15 minutos e 1000 °C por 5 horas, sendo o resfriamento feito imediatamente após atingir o patamar desejado, retirando a amostra do forno e colocando-a, no ar, sobre uma placa de vidro à temperatura ambiente esfriando-a rapidamente, de forma a tentar impedir que possíveis aglomerados de outras
impurezas uma vez dissociados com os tratamentos térmicos pudessem novamente serem formados. Entretanto, esse procedimento provocou fraturas na amostra que se partiu em duas após o 2º tratamento térmico.

Para a amostra AN5 os tratamentos térmicos foram feitos a 700, 800, 900 e 1000 °C por 5 minutos, respectivamente, e a 1000 °C por 5 horas. O resfriamento foi feito retirando a amostra do forno sempre na temperatura de 700 °C e colocando-a sobre uma folha de papel alumínio, que por sua vez estava situada sobre uma placa de vidro mantida à temperatura ambiente, para que atingisse essa temperatura mais lentamente, evitando-se assim choques térmicos que pudessem fragilizar muito a amostra, como ocorreu com AN3. Para AN5, optamos por um tempo mais curto de tratamento (5 minutos) a fim também de se tentar evitar a ocorrência de fraturas na amostra. Com isso, essa amostra se manteve mais resistente e transparente após os tratamentos térmicos em relação a amostra AN3, com sua aparência mudando apenas após o primeiro tratamento térmico (700 °C por 5 minutos), ficando mais opaca e apresentado menos fraturas, e sem alterações após os outros tratamentos.

A amostra AN4 foi cortada em três partes e uma delas foi submetida a um tratamento térmico à 700 °C por 5 minutos e outra parte a um tratamento térmico à 1000 °C por 5 horas, a fim de, posteriormente, realizar medidas de Difração de Raios X. Embora tenha se tentado formas diferentes de resfriamento, como descritas acima, com os tratamentos térmicos verificamos que, de forma geral, as amostras se tornam “quebradiças” resultando num cristal visivelmente fraturado. Este comportamento pode ser atribuído a um rompimento das paredes de inclusões fluidas existentes, que ocorre por volta de 500 °C, conforme foi recentemente verificado em cristais naturais de alexandrita com ocorrência na região de Minaçu, Goiás [33].
O fato da amostra sintética não ter apresentado as inclusões observadas nas amostras naturais, com análises de EDX/WDX, não achamos necessários submetê-la a tratamentos térmicos. Entretanto, a presença de outras fases não foi também descartada com análise de difração de raios X uma vez, que essa amostra não foi submetida à essa técnica de caracterização mas, em contrapartida, foi observado que o espectro de CDTE tem um aparência muito mais regular do que no caso das amostras naturais, conforme é apresentado no capítulo seguinte e portanto, mais uma vez achamos desnecessário a realização de tratamentos térmicos na amostra sintética.
4 RESULTADOS EXPERIMENTAIS

Neste capítulo são apresentados os resultados das microanálises por EDX e WDX com as quais foi possível verificar parcialmente a composição de nossas amostras e são apresentados os resultados obtidos com a técnica de difração de raios X, que permitiu confirmar a estrutura ortorrômica e os parâmetros de rede das amostras naturais. Em seguida são apresentados os resultados obtidos na segunda etapa da metodologia experimental, ou seja, medidas de absorção e emissão óptica, realizadas paralelamente às medidas de CDTE, completando a terceira etapa experimental. Todas as medidas citadas acima foram feitas também em função de tratamentos térmicos realizados nas amostras naturais.

Uma etapa bastante interessante e desenvolvida neste trabalho, foram as medidas de CDTE fotoinduzidas, que nos permitiram obter informações a respeito do comportamento das bandas de relaxação dipolar, para a amostra sintética, que podem ser "criadas" ou "destruídas" com a fotoexcitação, na região espectral UV-VIS, da amostra.

4.1 - MICROANÁLISE POR EDX/WDX

Através das análises de EDX e WDX das amostras naturais foram observadas ocorrências de fases diferentes nesses cristais, mostradas na Figura 11, a qual apresenta uma micrografia típica obtida por Microscopia Eletrônica de Varredura para uma das amostras naturais (AN4).
Figura 11 - Micrografia da amostra de alexandrita natural (AN4) mostrando fases distintas: (A) matriz, (B) quartzo e (C) mica

Esse resultado é bastante coerente, pois sendo cristais naturais, o ambiente, a temperatura e outros importantes parâmetros do processo de formação não são controlados e diversos tipos de outras impurezas podem ser incorporadas. Essas espécies minerais estranhas ao mineral hospedeiro são chamadas inclusões e são um dos fatores preponderantes na classificação gemológica dos minerais, sendo que, quase sempre o valor da gema varia inversamente com a quantidade de inclusões. Algumas inclusões cristalinas em crisoberilo e alexandrita de diversas ocorrências são apresentadas na literatura, assim como alguns trabalhos descrevendo a substituição dos elementos Al e Be por outros elementos com raíos iônicos semelhantes, comprovados espectroscopicamente em amostras de crisoberilo e alexandrita [33].
A análise por EDX forneceu as concentrações parciais das amostras de alexandrita, uma vez que o equipamento utilizado nessa técnica não permitiu a detecção dos elementos oxigênio e berílio, por possuírem número atômico menor do que 10. Na tentativa de se obter uma composição química mais completa das amostras analisadas foram realizadas as medidas de WDX, que possui uma resolução melhor do que EDX, e com isso foi possível detectar também o oxigênio \((Z=8)\) embora ainda não tenha sido possível detectar o berílio \((Z=4)\). Na Tabela 7, os resultados das medidas de EDX para as amostras naturais são apresentados de forma quantitativa somente quando presentes na matriz, indicada pela letra A na Figura 11. Nessa tabela também são apresentados os resultados obtidos por WDX para a amostra natural AN4.

Nas amostras naturais utilizadas em nosso trabalho pode-se afirmar que prevalece nas regiões mais escuras (região A da Figura 11) os elementos Al, Fe, Cr e em algumas amostras, apresenta-se também os elementos Mg, Ti, Ca, K e Si. As inclusões mostradas na Figura 11 (regiões B e C) apresentam além dos elementos Al, Fe e Cr também os outros elementos listados na Tabela 7, com concentrações superiores a dos elementos da matriz (região A). Essas inclusões foram identificadas como quartzo (região B) e mica (região C), de acordo com PETERSEN [33] e, posteriormente, confirmadas neste trabalho e apresentadas na seção seguinte através de medidas de difração de raios X.

A amostra sintética mostrou ser bastante homogênea e não foram detectadas inclusões avaliáveis. Entretanto, o espectro de EDX apresentou uma linha extra, pouco intensa em todas as regiões analisadas da amostra, correspondendo ao Ir, que pode ser devido ao cadinho utilizado no crescimento [6]. Para essa amostra, as
medidas de WDX indicaram também, uma pequena concentração de Fe em apenas numa das cinco regiões analisadas. Os resultados de EDX e WDX para a amostra sintética são apresentados na Tabela 7.

Tabela 7 - Composição química parcial das amostras de alexandritas naturais e sintética obtida através das microanálises por EDX e WDX. As medidas de EDX estão em preto e as medidas de WDX em vermelho. Os resultados representam o valor médio obtido a partir de 5 áreas diferentes da matriz de alexandrita (região A na Figura 11). A concentração dos elementos foi medida em porcentagem de átomos (at.%).

<table>
<thead>
<tr>
<th>Amostra E</th>
<th>Al (atom%)</th>
<th>O (ato%)</th>
<th>Cr (atom%)</th>
<th>Fe (atom%)</th>
<th>Outras impurezas (atom.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN1</td>
<td>97,22</td>
<td>-</td>
<td>0,46</td>
<td>0,77</td>
<td>- - - 1,35 -</td>
</tr>
<tr>
<td>AN3</td>
<td>97,04</td>
<td>-</td>
<td>0,22</td>
<td>0,46</td>
<td>0,33 0,03 0,20 1,58 0,15</td>
</tr>
<tr>
<td>AN4</td>
<td>99,34</td>
<td>-</td>
<td>0,13</td>
<td>0,53</td>
<td>- - - - -</td>
</tr>
<tr>
<td>AN5</td>
<td>31,50</td>
<td>68,26</td>
<td>0,073</td>
<td>0,13</td>
<td>- - - - -</td>
</tr>
<tr>
<td>AS1</td>
<td>99,11</td>
<td>-</td>
<td>0,21</td>
<td>0,51</td>
<td>0,17 - - - -</td>
</tr>
<tr>
<td>(EDX)</td>
<td>(WDX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Na Tabela 7, pode ser observado que o elemento Fe é detectado nas amostras naturais com uma concentração maior do que o elemento Cr na matriz hospedeira. Também foi observado nessas medidas que, em relação aos resultados de EDX, as concentrações das impurezas estranhas (K, Ti, Si, Mg, Ca) apresentam uma variação muito maior em cada uma das regiões analisadas das amostras, enquanto
que, para os elementos Fe e Al (e oxigênio no caso de WDX) essa variação é muito pequena e, no caso do Cr, a variação também é mais notável. A ocorrência de outras impurezas estranhas à composição química das alexandrita naturais pode ser justificada, uma vez que, os elementos presentes, considerados “estranhos”, estão entre os mais abundantes na formação das rochas [46]. Também com as microanálises de EDX e WDX é possível verificar que há uma excelente concordância entre as quantidades relativas de Al, O e Cr entre as amostras naturais e sintética.

Também podemos observar que, de acordo com os resultados de WDX, apresentados em vermelho na Tabela 7, a taxa relativa entre os elementos Al e O para a amostra natural AN4 (Al/O = 0,46) e para a amostra sintética (Al/O = 0,48) são bastante próximas, indicando uma deficiência de alumínio em torno de 2%. No caso da taxa relativa entre os íons cromo e oxigênio para a amostra natural (Cr/O = 1x10⁻³) e para a amostra sintética (Cr/O = 0,7x10⁻³) essa diferença é maior, indicando uma deficiência maior de Cr na amostra natural. Esses resultados nos dão indícios de que a existência de vacâncias de oxigênio na amostra natural deve ser mais acentuada.

Os resultados de EDX/WDX para a amostra AS1 indicam ser um material sintético de excelente qualidade sendo reforçado pelo fato de que medidas de Ressonância Paramagnética Eletrônica (EPR) realizadas com uma amostra sintética de mesma procedência de nossa amostra não apresentam linhas atribuídas ao Fe conforme reportado por RAGER et al [12].

As medidas complementares realizadas com a técnica de Difração de Raios X fortalecem a opção de utilizar a amostra sintética como referência, conforme é mostrado a seguir.
4.2 - DIFRAÇÃO DE RAIOS-X

A técnica de difração de raios X foi utilizada com o objetivo de obter a estrutura cristalina das amostras naturais e, consequentemente, identificá-las como alexandritas verdadeiras e de boa qualidade. Por dispomos de poucas amostras naturais o seu uso foi limitado em métodos de análises consideradas destrutivas, como é o caso da difração de raios X pelo método do pó e portanto, somente a amostra AN4 foi submetida a essas medidas. Devido à raridade de se encontrar cristais naturais bem formados, como é o caso da alexandrita, a utilização de medidas de Difração de Raios X pelo método do pó são mais indicadas nesses casos do que métodos que exigem uma orientação precisa da amostra, como o de Laue e o da rotação do cristal, por exemplo [46].

Para as medidas de difração de raios X, foi utilizada a amostra natural (AN4) obtida a partir da mesma pedra que a amostra AN3, utilizada nas medidas de CDTE. A amostra foi cortada em três partes de tamanhos iguais (AN4a, AN4b e AN4c) e as partes AN4b e AN4c foram submetidas a tratamentos térmicos, cujos resultados são apresentados e discutidos nesse mesmo capítulo. As três partes foram então moídas separadamente em almofariz de ágata e passadas por malha 325 e os pós obtidos foram adicionado a álcool isopropílico e depositados entre láminas de vidro a fim de proceder a análise.

A Figura 12(a) mostra o difratrograma de raios X obtido para AN4a com os valores de intensidade normalizados. Além da própria estrutura do crisoberilo, foram identificadas duas outras estruturas como sendo quartzo e mica reforçando os resultados obtidos através da microanálise por EDX e WDX.
Figura 12 - (a) Difratógrafo de Raios-X para a amostra natural AN4 e representação das três linhas mais intensas para uma amostra natural (•) e uma amostra sintética (○) obtidas nos fichários JCPDS [88]. (b) Difratógrafo de raios X para uma amostra sintética obtido a partir do programa “Powder Cell”.
Também na Figura 12(a) estão representadas as posições e intensidades das três linhas de difração mais intensas obtidas para uma amostra sintética de alexandrita (em azul) e para uma amostra natural (em vermelho) encontradas nos fichários de difração de raios X preparados pela “American Society for Testing Materials” [88]. Na Figura 12(b) é apresentado um difratograma de raios X obtido através do programa “Powder Cell” [89] que se refere a medidas de difração de raios X pelo método do pó para uma amostra sintética.

A partir do difratograma de raios X da amostra AN4a (sem tratamento térmico) e utilizando um programa de análise chamado “DICVOL91” foram obtidos os parâmetros de rede \(a=9,405\AA,\ b=5,471\AA\) e \(c=4,409\AA\). Outros autores obtiveram, para as amostras cujo padrão de difração também está representado na Figura 12(a), \(a=9,404\AA,\ b=5,476\AA\) e \(c=4,427\AA\) para a amostra sintética (azul) e \(a=9,423\AA,\ b=5,488\AA\) e \(c=4,433\AA\) para a amostra natural (vermelho). Na Figura 12(a) também pode ser observado que existem diferenças significativas entre as intensidades relativas das linhas de difração de nossa amostra AN4 e as amostras dos fichários JCPDS [88].

Com os resultados obtidos nas medidas de difração de raios X também foi verificado que as distâncias interplanares (d) concordam plenamente com a referência [33], a qual apresenta o espectro de difração de raios X de uma amostra de alexandrita natural, oriunda da região de Minaçu, Goiás, cujos parâmetros de rede são \(a=9,409\AA,\ b=5,483\AA\) e \(c=4,432\AA\). Entretanto, novamente foram constatadas algumas discrepâncias em relação às intensidades relativas das linhas do difratograma. Na referência [33] a linha mais intensa corresponde aos índices de Miller (111), que corresponde a 3ª linha mais intensa de AN4. Finalmente,
comparando os espectros de difração de AN4 e o espectro de difração mostrado na Figura 12(b) notamos uma maior concordância entre as intensidades relativas das linhas.

Em síntese, as medidas de difração de raios X mostram uma excelente concordância entre os parâmetros de rede obtidos para a amostra natural AN4 e os parâmetros de rede obtidos para amostras de alexandrita na literatura. Também foi possível comprovar a estrutura ortorrômica das alexandritas naturais. Em relação às intensidades das linhas dos vários espectros citados verifica-se que sempre ocorrem algumas diferenças que podem ser atribuídas a diversos fatores como diferentes concentrações de impurezas presentes na matriz das amostras de alexandritas naturais, diferentes orientações que podem ocorrer nessas amostras e ainda pequenas variações na realização das medidas.

4.3 – ABSORÇÃO ÓPTICA NA REGIÃO UV–VIS

Os espectros de absorção óptica da alexandrita têm sido amplamente apresentados na literatura desde temperatura ambiente à hélio líquido. Diversos trabalhos apresentam os espectros sob efeito de luz polarizada nos eixos cristalinos a, b e c das amostras [1,2,11,27,48,90]. Esses espectros mostram duas linhas estreitas próximas de 680 nm, chamadas geralmente de linhas R, que são identificadas como linhas do Cr$^{3+}$ associadas com íons nos sítios localizados sobre um plano de reflexão (sitio Al$_2$) na alexandrita. Os espectros apresentam ainda duas bandas largas em torno de 580 nm e 420 nm associadas com transições à partir do estado fundamental 4A$_2$ para os estados excitados 4T$_2$ e 4T$_1$, respectivamente, mostradas no diagrama de

69
níveis de energia na Figura 5, do capítulo 2. As posições em que essas bandas largas estão centralizadas, assim como suas intensidades (coefficiente de absorção) apresentam variações de acordo com o eixo de polarização e também varia de amostra para amostra.

Neste trabalho as medidas de absorção óptica na região do ultravioleta e visível do espectro, de 190 à 700 nm, foram realizadas com um espectrofotômetro Cary 17, à temperatura ambiente e a 77K e sem levar em conta efeitos de polarização da luz. Na Figura 13 são apresentados os espectros de absorção óptica para as amostras sintética (AS1) e natural (AN3) juntamente com o espectro de absorção de uma amostra sintética de alexandrita, com 0,0897 % em átomos de Cr, obtido na literatura [27] e anteriormente apresentado na Figura 3. As concentrações de Cr e Fe, para as amostras AS1 e AN3, são aquelas apresentadas na Tabela 7, obtidas por EDX. Os resultados de absorção óptica obtidos para as amostras sintética e natural a 77K também são apresentados na Figura 13.

Para a amostra sintética, AS1, observamos a presença das duas bandas largas, neste caso, centralizadas em torno de 576,5 e 424,5 nm, chamadas bandas A e B respectivamente, e as duas linhas do Cr$^{3+}$ nos sítios localizados num plano de reflexão, em 678,5 e 680,5 nm e também a presença de uma banda menos intensa em torno de 265nm (banda C). As linhas vibrônicas laterais, em torno de 650 e 470 nm respectivamente, podem ser fracamente identificadas no espectro à temperatura ambiente. A 77K (TNL) se torna evidente a presença das linhas vibrônicas em 635, 644, 644,5, 647 e 653,5 nm e em 468 e 472 nm que são atribuídas aos íons Cr$^{3+}$ localizados num plano de reflexão, conforme é reportado por SUCHOCKI [60].
Figura 13 – Espectros de absorção óptica das amostras sintéticas (AS1), natural (AN3) e da referência [27]. Os espectros em vermelho representam as medidas de absorção a 77K e as inserções mostram as linhas vibrônicas laterais da banda A de forma ampliada.
As amostras naturais apresentam o mesmo comportamento em relação as linhas R, próximas de 680 nm, e as bandas largas estão centralizadas entre 570 e 587 nm (banda A) e 416-425 nm (banda B), dependendo da amostra natural analisada. Nesse caso, o espectro de absorção não é tão suave (com ruído), e a 77K é possível observar apenas uma das linhas vibrônicas, em torno de 645 nm.

As bandas A e B são atribuídas a primeira (v_1) e segunda (v_2) transições eletrônicas permitidas por spin na camada 3d parcialmente preenchida do íon Cr$^{3+}$, sendo que, a primeira transição permitida por spin (v_1) é exatamente $\Delta(=10 \text{ Dq})$ [2,91]. Assim, para a amostra sintética temos $\text{Dq} = 1734 \text{ cm}^{-1}$ para Cr$^{3+}$ rodeado por 6 oxigênios na estrutura e, para as amostras naturais temos Dq entre 1754 cm$^{-1}$ e 1705 cm$^{-1}$. De acordo com HASSAN [36], cujo trabalho se refere a uma amostra sintética de alexandrita, uma terceira transição permitida por spin (v_3) $^4A_{2g} \rightarrow ^4T_{1g}$ (P) pode ser esperada e calculada usando-se a fórmula [91,92]:

$$340 \text{ Dq}^2 - 18(v_2 + v_3) \text{ Dq} + v_2 v_3 = 0$$

(30)

e deve ocorrer na região do ultravioleta.

De acordo com a literatura existe sempre uma considerável dificuldade em se obter o espectro do íon Cr$^{3+}$ na região do UV pois, essa região é geralmente influenciada por traços de Fe$^{3+}$ [36]. Para a amostra sintética, com concentração de Fe praticamente desprezível, é possível observar no espectro de absorção óptica a banda C em torno de 265 nm, enquanto que, para as amostras naturais com concentração de Fe maior do que Cr, a banda C do Cr$^{3+}$ na região do UV não é observada no espectro. A posição dessa banda calculada através da equação (30) seria em aproximadamente 267 nm, ou seja, praticamente coincidente com o valor
obtido experimentalmente no espectro de absorção de AS1. Em medidas reportadas por SUCHOCKI [60], o espectro de absorção da alexandrita obtido a 12 K apresenta em sua estrutura um “ombro” em torno de 245 nm, enquanto que todos os outros autores citados em nosso trabalho, não apresentam o espectro de absorção na região do ultravioleta.

A presença do Fe nas amostras naturais, também pode ser considerada quando se observa a banda B (em torno de 420 nm) nos espectros de ambas as amostras, natural e sintética, na Figura 13, os quais são visivelmente distintos na região do UV. As bandas do Fe$^{3+}$ ocorrem em torno de 440,5 e 377,4 nm [2] e, nos espectros de absorção óptica das amostras naturais, principalmente AN3 por ser mais fina e transparente, é possível verificar uma estrutura como um “ombro” em torno de 380 nm, que torna a banda B bem mais assimétrica em comparação com a banda B da amostra sintética e isso pode ser atribuído a influência da presença do íon Fe$^{3+}$ em nossas amostras naturais. As amostras naturais apresentam também inclusões de mica e quartzo cujo espectro de absorção óptica na região do visível apresenta uma absorção bastante intensa [93]. Entretanto, devemos também considerar que a subida abrupta no lado de maior energia da banda B do espectro de absorção das amostras naturais seja devido a efeitos de dispersão da luz nessa região, uma vez que essas amostras são bastante opacas e rugosas em comparação com a amostra sintética. Na Tabela 8 os resultados dos cálculos da largura a meia altura, intensidade (coeficiente de absorção) e posição das bandas de absorção são apresentados tanto para as amostras sintética e natural AN3, quanto para as outras amostras naturais, AN1 e AN5, cujos espectros têm sido aqui citados.
Tabela 8– Resultados das medidas de absorção óptica, no visível, obtidos à temperatura ambiente. \(\lambda \) indica as posições de máximos de absorção, \(\alpha \) é o coeficiente de absorção calculado a partir da equação (5) e \(\Delta \lambda \) é a largura à meia altura da banda de absorção.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Bandas de Absorção</th>
<th>Linhas de Absorção do Cr(^{3+}) (Al(_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Banda A (Cr(^{3+}))</td>
<td>Banda B (Cr(^{3+}), Fe(^{3+}))</td>
</tr>
<tr>
<td></td>
<td>(\lambda (\text{nm}))</td>
<td>(\alpha (\text{cm}^{-1}))</td>
</tr>
<tr>
<td>AS1</td>
<td>576,5</td>
<td>3,55</td>
</tr>
<tr>
<td>AN1</td>
<td>570,1</td>
<td>10,42</td>
</tr>
<tr>
<td>AN3</td>
<td>576,5</td>
<td>4,25</td>
</tr>
<tr>
<td>AN5</td>
<td>576,5</td>
<td>6,12</td>
</tr>
</tbody>
</table>

Em relação a banda A, de acordo com a literatura [2], o espectro de absorção obtido para os cristais de alexandrita consiste da superposição dos espectros de absorção dos íons Cr\(^{3+}\) situados num centro de inversão (em Al\(_1\)) e Cr\(^{3+}\) localizados num plano de reflexão (em Al\(_2\)) coexistindo e a largura das bandas de absorção, na região da banda A, favorece essa visão apresentando bandas superpostas. Na Figura 13, mesmo sem levar em conta efeitos de polarização da luz,
observamos que a largura da banda A não é relacionada com uma banda simples mas, sim a duas bandas superpostas. A decomposição da banda complexa A pode então, dar informações a respeito da relação entre os íons Cr$^{3+}$ nos dois sítios, com a absorção localizada no comprimento de onda maior atribuída aos centros Cr$^{3+}$(2) dos sítios mais populados Al$_2$ (maiores) e a absorção localizada para energias mais altas é atribuída aos centros de Cr$^{3+}$(1) nos sítios menos populados Al$_1$ (menores) [2,36]. Comparando as medidas da largura a meia altura da banda A da amostra sintética com as amostras naturais, se verifica que a maior diferença é de 7,2 nm, em relação a amostra AN3, e para AN5 praticamente são coincidentes, com a pequena variação associada a erros de medições. Entretanto, a intensidade da banda A para a amostra sintética é razoavelmente menor do que para as amostras AN3 e AN5, o que pode significar comportamentos diferentes das bandas superpostas para amostras sintética e natural, indicando taxas de ocupação relativa diferentes nos sítios Al$_1$ e Al$_2$ para ambos os tipos de amostras.

Outra consideração a respeito dos espectros de absorção das amostras sintética e naturais é a relação existente entre as intensidades das bandas A (Cr$^{3+}$) e B(Cr$^{3+}$, Fe$^{3+}$). A partir da Tabela 8 podemos verificar que a intensidade relativa entre essas bandas, (I$_B$/I$_A$), é em torno de 41% maior para AS1 do que AN3 e quase 100% maior para AS1 do que AN5. Isso pode significar que o Cr$^{3+}$ está mais localizado nos sítios menores (Al$_1$) na amostra sintética do que nas amostras naturais [2]. Analisando a região espectral onde são detectadas as linhas R, em torno de 580 nm, na Figura 13 observamos a intensidade da linha do Cr$^{3+}$ localizada em torno de 680,5 nm (linha R$_1$) é maior do que a linha localizada em torno 678,5 nm (linha R2) para ambos os tipos de amostras, natural e sintética. A distância entre as linhas R$_1$ e R$_2$ para amostra
sintética é de 2 nm (43,3 cm\(^{-1}\)), para AN3 é de 2,1 nm (45,5 cm\(^{-1}\)) e para AN7 é 1,5 nm (32,56 cm\(^{-1}\)), à temperatura ambiente. Na literatura a separação entre as linhas R, isto é, a separação do nível \(^2\)E, é medida como sendo 34,1 cm\(^{-1}\) (1,6 nm) à 12 K e aumenta para 40 cm\(^{-1}\) (1,8 nm) para temperaturas mais altas, obtida para uma amostra sintética contendo 0,0325 at\% Cr\(^{3+}\) com 78\% desses íons ocupando os sítios Al\(_2\) e 22\% ocupando os sítios Al\(_1\) [60].

Portanto, podemos garantir que nossas amostras são de excelente qualidade com os espectros de absorção plenamente coincidentes com a literatura em relação as bandas largas A e B e em relação as linhas R e, novamente pudemos nos certificar de que a amostra sintética pode ser utilizada como uma referência em nosso trabalho, uma vez que não há influência do Fe em seu comportamento, inclusive possibilitando a observação da banda C, a qual não é apresentada na literatura.

4.4 - ABSORÇÃO ÓPTICA NO INFRAR Vermelho

Também foram obtidos os espectros de absorção na região do infravermelho, utilizando o espectrofotômetro BOMEM DA8, no intervalo espectral de 4000 à 1000 cm\(^{-1}\) (2,5-10\(\mu\)m), para as amostras naturais e sintética. Nessa região, se observa o aparecimento de bandas em torno de 1600 cm\(^{-1}\) (6250nm) e 1720 cm\(^{-1}\) (5814 nm) e somente no caso da amostra natural observamos uma banda larga entre 2850-2990 cm\(^{-1}\) (3508 e 3344 nm), além de evidências de outras bandas entre 3500 e 3620 cm\(^{-1}\), observadas melhor quando mudamos a escala de absorbância para o intervalo de 1 a 2 u.a.. Os espectros no infravermelho, na região de 1000 à 4000cm\(^{-1}\), à temperatura
ambiente, são apresentados na Figura 14, para a amostra sintética AS1 e para uma das amostras naturais.

Especificamente para alexandritas, não temos conhecimento de nenhuma referência na literatura mas, de acordo com um trabalho publicado para a sodalita [94], um alumino-silicato de sódio e cloro, cuja fórmula química é Na₆(AlSiO₄)₃Cl, o espectro no infravermelho apresenta uma banda em 3640 cm⁻¹ atribuída a um modo vibracional de O-H, bandas em 3486 cm⁻¹ e 1660 cm⁻¹ atribuídas a H₂O. Ainda para sodalita a região de 992 à 410 cm⁻¹ é caracterizada com a presença de bandas atribuídas a modos vibracionais de Si-O, Si-O-Al e Al-O, principalmente.

![Diagrama de espectros de absorção óptica para AS1 e AN5, à temperatura ambiente.](image)

Figura 14 – Espectros de absorção óptica no infravermelho para AS1 e AN5, à temperatura ambiente.
Assim, baseados nas medidas para sodalita e também em trabalhos realizado para outras matrizes, como por exemplo niobato de litio e haletes alcalinos, atribuímos as bandas largas, na região de 2800 à 4200 cm\(^{-1}\), observadas apenas nas amostras naturais, à vibrações moleculares de O-H e H\(_2\)O. As bandas que aparecem para ambas as amostras aproximadamente entre 1500 à 2000 cm\(^{-1}\) não foram identificadas nesse trabalho mas, uma possibilidade é que sejam atribuídas a vibrações moleculares de Al-O.

Embora não tenha sido possível uma análise mais detalhada dos espectros de absorção na região do infravermelho, essas medidas parecem reforçar a indicação de que nas amostras naturais existe realmente a presença de inclusões fluídas, como podemos supor ocorrer nesse tipo de amostra. Para a amostra sintética, podemos pensar que não ocorre esse tipo de inclusão uma vez que, na região do espectro entre 2000 à 4000 cm\(^{-1}\) não detectamos nenhuma banda.

4.5 - LUMINESCÊNCIA

Conforme mencionado no capítulo 3, quando foram descritas as técnicas experimentais utilizadas nesse trabalho, as medidas de luminescência tem por objetivo principal auxiliar na interpretação dos resultados de CDTE e também, podemos considerá-las como complementares às medidas de absorção, possibilitando melhores condições de análise sobre o comportamento dos íons de Cr\(^{3+}\) nos dois sítios diferentes da alexandrita. Os resultados obtidos nessas medidas estão apresentados na Figura 15, para a amostra natural AN3 (e=2,03mm) e sintética AS1
(e=2,32 mm) à temperatura ambiente, excitadas com um laser de Kr⁺ sintonizado no MLUV com potência de saída de 0,43 W.

Figura 15 – Espectros de emissão das amostras de alexandrita natural (AN3) e sintética (AS1), obtidos à temperatura ambiente, através de excitação com MLUV do laser de Kr⁺.

Na Figura 15 se observa as linhas do Cr³⁺ nos sítios em um plano de reflexão (linhas R) e as linhas do Cr³⁺ nos sítios situados num centro de inversão (linhas S), que podem ser comparados com a literatura [28], de acordo com a Figura 4 do capítulo 2. Os espectros de emissão também foram obtidos para outras amostras naturais, inclusive AN5, e as posições e intensidades das linhas de emissão são coincidentes com a amostra AN3.
O sistema de aquisição do sinal de luminescência foi ajustado com sensibilidade de 200 mV e abertura de fenda de 10μm, dando uma resolução de 0,20 nm. A tensão na fotomultiplicadora foi de 900V. A partir da Figura 15, pode ser verificado que as amostras sintética e naturais utilizadas nesse trabalho, possuem um comportamento muito semelhante ao apresentado na literatura (Figura 4), com a presença das linhas R (R₁ e R₂) e S (S₁ e S₂) bem definidas. As posições das linhas de emissão mostradas na Figura 4 e na Figura 15 estão apresentadas na Tabela 9.

Tabela 9 - Posições das linhas R nos sítios localizados num plano de reflexão (R₁ e R₂) e das linhas S nos sítios localizados no centro de inversão (S₁ e S₂) para as amostras AS1, AN3 e da referência [28].

<table>
<thead>
<tr>
<th>amostra</th>
<th>Linha R₁</th>
<th>Linha R₂</th>
<th>Linha S₁</th>
<th>Linha S₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(nm)</td>
<td>(nm)</td>
<td>(nm)</td>
<td>(nm)</td>
</tr>
<tr>
<td>AS1</td>
<td>681,2</td>
<td>679,4</td>
<td>696,6</td>
<td>690,8</td>
</tr>
<tr>
<td>AN3</td>
<td>681,2</td>
<td>679,4</td>
<td>696,6</td>
<td>690,8</td>
</tr>
<tr>
<td>[28]</td>
<td>680,3</td>
<td>678,5</td>
<td>695,8</td>
<td>690,0</td>
</tr>
</tbody>
</table>

Nos espectros apresentados na Figura 15, as intensidades relativas das linhas do Cr³⁺ no sítios Al₂, R₁ e R₂, apresentam o mesmo comportamento, com R₁ > R₂; como também foi verificado nos espectros de absorção óptica dessas amostras. Entretanto, para as linhas do Cr³⁺ referentes ao sítio Al₁, S₁ e S₂, vemos que para nossas amostras sintética e natural, a linha S₁ é mais intensa do que a linha S₂, com maior evidência para a amostra sintética, enquanto que na literatura [28,58], S₂ > S₁. Uma das causas dessa diferença pode estar na utilização de comprimento de onda de
excitação diferentes nos dois casos sendo que, na literatura o bombeio foi feito com um laser de argônio operando em 488 nm enquanto que nesse trabalho foi utilizado laser de Kr⁺ sintonizado no MLUV (337,5-356,4nm). SCHEPLER [95] apresenta os espectros de emissão de uma amostra de alexandrita sintética em função do comprimento de onda do bombeio, onde as variações que ocorrem nas intensidades das linhas, são explicadas como sendo um indicativo de que mais de um tipo de mecanismo de relaxação está presente. Em relação às diferenças das intensidades das linhas S₁ e S₂ também é possível que esteja relacionado com uma variação entre a taxa de população dos dois sítios de simetrias diferentes para ambas as amostras, o qual também foi verificado com as medidas de absorção óptica, cuja largura a meia altura e intensidade diferem ligeiramente para as amostras AN3 e AS1, conforme foi apresentado na Tabela 8.

De acordo com SUCHOCKI et al [60], existe uma mudança nas intensidades relativas das linhas S₁ e S₂ (chamadas R₁₁ e R₂₁ no trabalho de SUCHOKI) para diferentes direções de polarização do campo elétrico e magnético, consistentes com uma transição de dipolo magnético. Também de acordo com esses autores, a separação em energia entre as linhas S é em torno de três vezes maior do que a separação das linhas R, o que indica uma componente de baixa simetria mais forte do campo cristalino para os íons nos sítios localizados em um centro de inversão. Este resultado concorda plenamente com as medidas apresentadas na Tabela 9 para nossas amostras sintética e natural, sendo a separação entre as linhas S₁ e S₂ igual à 120 cm⁻¹, enquanto que para as linhas R₁ e R₂, a separação entre as linhas é em torno de 39 cm⁻¹.
Portanto, os espectros de emissão óptica, assim como os espectros de absorção óptica, puderem nos fornecer informações importantes a respeito dos ions Cr3+ nos dois sítios de simetrias diferentes da alexandrita, as quais são plenamente coincidentes com a literatura, demonstrando, mais uma vez, a excelente qualidade de nossas amostras.

4.6 - CORRENTE DE DESPOLARIZAÇÃO TERMICAMENTE ESTIMULADA

A técnica de Corrente de Despolarização Termicamente Estimulada, CDTE, constitui a ferramenta mais importante neste trabalho, sendo utilizada pela primeira vez, no estudo das propriedades elétricas de alexandritas e assim, os mecanismos envolvidos nos processos de relaxação dipolar elétrica são aqui investigados, através dessas medidas.

Foram utilizadas a amostra sintética, AS1, e as amostras naturais AN1, AN2, AN3 e AN5, sendo que, a amostra AS1 pode ser considerada uma referência na análise do comportamento das bandas de CDTE, em primeiro lugar, conforme verificado através das técnicas de EDX e WDX, por não possuir quantidades significativas de outras impurezas além do Cr3+ e depois pela sua procedência (crescida por H.P. Jenssen e R.Morris, autores de inúmeros trabalhos publicados, com cristais sintéticos de alexandritas). As amostras AN1 e AN2 podem ser consideradas como elementos de testes iniciais na investigação das propriedades elétricas através dessa técnica e, as amostras AN3 e AN5 os elementos principais de

82
análise neste trabalho, com as quais realizamos medidas de CDTE, CDTEFI e CDTE em função de tratamentos térmicos.

As possibilidades de formação de dipolos em alexandritas pode ser visualizada com base em sua estrutura cristalina representada na Figura 2. Na estrutura temos os íons Al3+ localizados num centro de inversão (Al\textsubscript{1}) e Al3+ situados num plano de reflexão (Al\textsubscript{2}) ligados, cada um deles, a seis íons de oxigênio, sendo que apenas 3 são simetricamente independentes e designados O\textsubscript{1}, O\textsubscript{2} e O\textsubscript{3}. A Figura 16 mostra um sítio Al\textsubscript{1} e um sítio Al\textsubscript{2} em detalhes. As distâncias interatômicas entre os íons de Al e os íons de oxigênio são diferentes. Em alexandrita os íons Al3+ são substituídos pelos íons Cr3+ com uma distribuição em torno de 75% de Cr3+ em Al\textsubscript{2} e o restante de Cr3+ em Al\textsubscript{1}.

A simples substituição de um íon trivalente por outro de mesma valência não causaria a formação de dipolos. Entretanto, a presença de vacâncias de oxigênio, intrínsecas à estrutura, distribuídas aleatoriamente para cada Cr3+ coordenado octaédricamente com oxigênio, pode dar origem a presença de dipolos do tipo impureza-vacância, I-V. Nesse caso, se a vacância está próxima à impureza Cr3+ ocupando posições aleatórias 1, 2 ou 3, como mostrado também na Figura 16, e essas distâncias são diferentes, forma-se então um momento de dipolo entre o Cr3+ e V. Por outro lado, a origem da formação de dipolos pode ser atribuída às deformações que ocorrem na rede devido ao íon substituído, Al3+, possuir raio iônico (0,535 Å) menor do que o íon Cr3+ (0,615 Å). No caso de ocorrer uma deformação local na estrutura, a formação de dipolos não envolve necessariamente a presença de vacâncias, como ilustrado no lado esquerdo Figura 16 onde o íon Cr3+ está indicado na cor lilás substituindo o íon Al3+.
Figura 16 – Esquema da formação de dipolos na alexandrita: (a) detalhes de um sítio Al₁ (localizado sobre um centro de inversão) Adaptado da referência [8]. (b) sítio Al₂ (localizado num plano de reflexão). Adaptado da referência [96].
Uma forma de comprovar essa possibilidade seria realizar as medidas de CDTE em uma amostra não dopada com Cr3+, ou seja, crisoberilo, verificando se ocorre ou não a presença de dipolos devido a deformação local sofrida pela substituição de Al3+ por Cr3+.

A presença de tais dipolos, tanto impureza-vacância quanto os originados por deformação local devido a diferença de raio iônico são detectados de forma sensível e precisa através das medidas de CDTE. Outras possibilidades que devem ser levadas em consideração é a presença de outros defeitos intrínsecos à estrutura, principalmente no caso das amostras naturais que possuem inclusões de quartzo e mica. Em quartzo é típica a presença de longos canais ao longo do eixo cristalográfico \(c \) o que permite a vários íons alcalinos e íons H+, moverem-se na direção do eixo \(c \), dando origem a condutividade iônica e modificações no balanço de cargas de sitios de defeitos quando um cristal de quartzo é submetido a um campo elétrico [97].

4.6.1 - COMPORTAMENTO DAS BANDAS DE CDTE PARA AS AMOSTRAS NATURAIS

As primeiras medidas de CDTE em alexandritas foram realizadas para a amostra AN1, de espessura igual a 2,17 mm (na região central da amostra), sem nos preocuparmos muito com suas características aparentes, como espessura, cor e uniformidade de suas faces, através das quais é aplicado o campo elétrico de polarização, \(E_p \).
Como resultado das primeiras medidas, foi observado o aparecimento de uma banda localizada em torno de 179 K, com intensidade de 34×10^{14} A. Nessas medidas foram utilizados eletrodos de tinta prata 3 x 4 mm2 e a amostra foi polarizada próximo à temperatura ambiente com campo elétrico igual a 2,3 kV/cm. Os resultados obtidos para essa amostra foram bastante reprodutíveis para condições de medidas idênticas. Para um campo elétrico de polarização igual a 4,6 kV/cm foi observada essa mesma banda, com o pico de corrente máximo localizado na mesma temperatura e com intensidade de 41×10^{14} A. Essas medidas também apontaram um acentuado aumento da corrente para temperaturas acima de 200K, que pode ser atribuída à presença de água na amostra natural, previamente detectada nas medidas de absorção óptica na região do infravermelho, conforme apresentado na Figura 14 neste mesmo capítulo e/ou também a presença das inclusões sólidas, como quartzo e mica. A observação da banda descrita acima é facilitada com leituras de CDTE efetuadas após polarização com T_p bastante próxima da temperatura de intensidade máxima da banda e portanto, foram realizadas também medidas com temperatura de polarização em torno de 170 K, próximo do pico, com $E_p = 4,6$ kV/cm e foi observada uma banda centralizada em torno 180 K, eliminando o aumento de corrente acima de 200K. Esses resultados estão representados na Figura 17.

Como a amostra apresentava espessura bastante irregular, com faces maiores não paralelas, foi realizado um polimento conforme processo descrito no capítulo 4, resultando em uma espessura final de 1,95 mm. Após o polimento as medidas de CDTE foram realizadas, com $T_p = 300K$ e campo elétrico de polarização igual a 10,2 kV/cm e 12,3 kV/cm, respectivamente. Novamente foi possível observar a presença de uma banda em torno de 194K para ambos campos de polarização aplicados, com
a intensidade do pico aumentando para campos elétricos mais altos. O deslocamento da banda de CDTE para temperatura mais alta pode ser justificado pelas variações nas taxas de aquecimento, a qual não foi possível manter fixa, com variação de 0,02 à 0,08 K/s em cada uma das medidas.

Figura 17- Medidas de CDTE para amostra AN1 (c=2,17mm). Para curva em vermelho, \(T_p=297\text{K} \) e \(b=0,02\text{ K/s}\) e para curva em preto, \(T_p=170\text{K} \) e \(b=0,05\text{K/s}\). \(E_p=4,6\text{kV/cm}\) para ambas as curvas.
A fim de verificar a reprodutibilidade dos resultados para diferentes amostras de alexandritas, uma segunda amostra natural, AN2, com espessura de 2,86 mm, obtida a partir de uma pedra diferente da amostra AN1, foi também submetida a medidas de CDTE. Essas medidas foram realizadas nas mesmas condições descritas para a amostra AN1, para T_p (temperatura de polarização), E_p (campo elétrico de polarização) e b (taxa de aquecimento), e foi verificado que, dentro da margem de erro esperada para medidas de CDTE (em torno de 10%), os resultados são perfeitamente reprodutíveis, com a presença de uma banda com as mesmas características das observadas anteriormente com AN1.

Com as amostras AN1 e AN2 também foi verificado que, dado um conjunto de parâmetros fixos, como amostra, temperatura de polarização e área dos eletrodos, o comportamento da área sob a banda é bastante regular com a tensão de polarização, com a área crescendo linearmente com a tensão aplicada, de acordo com a equação 17. Este resultado é uma indicação de um comportamento típico de uma entidade dipolar e está representado na Figura 18 para a amostra AN2, onde temos também representada as variações associadas aos parâmetros envolvidos, ou seja, T_p e E_p, estimadas, através do cálculo de propagação de erros, em torno de 8%.
Figura 18 - Comportamento da área sob a banda de CDTE em função do campo elétrico de polarização para a amostra natural AN2 (e=2,86mm).

A partir de uma 3ª pedra de alexandrita foram obtidas as amostras AN3 e AN4, sendo que a amostra AN4, de forma irregular, foi submetida a medidas de EDX e WDX e a amostra AN3, de espessura 2,03mm, foi utilizada nas medidas de CDTE. Essas amostras apresentam uma coloração verde bem mais homogênea e mais translúcida do que as anteriores AN1 e AN2.

As medidas de CDTE para AN3 foram realizadas sem nenhum polimento da amostra, com eletrodos de tinta prata 3 x 6 mm² e, para temperatura de polarização próxima à temperatura ambiente, com $E_p=6,9$ kV/cm e $b=0,09K/s$, foi observada uma banda de CDTE centralizada em torno de 195K, com intensidade de 90×10^{-14} A. Nessa amostra também foi observado um comportamento da corrente aumentando intensamente para temperaturas acima de 220K. Para T_p em torno de 189K, próximo do pico, com $E_p=6,9$ kV/cm e $b=0,08K/s$, temos a mesma banda sem o efeito do aumento de corrente para $T > 220K$. Esses resultados são apresentados na Figura 19.
Figura 19 – Medidas de CDTE para a amostra AN3 (c=2,03mm). (a) curva experimental para $T_p=278K$ e $b=0,09$ K/s. (b) curva experimental para $T_p=189K$ e $b=0,08K/s$. As curvas em vermelho e azul representam o ajuste teórico pelo método de Havriliak-Negami.
Os principais parâmetros que definem as relaxações térmicas estudadas por CDTE são a energia de ativação (E_a) e a frequência natural de relaxação ou o seu inverso que é o tempo de relaxação (τ). Essas grandezas se relacionam com a densidade de corrente de despolarização medida experimentalmente. As hipóteses básicas que permitem determinar a energia de ativação das relaxações térmicas relacionadas com as bandas de CDTE empregadas neste trabalho são baseadas nas equações apresentadas no capítulo 3, onde foram descritos os princípios básicos dessas medidas.

Assim, iniciamos a análise das curvas experimentais obtidas para alexandritas utilizando um modelo simples, conhecido como modelo de Debye, o qual leva em conta um único tempo de relaxação e uma única energia de ativação, e obtivemos a curva pontilhada apresentada na Figura 19b. Diante da discrepância entre as curvas experimental e teórica obtidas, tentamos utilizar o método melhorado de Prakash [81], representado na equação 21 do capítulo 3, para ajustar as curvas experimentais, o qual considera uma distribuição discreta dos parâmetros de relaxação envolvidos. Esse método mostrou ser relativamente bem aplicado quando utilizamos duas curvas teóricas para descrever a curva experimental obtida. Contudo, a escolha de uma, duas ou mais curvas para realizar tal ajuste é bastante arbitrária e além disso, os resultados obtidos para o tempo de relaxação através da equação 23, utilizando parâmetros das curvas calculadas pelo método melhorado de Prakash, apontaram uma discrepância muito grande em seus valores em comparação à valores usualmente esperados em medidas de CDTE, com $\tau_0 = 1,2 \times 10^{-8}$s a partir de uma das curvas teóricas ajustadas para a amostra AN3 e $\tau_0 = 1,3 \times 10^{-6}$s a partir da outra. Este comportamento também foi
encontrado quando o ajuste de curvas foi feito para as amostras AN1 e AN2, cujos valores para o tempo de relaxação mostraram ser bastante dispersivos e incoerentes.

Diante disso, foi utilizado então um método de ajuste das curvas experimentais que considera uma distribuição contínua dos parâmetros de relaxação envolvidos no processo, conforme proposto por HAVRILIAK e NEGAMI [30]. Além disso, uma distribuição contínua parece ser mais adequada às bandas de CDTE obtidas para alexandrita pois, conforme pode ser observado Figura 16, podemos esperar uma distribuição de dipolos que podem inclusive, interagir entre si, dando origem a bandas de CDTE mais complexas do que previstas por uma distribuição discreta. Os ajustes de curvas experimentais e curvas calculadas pelo método de Havriliak-Negami estão representados na Figura 19 para a amostra AN3.

Na Figura 19 podemos observar um excelente ajuste das curvas teóricas e experimentais quando são consideradas duas distribuições envolvendo os parâmetros de relaxação. Nesse caso, tanto os valores obtidos para as energias de ativação (0,57 eV e 0,61 eV) quanto os valores obtidos para os tempos de relaxação ($\tau_0=1,3\times10^{14}$ s e $\tau_0=1,1\times10^{14}$ s) para cada uma das distribuições, centralizadas em 180K (curva azul) e 195K (curva vermelha), respectivamente, são bastante coerentes, em relação a valores obtidos à partir de medidas de CDTE em cristais iônicos, por exemplo.

A fim de verificar se o abrupto aumento de corrente para temperaturas superiores a 220K, apresentado na Figura 19(a) poderia ser devido às condições experimentais, uma vez que podriam estar ocorrendo efeitos de superfície devido a tinta prata, que poderia estar muito diluída, com a presença de água e não a um comportamento próprio da amostra, foram realizadas medidas de CDTE utilizando-se eletrodos de ouro, de dimensões 3,7 x 2,4 mm² obtidos por evaporação resistiva [70].
O resultado obtido com essas medidas, para $T_p = 189$ K, $E_p = 6,9$ kV/cm e $b = 0,09$ K/s está representado na Figura 20.

![CDTE graph](image)

Figura 20 – CDTE para a amostra AN3 ($d = 2,03$ mm) com $T_p = 189$K, $E_p = 6,9$kV/cm e eletrodos de ouro.

Comparando a curva experimental dessa figura com a curva experimental mostrada na Figura 19(b), podemos verificar que a utilização de eletrodos de ouro dá origem ao aparecimento da banda de CDTE praticamente na mesma posição de quando se utiliza eletrodos de tinta prata, como era esperado, uma vez que o fenômeno de relaxação dipolar se deve a fatores volumétricos e não superficiais. As diferentes intensidades das bandas nas duas condições para eletrodos utilizados, ouro e tinta prata, são explicadas pelo fato de ter se utilizado área dos eletrodos diferentes,
mantendo-se então coerente a proporcionalidade entre as intensidades máximas e área dos eletrodos (tinta prata = 18,0 mm² e ouro = 8,9 mm²).

Uma característica interessante a respeito da forma das bandas mostradas na Figura 20 é uma melhor visualização da banda em torno de 177K, superposta a banda observada em torno de 196K quando utilizamos eletrodos de ouro. E, conforme queria se verificar, realmente ocorre um comportamento mais regular para correntes acima de 225 K, mesmo quando utilizamos temperatura de polarização próxima da temperatura ambiente, indicando que o aumento acentuado da corrente nessas temperaturas pode ser atribuído também a qualidade dos eletrodos utilizados. Entretanto, como não houve nenhum alteração brusca na forma, posição e intensidade da banda de CDTE não consideramos essencial a utilização de eletrodos de ouro pois embora apresente algumas vantagens, como acabamos de ver, o seu uso sistemático tornaria as medidas de CDTE ainda mais demoradas (o processo de evaporação resistiva leva em torno de 2 horas, nesse caso), além do custo mais alto desses eletrodos.

Motivados pelo fato de trabalharmos com amostras naturais com características um pouco diferentes umas das outras, entendemos ser de fundamental importância realizar as medidas de CDTE com o maior número possível de amostras a fim de, principalmente, confirmar, com segurança, o efeito dipolar de forma reproduzível. Portanto, foram realizadas medidas de CDTE utilizando a amostra natural AN5 e, desde que foi verificado que a banda de CDTE, na qual estamos interessados, ocorre para temperaturas abaixo de 200K, foi possível nessas medidas utilizar sempre temperaturas de polarização menores do que esse valor, ou seja, temperaturas de polarização apenas próximas da temperatura máxima das bandas de
CDTE. Os resultados obtidos para a amostra AN5 são perfeitamente coerentes com aqueles obtidos para AN1, AN2 e AN3 e serão apresentados futuramente, ainda nesse capítulo.

4.6.2 - MEDIDAS DE CDTE PARA A AMOSTRA SINTÉTICA.

Para a amostra sintética de alexandrita, AS1 as medidas de CDTE indicaram a presença de uma banda em torno de 174K quando polarizadas à temperatura ambiente com eletrodos de tinta prata, 4,10 x 6,60mm², E_p=6,9 kV/cm e taxa de aquecimento b=0,08 K/s. Na Figura 21 são apresentados os resultados obtidos para essa amostra.

Para essa amostra não foi observado o efeito do aumento de corrente para temperaturas acima de 220K, conforme pode ser visto na Figura 21(a). Isto pode indicar que nas amostras naturais o comportamento da banda acima dessa temperatura corresponde, realmente, a outra origem que não seja a de relaxação dipolar em alexandritas. Na Figura 21(b) são apresentadas a curva experimental obtida para a amostra sintética para temperatura de polarização próxima do pico e a soma das curvas teóricas ajustadas pelo método de Havriliak-Negami.

A Tabela 10 mostra os parâmetros de relaxação obtidos a partir dos ajustes mostrados na Figura 19 e na Figura 21, onde também consta o cálculo da área sob a curva de corrente em função do tempo, a qual é proporcional ao número de dipolos de uma dada espécie presente na amostra e chamada carga total de polarização Q, citada no capítulo 3. Nessa tabela são apresentados também os parâmetros α e β utilizados no ajuste de curvas através desse método.

95
Figura 21- CDTE para a amostra AS1 ($e=2,32\text{mm}$). (a) curva experimental para $T_p=285\text{K}$. (b) curva experimental para $T_p=167\text{K}$. Para ambas $b=0,08\text{K/s}$ e $E_p=6,9\text{kV/cm}$. As curvas vermelha e azul representam o ajuste teórico pelo método de Havriliak-Negami.
Tabela 10- Parâmetros de relaxação obtidos para AS1 e AN3 através do ajuste por HN. T_m é a temperatura máxima de cada uma das distribuições em [K]; E_a é a energia de ativação em [eV]; τ_0 é o tempo de relaxação ($\times 10^{14}$) em [s] e Q é a carga total de polarização ($\times 10^{10}$) em [C$^{-1}$]. $b = 0.08$K/s em todas as medidas.

<table>
<thead>
<tr>
<th></th>
<th>Curva 1</th>
<th></th>
<th>Curva 2</th>
<th></th>
<th>Curva 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_a</td>
<td>τ_0</td>
<td>T_m</td>
<td>α</td>
<td>β</td>
<td>E_a</td>
<td>τ_0</td>
</tr>
<tr>
<td>AN3</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0.57</td>
<td>1.3</td>
</tr>
<tr>
<td>AS1</td>
<td>0.51</td>
<td>1.7</td>
<td>159</td>
<td>0.30</td>
<td>0.57</td>
<td>1.0</td>
<td>179</td>
</tr>
</tbody>
</table>

Conforme pode se verificar com os resultados sintetizados na Tabela 10, um fato bastante interessante é que a curva representando a distribuição dos parâmetros de relaxação das medidas de CDTE com intensidade mais baixas da amostra natural AN3 se localiza praticamente na mesma temperatura da curva de intensidade mais alta para a amostra sintética (180 e 179K, respectivamente). Este comportamento das bandas de CDTE deve ser considerado uma evidência de que ambos os tipos de amostra, natural e sintética, possuem um mesmo tipo de entidade dipolar e que esses dipolos estejam associados às impurezas de Cr$^{3+}$ na matriz hospedeira uma vez que, de acordo com resultados de EDX/WDX, a amostra sintética não possui quantidades significativas de inclusões (apenas traços de Ir) e a concentração de Fe também é desprezível. No caso das amostras naturais, as análises de EDX (e WDX para uma das amostras), conforme foi visto na seção 4.1, indicaram a presença de outras
impurezas na matriz de crisoberilo (Mg, Si, Ti, K e Ca no caso da amostra AN3), além dos elementos Cr e Fe, com uma concentração de Fe bem maior do que Cr.

Assim, devemos considerar que as bandas de relaxação dipolar observadas nas amostras naturais sofrem a influência da presença do Fe$^{3+}$, o qual foi verificado influenciar também nos espectros de absorção óptica dessas amostras, e também das inclusões de quartzo e mica, que podem possuir dipolos em suas estruturas. Esta pode ser a causa da grande diferença entre as cargas de polarização calculadas para ambas as amostras (última coluna da Tabela 10), mesmo quando consideramos a diferença entre as áreas dos eletrodos, e do deslocamento das bandas de CDTE centralizadas em temperaturas mais altas no caso das amostras naturais.

4.7 - EFEITO DOS TRATAMENTOS TÉRMICOS

Embora tenha sido verificado com as medidas de CDTE que a região de interesse, onde ocorre o fenômeno de relaxação dipolar, seja abaixo da região influenciada pela presença de água nas amostras, foram realizados tratamentos térmicos nas amostras naturais a fim de verificar, principalmente, o efeito que as outras impurezas podem ter sobre as bandas de CDTE.

Nesta seção são apresentados os resultados obtidos nas medidas de CDTE, Absorção Óptica no UV-VIS e Infravermelho e Luminescência para a amostra AN5 cujos tratamentos foram feitos num intervalo de tempo mais curto (5 minutos) e não provocaram a quebra da amostra, como ocorreu com AN3. Para a amostra AN5 os tratamentos térmicos foram: TT1 = 700 °C por 5 minutos, TT2 = 800 °C por 5
minutos, TT3 = 900 °C por 5 minutos, TT4 = 1000 °C por 5 minutos e TT5 = 1000 °C por 5 horas.

4.7.1 - CDTE APÓS OS TRATAMENTOS TÉRMICOS.

Nas medidas de CDTE foram utilizados os mesmos valores para campo elétrico de polarização ($E_p=7,0$ kV/cm), taxa de aquecimento ($b=0,08-0,09K/s$), temperatura de polarização próxima do pico ($T_p=183-185K$), tempo de polarização ($t_p=5$ minutos) e eletrodos de tinta prata de área igual 12,06 mm2. Para obtermos eletrodos sempre iguais nas diferentes medidas utilizamos uma “máscara” de papel alumínio com estas dimensões. Os resultados das medidas de CDTE em função dos tratamentos térmicos, sob as condições descritas, são apresentados em um único gráfico na Figura 22. Nessa figura temos também representado o resultado das medidas de CDTE para essa amostra antes de ser submetida aos tratamentos térmicos.

Para a amostra AN5, após TT1, uma única banda foi observada em torno de 186 K com intensidade aproximada de 70×10^{-14} A (banda 1), ou seja, bem mais intensa do que a banda sem tratamento térmico e ligeiramente deslocada para temperatura mais baixa, em relação a essa.

Após TT2, as medidas de CDTE, apresentam a banda 1 bem mais intensa em relação as anteriores (sem tratamento e com TT1) e começa também a apresentar evidências da presença da banda em torno de 175K.

Conforme pode ser verificado na Figura 22 após TT3, a banda de CDTE apresenta realmente um outro pico do lado de temperatura mais baixa (em torno de
175K) e portanto, foram realizadas também medidas de CDTE nas mesmas condições descritas anteriormente em relação ao campo elétrico de polarização, tempo de polarização, taxa de aquecimento e área dos eletrodos de tinta prata porém, com temperatura de polarização próximo desse novo pico, ou seja, em torno de 175K. O resultado obtido para essa condição de T_p é apresentados na Figura 23. Nessa figura podemos notar que a banda localizada na temperatura mais baixa é fortemente favorecida sobrepondo a banda 1, quando $T_p=175K$.

Com o 4º tratamento térmico, TT4, as bandas 1 e 2 têm praticamente a mesma intensidade quando $T_p=185K$ e, para $T_p=175K$ novamente a banda 2 superpõe a banda 1, conforme é mostrado na Figura 22 e na Figura 23.

O último tratamento térmico para AN5 (1000 °C- 5 horas) mostra que a banda 2, tanto para $T_p=185K$ quanto para $T_p=175K$, parece sobrepor completamente a banda 1.

As posições e intensidades das bandas apresentadas na Figura 22 e na Figura 23 são apresentadas na Tabela 11, assim como a carga total de polarização Q, a qual é calculada mantendo-se constante a área dos eletrodos.
Figura 22 – Medidas de CDTE para a amostra AN5 sem tratamento térmico e após TT1 (700 °C-5min), TT2 (800 °C – 5min), TT3 (900 °C – 5min), TT4 (1000 °C – 5min) e TT5 (1000 °C- 5horas). Em todas as medidas $T_p \equiv 185$ K e $b=0,08K/s-0,09K/s$

Figura 23 – Medidas de CDTE para a amostra AN5 após TT3 (900 °C –5min), TT4 (1000 °C –5min) e TT5 (1000 °C- 5horas). Em todas as medidas $T_p \equiv 175$ K e $b=0,08K/s-0,09K/s$
Tabela 11 – Resultados obtidos a partir das medidas de CDTE para a amostra AN5 antes e após os tratamentos térmicos.

<table>
<thead>
<tr>
<th>Condição</th>
<th>Banda 1</th>
<th>Banda 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_p (K)</td>
<td>T_{m1} (K)</td>
</tr>
<tr>
<td>S/TT</td>
<td>186</td>
<td>187</td>
</tr>
<tr>
<td>TT1</td>
<td>183</td>
<td>186</td>
</tr>
<tr>
<td>TT2</td>
<td>183,5</td>
<td>186</td>
</tr>
<tr>
<td>TT3</td>
<td>175</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>187</td>
</tr>
<tr>
<td>TT4</td>
<td>175</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>187</td>
</tr>
<tr>
<td>TT5</td>
<td>175</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>-</td>
</tr>
</tbody>
</table>

De acordo com a Tabela 11, após os tratamentos térmicos para a amostra AN5, a banda principal observada antes dos tratamentos, em torno de 187K, é ligeiramente deslocada para uma temperatura mais baixa e sofre um acentuado aumento em sua intensidade com os tratamentos térmicos 1 e 2, desaparecendo após o tratamento térmico por um tempo mais longo (TT5). Este mesmo comportamento foi também observado para a amostra natural AN3, cuja banda principal antes dos tratamentos térmicos localiza-se em torno de 196K, conforme mostrado na Figura 19(b). Após os tratamentos térmicos por um tempo de 5 minutos, a amostra AN3 teve sua banda principal deslocada para temperaturas próximas de 188K e após o
tratamento térmico por um tempo mais longo (5 horas) somente uma banda larga, em torno de 176K, foi observada. Em relação à área sob a curva da corrente em função do tempo, o comportamento observado na Tabela 11 mostra que após o terceiro tratamento térmico, a carga total de polarização se torna bem mais estável, com um valor em torno de $1 \times 10^{-10} \, \text{C}^{-1}$ para $T_p = 175K$.

As medidas de CDTE em função dos tratamentos térmicos para a amostra AN5 foram ajustadas através do método de Havriliak-Negami [30], após ter sido tentado também o método melhorado de Prakash [81]. Os ajustes das curvas experimentais são apresentados na Figura 24 para AN5 sem tratamento, a qual foi somente citada na seção 4.6.1, na Figura 25 após TT1, na Figura 26 após TT3, na Figura 27 após TT4 e Figura 28 após TT5.

Figura 24 – Medidas de CDTE para AN5 sem tratamento térmico. As curvas em vermelho e azul representam as distribuições dos parâmetros de relaxação obtidas a partir do método de Navriliak-negami.
Figura 25 – CDTE para a amostra AN5 após TT1 (700 °C-5min). A curva em vermelho representa a distribuição obtida através do método de Havriliak-Negami.

Figura 26 - CDTE para a amostra AN5 após TT3 (900 °C-5min). As curvas em vermelho e azul representam a distribuição obtida através do método de Havriliak-Negami.
Figura 27 - CDTE para a amostra AN5 após TT4 (1000 °C-5min). As curvas em vermelho e azul representam a distribuição obtida através do método de Havriliak-Negami.

Figura 28 - CDTE para a amostra AN5 após TT5 (1000 °C-5h). As curvas em vermelho e azul representam a distribuição obtida através do método de Havriliak-Negami.
Os parâmetros de relaxação obtidos a partir dos ajustes de curvas das medidas de CDTE para a amostra natural AN5 antes e após os tratamentos térmicos apresentados nas Figuras 24 à 28 são apresentados na Tabela 12.

Comparando os resultados obtidos para AN5 sem tratamento com aqueles anteriormente apresentados para AN3 na Tabela 10, verificamos que as posições das duas distribuições com as quais ambas foram ajustadas (curva 2 e curva 3 nas Tabelas 10 e 12) estão em temperaturas um pouco diferentes, defasadas em menos de 10K, para ambas as curvas, ou seja, a diferença entre as posições das bandas é de aproximadamente 6%, portanto, dentro do limite de reprodutibilidade de 8% citado anteriormente.

Tabela 12 – Parâmetros de relaxação obtidos para AN5, antes e após os tratamentos térmicos, através do ajuste por HN. T_m é a temperatura máxima de cada uma das distribuições em [K]; E_a é a energia de ativação em [eV]; τ_0 é o tempo de relaxação ($\times 10^{14}$) em [s].

<table>
<thead>
<tr>
<th></th>
<th>Curva 1</th>
<th></th>
<th></th>
<th>Curva 2</th>
<th></th>
<th></th>
<th>Curva 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AN5</td>
<td>E_a</td>
<td>τ_0</td>
<td>T_m</td>
<td>$\alpha e \beta$</td>
<td>E_a</td>
<td>τ_0</td>
<td>T_m</td>
<td>$\alpha e \beta$</td>
</tr>
<tr>
<td>STT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.54</td>
<td>1.4</td>
<td>172</td>
<td>0.205</td>
<td>0.60</td>
</tr>
<tr>
<td>TT1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.60</td>
</tr>
<tr>
<td>TT3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.54</td>
<td>1.2</td>
<td>172</td>
<td>0.08</td>
<td>0.59</td>
</tr>
<tr>
<td>TT4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.53</td>
<td>1.2</td>
<td>169</td>
<td>0.20</td>
<td>0.59</td>
</tr>
<tr>
<td>TT5</td>
<td>0.48</td>
<td>1.5</td>
<td>146</td>
<td>0.15</td>
<td>0.62</td>
<td>1.0</td>
<td>0.70</td>
<td>-</td>
</tr>
</tbody>
</table>

106
As amostras AN3 e AN5, de acordo com as medidas de EDX apresentadas na Tabela 7, apresentam diferenças acentuadas nas concentrações de impurezas estranhas à matriz hospedeira, como Ti, K, Si, Mg e Ca, que estão presentes principalmente na amostra AN3, enquanto que AN5 apresenta apenas o elemento Ti na matriz hospedeira (área A, da Figura 11). Assim, a possibilidade de que a banda mais intensa para a amostra AN3, em 195K, seja devido a diplos relacionados com as outras impurezas é reforçada, uma vez que na amostra AN5 a banda mais intensa se localiza numa temperatura mais baixa, 188K.
4.7.2 - ABSORÇÃO ÓPTICA APÓS TRATAMENTOS TÉRMICOS

Na Figura 29 são apresentados os espectros de absorção óptica na região do ultravioleta e visível para a amostra AN5 sem tratamento térmico e após os tratamentos térmicos TT1, TT2, TT3, TT4 e TT5. Os parâmetros obtidos a partir dessas medidas são apresentados na Tabela 13.

Figura 29 – Espectros de absorção óptica no UV-VIS para AN5 sem tratamento térmico e após TT1, TT2, TT3, TT4 e TT5.
Tabela 13 – Resultados das medidas de absorção óptica (UV-VIS) obtidos à temperatura ambiente, após os tratamentos térmicos de AN5. λ significa as posições de máximos de absorção, α o coeficiente de absorção óptica e Δλ é a largura a meia altura da banda de absorção

<table>
<thead>
<tr>
<th>Bandas de Absorção</th>
<th>Linhas de Absorção Cr³⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amostra AN5</td>
<td>Cr³⁺</td>
</tr>
<tr>
<td>Banda A (Cr³⁺)</td>
<td>Banda B (Cr³⁺, Fe³⁺)</td>
</tr>
<tr>
<td>TT</td>
<td>λ(nm)</td>
</tr>
<tr>
<td>700 °C</td>
<td>577</td>
</tr>
<tr>
<td>5min</td>
<td>575</td>
</tr>
<tr>
<td>800 °C</td>
<td>5min</td>
</tr>
<tr>
<td>900 °C</td>
<td>5min</td>
</tr>
<tr>
<td>1000 °C</td>
<td>5min</td>
</tr>
</tbody>
</table>

A partir da Tabela 13 notamos que a banda A (Cr³⁺) tem sua posição central média levemente alterada com os tratamentos térmicos que foram realizados por um tempo curto (5 minutos) e, uma alteração mais sensível ocorre para essa banda após o tratamento térmico por 5 horas quando então, a banda A é deslocada de
aproximadamente 16,5 nm para o lado de energia mais baixa, em relação a posição dessa banda antes dos tratamentos térmicos, apresentada na Tabela 8.

A intensidade dessa banda diminui a partir de TT1, ficando reduzida quase que à metade após TT3, para então, voltar a aumentar com TT4 e TT5. Entretanto, observamos que há uma certa dificuldade em se definir a posição central da banda A uma vez que, com os tratamentos térmicos, sua meia largura aumenta ligeiramente com a condição de tempos curtos (5 minutos) para então, aumentar significativamente com o tratamento por 5 horas. Esse resultados indicam que os tratamentos térmicos afetam as posições relativas dos íons Cr³⁺ nos dois sítios diferentes, principalmente no caso do tratamento por 5 horas.

A banda B que, de acordo com a literatura [2,36], é atribuída à presença das impurezas Cr³⁺ e Fe³⁺ na matriz de crisoberilo, tem sua posição um pouco deslocada para o lado de energias mais altas, em direção à região do ultravioleta, após cada um dos tratamentos térmicos, sendo que, com o tratamento térmico por 5 horas não é mais possível observá-la com nitidez. Essa banda parece também, primeiro, se alargar com os tratamentos térmicos à 700 e 800 °C e se estreitar com os tratamentos seguintes por 5 minutos e, sua intensidade obedece esse mesmo comportamento, ou seja, aumenta para TT1 e TT2 e diminui para TT3 e TT4. Uma hipótese que explique o comportamento da banda B é que, com os tratamentos térmicos, ocorra uma variação relativa da concentração de Cr³⁺/Fe³⁺ nesses sítios, com os íons migrando para outros sítios da rede hospedeira.

As linhas do Cr³⁺ nos sítios localizados no plano de reflexão parecem também sofrer alguma alteração em seu comportamento após os tratamentos térmicos. Com TT1 e TT2, essas linhas, que antes eram duas, tornam-se uma única linha mais larga.
em torno de 677,5 nm; com TT3 e TT4 o espectro volta a apresentar duas linhas em torno de 677,5 e 680,5 nm. Com o tratamento de 1000 °C por 5 minutos torna-se difícil distinguir as duas linhas do Cr$^{3+}$ que agora parecem se alargar e se tornar uma única linha em torno de 677,5 nm.

Assim, os tratamentos térmicos parecem influenciar muito mais a banda atribuída as impurezas Cr$^{3+}$ e Fe$^{3+}$ (banda B) do que a banda atribuída as impurezas Cr$^{2+}$ nos dois sitios distintos da alexandrita (banda A). Portanto, podemos pensar que, se os tratamentos térmicos favorecem o prevalecimento da banda de CDTE em torno de 175 K, que anteriormente parecia estar encoberta, e fazem com que a banda B do espectro de absorção desapareça quase que totalmente, após TT5, a banda de CDTE em 175 K pode realmente ser atribuída as impurezas de Cr$^{3+}$ formando dipolos com vacâncias de oxigênio na estrutura da alexandrita. Também é possível supor que o efeito dos ions Fe$^{3+}$ (e talvez as outras impurezas) seja o de deslocar as bandas de CDTE das amostras naturais para temperaturas mais altas e dar origem a uma banda muito mais intensa que encobre a banda em 175K antes dos tratamentos térmicos.

Após cada um dos tratamentos térmicos para a amostra AN5, foram obtidos também os espectros de absorção óptica na região do infravermelho, à temperatura ambiente, a fim de observar os efeitos desses tratamentos principalmente sobre a banda atribuída a água. Os resultados são mostrados na Figura 30.
Figura 30 - Espectros de absorção óptica, à temperatura ambiente, para a amostra natural AN5 após os tratamentos térmicos TT1, TT2, TT3, TT4 e TT5 e sem tratamento térmico.

Com os tratamentos térmicos a banda larga centralizada em torno de 2900 cm\(^{-1}\) torna-se bem menos intensa. A banda de absorção em torno de 1700 cm\(^{-1}\) também desaparece com os tratamentos térmicos o que, provavelmente, pode ser atribuído a ocorrência de migração das impurezas presentes nas amostras naturais para as outras fases da estrutura (como a mica e o quartzo).
4.7.3 - LUMINESCÊNCIA APÓS TRATAMENTOS TÉRMICOS

Os espectros de luminescência em função dos tratamentos térmicos foram obtidos todos com as mesmas condições de medida, sendo a tensão na fotomultiplicadora igual a 900V, sensibilidade no lock-in de 200 μV, abertura da fenda do monocromador de 10μm e excitação da amostra no MLUV do laser de Kr⁺, de acordo com o processo esquematizado na Figura 6 do capítulo 3. Os resultados obtidos são apresentados na Figura 31.

Figura 31 - Espectros de luminescência, à temperatura ambiente, para AN5 submetida aos tratamentos térmicos TT1, TT2, TT3, TT4, TT5 e sem tratamento térmico.
Através dessas medidas verificamos que as linhas S_1 e S_2 (Cr^{3+} localizados no centro de inversão), no lado de energia mais baixa, também se comportam de modo diferente em relação às intensidades para a amostra natural e sintética mesmo quando a primeira é submetida a tratamentos térmicos. Uma hipótese inicial é que as diferenças nas intensidades dessas linhas entre as amostras natural e sintética seja devido a presença do Fe no centro de inversão, na amostra natural, que pode estar influenciando diferentemente no campo cristalino de ambas.

Com as medidas de luminescência em função dos tratamentos térmicos foi possível verificar que as propriedades ópticas desse material parecem não sofrer grandes alterações pois, as linhas R, (R_1 e R_2), atribuídas aos íons de Cr^{3+} localizados nos sítios em um plano de reflexão e responsáveis por essas propriedades, continuam sendo identificadas no espectro nas mesmas posições, conforme mostrado na Figura 31, assim como foi verificado para as linhas R no espectro de absorção, embora se torne mais difícil distinguir as duas linhas R separadamente em ambos os espectros, absorção e emissão, após os tratamentos térmicos.

4.7.4 - DIFRAÇÃO DE RAIOS X EM FUNÇÃO DE TRATAMENTOS TÉRMICOS.

As medidas de difração de raios X em função dos tratamentos térmicos foram realizadas para outra amostra, AN4, obtida a partir da mesma pedra que AN3, conforme descrito na seção 3.4. Os difratogramas de raio X para a amostra AN4 sem tratamento térmico e após os tratamentos térmicos à 700 °C por 15 minutos (TT_1) e 1000 °C por 5 horas (TT_5) são mostrados na Figura 32.
Figura 32 - Difratógramas de raios X para a amostra natural AN4. (a) antes dos tratamentos térmico, (b) após TT1 = 700 °C por 15 minutos e (c) após TT5' = 1000 °C por 5 horas.
Os parâmetros de rede para a amostra AN4, foram determinados através do programa "DICVOL91" a partir dos difratogramas mostrados na Figura 32. No caso da amostra sem ser submetida à tratamentos térmicos esses parâmetros já foram apresentados anteriormente na seção 4.2 como sendo $a=9,405\AA$, $b=5,471\AA$ e $c=4,409\AA$. Após TT1' os parâmetros de rede são $a=9,417\AA$, $b=5,491$ e $c=4,263\AA$ e após TT5' temos $a=9,409\AA$, $b=5,483\AA$ e $c=4,432\AA$. Os resultados obtidos indicam que não ocorre uma mudança estrutural na amostra após os tratamentos térmicos, ocorrendo apenas um aumento de menos de 1% nos parâmetros de rede com o tratamento de 700 °C por 15 minutos e uma diminuição de 1,2% à 6,7% desses parâmetros para o tratamento a 1000 °C por 5 horas.

Nos difratogramas de raios X é possível notar também um pequeno deslocamento das linhas de difração após TT1' para o lado de 29 menores e um novo deslocamento, após TT5', praticamente para as mesmas posições antes dos tratamentos. Embora pequenas, as variações nos parâmetros de rede possam ser interpretadas como uma mudança na composição química do material que implicam a substituição por átomos em geral de tamanho um pouco diferente dos que ocorrem normalmente em alguns lugares do retículo. Como resultado se alteram levemente as dimensões da cela e como consequência, ocorre o deslocamento das posições das linhas correspondentes ao espaçamento observado nos difratogramas de raios X. Estes resultados podem então indicar uma migração dos elementos presentes na amostra, entre as fases diferentes identificadas na Figura 11, reforçando a hipótese levantada com as medidas de absorção e emissão óptica. Os valores das intensidades das linhas de difração estão normalizados para os três gráficos apresentados.
4.8 - CDTE FOTOINDUZIDA

De acordo com o que foi mencionado no início desse trabalho uma das mais interessantes propriedades da alexandrita é sua sensibilidade à incidência de luz, que faz com que passe de uma coloração verde para o vermelho. Assim, um primeiro teste de identificação de nossas amostras naturais foi observá-las em luz ambiente (luz do sol) e em seguida sob luz incandescente (lâmpada de filamento de tungstênio). Esse primeiro teste mostrou ser muito eficiente para a amostra sintética pois, é bem visível sua mudança de cor, passando do verde para o vermelho, entretanto, com as amostras naturais a mudança de cor sob luz incandescente foi um pouco mais fraca, com a cor das pedras passando de verde, bastante opaco, para uma coloração vermelho rosada, com algumas delas em uma área quase total e outras apenas em algumas regiões. As amostras AN3 e AN5, utilizadas principalmente nas medidas de CDTE, foram as que mais apresentaram essa mudança de cor a qual foi observada em mais de 50% de seu volume.

Um outro teste foi colocar nossas amostras em frente ao laser Kr+, sintonizado no multilinhas ultravioleta (MLUV) e verificamos que a mudança de cor é muito evidente, tanto nas amostras naturais quanto na sintética mas, para as naturais o feixe do laser não consegue atravessá-las, como ocorre para a amostra sintética. Esse comportamento é ilustrado na Figura 33.
Figura 33 - Fotografias das amostras de alexandrita natural e sintética iluminadas com luz de lâmpada fluorescente e com laser de Kr sintonizado no multilinhas ultravioleta.
Assim, desde que a presença de dipolos foi evidenciada com as medidas de CDTE para as amostras de alexandritas, apresentadas nas seções anteriores, e que esses dipolos devem estar relacionados principalmente com as impurezas de Cr$^{3+}$ nos dois sítios de simetrias diferentes na rede hospedadora, pode-se pensar em investigar tal fenômeno através de um experimento de CDTE modificado, no qual usamos como fonte de excitação além do campo elétrico aplicado também a luz de um feixe do laser. Este processo foi chamado no capítulo 3 de CDTE fotoinduzida (CDTEFI) e nessa seção são apresentados os resultados das medidas realizadas a fim de investigar a participação dos íons Cr$^{3+}$ nas bandas observadas.

Nas medidas de CDTEFI foi utilizado um laser de Kr$^+$ COHERENT INNOVA 200 sintonizado em comprimentos de onda localizados sobre as bandas de absorção, conforme é mostrado na Figura 34, onde o MLUV (multilinhas ultravioleta) corresponde a três linhas sintonizadas em 337,5; 350,7 e 356,4 nm, MLVI (multilinhas violeta) às linhas 406,7; 423,1 e 415,4 nm, MLBG (multilinhas azul-verde) corresponde às linhas 468,0; 476,2; 482,5; 520,8 e 530,9 nm e MLRD (multilinhas vermelho) corresponde às linhas 647,1 e 676,4 nm. As medidas de CDTEFI foram realizadas com a amostra sintética, AS1 e com as amostras naturais AN3 e AN5.
Figura 34 - Espectro de absorção óptica da amostra sintética de alexandrita mostrando as faixas de comprimentos de onda utilizados nas medidas de CDTEFI.

Conforme descrito anteriormente, as medidas de CDTE fotoinduzidas foram realizadas em duas etapas diferentes, a primeira com uma condição de polarização dos dipolos à temperatura ambiente, cujo processo pode ser entendido como uma “destruição” das bandas de CDTE previamente identificadas, com incidência de luz e, numa segunda etapa temos a condição de polarização dos dipolos à temperatura de nitrogênio líquido através da incidência de luz nas amostras juntamente com o campo elétrico aplicado e pode ser entendido como um processo de “formação” das bandas de CDTE. Ambos os processos são mostrados na Figura 9 do capítulo 3 nos esquemas (i) e (ii) respectivamente.
Através do procedimento (i), ou seja, com a condição de polarização da amostra à temperatura ambiente, podemos verificar a influência da luz sobre os dipolos formados que poderiam estar recebendo energia suficiente para relaxar para suas distribuições aleatórias ainda a baixa temperatura; e com o segundo procedimento (ii), sem a condição de polarização à temperatura ambiente, pode-se verificar a possibilidade de ocorrer o processo inverso, ou seja, fornecer energia suficiente através da foto-excitacão das amostras para que os dipolos possam ser orientados com o campo elétrico aplicado a baixa temperatura.

4.8.1 — CDTEFI PARA A AMOSTRA SINTÉTICA

Incidindo o feixe do laser sintonizado no MLUV, com potência de saída igual a 0,53W por 10 minutos na amostra sintética, de acordo com o 1º processo de CDTEFI (i), com $E_p=7,0kV/cm$, foi verificado que a banda de CDTE observada anteriormente, mostrada na Figura 21, é completamente destruída. Isso ocorre também quando se incide luz do laser sintonizado no MLUV com 0,37W de potência. Entretanto, se verifica que a destruição das bandas de CDTE nessa amostra depende da potência do laser, pois para potências mais baixas, em torno de 0,038 e 0,089 W, esse efeito não ocorre, aparecendo um pico com intensidade aproximada de 20×10^{14} A, localizado em torno de 180K. Esses resultados são mostrados na Figura 35. O mesmo procedimento foi realizado aumentando-se o tempo de incidência de luz na amostra e os resultados obtidos foram os mesmo, ou seja, ocorre uma destruição total da banda de CDTE original com a aplicação de luz mas, que depende da potência da luz aplicada.
Figura 35 - CDTEFI para a amostra AS1 (e=2,32mm) com $T_p=297K$, $E_p=7,0kV/cm$ e $b=0,08K/s$, incidindo luz MLUV à TNL.

Foram realizadas outras medidas de CDTEFI utilizando potências intermediárias as apresentadas na Figura 35 e verificamos que para potências maiores de 0,30W, ocorre a destruição total da banda original de CDTE, ou seja, com energias entre 3,5 e 3,7 eV (MLUV) os diplos podem relaxar livremente para suas orientações aleatórias iniciais com o processo de foto-excitacão sem necessitarem de um processo térmico.

Também foi verificado nessas medidas que, ao incidir luz na amostra, isto gera um pico de corrente bastante intenso, da ordem de $10^{-12}A$, e provoca um aumento de temperatura em torno de 1 K na amostra, para qualquer potência utilizada. Essa
corrente cai rapidamente quando a luz é retirada, retornando a zero, com a temperatura também voltando à inicial. Esse efeito de transiente de corrente e efeito térmico de luz na amostra não serão considerados nesse trabalho, ficando como uma sugestão para investigações futuras.

Com o 2º processo (ii), ou seja, com a incidência de luz MLUV, com potência de 0,37W (mesma potência com que os dipolos são desorientados por foto excitação), e campo elétrico de 7,0 kV/cm, ambos aplicados em 77K se verifica que é possível, para esse comprimento de onda da luz, orientar os dipolos e com isso formar a banda de CDTE quando a temperatura é aumentada a uma taxa fixa.

Os resultados dessas medidas são mostrados na Figura 36 com excitação no MLUV e os resultados obtidos a partir de ambos os processos, (i) e (ii), em função dos comprimentos de onda utilizados são mostrados na Figura 37 para MLVI, na Figura 38 para MLBG e na Figura 39 para MLRD. Em todos os casos foi utilizado em torno de 0,30 W de potência do laser, campo elétrico de polarização de 7,0 kV/cm, taxa de aquecimento entre 0,06 a 0,12 K/s, temperatura de polarização próxima de 300K no processo de destruição das bandas e 77K no processo de formação das bandas.
Figura 36 - CDTEFI para a amostra AS1, com $E_p=7,0\text{kV/cm}$ e luz MLUV por 2, 5 e 10 minutos em $T_p=77\text{K}$, $b=0.08 - 0.12\text{K/s}$.

Figura 37 - CDTEFI para a amostra AS1, com $E_p=7,0\text{kV/cm}$ e luz MLVI por 2, 5 e 15 minutos em $T_p=77\text{K}$, $b=0.08 \text{K/s}$.

124
Figura 38 – CDTEFI para a amostra AS1, com $E_p=7,0\text{kV/cm}$ e MLBG por 2, 10 e 15 minutos em $T_p=77\text{K}$, $b=0,08-0,09\text{K/s}$.

Figura 39 – CDTEFI para a amostra AS1, com $E_p=7,0\text{kV/cm}$ e MLRD por 2, 5 e 15 minutos em $T_p=77\text{K}$, $b=0,06-0,08\text{K/s}$.
Nos resultados mostrados na Figura 36, para o MLUV, se verifica que a banda criada com o auxílio da foto-excitacao está deslocada para temperaturas mais baixas em relacao as medidas de CDTE usuais para a amostra AS1, conforme mostrado anteriormente na Figura 21. No caso da excitação no MLUV, a temperatura máxima do pico fica em torno de 140 K, ou seja, mais proxima da temperatura da banda de CDTE menos intensa para essa amostra quando é feito o ajuste teorico das curvas pelo metodo melhorado de Havriliak-Negami. É possivel observar ainda que os picos laterais que ocorrem na banda de CDTE da amostra sintetica, mostrados na Figura 21 sao favorecidos com o aumento do tempo de incidencia de luz enquanto que, a banda em torno de 140K observada nas medidas de CDTEFI parecem apresentar uma saturacao em sua intensidade independente do tempo de aplicacao de luz.

Na irradacao da amostra com MLVI (406,7-415,4 nm), Figura 37, observa-se que ocorre a destruicao da banda de CDTE na posicao original mas ha o aparecimento de um pico, de mesma ordem de grandeza da banda, em torno de 220K. Para esse comprimento de onda a excitação da amostra ocorre exatamente sobre a banda B do espectro de absorcao atribuida aos ions Cr^{3+} e Fe^{3+}, sendo que, no caso da amostra sintetica, a concentração de Fe é desprezivel. No caso do processo de formação das bandas utilizando o MLVI, a saturação na intensidade da banda de CDTE é mais evidente independendo se o tempo utilizado de incidencia de luz foi de 5 ou 15 minutos.

Quando a amostra é excitada com MLBG (468-530,9 nm), Figura 38, se verifica que a banda de CDTE não é destruída mas sim, deslocada para temperaturas mais altas, em torno de 178K, ou seja, para posicoes mais proximas da banda de
CDTE mostrada na Figura 21, e o mesmo ocorre para o MLRD (647,1-676,4 nm), Figura 39, que também desloca um pouco mais a banda para temperaturas mais altas. Nos dois últimos casos também se observa que ocorre uma saturação na intensidade da banda para tempos de irradiação da amostra maiores, 5, 10 ou 15 minutos. Na Figura 40 são apresentadas as posições médias das bandas de CDTE mostradas na Figura 36, na Figura 37, na Figura 38 e na Figura 39.

Figura 40 – Posições das bandas de CDTE referentes ao processo de formação das bandas com a condição de tempo de irradiação de 5 minutos, no MLUV, MLVI, MLBG e MLRD.

Na Figura 40 observa-se que a posição da banda de CDTE é deslocada para temperaturas mais altas quando se irradia a amostra com comprimentos de onda mais altos, indicando haver realmente uma distribuição de dipolos necessitando de tempos
de relaxação diferentes para se desorientarem. Esse resultados reforçam a necessidade da análise das bandas de CDTE atribuídas a um processo de relaxação com uma distribuição contínua de energias de ativação, como o de Havriliak-Negami utilizado neste trabalho.

A respeito das medidas de CDTEFI para a amostra sintética podemos concluir que deve existir uma contribuição significativa dos Cr³⁺ localizados nos sitios localizados sobre o plano de reflexão (Al₂) pois, como já foi citado, esses são os íons que colaboram para com as propriedades ópticas nesse material e portanto são fortemente influenciados pela luz incidente na amostra. Entretanto, os mecanismos que descrevem a relaxação dipolar observadas nas medidas de CDTEFI não são os mesmos que descrevem a relaxação dipolar elétrica observada com medidas usuais de CDTE. No caso das bandas obtidas com a aplicação simultânea do campo elétrico de polarização e irradição das amostras à baixa temperatura, as bandas observadas não puderam ser ajustadas com o método de Havriliak-Negami, considerando-se uma ou duas distribuições dos parâmetros de relaxação. Nas medidas fotoinduzidas os valores de energia de ativação e tempo de relaxação diferem muito dos valores apresentados na Tabela 10.

4.8.2 - CDTEFI PARA AS AMOSTRAS NATURAIS

Para a amostra AN3, com faces laterais bastante irregulares e sem nenhum polimento, a incidência de luz torna-se mais difícil pois, ocorre um espalhamento da luz nas faces da amostra, que embora fique quase que completamente vermelha, a luz não consegue atravessá-la. Esse efeito pode ser observado na Figura 33, onde a
alexandrita natural não apresenta uma mudança total em sua cor quando irradiada, dependendo da direção de incidência de luz.

Entretanto, mesmo assim, foram realizadas medidas de CDTE polarizando a amostra em 280 K, com $E_p=6,9$ kV/cm e eletrodos de tinta prata, conforme procedimento já descrito, e incidiu-se luz MLUV à 77K, com potência de 0,37 W e 0,42 W. A incidência de luz gera um pico de corrente tal como foi verificado para a amostra sintética. Entretanto, o comportamento das bandas de CDTE é bastante diferente em relação a amostra sintética: a incidência de luz não provoca a destruição completa das bandas, ocorrendo um pico em torno de 192 K, cuja intensidade é em torno da metade comparada as medidas obtidas na forma usual, mostrada na Figura 20 e outro menos intenso em 200K, os quais podem ser vistos na Figura 41, quando utilizamos a mesma escala para a corrente dos gráficos referentes à amostra sintética.

No processo inverso, ou seja, de formação de bandas com a incidência de luz à TNL por 2 minutos juntamente com E_p, a amostra natural comporta-se como a sintética com a banda de CDTE sendo criada mas, com intensidade bem maior do que a banda de CDTE sem luz, comportamento esse contrário ao da sintética. Esse resultado é mostrado na Figura 42.
Figura 41 – CDTEFI para amostra AN3 (e=2,03 mm) com $T_p=280$ K, $E_p=6,9$ kV/cm e $b=0,08$K/s, com luz MLUV (processo i).

Figura 42 – CDTEFI para a amostra AN3 com $T_p = 83$K, $E_p=6,9$ kV/cm e $b=0,08$K/s (processo ii).
Foram realizadas também medidas de CDTE fotoinduzidas com a amostra AN3 com eletrodos de ouro, na tentativa de verificar se não ocorre alguma influência dos eletrodos de tinta prata que, conforme foi visto anteriormente, poderiam estar também interferindo no comportamento da corrente para temperaturas acima de 220K. Entretanto, novamente não ocorre a destruição da banda de CDTE. Mas, com

$T_p = 189K$, $E_p = 6.9kV/cm$ e $b = 0.10K/s$, incidindo luz com 0.50W (processo i), as bandas de CDTE aparecem em 172 e 193K, com intensidades mais baixas. Esse resultado é mostrado na Figura 43, juntamente com a medida sem luz utilizando eletrodos de ouro.

Figura 43 – CDTE fotoinduzida para AN3 com eletrodos de ouro, com $T_p = 190K$, $E_p = 6.9kV/cm$ e $b = 0.09K/s$ (processo i)
No processo de formação de bandas com luz e campo elétrico aplicado na amostra, não foram obtidos bons resultados para a amostra com eletrodos de ouro. Um dos melhores resultados é mostrado na Figura 44 mas, não foi reproduzível. Para essa amostra foi possível somente observar que há uma forte tendência à formação das bandas mas, com o espalhamento de luz pela amostra, esta não é observada claramente como ocorre para AS1. Também foram realizadas medidas com potências do laser mais altas mas, com o alargamento do feixe o espalhamento de luz na amostra é ainda maior. Para essa amostra foram realizadas apenas medidas com excitação da amostra no MLUV.

Figura 44 – CDTE fotoinduzida para AN3 com eletrodos de ouro, com \(T_r = 83 \) K, \(E_p = 6.9 \) kV/cm e \(b = 0.08 \) K/s (processo ii)
Também foram realizadas medidas de CDTEFI com a amostra AN5, cuja face lateral possui o melhor polimento possível, sem apresentar tendência a esfarelar-se, e com aspecto mais translúcido. Com incidência de luz do laser sintonizado no MLUV, com potência de 0,62 W, por 10 minutos, após polarizar em 186K e esperar a corrente de descarga, e com o aumento da temperatura com \(b=0,08K/s \) se verifica que as bandas não são destruídas e aparecem nas mesmas posições sem a aplicação da luz porém, com intensidades um pouco menores, ou seja, pode haver apenas uma tendência de ocorrer a destruição das bandas. Esse resultado é apresentado na Figura 45. No processo de obtenção das bandas por luz, não foi obtido nenhum resultado satisfatório para essa amostra.

![Figura 45 – CDTE fotoinduzida para AN5 (e=1,14mm) com eletrodos de tinta prata, \(T_p=186K \) e \(b=0,08K/s \) (processo i)](image-url)
Portanto, com as medidas de CDTEFI é possível dizer que o processo de formação das bandas sempre é mais eficiente, e ocorre tanto para a amostra sintética, nesse caso em função dos comprimento de onda de excitação, quanto para as amostras naturais AN3 e AN5, medidas somente para MLUV. Por outro lado, o processo de destruição não é facilmente observado, dependendo fortemente da potência do laser e do comprimento de onda da luz para a amostra sintética e, não ocorre para as amostras naturais, as quais possuem faces laterais irregulares causando um espalhamento da luz que nela incide. Além disso, deve-se levar em conta que as amostras naturais não são monocristalinas e podem ter dipolos associados a outros tipos de impurezas que não seja o Cr$^{3+}$.
5 CONCLUSÕES:

5.1 - IDENTIFICAÇÃO DAS AMOSTRAS

A identificação das amostras de alexandrita naturais, confirmando serem realmente verdadeiras, uma vez que esse material é bastante raro, foi realizada através das técnicas de EDX, WDX, Difração de Raios X, Absorção Óptica e Luminescência. As conclusões a partir dos resultados obtidos são as seguintes:

5.1.1 - COMPOSIÇÃO QUÍMICA E CARACTERIZAÇÃO ESTRUTURAL

Através das microanálises por EDX e WDX, foi detectada a existência de inclusions sólidas, como quartzo e mica, nas amostras naturais, e também a presença de outras impurezas na matriz hospedeira tais como: Mg, Ti, Si, Ca, K. Com essas medidas foi também verificado que a concentração de Fe nas amostras naturais é bem maior do que a concentração de Cr. Enquanto que, para a amostra sintética foram detectadas apenas concentração desprezível de Fe em uma das regiões analisadas, assim como, apenas traços de Ir. Com isso pudemos concluir que é possível utilizar a amostra sintética, possuindo apenas impurezas Cr$^{3+}$, como uma referência nas medidas de CDTE. Este fato pode ser reforçado também pelo crescimento e procedência da amostra sintética.
A presença de outras impurezas e formação de inclusões sólidas nas amostras naturais foram confirmadas com medidas de Difração de Raios X, as quais permitiram também confirmar os parâmetros de rede, \(a=9,504\AA \); \(b=5,471\AA \) e \(c=4,409\AA \) e a estrutura cristalina ortorrombica desse material. Esses resultados são plenamente coincidentes com a literatura.

5.1.2 – CARACTERIZAÇÃO ÓPTICA

Para ambos os tipos de amostras as medidas de absorção óptica apresentaram as duas bandas largas em torno de 576,6 e 416-424,5 nm, chamadas bandas A e B e atribuídas as transições a partir do estado fundamental \(^4\text{A}2\) para os estados excitados \(^4\text{T}2\) e \(^4\text{T}1\), respectivamente. As duas linhas do Cr\(^3+\) localizados nos sítios sobre um plano de reflexão, característicos da alexandrita, em torno 678,5 e 680,5 nm também foram facilmente detectadas. No caso da amostra sintética uma terceira banda de absorção do Cr\(^3+\), na região do ultravioleta, em torno de 265nm (banda C), pode ser detectada. Essa banda raramente é citada na literatura e concluímos que sua presença nos espectros de absorção obtidos neste trabalho se deve a ausência de Fe nessa amostra, uma vez que, essa região é bastante influenciada por ions de Fe\(^3+\).

No caso das amostras naturais a influência do Fe\(^2+\) é bastante evidenciada nas medidas de absorção óptica, as quais não apresentam a banda C e a banda B (em torno de 416-420nm, dependendo da amostra analisada) é bastante assimétrica, com absorção muito alta a partir de 400 nm. Essas características apontam também uma
influência das inclusões de quartzo e mica, cujos espectros de absorção apresentam o mesmo comportamento nessa região do espectro.

Com as medidas de luminescência foi possível verificar que as posições das linhas R atribuídas ao Cr$^{3+}$ nos sítios localizados num plano de reflexão ($R_1=681,2\text{nm}$ e $R_2=679,4\text{nm}$) e das linhas S atribuídas ao Cr$^{3+}$ localizados sobre um centro de inversão ($S_1=696,6\text{nm}$ e $S_2=690,8\text{nm}$) para as amostras sintética e natural são bastante coincidentes com a literatura, o que pode mais uma vez confirmar a qualidade das amostras utilizadas.

5.2 - CORRENTE DE DESPOLARIZAÇÃO TERMICAMENTE ESTIMULADA

Neste trabalho foi observado pela primeira vez a presença do fenômeno de relaxação dipolar elétrica em alexandrita sob as formas natural e sintética, através de medidas de Corrente de Despolarização Termicamente Estimulada. As bandas de CDTE observadas são típicas dos mecanismos de relaxação por ativação térmica característicos da presença de entidades dipolares, ou seja, a temperatura máxima, T_m, da banda depende da taxa de aquecimento, b, utilizada; e apresentam um comportamento linear regular na área sob a banda com a tensão de polarização aplicada, E_p. Dadas as mesmas condições de medidas, para E_p, b, t_p e área dos eletrodos os resultados são plenamente reprodutíveis na região abaixo da temperatura ambiente.

As medidas de CDTE indicaram a presença de uma banda larga centralizada em torno de 188 à 195K para as amostras naturais enquanto que, para a amostra sintética, essa banda está centralizada em torno de 177 K. A própria estrutura da
alexandrita, mostrada na Figura 2, nos leva a considerar como hipótese principal, que a forma com que as curvas características da relaxação dipolar se apresenta deve ser atribuída a uma distribuição contínua dos parâmetros de relaxação envolvidos, \(E_a \) e \(\tau_0 \).

A conclusão em relação a forma das bandas é obtida levando-se em consideração que a origem da formação de dipolos nesse material é atribuída a presença de vacâncias de oxigênio associadas com impurezas \(\text{Cr}^{3+} \) (dipolo tipo I-V) ou dipolos formados pelo deslocamento local dos vizinhos mais próximos devido a substituição do íon \(\text{Al}^{3+} \) da rede pelos íons \(\text{Cr}^{3+} \) que possuem raio iônico maior. Conforme o modelo apresentado na Figura 16, as vacâncias de oxigênio podem estar distribuídas aleatoriamente nas posições 1, 2 e 3 nos dois siitos de simetrias diferentes, \(\text{Al}_1 \) e \(\text{Al}_2 \), encontrados na estrutura cristalina. Os dipolos formados devem interagir entre si durante o processo térmico dando origem ao aparecimento das bandas largas observadas.

A participação do \(\text{Cr}^{3+} \) na formação de dipolos pode ser considerada quando realizamos também a caracterização óptica através das técnicas de absorção e luminescência, e verificamos que o espectro para a amostra sintética possuem somente as bandas de absorção do \(\text{Cr}^{3+} \), como descrito anteriormente.

Portanto, analisando as curvas experimentais de CDTE utilizando o método de Havriliak-Negami, que considera uma distribuição contínua dos parâmetros de relaxação, temos que os resultados obtidos mostram que realmente as curvas podem ser ajustadas com duas distribuições contínuas desses parâmetros. Os valores de energia de ativação e tempo de relaxação obtidos e apresentados na Tabela 10 para as amostras AS1 e AN3 são bastante coerentes e, o mais importante, é que
observamos que uma das distribuições, chamada nessa tabela de curva 2, é praticamente coincidente para ambas as amostras, ou seja, essa distribuição deve ser originada pelo participação dos íons Cr$^{3+}$ na formação dos dipolos.

O fato da banda de CDTE para a amostra natural estar deslocado para temperaturas mais altas deve ser atribuído a presença das outras impurezas detectadas nas amostras naturais. Isso é reforçado pelos resultados obtidos com a amostra natural AN5, cuja concentração de outras impurezas e a presença de inclusões de quartzo e mica é bem menor do que em AN3 e, por isso, a banda de CDTE está localizada numa temperatura um pouco mais baixa (em torno de 188K) em relação a amostra AN3. Os íons de Fe$^{3+}$ também podem entrar na estrutura da alexandrita substituindo os íons Al$^{3+}$ e então podem também dar origem à formação de dipolos do tipo I-V. As distribuições e os parâmetros de relaxação obtidos para as amostras naturais e apresentados na Tabela 10 e na Tabela 12, indicados na coluna referente a Curva 3, podem ser atribuídos a esses dipolos ou ainda, a outros dipolos formados com a participação de outras impurezas.

5.3 - EFEITOS DOS TRATAMENTOS TÉRMICOS

Tratamentos térmicos consecutivos realizados para as amostras naturais reforçam as conclusões anteriores, eliminando a distribuição centralizada em temperaturas mais altas e evidenciando a presença da Curva 2 de distribuição, com os parâmetros de relaxação coerentes com a Curva 2 da amostra sintética, conforme apresentado na Tabela 10 e na Tabela 12.
A comprovação de que os tratamentos térmicos não alteram a estrutura cristalina da alexandrita, e portanto mantém a formação de dipolos com a participação do Cr$^{3+}$, foi feita através das medidas de Difração de Raios X e medidas de absorção óptica e luminescência em função dos tratamentos térmicos realizados. Em relação a absorção os tratamentos térmicos influenciam apenas na banda atribuída ao Fe$^{3+}$ / Cr$^{3+}$ (banda B em torno de 420 nm) e principalmente, a região do ultravioleta, caracterizada pela mica e quartzo.

5.4 – MEDIDAS DE CDTEFI

Neste trabalho também foram realizadas medidas de CDTE fotoinduzidas que apontaram uma forte sensibilidade das bandas de CDTE com a incidência de luz nas amostras. Os resultados obtidos com as medidas de CDTEFI confirmam um comportamento das bandas de CDTE com uma distribuição contínua dos parâmetros de relaxação.

No caso da amostra sintética, as bandas de CDTE podem ser formadas a partir de uma situação de não polarização a temperatura de 77K, quando a amostra é foto excitada nessa temperatura juntamente com o campo elétrico aplicado, para qualquer um dos comprimentos de onda utilizados (MLUV, MLVI, MLBG e MLRD). As bandas assim obtidas estão deslocadas para temperaturas mais baixas, em torno de 140K, quando a amostra é excitada pelo MLUV e voltam a deslocar-se para temperaturas mais altas quando irradiadas com comprimentos de onda maiores, na região do visível.
O processo de destruição das banda de CDTE, previamente alcançada numa situação de polarização a temperatura ambiente, é obtido apenas no caso da utilização da luz laser sintonizado no MLUV e depende da potência do laser.

No caso das amostras naturais foi possível somente verificar que há uma tendência à formação das bandas com a incidência de luz e que não ocorre a destruição dessas como no caso da amostra sintética. Entretanto, esses resultados não podem ser considerados conclusivos uma vez que existe um grande espalhamento de luz pelas amostra naturais que possuem faces laterais, por onde incide a luz, bastante irregulares e além disso, essas amostras não são monocristalinas, como é o caso da amostra sintética.

De forma geral, podemos concluir que os resultado inéditos de medidas de CDTE em alexandritas mostram que esse material possui propriedades elétricas bastante interessantes e que são fortemente influenciadas pela incidência de luz. Com isso novas perspectivas em estudar alexandritas são abertas e, futuramente, medidas e análises suplementares na caracterização elétrica podem proporcionar um completo entendimento do fenômeno de relaxação dipolar e, outras aplicações para esse material podem surgir baseadas nesses resultados.
6 TRABALHOS FUTUROS

Para complementar a caracterização elétrica dos cristais de alexandrita através da técnica de CDTE, ainda é conveniente a realização de alguns experimentos citados a seguir:

1. Em primeiro lugar é sugerida a obtenção de cristais não dopados com Cr$^{3+}$, ou seja, de crisoberlo na forma sintética natural ou, preferencialmente, em ambas. As medidas de CDTE para o crisoberlo poderiam nos dar informações conclusivas se realmente os diplos detectados nas medidas com alexandrita podem ser atribuídos a impureza-vacância ou mesmo a deformação local sofrida pela rede devido às diferenças de raios iônicos entre o Cr$^{3+}$ e Al$^{3+}$, conforme é sugerido neste trabalho.

2. Realizar medidas de CDTE fotoinduzidas com uma amostra natural lapidada ou com mínima presença de inclusões. Com isso poderia ser minimizado o efeito do espalhamento da luz incidente nas amostras naturais como ocorreu nas medidas com nossas amostras naturais disponíveis.

3. Realizar medidas de CDTE fotoinduzidas com outras linhas do laser além das quatro linhas utilizadas neste trabalho, por exemplo, no infravermelho, e com linhas exatamente sobre as bandas de absorção, em torno de 420 e 570 nm. Este experimento poderia ampliar a investigação da dependência da posição das bandas de CDTE em função do comprimento de onda utilizado.

4. Dar continuidade às medidas de CDTE em amostras naturais provenientes de outras regiões que podem apresentar diferentes características em sua composição química e estrutura. Sugerimos essas medidas baseados na possibilidade de que outras amostras possuam quantidades de Fe e outras
impurezas bastante diferentes comparadas com as amostras estudadas nesse trabalho. Recentemente obtivemos algumas amostras de alexandrita natural oriundas da região de Minaçu, no Estado de Goiás e, medidas preliminares de CDTE proporcionaram resultados muito semelhantes aos obtidos com nossas amostras naturais oriundas de Minas Gerais, com uma banda de CDTE bastante intensa centralizada também em torno de 196K. Entretanto a composição química de ambas é bastante semelhante em relação ao Cr e Fe.

5. Possuindo outras amostras podemos realizar as medidas de CDTE em função de tratamentos térmicos feitos em atmosferas controladas, principalmente em atmosfera de oxigênio, e então investigar melhor a presença de vacâncias de oxigênio, analisando a concentração de dipolos através da área sob a curva de corrente em função do tempo nas medidas de CDTE. Esses tratamentos térmicos também podem ser realizados com uma variação maior de intervalos de tempos, por exemplo, de 30 em 30 minutos até completar as 5 horas proposta nesse trabalho.

6. Realizar medidas de EPR para as amostras naturais em função dos tratamentos térmicos consecutivos. Essas medidas poderiam nos fornecer informações relevantes sobre a taxa de concentrações de impurezas nos dois sítios diferentes, Al₁ e Al₂, e relacioná-las com as bandas de CDTE obtidas após os tratamentos térmicos. Observamos que medidas de EPR para alexandrita natural foram tentadas neste trabalho mas, verificamos que existe uma grande dificuldade em sua realização devido a alta concentração de Fe³⁺ que essas amostras possuem.
7. A realização de medidas de Absorção Óptica com luz polarizada também é sugerida a fim de se obter informações adicionais a respeito dos parâmetros espectroscópicos.

8. Utilização de técnicas experimentais que possibilitem a determinação da composição química das amostras de forma mais abrangente e precisa do que as análises de EDX e WDX realizadas neste trabalho, com as quais não foi possível detectar principalmente o berílio e detectar o oxigênio, no caso de WDX, com erros grandes comparados aos outros elementos.

9. Realizar medidas de Difração de Raios X em função da temperatura analisando sistematicamente prováveis alterações que possam ocorrer nas amostras de alexandritas.

10. Realizar medidas de tempo de vida em diferentes amostras, obtendo-se assim informações a respeito da concentração de Cr$^{3+}$ nos dois tipos de sitios, Al₁ e Al₂.

Para finalizar devemos lembrar do grande interesse que existe na obtenção do material em estudo de forma mais rápida e, principalmente, mais barato e portanto, uma continuidade para esse trabalho poderia se basear na dedicação em se obter alexandrita na forma de filmes através de evaporação via canhão de elétrons, por exemplo, disponível em nosso laboratório.
7 Referências:

[89] Obtido no endereço eletrônico: http://bam.de.a/a_v/v_1/powder/e_cell.html

