UNIVERSIDADE DE SÃO PAULO

FACULDADE DE CIÊNCIAS FARMACÊUTICAS PROGRAMA DE PÓS-GRADUAÇÃO EM FÁRMACO E MEDICAMENTOS PRODUÇÃO E CONTROLE FARMACÊUTICOS

Guilherme Alves Ribeiro de Godoy

Desempenho de processos de compressão: Avaliação do uso de simulador de compressão para caracterização de deformação de excipientes e a aplicação de modelagem multinível em linhas produtivas

> São Paulo 2023

UNIVERSIDADE DE SÃO PAULO FACULDADE DE CIÊNCIAS FARMACÊUTICAS PROGRAMA DE PÓS-GRADUAÇÃO EM FÁRMACO E MEDICAMENTOS PRODUÇÃO E CONTROLE FARMACÊUTICOS

Guilherme Alves Ribeiro de Godoy

Desempenho de processos de compressão: Avaliação do uso de simulador de compressão para caracterização de deformação de excipientes e a aplicação de modelagem multinível em linhas produtivas

Versão Corrigida

Dissertação de Mestrado; Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; Fármaco e Medicamentos

Orientador: Prof. Dr. Gabriel Lima Barros de Araújo

São Paulo 2023 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Ficha Catalográfica elaborada eletronicamente pelo autor, utilizando o programa desenvolvido pela Seção Técnica de Informática do ICMC/USP e adaptado para a Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP

Bibliotecária responsável pela orientação de catalogação da publicação:

Marlene Aparecida Vieira - CRB - 8/5562

d588d de Godoy, Guilherme Desempenho de processos de compressão: Avaliação do uso de simulador de compressão para caracterização de deformação de excipientes e a aplicação de modelagem multinível em linhas produtivas / Guilherme de Godoy. - São Paulo, 2023. 62 p. Dissertação (mestrado) - Faculdade de Ciências Farmacêuticas da Universidade de São Paulo. Departamento de Farmácia. Orientador: de Araújo, Gabriel 1. COMPRIMIDOS. 2. ANÁLISE MULTINÍVEL. 3. TECNOLOGIA FARMACÊUTICA. 4. CINÉTICA DOS SÓLIDOS. 5. ANÁLISE DE DADOS. I. T. II. de Araújo, Gabriel, orientador.

Guilherme Alves Ribeiro de Godoy

Desempenho de processos de compressão: Avaliação do uso de simulador de compressão para caracterização de deformação de excipientes e a aplicação de modelagem multinível em linhas produtivas; dissertação de Mestrado; Faculdade de Ciências Farmacêuticas da Universidade de São Paulo; Fármaco e Medicamentos;

Comissão Julgadora

Prof. Dr. Gabriel Lima Barros de Araújo

Samuel Vidal Mussi

10. Examinador

Helvécio Vinícius Antunes Rocha

20. Examinador

Marcelo Dutra Duque

30. Examinador

São Paulo, 26 de fevereiro de 2024.

AGRADECIMENTOS

Ao Aché Laboratórios Farmacêuticos S.A. pelo apoio neste estudo, através do compartilhamento de suas bases de dados de eficiência global de equipamentos e de resolução de problemas. Sem as informações originais contidas nessas bases de dados, não seria possível realizar completamente este estudo. Sua contribuição foi inestimável para o sucesso de nossa pesquisa.

RESUMO

GODOY, G. A. R. Desempenho de processos de compressão: Avaliação do uso de simulador de compressão para caracterização de deformação de excipientes e a aplicação de modelagem multinível em linhas produtivas. 2023. Dissertação de Mestrado – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2023.

O processo de compressão representa uma etapa crucial e dinâmica na indústria farmacêutica. É por meio dessa operação que os comprimidos são produzidos, destacando-se como a forma farmacêutica mais prevalente no mercado devido à sua ampla aceitação pelos pacientes, atribuída à facilidade de administração e outras características favoráveis, como armazenamento eficiente, estabilidade e versatilidade. Portanto, é de suma importância compreender e mapear os principais fatores que exercem influência no desempenho do processo de compressão para garantir a qualidade dos comprimidos resultantes, impactando diretamente na eficácia e segurança do medicamento. O presente estudo abordou a compressão industrial em duas perspectivas: (i) a análise da compactação e velocidade de compressão por meio de simulador industrial, com avaliação do comportamento de deformação dos principais excipientes presentes na formulação de comprimido; (ii) a investigação de variáveis de fabricação em escala industrial, incluindo a influência da mão de obra, problemas mecânicos e a troca de equipamentos. Na primeira, avaliou-se a aplicabilidade de um simulador de compressão para investigar o ciclo de compressão de seis principais excipientes farmacêuticos, através da análise de sensibilidade à taxa de compressão (SRS) e dos perfis de Heckel. Na segunda, foram empregados modelos multiníveis aplicados em um banco de dados de monitoramento de eficiência global de equipamentos (OEE) em escala industrial. Os resultados de SRS obtidos no simulador mostraram que a lactose anidra foi o material mais sensível à taxa de compressão. Os gráficos de Heckel indicaram que o processo de consolidação da deformação da celulose foi alcançado mais rapidamente do que os outros materiais à medida que a força de compressão aumentou. O amido de milho apresentou maior resistência nos estágios iniciais de compactação até que seu ponto de deformação elástica fosse excedido. O simulador de compressão foi capaz de caracterizar o comportamento de cada material coerentemente com o reportado na literatura e mostrou-se sensível a mudanças na granulometria e hábito cristalino, provando ser uma ferramenta eficiente para o desenvolvimento racional de formulações de

comprimidos e parametrização de processos. Enquanto na avaliação do ambiente de produção, a partir do tratamento de dados, os bancos de dados de OEE e de desvios foram combinados para a criação do banco utilizado por este estudo. Um total de 60.566 observações foram encontradas, e após tratamento o banco final passou a ter 371 entradas e 7 variáveis. Os modelos multiníveis foram criados e avaliados quanto aos seus logs likelihood, o qual demonstrou que o mais adequado é o modelo com interceptos e inclinações aleatórios. A utilização de modelos GLMM se mostrou viável para o monitoramento e tomadas de decisões nas linhas de produção, conhecendo quais produtos tendem a ter maior taxa de aprovação em compressoras específicas, em detrimento de seus índices de OEE. Ambas as abordagens investigadas demostraram ser ferramentas importantes para o desenvolvimento de racional e melhoria de processos industriais de compressão.

Palavras-chaves: Comprimidos. Compressão. Simulador de compressão. Deformação de materiais. Modelagem multinível. OEE.

ABSTRACT

GODOY, G. A. R. Compression processes performance: Evaluating the use of single punch simulator for excipient deformation characterization and the application of multilevel modeling in production lines. 2023. Dissertação (Mestrado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2023.

The compression process represents a crucial and dynamic stage in the pharmaceutical industry. Through this operation, tablets are produced, standing out as the most prevalent pharmaceutical form in the market due to their wide acceptance among patients, attributed to ease of administration and other favorable characteristics such as efficient storage, stability, and versatility. Therefore, it is of utmost importance to understand and map the key factors influencing the performance of the compression process to ensure the quality of the resulting tablets, directly impacting the effectiveness and safety of the medication. This study addressed industrial compression from two perspectives: (i) the analysis of compaction and compression speed through an industrial simulator, evaluating the deformation behavior of major excipients in tablet formulations; (ii) the investigation of manufacturing variables on an industrial scale, including the influence of labor, mechanical issues, and equipment changes. In the first perspective, the applicability of a compression simulator was assessed to investigate the compression cycle of six major pharmaceutical excipients, using sensitivity to compression rate (SRS) analysis and Heckel profiles. In the second perspective, multilevel models were applied to a database monitoring Overall Equipment Efficiency (OEE) on an industrial scale. The SRS results obtained from the simulator showed that anhydrous lactose was the most sensitive material to compression rate. Heckel graphs indicated that the consolidation process of cellulose deformation occurred more rapidly than other materials as compression force increased. Corn starch exhibited greater resistance in the early stages of compaction until its elastic deformation point was exceeded. The compression simulator effectively characterized the behavior of each material in line with literature reports and proved sensitive to changes in particle size and crystalline habit, demonstrating efficiency in the rational development of tablet formulations and process parameterization. In the evaluation of the production environment, databases of OEE and deviations were combined for this study. After data treatment, the final database had 371 entries and 7 variables from an initial 60.566 observations. Multilevel models were created and evaluated based on their log-likelihood, demonstrating that the most suitable

model includes random intercepts and slopes. The use of Generalized Linear Mixed Models (GLMM) proved feasible for monitoring and decision-making in production lines, identifying products with higher approval rates in specific compressors, relative to their OEE indices. Both investigated approaches proved to be important tools for the rational development and improvement of industrial compression processes.

Keywords: Tablets. Compression. Tablet Press Simulator. Material deformation. Multi-level modeling. OEE.

SUMÁRIO

1. IN	TRODUÇÃO	11
2. OB	BJETIVO	19
3. MA	ATERIAL E MÉTODOS	20
3.1.	Caracterização de deformação com uso de simulador	20
3.2.	Avaliação multinível do processo de compressão em equipamentos industriais	22
3.2.1.	Aquisição de dados	22
3.2.2.	Tratamento de dados	24
3.2.3.	Análise de dados	26
3.2.4.	Modelos lineares generalizados multinível	26
4. RE	SULTADOS E DISCUSSÃO	29
4.1.	Simulação de compressão e caracterização de deformação	29
4.2.	Estudo de influência do processo de compressão	37
5. CO	DNCLUSÃO	47
REFE	CRÊNCIAS	48
APÊN	NDICES	52

1. INTRODUÇÃO

A grande competição visando ganhar "market share", emplacar "blockbusters" e ganhar a confiança dos pacientes, tonar o setor farmacêutico como um dos mais competitivos mercados, onde várias indústrias tentam a todo custo alocar seu espaço. Por ser uma indústria altamente lucrativa, com grandes margens de ganhos em seus produtos, por muito tempo a eficiência das fábricas era sempre posta em segundo plano, em contrapartida com o investimento em inovação, pesquisa e desenvolvimento de produtos. Podemos encontrar as mais diversas formas farmacêuticas no mercado, pelas quais as indústrias comercializam e disponibilizam seus medicamentos, como os comprimidos, as soluções, as suspensões, as cápsulas moles e gelatinosas, as pomadas, os cremes, os géis, as soluções injetáveis, e todas as demais variantes dessas formas farmacêuticas (Mahato; Narang, 2012). Dentre elas, os comprimidos constituem a forma farmacêutica mais comum em todo o mundo, devido à sua facilidade de manuseio e administração, contribuindo para a adesão dos pacientes ao tratamento. Além disso, essa forma farmacêutica apresenta excelente versatilidade em formulações para controle de liberação de fármacos, estabilidade superior a outras formas farmacêuticas e vantagens industriais, incluindo maior produtividade em lotes maiores (Sainio, 2011; York, 2001). No entanto, para garantir a produtividade e a qualidade dos comprimidos, as propriedades mecânicas devem ser perfeitamente ajustadas para garantir que o processo não seja interrompido (Sainio, 2011).

Os comprimidos podem ser obtidos por três vias de produção: compressão direta, granulação via seca ou granulação via úmida (Carvatur; Vemuri; Suryanarayanan, 2016). A Figura 1 apresenta uma representação de produção de comprimidos, considerando uma granulação úmida. Nesta forma de granulação, inicialmente, podemos ter uma mistura inicial e a fase de granulação dos excipientes em granuladores de alto cisalhamento, onde há a utilização de uma solução orgânica ou aquosa, para ser aplicada sobre os excipientes que serão aglutinados. A fase seguinte consiste na desaglomeração do produto granulado úmido, utilizando um moinho cônico ou oscilante, o produto é, então, direcionado para a fase de secagem. Esta fase de pode ser realizada em equipamentos como leito fluidizado ou em equipamentos de secagem de leito estático, como estufas. Assim que a umidade desejada do produto é atingida, o produto tem seu tamanho de granulado calibrado, passando em um moinho ralador, e assim é colocado em um recipiente, onde os excipientes externos ao granulado são adicionados ao produto, como materiais deslizantes, edulcorantes, diluentes, desintegrantes e lubrificantes, assim, todo o conteúdo é misturado em um recipiente adequado. Finalmente, o

produto granulado é comprimido em uma máquina de compressão. Entre todas essas fases, onde há diversas variabilidade e parâmetros a serem mapeados, uma que precisa de grande atenção é a fase de compressão, sendo a fase que este trabalho considerará ao longo do seu desenvolvimento.

Figura 1 - Representação da produção de comprimidos via granulação úmida. Fonte: Dados originais da pesquisa. Elaborado pelo autor.

O processo de compressão, conforme exposto por C abiscol et al. (2020), possui as seguintes fases: (I) rearranjo de partículas, onde há a aproximação das partículas, levando a uma redução de volume; (II) deformação do material devido ao aumento das forças aplicadas nas áreas de contato interparticulares; e (III) deformação dependente de tempo, na qual a deformação/consolidação do material ocorre de acordo com suas propriedades físicas e da extensão das forças aplicadas. A Figura 2 ilustra um ciclo de compressão, com todas as suas fases, através de um gráfico de Heckel. Além disso, a fragmentação do material pode ocorrer durante o rearranjo das partículas, antes da deformação final, ou seja, as partículas se quebram em tamanhos menores preenchem os espaços interparticulares vazios e livres. Neste ponto, se a tensão aplicada for removida antes que a deformação atinja um valor crítico para sua consolidação, as partículas sofrem deformação elástica (reversível) (Mohan, 2012). Caso contrário, se o valor crítico for atingido antes que a força aplicada tenha sido removida, o material sofrerá deformação plástica. Problemas como capping (descabeçamento) e laminação podem ocorrer quando a intensidade de recuperação/relaxamento elástico excede a capacidade do comprimido de suportar esse estresse. Esses problemas também podem acontecer durante a fase de relaxamento (descompressão), quando o pó compactado pode formar camadas defeituosas e deficientes, resultantes da fragmentação do contato das superfícies interparticulares, principalmente em materiais quebradiços (Mazel; Tchoreloff, 2021). O capping ocorre na fase de ejeção do ciclo de compressão, durante a fase de revestimento, ou mesmo quando alguns testes físicos estão sendo feitos, como testes de dureza e friabilidade, e é conhecido como perda parcial ou total da parte superior de um comprimido. A laminação é notada nas mesmas fases do processo que o capping, no entanto, caracteriza-se pela formação de camadas devido às diferentes zonas de densificação formadas ao longo do comprimido durante a fase de compressão (Paul; Baranwal; Tseng, 2021). Tanto para o capping, quanto para a laminação, o aprisionamento de ar pode causar defeitos estruturais no comprimido. Outros fatores que podem levar a esses problemas são o formato da ferramenta utilizada, a velocidade de compressão do equipamento (o que aumenta os efeitos presenciados pela recuperação elástica na estrutura do comprimido), a deformação do material e a espessura do comprimido (Vreeman; Sun, 2022). Enquanto o capping está mais relacionado com a recuperação elástica do material comprimido, a laminação está frequentemente relacionada com as zonas de densificação formadas pela compressão de material quebradiço, devido tanto à força de compressão excessiva como à alta velocidade de compressão. Durante o capping, o material na fase de relaxamento, após ser comprimido, devolve parte da força aplicada a ele, tendendo

a retornar ao seu estado inicial devido à recuperação elástica. Quando essa força é da mesma ordem de grandeza que a resistência à tração (força tênsil), a resistência mecânica do comprimido geralmente se deteriora e a tampa do comprimido se desprende. Por outro lado, a laminação ocorre quando o material quebradiço é comprimido, e a fissuração das partículas gera diferentes zonas de densificação, com as zonas de alta densidade final nas extremidades da pastilha e a zona de menor densidade no meio da pastilha. Essas diferentes zonas de densificação podem afetar as propriedades coesivas entre elas e, após a formação de comprimidos, essas zonas se laminam desprendendo-se (Mazel; Desbois; Tchoreloff, 2019; Vreeman; Sun, 2022). Portanto, as propriedades dos diluentes desempenham um papel crucial na deformação do material comprimido. No entanto, a influência do equipamento de compactação deve ser considerada.

Figura 2 – Representação do gráfico de Heckel, ilustrando as fases do ciclo de compressão: Fase I – Rearranjo, Fase II – Deformação plástica, Fase III – Deformação elástica, e Fase IV – Recuperação elástica e viscoelástica. Fonte: Dados originais da pesquisa. Elaborado pelo autor.

Uma compressora é composta por um platô giratório, e por rolos de pressão responsáveis por aplicar a força de compressão na cabeça da punção superior, forçando-a a compactar o material sob ela. Diferentes modelos e fabricantes de compressoras rotativas possuem desempenhos diferentes, devido às dimensões de cada equipamento, especialmente o diâmetro de Turret, e o diâmetro e ângulo dos rolos de compactação. Essas diferenças interferem no intervalo entre cada fase de compactação, levando a resultados de compressão diferentes mesmo utilizando a mesma formulação (Takahashi *et al.*, 2019). Por outro lado, um simulador de compressão é uma máquina de punção única, com motores elétricos responsáveis pelas forças aplicadas à punção (Figura 3). Durante o processo de compressão, ocorre um movimento simétrico entre as punções superiores e inferiores com controle eletrônico de deslocamento (Cabiscol *et al.*, 2020; Mazel; Diarra; Tchoreloff, 2012). O simulador é muito útil como ferramenta de desenvolvimento de formulações, porque seus ajustes de programa mimetizam de forma confiável o ciclo de muitas máquinas rotatórias, simulando seus parâmetros intrínsecos e condições mencionadas. Além disso, o simulador de compressão pode medir tensões axiais e radiais, bem como os deslocamentos por punção, possibilitando a caracterização da deformação do material e seu comportamento durante o estresse de compressão (Takahashi *et al.*, 2019; Mazel; Diarra; Tchoreloff, 2012).

Figura 3 - Representação de processo de compressão de (A) Simulador de compactação - o movimento da punção é feito por um motor elétrico; e (B) Prensa rotativa - o rotor do equipamento gira e, quando as punções entram na zona do rolo de pressão, são forçados para baixo devido à área de contato de suas cabeças com o rolo de pressão. Fonte: Dados originais da pesquisa. Elaborado pelo autor.

Outra vantagem do simulador é a aplicação de diferentes ferramentas analíticas tradicionalmente aceitas e usadas para avaliar o comportamento de compressão de sólidos, tais

como análises de Heckel e *Strain Rate Sensitivity* (SRS). Roberts e Rowe (1985) relataram o uso da análise de Heckel e do índice SRS para entender o comportamento de deformação de vários materiais. A SRS foi abordada em detalhes por Katz e Buckner (2012), que discutiram a importância da consolidação tempo-dependente dos materiais. O SRS avalia mudanças na resposta do material quando a velocidade de compressão varia. Se um material tem uma dependência de tempo para consolidar sua compactação, sendo sensível à taxa de compressão, ele tem sensibilidade à taxa de deformação. Assim, este material não consegue manter a deformação desejada em taxas de compressão mais altas, causando problemas como capping, laminação e dureza insuficiente para resistir a processos de revestimento (Kalies *et al.*, 2020).

Adicionalmente a todos os pontos mencionados, que atribuem grande variabilidade e influenciam diretamente o desempenho das formulações no processo de compressão, após uma formulação estudada ser testada, aprovada e então virar um produto propriamente dito, entramos no ciclo de vida do produto, onde lotes e mais lotes serão periodicamente produzidos nas plantas das indústrias e então disponibilizados para os pontos de venda ou distribuidoras. Aqui temos outros fatores que podem influenciar na produção dos comprimidos, e consequentemente na aprovação dos lotes produzidos. Como mencionado, o setor farmacêutico é altamente competitivo, por isso, muitas vezes as indústrias preferem, ao invés de aumentar os seus ganhos financeiros reduzindo o desperdício e a perda de materiais, colocar mais produtos novos e inovadores nas prateleiras das farmácias. Schonberger (2007) aponta que pouca atenção é dada ao setor operacional, especificamente nos parâmetros de velocidade e custo de produção, quando há grande margem de lucro. No entanto, o aumento dos genéricos no mercado, que normalmente custam até 70% menos, aumentou o interesse da indústria em reduzir os custos de produção, aumentando seu lucro e retorno financeiro (Eilat, 2018). Como estratégia para superar essas situações e maximizar os lucros, a indústria farmacêutica, nas últimas décadas, começou a implementar e aprimorar ferramentas de gestão da produtividade, já amplamente utilizadas por outros setores industriais. Assim, buscam melhorar a produtividade das linhas, reduzindo o desperdício de material e energia, além de reduzir o tempo de processo e com manutenções corretivas (Ramachandra et al., 2016). Além disso, a introdução, em 2004, das Boas Práticas de Fabricação para o século 21, uma abordagem baseada em riscos, levou a indústria farmacêutica a adotar precocemente novos avanços tecnológicos (U.S Food and Drug Administration, 2004). Nesse contexto, a adoção de conceitos como "Total Productive Maintenance" (TPM) e "Lean Manufacturing" são implementadas utilizando-se, por exemplo, a eficiência geral de equipamentos, ou "Overral Equipment Effectiveness" (OEE). A OEE é

utilizada como indicador de desempenho (Kpi), e mede o desempenho dos equipamentos comparando linhas de produção, sendo importante para identificar e resolver os principais problemas de baixa produtividade (Ramachandra et al., 2016). Para tanto, a OEE mede o desempenho atual do equipamento em relação ao seu melhor desempenho teórico e, segundo Nakajima (1988), a diferença no desempenho se deve a seis grandes perdas, que estão relacionadas em pares, sendo três termos: disponibilidade (A), desempenho do equipamento (Ep) e qualidade (Q). Disponibilidade é a relação entre os tempos de inatividade devido a falhas e quebras e o tempo gasto na preparação da máquina (*setup*). O parâmetro de desempenho (Ep) refere-se a reduções de velocidade de operação e paradas durante o processo por vários motivos. Já o termo qualidade relaciona produção defeituosa e rendimento reduzido dos lotes (Zubair et al., 2021). Assim, essas perdas garantem que a produção real nunca será igual à produção teórica, se o índice OEE for menor que 1 (Carlo; Arleo; Tucci, 2014). Devido à natureza da aplicação dos OEEs, uma grande quantidade de informações é adquirida, formando um extenso banco de dados sobre os produtos, operadores, máquinas e lotes produzidos.

Com a crescente aplicação de conceitos de análise de dados (data analytics), que podem ser utilizados em praticamente qualquer área, como mencionado por Duan e Xiong (2015), e o grande número de informações salvas em dados diariamente pela indústria farmacêutica, a aplicação de modelos de regressão multinível, utilizando as bases de dados geradas, é um fator que pode nos trazer muitas informações valiosas sobre a área de produção de comprimidos. A partir desse conceito, é possível obter uma compreensão dos fatores que influenciam a qualidade e o desempenho dos produtos, procurando identificar quais efeitos aleatórios mais comprometem o andamento dos processos. Esta aplicação é promissora em termos de auxílio na tomada de decisões baseadas em dados reais (data driven). Também pode promover ações precoces para evitar problemas e melhorar o desempenho das linhas de produção, além de ser utilizado para entender os parâmetros críticos do processo e identificar as causas-raízes dos desvios, direcionando, novamente, as ações a serem aplicadas. Considerando os estudos de OEE na indústria farmacêutica, há diversas revisões sobre o impacto das ações nos índices de OEE, e como isso afeta a implementação da Manutenção Produtiva Total (TPM) nas empresas (Ramachandra et al., 2016; Zubair et al., 2021). Chikwendu, Chima e Edith (2020) destacaram que a força dos índices OEE tornando as perdas mais transparentes e evidenciam áreas de melhoria e redução de perdas e custos de processos. Apesar desses esforços prévios, ainda não há pesquisas sobre a implementação da modelagem multinível na indústria farmacêutica, para compreender os dados coletados pelas OEE, visando compreender as causas dos desvios e improdutividades, e direcionar a tomada de decisão.

2. OBJETIVO

Pensando nos fatores que influenciam no processo de compressão, e, consequentemente, na qualidade dos comprimidos produzidos, este estudo visa avaliar a utilização de um simulador de compressão para a caracterização da deformação dos materiais mais usados nas formulações, e avaliar a sensibilidade desses materiais a alterações na velocidade de compressão, a partir da comparação das representações gráficas das análises de Heckel juntamente com os resultados de SRS.

Adicionalmente, propõe-se uma modelagem multinível para entender e monitorar os fatores produtivos que mais impactam na liberação de lotes, considerando os bancos de dados gerados a partir das OEE das compressoras e da relação de *troubleshooting* dos produtos, monitorando em quais equipamentos cada produto terá melhor desempenho e avaliando se operadores ou paradas mecânicas influenciam na taxa de aprovação dos produtos. Compreendendo, deste modo, desde a fase de desenvolvimento e compreensão da formulação, até a fase de vida produtiva dos comprimidos.

3. MATERIAL E MÉTODOS

3.1. Caracterização de deformação com uso de simulador

Os materiais de grau farmacêutico utilizados foram lactose anidra (Kerry, lote: 8514051900), lactose monohidratada (DFE Pharma, lote: 1011BCZ), celulose microcristalina 101Q (JRS Pharma, lote: 6610154030), celulose microcristalina 102Q (JRS Pharma, lote: 5610253623), fosfato de cálcio dibásico (Budenheim, lote: C35118A) e amido de milho (Ingredion, lote: 0001194989).

Cada material foi comprimido em um compactador simulador Styl'one, modelo: Evo 2016 (Beynost, França). A alimentação manual foi utilizada para evitar a variabilidade de peso devido à alimentação automática ou gravitacional e as consequentes diferenças de pressão entre as amostras. Para tanto, as amostras foram pesadas individualmente utilizando-se balança analítica ME204T/A00 da marca Mettler Toledo (Ohio, EUA). O mesmo conjunto de ferramentas e a mesma configuração de matriz de enchimento foram usados para padronizar a espessura das pastilhas finais. Em seguida, as densidades reais de cada material foram aplicadas para calcular a massa a ser ponderada. Como os excipientes utilizados não foram misturados e utilizados como componentes únicos, suas verdadeiras densidades foram retiradas da literatura (Sheskey *et al.*, 2020). A ferramenta de punção utilizada no processo de compressão foi uma circular bicôncava de 9,0 mm sem vincos nas superfícies. O volume de enchimento foi ajustado a cada material para produzir pastilhas de 3,5 mm de espessura, conforme abaixo:

$$D_{t} = \left(\frac{m_{f}}{v}\right) \qquad (1)$$

onde:

$$V = \pi r^2 h \qquad (2)$$

de onde podemos obter:

$$D_t = \left(\frac{m_f}{\pi r^2 h}\right) \quad (3)$$

ou,

$$m_f = D_t (\pi r^2 h) \qquad (4)$$

onde " m_f " é a massa de enchimento da matriz, " D_t " é a densidade verdadeira do material, "r" é o raio da ferramenta usada e "h" é a altura do comprimido após a compressão. Assim, obtémse a seguinte equação correspondente:

$$m_f = D_t(\pi(4,5)^2 3,5)$$
 (5)

Os sensores do ferramental foram ajustados em 2.800Hz, para registrar as pressões e forças aplicadas durante os ciclos de compressão. Em seguida, os comprimidos produzidos foram submetidos a testes de peso, espessura, diâmetro e dureza, utilizando o equipamento Pharmatron Dr. Schleuniger SmartTest-50 (Aesch, Suíça). As informações foram carregadas e processadas no *software* AnalisMX (versão 2.06.4), da Medel'Pharm (Beynost, França), e então plotadas em um gráfico cartesiano ln(porosidade) × pressão de compactação para gerar o gráfico de Heckel.

A partir das representações gráficas obtidas, a equação de Heckel pode ser definida pela parte linear do estágio de compressão, onde o modelo de Heckel é ajustado através da minimização da soma dos erros quadrados da regressão:

$$\ln\left(\frac{1}{1-D}\right) = kP + A \quad (6)$$

onde "D" é a densidade relativa do material, "P" é a pressão de compressão, "A" e "k" são constantes determinadas pela parte linear do gráfico cartesiano, em que "A" é a interceptação do eixo Y, enquanto "k" é o coeficiente angular da reta formada (Sainio, 2011). A densidade relativa do pó é determinada quando uma força mensurável é aplicada ao pó durante o processo de compressão (Roberts; Rowe, 1985). A densidade instantânea para um determinado tempo do processo é calculada pelo volume interno do pó durante a compressão, obtido a partir da equação:

$$D_{dm} = \frac{peso \ do \ comprimido}{SX + V_u + V_l} \quad (7)$$

na qual, "D_{dm}" é a densidade do pó na ferramenta da matriz no momento instantâneo da compressão, "S" é a área seccional do orifício da matriz, "X" é a distância de separação das punções durante a compactação, "V_u" é o volume da punção superior e "V₁" é o volume da punção inferior. Com essas informações, podemos avaliar a capacidade de redução de porosidade e aumento de densidade de cada material, e em diferentes velocidades de processo.

As medidas de compressão foram realizadas em duas etapas para cada material: a primeira a uma taxa de compressão relativamente baixa de cerca de 175 comprimidos/h e a segunda a uma taxa de compressão mais alta de cerca de 700 comprimidos/h, representando, respectivamente, 10% e 40% da velocidade máxima do equipamento (1750 comprimidos/h).

Finalmente, com base nos resultados obtidos a partir de diferentes taxas de compressão, foi realizada a análise SRS para categorizar os materiais pela dependência de sua taxa de compressão para obter alguma deformação durante o processo de compressão (Sainio, 2011). A determinação do SRS foi calculada usando a equação:

SRS =
$$\left(\frac{P_{y2} - P_{y1}}{P_{y2}}\right) 100 (8)$$

onde P_{y2} é a pressão de deformação na taxa mais alta e P_{y1} é a pressão de deformação na taxa de compressão mais baixa.

O teste t de Student foi aplicado para avaliar se há diferenças substanciais entre os valores médios das pressões de deformação e as densidades *in-die* (internas da matriz) quando a taxa de compressão aumenta, considerando o valor-p de 0,05 (nível de significância de 5%) (Francis; Jakicic, 2023).

3.2. Avaliação multinível do processo de compressão em equipamentos industriais

3.2.1. Aquisição de dados

Dados produtivos de compressão de um produto de linha foram gentilmente disponibilizados pela empresa Ache Laboratórios Farmacêuticos S.A. A aquisição de dados foi realizada no programa Microsoft Excel versão 2110 (Redmond, EUA). O programa Excel foi escolhido para registrar as informações de produção dos lotes pelos operadores, por ser um aplicativo bem difundido, cujas funções básicas são amplamente conhecidas pela maioria das pessoas e sua interface intuitiva. Cada máquina de compressão tem em sua sala um computador para registrar a ocorrência dos lotes, onde o operador sozinho é responsável pelo preenchimento dos dados. Com o preenchimento das informações, formou-se um banco de dados contendo os seguintes campos: Data do processo, identificação do operador, código de identificação do produto, descrição do produto, número da ordem de produção, número do lote, ações realizadas pelo operador, hora de início da ação executada, hora de término da ação executada, produção obtida, velocidade padrão do equipamento, registro de paradas, justificativa de paradas, subconjunto de classificação de paradas, observações, turno do operador, máquina. O período considerado para aquisição de dados foi de 01 de janeiro de 2021 a 31 de dezembro de 2021.

Da mesma forma, outra planilha do Excel, que é usada como banco de dados de desvios, para monitorar problemas de desempenho de produtos na linha de produção e para gerenciar lotes que apresentam problemas analíticos, foi considerada para este projeto. Esta planilha é composta por campos contendo: data do desvio, código do produto, descrição do produto, lote, desvio apresentado, local de fabricação, origem, necessidade de reprocessamento, ação de tratamento corretivo, tratamento efetivo aplicado, tratamento preventivo, causa raiz do desvio, número de relatório de não conformidade, observações, frequência de ocorrência e quantidade de lotes produzidos do produto em questão. Esta planilha é atualizada a cada relatório da área de controle de qualidade sobre produtos com desvios analíticos, ou a partir da notificação pela área de produção de desvios de desempenho em processo e fabricação.

O banco de dados gerado inicialmente continha 60.566 observações e foi gerado a partir do monitoramento lote a lote produzido no setor de compressão, onde cada operador de cada máquina preenchia as ocorrências de seus turnos. No mesmo período, o levantamento dos desvios e problemas apontados gerou um banco de dados contendo 266 observações. A organização de ambas as bases de dados pode ser observada a seguir:

Data	Código do produto	Descrição do produto	Nùmero OP	Lote	Ação	Hora de início	Hora final	Produção	Velocidade	Produção teórica	Velocidade	Descrição da narada	Ocorrência	N° serviço de manutencão	Observações	Máquina	Turno
X _{dt1}	X_{codl}	X_{desc1}	X_{op1}	X_{batch1}	X_{a1}	X_{start1}	X_{final1}	X_{p1}	X_{cs1}	X_{tp1}	X_{ss1}	X_{sd1}	X_{o1}	X_{sm1}	X_{obs1}	X_{m1}	X_{t1}
X _{dt2}	X_{cod2}	X_{desc2}	X _{op2}	X_{batch2}	X_{a2}	X_{start2}	X_{final2}	X_{p2}	X_{cs1}	X_{tp2}	X_{ss2}	X_{sd2}	X_{o2}	X_{sm2}	X_{obs2}	X_{m2}	X_{t2}
X _{dt3}	X_{cod3}	X_{desc3}	X _{op3}	X_{batch3}	X_{a3}	X_{start3}	X_{final3}	X_{p3}	X_{cs1}	X_{tp3}	X_{ss3}	X_{sd3}	X_{o3}	X_{sm3}	X_{obs3}	X_{m3}	X_{t3}
X _{dt4}	X_{cod4}	X_{desc4}	X _{op4}	X_{batch4}	X_{a4}	X _{start4}	X_{final4}	X_{p4}	X_{cs1}	X_{tp4}	X_{ss4}	X_{sd4}	X_{o4}	X_{sm4}	X_{obs4}	X_{m4}	X_{t4}
•••	•••		•••	•••											••••		
X _{dt}	X_{cod}	X_{desc}	X_{op}	X_{batch}	Xa	X_{start}	X_{final}	X _p	X_{cs}	\mathbf{X}_{tp}	X_{ss}	X_{sd}	Xo	X_{sm}	X_{obs}	X_m	\mathbf{X}_{t}
60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566	60566
Fonte	: Resul	tados o	riginai	s da pes	sauisa												

Tabela 1 - Estrutura geral da base de dados de Eficiência Geral de Equipamentos (OEE)

Tabela 2 - Estrutura geral da base de dados de Troubleshooting

Data	Código do produto	Descrição do produto	Lote	Desvio	Site	Célula	Origem	Reprocessamento	COrreção	Eficácia	Prevenção	Causa-raíz	N° RNC	Observações	Frequência de ocorrência	Total de lotes produzidos
T _{dt1}	T_{cod1}	$T_{desc1} \\$	T_{b1}	T_{d1}	$T_{site1} \\$	T_{cell1}	T_{o1}	T _{rep1}	T_{c1}	T_{e1}	$T_{p1} \\$	T_{rt1}	T _{ren1}	$T_{obs1} \\$	$T_{freq1} \\$	T _{tb1}
$T_{dt2} \\$	T_{cod2}	T_{desc2}	T_{b2}	$T_{d2} \\$	T_{site2}	T_{cell2}	T_{o2}	T _{rep2}	T_{c2}	T_{e2}	T_{p2}	$T_{rt2} \\$	T _{ren2}	T_{obs2}	T_{freq2}	T _{tb2}
T _{dt3}	T_{cod3}	T_{desc3}	T_{b3}	T_{d3}	T_{site3}	T _{cell3}	T_{o3}	T _{rep3}	T _{c3}	T _{e3}	T_{p3}	T_{rt3}	T _{rcn3}	T_{obs3}	T_{freq3}	T _{tb3}
T_{dt4}	T_{cod4}	T_{desc4}	T_{b4}	T_{d4}	T_{site4}	T_{cell4}	T_{o4}	T _{rep4}	T_{c4}	T _{e4}	T_{p4}	T _{rt4}	T _{rcn4}	T_{obs4}	T_{freq4}	T _{tb4}
T _{dt266}	T _{cod266}	$T_{desc266}$	T _{b266}	T _{d266}	$T_{site 266}$	T _{cell266}	T ₀₂₆₆	T _{rep266}	T _{c266}	T _{e266}	T _{p266}	T _{rt266}	T _{rcn266}	T_{obs266}	$T_{freq266}$	T _{tb266}

Fonte: Resultados originais da pesquisa.

3.2.2. Tratamento de dados

Após a aquisição dos dados, como pré-tratamento de dados, a verificação da integridade das informações foi realizada, onde campos faltantes ou conflitantes foram removidos e resolvidos. Posterior à depuração dos bancos de dados, a junção das duas fontes foi realizada, por meio da correlação dados de um campo chave, no caso, o número do lote, que é comum entre ambas. Ou seja, a partir do número de lote formou-se uma nova planilha, podendo-se avaliar se o produto que apresentou desvios teve incidência de casos de "troubleshooting" com a linha de produção, operador, bem como o seu desempenho em máquina.

Com o banco de dados integrado, a partir das duas fontes citadas acima, algumas variáveis foram cortadas, pois não seriam necessárias ou consideradas para o propósito deste trabalho. Assim, o banco de dados final é composto pelas seguintes variáveis: Número de identificação do lote, identificação do produto (que consiste na junção entre o produto e o equipamento em que foi produzido), índice OEE, índice de aprovação de lotes, índice de paradas de processo realizadas pelo operador, identificação da máquina, índice de falhas e intervenções de manutenção corretiva que a máquina teve no período. Vale ressaltar que, para a variável "equipamento", que representa a identificação da máquina, temos dois modelos de máquinas, sendo os equipamentos A, B, C, D, E, F, G, H e I equipamentos mais antigos com menor capacidade de produção, modelo Kilian Romaco TX32 (Colônia, Alemanha), enquanto os equipamentos J, K e L são mais novos e com maior capacidade de produção, modelo Fette 1200i (Schwarzenbek, Alemanha).

As bases de dados utilizadas foram, então, correlacionadas a partir do número do lote dos produtos produzidos. Devido ao preenchimento manual dos bancos de dados, ou seja, não sendo "*dummy proof*", vários campos foram preenchidos erroneamente, pois o operador preencheu de acordo com o que entendia ser correto, como campos que deveriam ser classificados como "parada não planejada", o que é uma máquina ou problema operacional, foram classificados manualmente como "parada planejada", de modo que a análise dos dados não reflete a realidade. Por esse motivo, foram retirados campos onde as linhas de lote estavam em branco, ou seja, campos nulos, bem como observações correspondentes a desvios de outras etapas do processo produtivo, como manipulação e análise da qualidade físico-química dos produtos. Adicionalmente, foram excluídas as anotações de paradas planejadas, como para reuniões, treinamentos e exames clínicos dos operadores, paradas por falta de mão de obra, e as anotações derivadas de testes de novos produtos, uma vez que essas paradas não foram

decorrentes de problemas ou desvios, sendo paradas planejadas. Assim, o banco de dados final conta com 371 observações.

Para a composição das variáveis utilizadas no banco de dados final, que será utilizado na modelagem, foram desconsideradas aquelas que não compreendiam informações relevantes para este estudo em questão, sendo acrescentadas outras variáveis derivadas daquelas anteriormente presentes, como índice de paradas por máquina, índice de reprovação, número de anotações por operador. Como o trabalho visa avaliar a influência de paradas causadas pelo desempenho de máquina e por problemas de paradas causados por operadores, que afetam a taxa de aprovação dos produtos, as variáveis que não correspondem a esses parâmetros foram excluídas do banco de dados final, e poderão ser utilizadas em trabalhos futuros para ampliar o uso de GLMM em BD a partir de dados de produção da indústria farmacêutica. Assim, as variáveis extraídas foram:

- a) Banco de dados OEE: Data, Código do produto, Número OP, Lote, Ação, Hora de início, Hora final, Produção, Velocidade calculada, Produção teórica, Velocidade padrão, Descrição da parada, Ocorrência, Número de serviço de manutenção, Obs., Turno;
- b) Banco de dados troubleshooting: Data, Código do produto, Lote, Desvio, Site, Célula, Origem, Reprocessamento, Correção, Eficácia, Prevenção, Causa raiz, RNC, Observações., Frequência, Total de lotes produzidos.

O banco de dados final foi estruturado conforme apresentado na Tabela 3. A variável "número" consiste em uma variável de contagem, gerada para mostrar quantas observações finais obtivemos. A variável "produto" foi previamente descrita como "descrição" em ambas as bases de dados originais, sendo a variável utilizada para correlacionar ambas as bases de dados. O "OEE" foi gerado a partir da equação de cálculo do OEE, correlacionando-se as variáveis: Hora de início, Hora final, Produção, Velocidade do calculada, Produção teórica, Velocidade do padrão, Descrição da parada, para cada lote produzido. A variável "máquina" foi renomeada para "equipamento". Enquanto as demais variáveis (aprovacao_prod, parada_operacional e parada_mecanica) foram calculadas a partir das variáveis pré-existentes. O "aprovacao_prod" foi calculado a partir do número de lotes aprovados em relação ao total produzido de um produto em um equipamento específico; "parada_operacional" corresponde à relação entre o número total de notas por equipamento; enquanto "parada_mecanica" é a relação entre o número de paradas por problemas mecânicos

com o número total de notas por equipamento. O banco de dados final, com todas as informações utilizadas neste estudo, encontra-se no apêndice da sessão, na Tabela A.1.

	Tabela 5 - Estitutia geral da base de dados filiar											
numero	produto	OEE	aprovacao	parada	equipamento	parada						
	-		produto	operacional		mecanica						
			1	1								
BD_{N1}	BD _{prod1}	BD _{OEE1}	BD _{aprov1}	DB _{op1}	BD _{equip1}	BD maq1						
BD_{N2}	BD _{prod2}	BD _{OEE2}	BD _{approv2}	DB_{op2}	BD _{equip2}	BD_{maq2}						
BD_{N3}	BD _{prod3}	BD _{OEE3}	BD _{appov3}	DB _{op3}	BD _{equip3}	BD maq3						
BD_{N4}	BD_{prod4}	BD _{OEE4}	BD _{aprov4}	DB_{op4}	BD _{equip4}	$\mathrm{BD}_{\mathrm{maq4}}$						
BD _{N371}	BD _{prod371}	BD _{OEE371}	BD _{aprov371}	DB _{0p371}	BD _{equip371}	BD maq371						
D 1	1	•										

Tabela 3 - Estrutura geral da base de dados final

Fonte: Resultados originais da pesquisa.

3.2.3. Análise de dados

Para a análise de dados, o "software" livre RStudio versão 2021.09.1+372 (Massachusetts, EUA), que integra linguagens R e Python, foi utilizado para a modelagem e criação do algoritmo. Para tanto, foram utilizadas múltiplas bibliotecas de funções estatísticas e de visualização de dados. Suportando, assim, a utilização de modelos lineares generalizados multinível (Generalized Linear Multilevel Model - GLMM), onde o desempenho de lotes de cada produto será monitorado, a partir da relação dos equipamentos utilizados e os operadores responsáveis pelo processo.

3.2.4. Modelos lineares generalizados multinível

Os modelos lineares generalizados multinível permitem a avaliação de dados agrupados, ou seja, aninhados, que apresentam variações de observações distintas caracterizadas em grupos, mas sem sofrer influências de observações do mesmo grupo (Fávero; Belfiore, 2017). Para este trabalho em questão, foi considerada uma estrutura de dados agrupados em dois níveis, com o desempenho dos lotes em nível 1 aninhadas de acordo com a rota de produção em nível 2. A expressão que representa o modelo de regressão linear múltipla é a seguinte:

$$Y_{i} = b_{0} + b_{1} \cdot X_{1i} + b_{2} \cdot X_{2i} + \dots + b_{Q} \cdot X_{Qi} + r_{i}$$
(9)

onde, Y é a característica estudada (variável dependente), b0 é o intercepto, as variáveis métricas são representadas por $X_1, X_2, ..., X_Q$, e seus coeficientes são expostos como $b_1, b_2, ..., b_Q$.

Para observações não homogêneas, provenientes de grupos distintos que podem influenciar o comportamento de Y, temos:

$$Y_{ij} = b_{0j} + b_{1j} X_{1ij} + b_{2j} X_{2ij} + \dots + b_{Qj} X_{Qij} + r_{ij}$$
(10)

O índice j, representa cada grupo considerado, em um modelo de nível 1.

Quando há características invariantes dos grupos sobre as observações, e que podem exprimir diferenças na determinação dos interceptos e inclinações dos modelos, temos um modelo de nível 2. A seguintes equações podem descrever as expressões dos interceptos e das inclinações para uma determinada variável explicativa de um grupo j:

Intercepto:
$$b_{0j} = y_{00} + y_{01}$$
. $W_j + u_{0j}$ (11)
Inclinação: $b_{1j} = y_{10} + y_{11}$. $W_j + u_{1j}$ (12)

onde, b_{0j} e b_{1j} são, respectivamente, os interceptos e as inclinações dos modelos. y_{00} é o valor da variável dependente para a observação i que pertence ao grupo j, para cada W=X=0, sendo y_{01} o valor da alteração da variável dependente quando houver modificação na variável explicativa W do grupo j. Já para y_{10} , temos representado a alteração que incide sobre o valor esperado da variável dependente, na observação i do grupo j quando há alteração na característica X da observação i, ou, uma alteração na inclinação da reta em função do valor de X. Sendo y_{11} a representação da alteração no valor esperado de Y (variável dependente) quando houver alteração no produto WX. Por fim, u_{0j} e u_{1j} representam, respectivamente, os temos de erros que indicam a aleatoriedade nos interceptos e nas inclinações, que podem ser explicadas a partir de observações oriundas de grupos diferentes (Fávero; Belfiore, 2017).

Combinando as equações acima em um modelo de regressão simples, temos:

$$Y_{ij} = (y_{00} + y_{01}, W_j + u_{0j}) + (y_{10} + y_{11}, W_j + u_{1j})X_{ij} + r_{ij}$$
(13)

ou:

$$Y_{ij} = y_{00} + y_{10}X_{ij} + y_{01}.W_j + y_{11}.W_jX_{ij} + u_{0j} + u_{1j}X_{ij} + r_{ij}$$
(14)

onde, $(y_{00} + y_{10}X_{ij} + y_{01}, W_j + y_{11}, W_jX_{ij})$ é a porção que representa os efeitos fixos, e $(u_{0j} + u_{1j}X_{ij} + r_{ij})$, os efeitos aleatórios.

Para a determinação do melhor modelo a ser utilizado, entre modelo nulo, modelo com interceptos aleatórios e modelo com interceptos e inclinações aleatórios, os conceitos acima mencionados foram aplicados utilizando-se das bibliotecas do R-Studio, onde o modelo mais representativo foi estimado pela máxima verossimilhança (log likelihood - LL). Deste modo, para as modelagens propostas, teremos as seguintes equações:

a) Modelo Nulo:

aprovacao_prod_{ij}=
$$y_{00} + u_{0j} + \varepsilon_{ij}$$
 (15)

b) Modelo com Interceptos Aleatórios:

aprovacao_prod_{ij}=
$$y_{00} + y_{10} OEE_{ij} + u_{0j} + \varepsilon_{ij}$$
 (16)

c) Modelo com Interceptos e Inclinações Aleatórios:

$$a provacao_prod_{ij} = y_{00} + y_{10} OEE_{ij} + u_{0j} + u_{1j} OEE_{ij} + \varepsilon_{ij} \quad (17)$$

d) Modelo Final com Paradas Mecânicas

aprovacao_prod_{ij}= $y_{00}+y_{10}OEE_{ij}+y_{01}parada_mecanica_j$ + $y_{11}parada_mecanica_iOEE_{ij}+u_{0j}+u_{1j}OEE_{ij}+\epsilon_{ij}$ (18)

e) Modelo Final com Paradas por Operadores:

 $a provacao_prod_{ij} = y_{00} + y_{10} OEE_{ij} + y_{01} parada_operacional_j$

 $+y_{11}$ parada_operacional_jOEE_{ij} $+u_{0j}+u_{1j}$ OEE_{ij} $+\epsilon_{ij}$ (19)

f) Modelo Paradas Mecânicas e Operadores:

 $a provacao_prod_{ij} = y_{00} + y_{10} OEE_{ij} + y_{01} parada_mecanica_j + y_{11} parada_mecanica_j OEE_{ij} + y_{10} Parada_mecanica_j + y_{11} parada_$

 $+y_{01} parada_{0} peracional_{j} + y_{11} parada_{0} peracional_{j} \\ OEE_{ij} + u_{0j} + u_{1j} \\ OEE_{ij} + \epsilon_{ij} \quad (20)$

4. RESULTADOS E DISCUSSÃO

4.1. Simulação de compressão e caracterização de deformação

O simulador de compressão não apenas registra a força de compressão e o deslocamento da punção, como ocorre em máquinas instrumentadas, mas também é capaz de proporcionar resultados mais abrangentes. Essa compressora gera um relatório completo do ciclo de compressão, incluindo medições de energias de fluxo, plástica e elástica, valores de Py e pressão de compressão (Tabela 4). Além disso, este equipamento permite a compressão de materiais em condições controladas com precisão e pode ser utilizado com o mínimo de material. A Figura 4 mostra os gráficos de Heckel de cada material analisado, plotados em conjunto para fins de comparação. Os gráficos de Heckel obtidos a partir da análise no simulador de compressão podem avaliar os mecanismos de deformação envolvidos no processo de compressão. Por exemplo, espera-se que os gráficos dos materiais inorgânicos, como sais de fosfato e carbonato, apresentem curvas menos acentuadas e marcantes, como um platô, como visto para o fosfato de cálcio na Figura 4. Tais características dessas curvas dos gráficos decorrem dos mecanismos de deformação que envolvem a fragmentação de materiais inorgânicos e a consequente formação de interações que conectam as partículas do material, o que provoca uma forte presença de porosidades aparentes (Roberts; Rowe, 1985). Este padrão de deformação pode levar a um problema de laminação, porque o comprimido pode apresentar diferentes zonas de densificação, com maior densificação nas extremidades e menor densificação no centro do comprimido. As zonas de densificação no comprimido podem causar uma separação das zonas na fase de relaxamento, devido à falta de coesão entre elas. Outra causa de laminação em um material quebradiço é a presença de ar entre as partículas. Quando o material é comprimido perto de sua densidade real, esse ar pode afetar sua coesão por não ter por onde sair, e quando o comprimido é liberado, as zonas se separam. (Mazel; Tchoreloff, 2021).

Informações úteis também podem ser obtidas a partir da equação das inclinações de retorno, representando a fase de recuperação (Figura 4). Os materiais quebradiços apresentaram um gráfico de retorno em linha reta, com menor coeficiente angular considerando os pontos de densificação máxima e final. Por outro lado, os materiais elásticos apresentaram maior coeficiente angular, com curva acentuada na fase de recuperação, mostrando maior diferença entre o ponto de densificação máxima e o ponto de densificação final. O padrão das curvas dos gráficos foi relacionado com a energia elástica envolvida no processo. A energia plástica pode ser calculada a partir do trabalho total (energia de compressão) durante o processo de

compressão pela soma da energia elástica (Al Ibraheemi *et al.*, 2013). Esses diferentes padrões podem ser explicados pela taxa de energia elástica envolvida no processo. Como pode ser observado na Tabela 4, os materiais frágeis apresentaram menor energia elástica relativa, que pode ser calculada pela relação energia elástica:energia total de compressão. Por exemplo, o fosfato bicálcico apresentou 2,33% de energia elástica e a lactose anidra e monohidratada apresentaram 2,11% e 1,91%, respectivamente, na velocidade de 175 comprimidos/hora. O típico material elástico amido de milho apresentou o maior percentual de energia elástica (3,67%), enquanto a celulose, que é um material plástico, apresentou a menor taxa de energia elástica (101Q: 1,33%; 102Q: 1,12%) e a maior taxa de energia plástica envolvida.

O método foi sensível o suficiente para discriminar diferenças granulométricas em um mesmo material. Como resultado, a celulose apresentou maior ângulo de inclinação (coeficiente angular) de compressão do que os demais materiais testados (Figura 4). Notadamente, diferenças nos parâmetros de compactação das variedades de celulose microcristalina (102Q e 101Q) podem ser atribuídas ao tamanho das partículas (Choi *et al.*, 2010). A celulose 102Q (d50 142 µm, tamanho de partícula de 90 a 150 µm) apresentou maior ângulo de inclinação, com uma curva mais acentuada, do que a celulose 101Q (d50 63 µm; tamanho de partícula de 45 a 80 µm), juntamente com um Py menor, conforme apresentado na Tabela 4). Assim, a celulose 102Q sofreu deformação plástica em pressões de compressão menores que a celulose 101Q. Deste modo, a avaliação da celulose microcristalina indicou que o mecanismo de compactação caracterizado por um extenso processo de deformação plástica deveu-se ao deslocamento de seus cristais e de seus vários planos de deslizamento (Kothari; Kumar; Banker, 2002).

Figura 4 - Comparação entre as curvas de Heckel de cada material testado, durante um ciclo de compressão. Fonte: Resultados originais da pesquisa.

O simulador de compressão também é sensível a diferenças de hábito cristalino de um excipiente, como no caso da lactose anidra e hidratada. A deformação por fragmentação de ambas as amostras indicou que eram materiais quebradiços. Isso corrobora com os resultados de observados anteriormente em outros estudos, como em Tye, Sun e Amidon (2005), que utilizaram uma prensa hidráulica e um simulador de compressão, com menos recursos e mais antigo, para produzir os comprimidos. Para diferenciar o hábito cristalino entre as lactoses testadas, a lactose anidra apresentou maior Py, o que implica que foi mais quebradiça que a forma monohidratada (Roberts; Rowe, 1985). Além disso, as partículas de lactose anidra apresentaram formas mais angulares e foram mais suscetíveis à fratura do que as partículas de lactose monohidratada. Os resultados do gráfico de Heckel indicaram que a lactose monoidratada apresentou menor tendência à recuperação elástica do que a lactose anidra.

O amido de milho apresentou alta porosidade e grande redução de volume quando aplicada uma pressão de compressão. Uma curvatura mais pronunciada, para este excipiente, no início da fase de compressão, sugere um possível mecanismo de resistência à deformação na compressão nos estágios iniciais, até que o ponto de deformação elástica do material fosse superado. O amido costuma ter partículas redondas e tende a manter esse formato no início da compressão. À medida que a força de compressão é aplicada e aumentada, partículas poliédricas regulares emergem devido ao achatamento das superfícies de contato entre as partículas (Palmer; Rowe, 1974). Como a deformação do amido é permanente, quando a força aplicada é removida, sua deformação é definida pela alta recuperação elástica (Roberts; Rowe, 1985). Portanto, o amido de milho apresenta características de compactação pobres (Mohan, 2012). O comportamento da deformação elástica aumenta a frequência de ocorrência de capping, devido às tensões interpartiparticulares causadas durante o ciclo de compressão. O amido de milho tem um aumento na sua característica viscoelástica quando sua porosidade tende a diminuir (Desbois; Tchoreloff; Mazel, 2020). Os materiais elásticos necessitam de mais tempo para consolidar sua deformação sob a pressão aplicada, e esses materiais podem devolver a energia aplicada a eles com alta intensidade, quebrando a estrutura da pastilha e trincando sua extremidade superior (Mazel; Tchoreloff, 2020).

Na avaliação de como a velocidade de compressão influenciou a pressão de deformação (Tabela 5) constatou-se que, para a maioria dos materiais, a capacidade de deformação diminuiu com o aumento da taxa de compressão. Não foram obtidas alterações significativas na pressão de deformação para o fosfato de cálcio dibásico (p-valor > 0,05). A capacidade de sofrer deformação é reduzida quando o comportamento de deformação plástica do material é

diminuído, devido aos mecanismos necessários para aumentar a pressão de deformação. Além disso, a deformação plástica é dependente do tempo, e esse comportamento atua direta e efetivamente na consolidação da ligação entre as partículas ou nos comportamentos mais quebradiços (Katz; Buckner, 2012). Assim, o aumento da velocidade de compressão diminui o tempo efetivo de compressão, como resultado, provoca uma redução na consolidação da deformação plástica, o que aumenta a pressão de deformação instantânea e o comportamento quebradiço dos materiais (Katz; Buckner, 2012; Roberts; Rowe, 1985). A diferença insignificante na pressão de deformação do fosfato de cálcio dibásico pode ser explicada pela consolidação de sua fragmentação. De fato, altos valores de Py são indicativos de materiais frágeis (Roberts; Rowe, 1985). Materiais mais sensíveis à velocidade de compressão e à deformação apresentam maior deformação elástica. A viscoelasticidade é uma das propriedades que podem explicar esse tipo de comportamento, onde a deformação elástica é dependente do tempo (Desbois; Tchoreloff; Mazel, 2020). Neste caso, o ciclo de compressão rápida resultou em uma alta resposta elástica (recuperação) com alta energia elástica envolvida. Uma grande variação de Py ocorre quando a pressão de compressão é rapidamente removida, levando a problemas de processo como capping e laminação (Mazel; Tchoreloff, 2020, 2021).

Parâmetros	Celulose 101Q	Celulose 102Q	Lactose Anidra	Lactose monoidratada	Amido de milho	Fosfato de cálcio
	V1	(175 compri	midos/h)			
Py (MPa)	55,7	36,1	132,5	84,7	62,9	207,1
Força máxima média (kN)	2,8	2,0	3,6	2,9	2,7	6,8
Pressão máxima média (MPa)	43,8	32,0	57,0	45,3	41,7	106,6
R ²	0,925	0,924	0,968	0,946	0,980	0,939
Energia de compressão (J)	3,945	3,104	2,004	1,994	2,698	5,007
Energia de fluxo (J)	0,027	0,036	0,021	0,017	0,035	0,008
Energia eslástica(J)	-0,072	-0,043	-0,042	-0,038	-0,099	-0,117
Energia plástica(J)	3,874	3,062	1,962	1,956	2,599	4,890
Energia elástica : Energia total	1,78%	1,37%	2,11%	1,91%	3,67%	2,33%
	V2	(700 compri	midos/h)			
Py (MPa)	56,7	36,4	155,1	88,6	70,0	213,8
Força máxima média (kN)	3,2	2,1	4,7	3,0	2,6	6,9
Pressão máxima média (MPa)	50,4	32,8	73,7	47,5	41,4	108,4
R ²	0,990	0,991	0,997	0,996	0,998	0,992
Energia de compressão (J)	4,785	3,390	2,843	2,196	2,546	5,338
Energia de fluxo (J)	0,068	0,048	0,032	0,029	0,050	0,013
Energia eslástica (J)	-0,064	-0,038	-0,056	-0,034	-0,094	-0,114
Energia plástica (J)	4,721	3,352	2,788	2,161	2,452	5,223
Energia elástica : Energia total	1,33%	1,12%	1,96%	1,57%	3,69%	2,14%

Tabela 4 - Resultados médios dos ciclos de compressão

Fonte: Resultados originais da pesquisa.

Tabela 5 - Valores de Strain Rate Sensivity (SRS) obtidos

Velo cor	Velocidade de compressão		Celulose 102Q	Amido de milho	Lactose Anidra	Lactose monoidratada	Fosfato de cálcio
10%	Pyl (MPa)	56,3	36,2	62,3	128,4	83,6	205,5
		55,5	36,1	62,9	134,2	82,5	205,5
		55,2	35,9	63,5	134,9	88,0	210,4
	Média	55,7	36,1	62,9	132,5	84,7	207,1
	DPR (%)	1,02	0,42	0,95	2,69	3,44	1,37
40%	Py2 (MPa)	57,1	36,7	68,1	153,5	92,7	210,2
		57,0	36,5	67,4	150,1	84,0	215,0
		56,1	36,1	75,4	161,8	89,1	216,3
	Média	56,7	36,4	70,0	155,1	88,6	213,8
	DPR (%)	0,97	0,84	6,83	3,88	4,93	1,50
Diferença de Py (MPa)		1,1	0,4	7,4	22,6	3,9	6,7
Valor-p		0,080	0,137	0,046	0,005	0,268	0,053
SRS		1,8	0,8	10,5	14,6	4,4	3,1

Fonte: Resultados originais da pesquisa.

Os materiais mais sensíveis à velocidade de deformação são os que apresentam maior deformação elástica, como observado no amido de milho (p-valor < 0,05, Tabela 5). Para os materiais plásticos, a densificação dos comprimidos aumenta à medida que aumenta o tempo de consolidação da deformação, como mostrado por Rees, Rue (1978). Assim, os materiais com grande tendência de deformação plástica apresentaram menor densificação quando a taxa de compressão aumenta (Michaut *et al.*, 2010), conforme apresentado na Tabela 6.

Os materiais com mecanismos de deformação do tipo quebradiço (fratura) geralmente também apresentam uma diferença considerável na densidade de matrizes à medida que a velocidade de compressão aumenta, como observado na Tabela 6 para lactose e fosfato de cálcio. Por outro lado, uma pequena densidade relativa dentro da matriz é uma característica de partículas esféricas ou de forma regular, como observado no amido de milho. As grandes diferenças de densidade dentro da matriz dos materiais quebradiços, à medida que a taxa de compressão aumenta, podem ser explicadas pelo rearranjo inicial das partículas que resulta em uma estrutura compacta com alta porosidade, uma vez que suas partículas apresentam formas pontiagudas, que facilitam o intertravamento das partículas. Neste ponto, essas estruturas dispersam qualquer força aplicada, pois quando a pressão é exercida, as estruturas se quebram, preenchendo o espaço interparticulado existente. Portanto, a velocidade de compressão não afeta a quebra das estruturas ou a consequente formação de preenchimento de espaço interparticular, no entanto, a pressão exercida afeta ambos (Roberts; Rowe, 1985). As partículas de forma regular compactam densamente durante a fase de rearranjo, de modo que a velocidade de compactação terá menos efeito em seus processos de rearranjos envolvidos durante a densificação, o que explica as pequenas mudanças de densidade relativa desses materiais. Além disso, a área de contato interparticular do material aumenta à medida que o tamanho de suas partículas diminui, o que leva a uma maior coesão interparticular. Essa força de coesão se contrapõe à compactação densa, resultando em uma diminuição na densidade relativa de dentro das matrizes, como nos resultados comparativos de celulose 101Q e 102Q.

Velocida compre	de de ssão	Celulose 101Q	Celulose 102Q	Amido de milho	Lactose Anidra	Lactose monoidratada	Fosfato de cálcio
	V1	1,175	1,066	1,036	1,148	1,133	1,715
	(175	1,180	1,068	1,048	1,150	1,125	1,709
Densidade	com/h)	1,146	1,061	1,058	1,143	1,134	1,701
final	Média	1,167	1,065	1,047	1,147	1,131	1,708
dentro da	V2	1,164	1,061	1,004	1,163	1,123	1,684
matriz	(700	1,167	1,051	1,014	1,155	1,126	1,695
	com/h)	1,161	1,042	1,012	1,172	1,120	1,684
	Média	1,164	1,051	1,010	1,163	1,123	1,688
Valor-p		0,794	0,080	0,006	0,038	0,083	0,019
	V1	1,239	1,117	1,118	1,192	1,174	1,772
	(175	1,237	1,116	1,131	1,193	1,163	1,763
Densidade	com/h)	1,220	1,115	1,139	1,181	1,173	1,754
máxima	Média	1,232	1,116	1,129	1,189	1,170	1,763
dentro da	V2	1,231	1,118	1,091	1,204	1,161	1,746
matriz	(700	1,231	1,106	1,104	1,190	1,163	1,749
	com/h	1,222	1,103	1,102	1,206	1,158	1,744
	Média	1,228	1,109	1,099	1,200	1,161	1,746
Valor-p		0,584	0,204	0,014	0,148	0,070	0,037
Diferença	V1	0,065	0,051	0,082	0,042	0,039	0,055
de densidade	V2	0,064	0,058	0,089	0,037	0,038	0,059

Tabela 6 - Valores de densidade na matriz (g/cm³) nas diferentes taxas de compressão

Fonte: Resultados originais da pesquisa.

Graficamente, pode-se notar que o comportamento da deformação pode ser avaliado pela observação e comparação das inclinações dos perfis de Heckel dos materiais. As inclinações das curvas de lactose, por exemplo, indicam que esses materiais tem características frágeis, como o fosfato de cálcio, porque suas inclinações de retorno não são muito pronunciadas, o que significa menos diferença entre as densidades máxima e final dentro da matriz. Além disso, as inclinações não apresentaram pressão média elevada, semelhante aos resultados do amido de milho, um material elástico que pode ser justificado pelos altos valores de SRS encontrados. Portanto, foi possível determinar que, para esse tipo de material, é necessário precaução devido à tendência de laminação por diferentes zonas de densificação ou a incidência de capping devido à recuperação elástica que pode ocorrer (Mazel; Tchoreloff, 2021; Kalies; Heinrich; Leopoldo, 2020).

Desta forma, conhecendo estas curvas características das deformações, é possível incorporar as avaliações gráficas em conceitos de *Quality by Design* (QbD), através da utilização em combinação com as ferramentas de DoE (*Design of Experiments*) e de *Design*

Space. Com o DoE, é possível determinar a relação entre as características do seu produto (pó, misturas e/ou granulados), como composição, umidade e tamanho de partículas, como fatores de entrada, e a comparação da deformação gráfica como fator de saída, deste modo, pode-se avaliar as variações promovidas no produto que impactam na deformação desejada, estipulando-se limites seguros para mantê-las (determinação de parâmetro), e assim, definindo um *design space*. (Lee *et al.*, 2022).

4.2. Estudo de influência do processo de compressão

A escolha dos materiais que compõem a formulação pode influenciar no final o desempenho do processo de compressão, e na qualidade do produto, como na ocorrência de problemas e na aprovação e reprovação dos comprimidos. Deste ponto, é possível avaliar como influências externas podem afetar, do mesmo modo, na aprovação de lotes de formulações já existentes.

A partir do banco de dados gerado para esta parte do estudo, obtivemos um total de 371 observações, com 7 variáveis. Sendo elas: "numero", "produto e equipamento", "pertencentes à classe de caracteres", enquanto o OEE, "aprovacao_prod", "parada_operacional" e "parada_mecanica", pertencentes à classe numérica, conforme apresentadas na Tabela 7, que contém o resumo da função "summary" do RStudio. A partir da Tabela 8, pode-se observar que o equipamento com maior número de entradas foi o equipamento I com 46, enquanto os equipamentos A e B apresentaram 16, sendo os equipamentos com menores números de lotes produzidos. Em relação ao desempenho, a Tabela 8 permite identificar que o equipamento L apresenta a maior média de aprovação dos lotes (100%) e o maior índice OEE (aproximadamente 94,5%). Já o equipamento A apresentou o menor valor para ambos os índices: aproximadamente 82,1% de aprovação do lote e 83,1% do OEE.

Categoria: Carác	ter			
Variável		numero	produto	equipamento
Comprimento		371	371	371
Modo		Carácter	Carácter	Carácter
Categoria: Numé	rica			
Variável	OEE	aprovacao_prod	parada_operacional	parada_mecanica
Mínimo	5,0	0,00	12,57	5,306
1º quadrante	92,0	100,00	15,16	9,400
Mediana	94,0	100,00	21,50	11,311
Média	91,8	95,96	21,34	11,670
3º quadrante	98,0	100,00	23,52	12,663
Máximo	100,0	100,00	33,71	21,094

Tabela 7 - Resumo da função "summary" aplicada ao banco de dados

Fonte: Resultados originais da pesquisa.

Índice médio Número de OEE Equipamento de aprovação observações Α 16 82,11062 83,12500 16 96,66938 93,56250 В С 40 95,89550 91,67500 D 20 99,83600 94,20000 Е 21 95,71857 90,66667 F 41 94,72073 92.26829 99,19636 G 11 93,36364 Η 32 93,78781 89,28125 46 97,77935 92,78261 Ι J 45 96,46222 91,77778 Κ 45 95,21889 91,51111 100,00000 38 94,52632 L

Tabela 8 - Análise descritiva dos dados agrupados por equipamentos

Fonte: Resultados originais da pesquisa.

Plotando em um plano cartesiano XY, os resultados do índice de aprovação dos produtos (calculado a partir do número de lotes aprovados sobre o total de lotes produzidos para cada produto) em relação ao índice OEE, monitorado lote a lote nas linhas de produção, uma linha de tendência pode ser traçada. Essa linha de tendência parece inicialmente ser uma função linear estimada pelo método dos mínimos quadrados ordinários (MQO) (Figura 5). No entanto, ao analisar o mesmo gráfico cartesiano, mas com as observações classificadas por equipamento, nota-se que há certa indicação de um modelo multinível de distribuição de pontos, como mostra a Figura 6. Com intuito de se avaliar a multicolinearidade dos dados, foi criada uma regressão linear da aprovação dos lotes em função da OEE, com as demais variáveis de parada mecânica e parada por operadores, sendo que os resultados para a função "sumarry" e "ols_vif_tol" pode ser observada na tabela 9. Dos resultados de VIF, podemos notar que não há grandes indícios

de multicolinearidade para as variáveis explicativa, uma vez que todos os apresentaram-se baixos, com valores de tolerância relativamente altos. O valor de p, para o teste f, também demonstrou que ao menos uma das variáveis é estatisticamente diferente de 0, sendo o p-value de OOE <0,05.

Fonte: Resultados originais da pesquisa.

Figura 6 - Distribuição HLM dos Índices de Aprovação em Razão dos Índices de OEE. Fonte: Resultados originais da pesquisa.

A fim de se avaliar se os dados obtidos se enquadram em uma modelagem multinível, seis modelagens foram propostas: modelo nulo, modelo com interceptos aleatórios, modelo com interceptos e inclinações aleatórios, modelo final com paradas mecânicas, modelo final com paradas por operadores e modelo final com paradas mecânicas e por operadores. Os resultados da função "summary" de cada modelagem proposta estão expostos na Tabela 10. Dos resultados expostos, pode-se notar que o p-valor dos interceptos para os modelos com intercepto e inclinação aleatórios, final com paradas por operadores, e modelo final com paradas mecânicas e por operadores, estão acima de 5%, ou seja, não podemos rejeitar H, o que nos indica que os valores de intercepto não seriam significativos estatisticamente. Porém, para a modelagem multinível, não se rejeita os valores de intercepto para as modelagens (Tabachnick; Fidell, 2013). Sendo assim, olhando para as demais variáveis, e para os seus efeitos fixos, pode-se notar que os p-valores para OEE são significativos para os modelos nulo com interceptos aleatórios e com interceptos e inclinações aleatórios (p-valor <5%). Bem como os p-valores para OEE: parada_mecanica dos modelos final com parada mecânica e final com paradas

mecânicas e por operadores, que se mostraram significativos. Porém, para estes últimos, os demais efeitos fixos não se mostraram significativos (Woltman *et al.*, 2012).

Residuais					
Mínimo 1º Q	Mediano	3° Q		Máximo	
-44,389 -3,101	0,485	3,361		10,103	
Coeficientes	DP estimado	Erro	Valor-T	Pr(> t)	
Intercepto	-9,45368	2,47167	-3,825	0,000154 ***	
OEE	1,15514	0,02327	49,634	< 2e-16 ***	
parada_operacional	0,08651	0,08917	0,970	0,332626	
parada_mecanica	-0,21149	0,13108	-1,613	0,107521	
R-quadrado múltiplo		0,8737			
R-quadrado ajustado		0,8726			
Estatística-f					
valor-p		< 2,2E-16			
ols_vif_tol					
Variáveis	Toler	rância		VIF	
OEE	0,980	09477		1,019422	
parada_operacional	0,30	76161		3,250806	
parada_mecanica	0,304	44487	3,284626		

Tabela 9 - Resultados da função "summary" e "ols vif tol"

Fonte: Resultados originais da pesquisa.

A partir da avaliação da significância dos efeitos fixos, pode-se dizer que os melhores modelos obtidos para o problema são modelos com interceptos e inclinações aleatórios e modelo final com paradas mecânicas e por operadores. Com a análise dos resultados das significâncias das variâncias dos termos aleatórios de cada modelo, contidos na Tabela 11, e gerados pela função "Std.Err", foi observado que o modelo com interceptos e inclinações aleatórios é estatisticamente diferente de 0, ou seja, p-valor <5%, sendo mais discriminativo, portanto, do que a função OLS, que não será adequada assim como destacado por Tabachnick e Fidell (2013).

Modelo		AIC		BIC	le	ogLik
Nulo			3102,516	3114	,257 -	1548,258
Com interceptos aleatórios	5		2347,398	2363	,041 -	1169,699
Interceptos e inclinações a	leatórios		2280,779	2304	,244 -	1134,389
Final com paradas mecânie	cas		2289,405	2320	1136,703	
Final com paradas operaci	onais		2293,663	2324	1138,832	
Com paradas mecânicas e	operacionais		2300,306	2339	,305 -	1140,153
Efeitos Aleatórios						
Modelo		Ι	Desvio padão		Corr	elação
<u></u>		Intercepto	OEE	Residual	Intercept	OEE
Nulo		1,6887/61	n,a,	15,69185	n,a,	n,a,
Com interceptos aleatorios	1 47 *	0,6/6//18	n,a,	5,599661	n,a,	n,a,
Interceptos e inclinações a	leatorios	36,/2/1490	0,384363/	4,8942559	(Intr)	-1
Final com paradas mecanio	cas	33,069/828	0,346/80/	4,8916152	(Intr)	-1
Final com paradas por ope	radores	38,0477717	0,3986115	4,8932147	(Intr)	-1
Modelo Paradas mecânicas	s e operadores	31,6758383	0,3318994	4,9000035	(Intr)	-1
Fixed effects	T T 1			1	, 1 .	X X 1
	Valor	Erro padra	ao Grai	us de V	alor-t	Valor-p
		Modelo Nulo	liber	dade		
Intercento	95 88527		, ,58003	359	99 27046	0.000
Intercepto	Modelo c	om intercento	s aleatórios	557	<i>))</i> ,27040	0,000
Intercepto	-10.414421	2.14	425412	358	-4.86078	0,000
OEE	1.158644	0.02	230299	358	50.31040	0.000
	Modelo com int	erceptos e incl	inações aleat	órios		-,
Intercepto	8.488173	11.3	373268	358	0.746327	0.456
OEE	0.959225	0	119246	358	8 044095	0,000
	Modelo	final – Parada	mecânica	550	0,011090	0,000
Intercento	71 82112	32	73741	357 0	2 1938548	0.0289
OFF	0 29838	0	34414	357 () 8670359	0.3865
narada mecanica	-5 11524	2	46271	10 -2	0770770	0.0645
OFE:parada mecanica	0.05334		02588	357	2,0770770	0.0400
	Modelo fu	v nal – Paradas d	neracionais	551 2	2,0011004	0,0400
Intercento	56 01601	$11a_1 - 1$ aradas (08020	257	2012100	0 1075
OFF	0 45542		46277	357 (08/117/	0,1975
oee narada anaragional	0,43342	0	90661	10 1	1228626	0,3237
OEE.manada amananianal	-2,14603	1	,09004	257 1	1,1520050	0,2657
OEE:parada_operacional	0,02234	0	,01991	33/	1,1220074	0,2020
M	lodelo final – Pa	radas mecanic	as e por oper	adores	1 00 400 5	0.01.70
Intercepto	46,54519	37	,70689	356	1,234395	0,2179
OEE	0,56464	0	,39613	356	1,425385	0,1549
parada_operacional	3,49658	3	,04454	9	1,148479	0,2804
parada_mecanica	-9,38118	4	,48040	9	-2,093827	0,0658
OEE:parada_operacional	-0,03681	0	,03199	356	-1,150889	0,2506
OEE:parada_mecanica	0,09825	0	,04707	356	2,087039	0,0376

Tabela 10 - Resultados da função "summary" dos modelos

Fonte: Resultados originais da pesquisa.

Componentes	Estimativas	Erro padrão	Valor-z	Valor-p					
	М	odelo Nulo							
1 - Var(v0j)	2,851914	6,647436	0,4290247	0,668					
2 - Var(e)	246,234133	18,618532	13,2252171	0,000					
Modelo com interceptos aleatórios									
1 - Var(v0j)	0,45802	0,7770287	0,5894506	0,556					
2 - Var(e)	31,35620	2,3549215	13,3151786	0,000					
	Modelo com interce	eptos e inclinações a	aleatórios						
1 - Var(v0j)	1348,8834764	672,38534454	2,006117	0,045					
2 - Var(v1j)	0,1477355	0,07404622	1,995179	0,046					
3 - Var(e)	23,9537407	1,80116268	13,299043	0,000					
Modelo final – Parada mecânica									
1 - Var(v0j)	1093,6105375	572,18144964	1,911300	0,056					
2 - Var(v1j)	0,1202569	0,06320481	1,902654	0,057					
3 - Var(e)	23,9278996	1,79623632	13,321131	0,000					
	Modelo final –	Paradas por operad	lores						
1 - Var(v0j)	1447,6329310	704,69623245	2,054265	0,040					
2 - Var(v1j)	0,1588911	0,07771632	2,044501	0,041					
3 - Var(e)	23,9435505	1,79880087	13,310840	0,000					
	Modelo final – Parad	as mecânicas e por	operadores						
1 - Var(v0j)	1003,3587311	591,65295932	1,695857	0,090					
2 - Var(v1j)	0,1101572	0,06531573	1,686534	0,092					
3 - Var(e)	24,0100344	1,80709415	13,286543	0,000					

Tabela 11 - Resultados da função "Std.Err" dos modelos

Fonte: Resultados originais da pesquisa.

Para todos os modelos propostos, os valores de logarricidade foram calculados (logs likelihood - LL), inclusive para o modelo OLS proposto, com a intenção de comprovar o melhor ajuste dos modelos de HLM, com base na estimação dos componentes de variância-covariância (Raudenbush; Bryk, 2002). Como observado na Figura 7, o modelo com interceptos e inclinações aleatórias foi mais adequado, pois apresentou maior valor de LL (-1134,389), enquanto o modelo OLS apresentou o menor valor (-1549,100). Portanto, a partir de todos os resultados obtidos, verifica-se que o modelo com interceptos e inclinações aleatórias é o melhor modelo para a avaliação de nossa base de dados. Assim, percebe-se que a aprovação dos lotes será mais influenciada pelos índices OEE de cada máquina, do que pelas eventuais paradas por problemas mecânicos ou paradas ocorridas devido às diferentes necessidades dos operadores. Esse fato pode ser comprovado pelo valor de correlação interclasse (ICC) ao nível do equipamento, que foi de 98,25% (Tabachnick; Fidell, 2013; Woltman *et al.*, 2012). Esse comportamento também pode ser identificado analisando as informações do próprio banco de dados, como no exemplo a seguir na Tabela 12. A partir dos dados do acompanhamento do

banco de dados (Tabela 12), nota-se que para cada um dos produtos (113, 114 e 115) seus índices de aprovação não variam de acordo com as taxas de paradas por operadores e trocas mecânicas de paradas, mas sim, quando considerado um equipamento diferente. Para o produto 114, quando considerados os lotes produzidos pelo equipamento H, eles têm 100% de aprovação, mas também, entre todos os equipamentos em que o produto 114 é fabricado, ele tem as maiores paradas por operadores e devido a problemas mecânicos, respectivamente, 33,70% e 21,09%.

Figura 7 - Valores calculados de "log likelihood" dos modelos propostos. Fonte: Resultados originais da pesquisa.

Produto	Produto:equip	OEE	Índice de	Índice de	Equipamento	Índice de
			Aprovação	Parada por		Parada
				Operador		Mecânica
113	113I	93	100	22,5088968	Ι	11,5658363
	113J	95	100	15,16089109	J	9,839108911
	113K	23	24,07	14,06913281	Κ	9,399636143
	113L	100	100	18,82501579	L	5,306380291
114	114C	36	39,73	21,49812734	С	11,31086142
	114F	60	64,71	23,51758794	F	12,66331658
	114H	92	100	33,70535714	Н	21,09375
	114I	90	100	22,5088968	Ι	11,5658363
115	115I	51	52,88	22,5088968	Ι	11,5658363
	115J	62	66,66	15,16089109	J	9,839108911
	115K	64	64,63	14,06913281	Κ	9,399636143

Tabela 12 - Detalhes do segmento do banco de dados referente aos produtos 113, 114 e 115

Fonte: Resultados originais da pesquisa.

Tendo-se, portanto, o melhor modelo como sendo o de interceptos e inclinações aleatórios, podemos ajustar o nosso banco de dados a partir deste modelo, aplicando cada variável de entrada ao modelo e obtendo-se, então, suas respostas correspondentes ajustadas. A Figura 8 representa os gráficos dos valores ajustados (*fitted values*) do modelo, plotados em aprovação do produto em relação ao índice de OEE, por equipamento. Deste modo, podemos simular as taxas de aprovações dos produtos a partir da entrada de novos valores para as variáveis explicativas, e, assim, teremos um direcionamento sobre qual o equipamento melhor para produzir o produto em questão. Os valores ajustados do modelo estão disponíveis no Apêndice I.

De modo prático, para o uso da ferramenta, áreas de interesse como os departamentos de planejamento e controle de produção, ou até mesmo a área industrial, podem ser treinadas e apresentadas aos conceitos da modelagem aqui desenvolvida. Assim, em conjunto, estabelecendo controles para os preenchimentos das OEE, com dados validados, e a partir de uma instrução de trabalho ou procedimento operacional padrão (POP) definir os passos para que a análise das linhas de produção seja feita e as predições se tornem mais precisas, auxiliando, deste modo, a organizar e programar melhor os lotes de produtos, aumento a produtividade do parque fabril.

Figura 8 - "Fitted Values" do modelo com interceptos e inclinações aleatórios. Fonte: Resultados originais da pesquisa.

5. CONCLUSÃO

O processo de compressão é uma etapa dinâmica, sendo passível de sofrer influências das mais diversas fontes. Estas podem ser desde a característica dos materiais que compõem a formulação dos produtos, e que ditam o comportamento destes durante a dinâmica do processo, quanto fatores externos à composição do produto, como de origem mecânica, operacional ou de desempenho intrínseco dos equipamentos, seja por idade e conservação, ou por condições estruturais.

Quanto a influência dos materiais no desempenho de compressão, o simulador de punção única demonstrou ser uma ferramenta valiosa para a compreensão do comportamento dos materiais durante o ciclo compressão. Demonstrou confiabilidade nas análises de SRS e Heckel e mostrou-se capaz de gerar os gráficos necessários para uma avaliação mais aprofundada sobre o comportamento elástico dos materiais. O equipamento em questão foi desafiado através do estudo de excipientes farmacêuticos com diferentes comportamentos de compressão, obtendo resultados consistentes e coerentes com as características reais e teóricas dos materiais. Além disso, o simulador demonstrou uma excelente capacidade de mimetizar uma compressora rotativa de comprimidos industrial, sendo assim, uma ferramenta essencial para auxiliar na formulação racional e no desenvolvimento de processos, bem como na resolução de problemas produtivos.

Do ponto de vista do ciclo de vida dos produtos, a análise multinível se mostrou extremamente capaz de auxiliar na tomada de decisões direcionadas pelos dados adquiridos dos processos, ou seja, refletindo a realidade da planta fabril. A partir da utilização de bases de dados existentes na indústria farmacêutica, a empregabilidade dos conceitos de Inteligência Artificial mostrou-se eficaz e promissora, sendo uma oportunidade notável a ser explorada. Sendo, deste modo, possível compreender o desempenho de um produto em cada linha de produção, conforme os índices de OEE. Consequentemente, observou-se que a taxa de aprovação dos produtos está intimamente relacionada a quais equipamentos produzirão os lotes, e menos influenciada pelo quanto os operadores param os processos, ou por quanto o processo é parado devido a problemas mecânicos dos equipamentos. Portanto, este trabalho constituiu uma base para o início de estudos mais aprofundados aplicados à gestão industrial e à excelência operacional, explicando que o uso de modelagens mais precisas e específicas pode levar a ferramentas valiosas para o modelo *data-driven* de tomada de decisão na indústria farmacêutica.

REFERÊNCIAS

AL IBRAHEEMI, Z.A.M.; ANUAR, M.S.; TAIP, F.S.; AMIN, M.C.I.; TAHIR, S.M.; MAHDI, A.B. Deformation and mechanical Caracteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Particulate Science and Technology, v.31, p.561-567, 2013.

CABISCOL, R.; SHI, H.; WÜNSH, I.; MAGNANIMO, V.; FINKE, J.H.; LUDING, S.; KWADE, A. Effect of particle size on powder compaction and tablet strength using limestone. Advanced Powder Technology, v.31, p.1280-1289, 2020.

CARLO, F.D.; ARLEO, M.A.; TUCCI, M. OEE evaluation of a paced assembly line through different calculation and simulation methods: a case study in the pharmaceutical environment. International Journal of Engineering Business Management, v.6, 2014.

CAVATUR, R.K.; VERMURI, N.M.; SURYANARAYANAN, R. Pharmaceutical Dosage Forms: Tablets. 3. ed. Florida: CRC Press, 2016.

CHIKWENDU, O.C.; CHIMA, A.S.; EDITH, M.C. The optimization of overall equipment effectiveness factors in a pharmaceutical company. Heliyon, v.6, 2020.

CHOI, D.H.; KIM, N.A.; CHU, K.R.; JUNG, Y.J.; YOON, J.H.; JEONG, S.H. Material properties and compressibility using Heckel and Kawakita equation with commonly used pharmaceutical excipients. Journal of Pharmaceutical Investigation, v.40, p.237-244, 2010.

DELLEPIANE, N.; PAGLIUSI, S.; AKUT, P.; COMELLAS, S.; CLERCQ, N.; GHADGE, S.; GASTINEAU, T.; MCGOLDRICK, M.; NURNAENI, I.; SCHEPPLER, L. Alignment in postapproval changes (PAC) guidelines in emerging countries may increase timely access to vaccines: An illustrative assessment by manufacturers. Vaccine: X, v.6, 2020.

DESBOIS, L.; TCHORELOFF, P.; MAZEL, V. Characterization and modeling of the viscoelasticity of pharmaceutical tablets. International Journal of Pharmaceutics, v.587, 2020.

DUAN, L.; XIONG, Y. Big data analytics and business analytics. Journal of Management Analytics, v.2, p.1-21, 2015.

DUSEN, B.V.; NISSEN, J. Modernizing use of regression models in physics education research: A review of hierarchical linear modeling. American Physical Society, v.15, 2019.

EILAT, E. The inevitable future of generic pharma drugs companies. Journal of Bioequivalence & Bioavailability, v.15, p.48-49, 2018.

FÁVERO, L.P.; BELFIORE, P. Manual de análise de dados: Estatística e modelagem multivariada com Excel, SPSS e Stata. 1. ed. Rio de Janeiro: Elsevier, 2017.

FRANCIS, G.; JAKICIC, V. Equivalent statistics for a one-sample t-test. Behavior Research Methods, v.55, p.77-84, 2023.

KALIES, A.; HEINRICH, T.; LEOPOLD, C.S. A novel approach to avoid capping and/or lamination by application of external lower punch vibration. International Journal of Pharmaceutics, v.580, 2020.

KATZ, J.M.; BUCKNER, I.S. Caracterization of strain rate sensitivity in pharmaceutical materials using indentation creep analysis. International Journal of Pharmaceutics, v.442, 2012.

KOTHARI, S.H.; KUMAR, V.; BANKER, G.S. Comparative evaluations of powder and mechanical properties of low crystallinity celluloses, microcrystalline celluloses, and powdered celluloses. International Journal of Pharmaceutics, v.232, p.69–80, 2002.

LEE, S.H.; KIM, J.K.; JEE, J.P.; JANG, D.J.; PARK, Y.J.; KIM, J.E. Quality by Design (QbD) application for the pharmaceutical development process. Journal of Pharmaceutical Investigation, v.52, p.649-682, 2022.

MAZEL, V., BUSIGNIES, V., DIARRA, H., TCHORELOFF, P. Measurements of elastic moduli of pharmaceutical compacts: A new methodology using double compaction on a compaction simulator. Journal of Pharmaceutical Sciences, v.101, 2012.

MAZEL, V.; DESBOIS, L.; TCHORELOFF, P. Influence of the unloading conditions on capping and lamination: Study on a compaction simulator. International Journal of Pharmaceutics, v.567, 2019.

MAZEL, V.; TCHORELOFF, P. Lamination of pharmaceutical tablets: classification and influence of process parameters. Journal of Pharmaceutical Sciences, v.111, p.1480-1485, 2021.

MAZEL, V.; TCHORELOFF, P. Role of Precompression in the Mitigation of Capping: A Case Study. Journal of Pharmaceutical Sciences, v.109, p.3210-3213, 2020.

MAHATO, R.I.; NARANG, A. S. Pharmaceutical Dosage Forms and Drug Delivery. 2. ed. Florida: CRC Press, 2012.

MICHAUT, F.; BUSIGNIES, V.; FOUQUEREAU, C.; BAROCHEZ, B.H.; LECLERC, B.; TCHORELOFF, P. Evaluation of a rotatory press simulator as a tool for the Caracterization of compaction properties of pharmaceutical products. Journal of Pharmaceutical Sciences, v.99, 2010.

MOHAN, S. Compression physics of pharmaceutical powders: A review. International Journal of Pharmaceutical Sciences Research, v.3, p.1580-1592, 2012.

NAKAJIMA, S. Introduction to TPM: Total Productive Management, 1. ed. Portland: Productivity Press, 1988.

PALMER, H.K.; ROWE, R.C. A study of the compaction behavior and pore structure of polymer compacts using mercury porosimeter. Powder Technology, v.10, p.225-230, 1974.

PAUL, S.; BARANWAL, Y.; TSENG, Y.C. An insight into predictive parameters of tablet capping by machine learning and multivariate tools. International Journal of Pharmaceutics, v.599, 2021.

RAMACHANDRA, C.G.; PRASHANTH, P.M.; SRINIVAS, T.R.; RAGHAVENDRA, M.J. OEE - a tool to measure the effectiveness of TPM implementation in industries - A review. Global Research and Development Journal for Engineering, v.1, p.92-96, 2016.

RAUDENBUSH, S.W.; BRYK, A.S. Hierarchical linear models: Applications and data analysis methods. 2. ed. Newbury Park: SAGE, 2002.

REES, J.E.; RUE, P.J. Time-dependent deformation of some direct compression excipients. Journal of Pharmacy and Pharmacology, v.30, p.601-607, 1978.

ROBERTS, R.J.; ROWE, E.C. The effect of punch velocity on the compaction of a variety of materials. Journal of Pharmacy and Pharmacology, v.37, p.377-384, 1985.

SAINIO, J.A. Caracterization and evaluation of melibiose as novel excipient in tablet compaction. 2011. Dissertação (Mestrado em Farmácia) - Faculty of Pharmacy, University of Helsinki, Helsinki, 2011.

SCHONBERGER R.J. Best practices in lean six sigma process improvement: a deeper look. 1. ed. New Jersey: John Wiley & Sons, 2007.

SHESKEY, P.J.; HANCOCK, B.C.; MOSS, G.P.; GOLDFARB, D.J. Handbook of Pharmaceutical Exceptents. 9. ed. London: Pharmaceutical Press, 2020.

TABACHNICK, B.G.; FIDELL, L.S. Using multivariate statistics. 6. ed. Boston: Pearson, 2013. 81-857 p.

TAKAHASHI, T.; TOYOTA, H.; KUROIWA, Y.; YOSHINO, H.; KONDOU, H.; YAMASHITA, K.; HAKOMORI, T.; TAKEUCHI, H. Quantitative evaluation of different rotary tablet presses by compaction velocity based on compaction simulation study. International Journal of Pharmaceutics, v.558, p.157-164, 2019.

TYE, C.K.; SUN, C.; AMIDON, G.E. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. Journal of Pharmaceutical Sciences, v.94, 2005.

U.S FOOD AND DRUG ADMINISTRATION. Pharmaceutical CGMPs for the 21st century. A risk-based approach - Final report, 2004. Disponível em: https://www.fda.gov/media/77391/download. Acesso em: 14 de mar. 2023.

VREEMAN, G.; SUN, C.C. Air entrapment during tablet compression – Diagnosis, impact on tableting performance, and mitigation strategies. International Journal of Pharmaceutics, v. 615, 2022.

WOLTMAN, H.; FELDSTAIN, A.; MACKAY, C.; ROCCHI, M. An introduction to hierarchical linear modeling. Tutorials in Quantitative Methods for Psychology, v.8, p.52-69, 2012.

YORK, P. The design of dosage forms. Auton, M. E. Pharmaceutics, The science of dosage form design. 2. ed. London: Churchill Livingstone, 2001. 01-11 p.

ZUBAIR, M.; MAQSOOD, S.; HABIB, T.; JAN, Q.M.U.; NADIR, U.; WASEEM, M.; YASEEN, Q.M. Manufacturing productivity analysis by applying overall equipment effectiveness metric in a pharmaceutical industry. Cogent Engineering, v.8, 2021.

APÊNDICES

Velocidade	Celulose	Celulose	Lactose	Lactose	Fosfato	Amido
de	101Q	102Q	anidra	monoidratada	de	de
compressão					cálcio	milho
			Peso (mg)			
V1	352,5	326,2	351,8	344,8	534,4	327,3
	353,8	325,8	352,5	341,4	531,8	331,5
	352,3	325,3	348,9	344,9	528,8	334,2
V2	364,5	328,1	360,4	343,2	530,6	321,2
	364,7	324,6	355,3	343,6	532,1	325,1
	361,5	323,4	361,8	342,8	530,5	325,3
		Esp	pessura (mm)			
V1	5,77	5,75	5,49	5,47	5,6	6,14
	5,76	5,76	5,5	5,47	5,59	6,16
	5,75	5,75	5,48	5,49	5,61	6,17
V2	5,78	5,79	5,56	5,57	5,66	6,12
	5,80	5,79	5,56	5,54	5,66	6,16
	5,78	5,81	5,58	5,61	5,66	6,12
		Ι	Oureza (kp)			
V1	20,7	14,2	5,2	1,2	5,5	1,8
	22,3	13,9	5,9	1,2	5,9	2,4
	21,7	13,8	5,2	1,3	5,2	2,4
V2	25,4	13,9	6,7	0,9	4,7	1,0
	25,9	13,1	6,3	1,1	4,3	1,2
	24,2	13,1	7,0	0,8	6,1	1,1
		La	argura (mm)			
V1	9,04	9,05	9,04	9,04	9,03	9,10
	9,05	9,04	9,04	9,05	9,03	9,09
	9,04	9,04	9,04	9,04	9,02	9,09
V2	9,03	9,04	9,05	9,00	9,02	9,11
	9,05	9,05	9,04	9,02	9,02	9,10
	9,04	9,05	9,04	8,99	9,04	9,13
		Dia	âmetro (mm)			
V1	9,03	9,04	9,02	9,03	9,02	9,09
	9,04	9,03	9,03	9,03	9,02	9,09
	9,03	9,04	9,04	9,04	9,02	9,09
V2	9,04	9,04	9,05	9,00	9,02	9,10
	9,04	9,04	9,04	9,03	9,04	9,11
	9,03	9,05	9,04	8,98	9,04	9,12

Apêndice A - Resultados da análise física dos materiais utilizados nas compressões nas duas velocidades de compressão

Fonte: Resultados originais da pesquisa.

Apêndice B - Comparação dos gráficos de Heckel dos materiais utilizados

Fonte: Resultados originais da pesquisa.

Apêndice C – Gráfico de Heckel – Comparação da compactação da celulose 101Q nas duas velocidades de compressão 175 comprimidos/h (V1) e 700 comprimidos/h (V2)

Fonte: Resultados originais da pesquisa.

Apêndice E - Gráfico de Heckel – Comparação da compactação da lactose anidra nas duas velocidades de compressão 175 comprimidos/h (V1) e 700 comprimidos/h (V2)

Fonte: Resultados originais da pesquisa.

Apêndice F - Gráfico de Heckel – Comparação da compactação da lactose monoidratada nas duas velocidades de compressão 175 comprimidos/h (V1) e 700 comprimidos/h (V2)

Fonte: Resultados originais da pesquisa.

Apêndice G - Gráfico de Heckel – Comparação da compactação do amido de milho nas duas velocidades de compressão 175 comprimidos/h (V1) e 700 comprimidos/h (V2)

Fonte: Resultados originais da pesquisa.

Fonte: Resultados originais da pesquisa.

equipamento aprovacao_prod predict_fixed predict_ equipamento etik A 100,00 10.153,301 10.2268,293 -22.682,927 A 88,23 9.289,999 89.114,461 -0.884 A 100,00 9.865,534 97.883,682 21.163,179 A 0,00 5.453,098 30.652,986 -306.529,875 A 100,00 9.777,766 93.499,071 65.009,286 A 63,64 6.508,246 46.729,891 169.101,086 A 100,00 9.767,618 94.960,608 50.393,917 A 0,00 3.246,880 -2.962,362 29.623,625 A 100,00 10.345,146 105.191,367 -51.913,665 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 10.41,069 106.652,903 -26.629,033 A 100,00 10.249,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 43.453,783<					(continua)	
A 100,00 10.153,301 102.268,293 -22.682,927 A 88,23 9.289,999 89.114,461 -0.884 A 100,00 9.865,534 97.883,682 21.163,179 A 0,00 5.453,098 30.652,986 -306.529,857 A 100,00 9.577,766 93.499,071 65.009,286 A 63,64 6.508,246 46.729,891 169.101.086 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 9.769,614 99.345,219 0.655 A 100,00 10.441,069 106.652,903 -66.529,033 A 100,00 10.441,069 106.652,905 122.042,247 A 100,00 10.453,301 102.268,293 -22.682,927 A 100,00 10.453,301 102.268,293 -22.642,927 A 100,00 10.153,301 102.268,293 -22.642,927 A 100,00 10.249,224 103.702,07 -33.707,07 <	equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk	
A 88,23 9.289,999 89,114,461 -0.884 A 100.00 9.865,534 97.883,682 21.163,179 A 0,00 5.453,098 30.652,986 -306.529,87 A 100.00 9.777,766 93.499,071 65.009,286 A 63,64 6.508,246 46.729,891 169.101,086 A 100,00 9.769,611 96.422,145 35.778,548 A 0.000 3.246,880 -2.962,362 29.623,625 A 100,00 10.441,069 106.652,903 -66.529,033 A 100,00 9.769,611 96.422,145 35.778,548 A 61,90 6.700,091 49.652,965 122.470,349 A 100,00 10.249,224 103.702,830 -73.728,748 B 100,00 10.345,146 103.370,707 -33.707,075 B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 10.441,069 104.331,152 -43.311,516	А	100,00	10.153,301	102.268,293	-22.682,927	
A 100,00 9.865,534 97.883,682 21.163,179 A 0,00 5.453,098 30.652,986 -306,529,857 A 100,00 9.577,766 93.499,071 65.009,286 A 163,64 6.508,246 46.729,891 169.101,086 A 100,00 9.673,689 94.960,608 50.393,917 A 0,00 3.246,880 -2.962,362 29.623,625 A 100,00 10.345,146 105.191,367 -51.913,665 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 10.153,301 102.268,293 -22.682,927 A 100,00 10.153,301 102.268,293 -22.682,927 A 100,00 10.345,146 103.370,707 -33.707,075 B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 10.441,669 104.331,152 -43.311,516	А	88,23	9.289,999	89.114,461	-0,884	
A 0,00 5.453,098 30.652,986 -306.529,857 A 100,00 9.577,766 93.499,071 65.009,286 A 63,64 6.508,246 46.729,891 169.101,086 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 9.2673,689 94.960,608 50.393,917 A 0,00 3.246,880 -2.962,362 29.623,625 A 100,00 10.441,069 106.652,003 -66.529,033 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 10.441,069 106.652,003 -22.682,927 A 100,00 10.153,301 102.268,293 -22.682,927 A 100,00 10.441,027 10.3729,830 -37.298,296 B 87,50 9.194,076 91.845,378 +43.453,783 B 100,00 10.441,069 104.331,152 +43.311,516 B 100,00 10.441,069 104.331,152 +43.311,516 <td>A</td> <td>100,00</td> <td>9.865,534</td> <td>97.883,682</td> <td>21.163,179</td>	A	100,00	9.865,534	97.883,682	21.163,179	
A 100,00 9.577,766 93.499,071 65.009,286 A 63,64 6.508,246 46.729,891 169.101,086 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 9.3246,880 -2.962,362 29.623,625 A 100,00 9.344,516 105.191,367 -51.913,665 A 100,00 9.961,456 99.345,219 0.655 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 10.441,069 106.652,903 -66.529,033 A 100,00 10.441,069 106.422,145 35.778,548 A 61,90 6.700,091 49.652,965 122.470,349 A 100,00 10.249,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 10.441,069 104.331,152 -43.311,516	А	0,00	5.453,098	30.652,986	-306.529,857	
A 63,64 6.508,246 46.729,891 169.101,086 A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 9.673,689 94.960,608 50.393,917 A 0,00 3.246,880 -2.962,362 29.623,625 A 100,00 10.345,146 105.191,367 -51.913,665 A 100,00 9.961,456 99.345,219 0.655 A 100,00 9.769,611 96.422,145 35.778,548 A 61,90 6.700,091 49.622,965 122.470,349 A 100,00 10.153,301 102.268,293 -22.682,927 A 100,00 10.249,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 43.453,783 B 100,00 10.441,069 104.331,152 43.311,516 B 100,00 10.441,069 104.331,152 43.311,516 B 100,00 9.769,611 97.608,043 23.919,571	А	100,00	9.577,766	93.499,071	65.009,286	
A 100,00 9.769,611 96.422,145 35.778,548 A 100,00 9.673,689 94.960,608 50.393,917 A 0,00 3.246,880 -2.962,362 29.623,625 A 100,00 9.345,146 105.191,367 -51.913,665 A 100,00 9.961,456 99.345,219 0,655 A 100,00 9.769,611 96.422,145 35.778,548 A 61,90 6.700,091 49.652,965 122.470,349 A 100,00 10.249,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 9.481,844 94.726,711 52.732,894 B 100,00 9.481,844 94.726,711 52.732,894 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.441,069 104.331,152 -43.311,516	А	63,64	6.508,246	46.729,891	169.101,086	
A 100,00 9.673,689 94.960,608 50.393,917 A 0,00 3.246,880 -2.962,362 29.623,625 A 100,00 9.961,456 99.345,219 0.655 A 100,00 10.441,069 106.652,903 -66.529,033 A 100,00 10.441,069 106.652,903 -66.529,033 A 100,00 10.53,301 102.268,293 -22.682,927 A 100,00 10.153,301 102.268,293 -22.682,927 A 100,00 10.449,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 10.345,146 103.370,707 -33.707,075 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 10.441,069 104.331,152 -43.319,571 B 100,00 10.345,146 103.370,707 -33.707,075	А	100,00	9.769,611	96.422,145	35.778,548	
A 0,00 3.246,880 -2.962,362 29.623,625 A 100,00 10.345,146 105.191,367 -51.913,665 A 100,00 9.961,456 99.345,219 0.6552,033 A 100,00 9.769,611 96.422,145 35.778,548 A 61,90 6.700,091 49.652,965 122.470,349 A 100,00 10.153,301 102.268,293 -22.682,927 A 100,00 10.249,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 10.345,146 103.370,707 -33.707,075 B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.453,301 101.449,819 -14.498,193 <td>А</td> <td>100,00</td> <td>9.673,689</td> <td>94.960,608</td> <td>50.393,917</td>	А	100,00	9.673,689	94.960,608	50.393,917	
A 100,00 10.345,146 105.191,367 -51.913,665 A 100,00 9.961,456 99.345,219 0,655 A 100,00 10.441,069 106.652,903 -66.529,003 A 100,00 9.769,611 96.422,145 35.778,548 A 61,90 6.700,091 49.652,965 122.470,349 A 100,00 10.153,301 102.268,293 -22.682,927 A 100,00 10.249,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 9.481,844 94.726,711 52.732,894 B 100,00 10.345,146 103.370,707 -33.707,075 B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.143,5146 103.370,707 -33.707,075	А	0,00	3.246,880	-2.962,362	29.623,625	
A 100,00 9.961,456 99.345,219 0,655 A 100,00 10.441,069 106.652,903 -66.529,033 A 100,00 9.769,611 96.422,145 35.778,548 A 61,90 6.700,091 49.652,965 122.470,349 A 100,00 10.249,224 103.729,830 -37.298,296 B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 10.345,146 103.370,707 -33.707,075 B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 10.153,301 101.449,819 -14.498,193	А	100,00	10.345,146	105.191,367	-51.913,665	
A100,0010.441,069106.652,903-66.529,033A100,009.769,61196.422,14535.778,548A61,906.700,09149.652,965122.470,349A100,0010.153,301102.268,293-22.682,927A100,0010.249,224103.729,830-37.298,296B87,509.194,07691.845,378-43.453,783B100,009.481,84494.726,71152.732,894B100,0010.345,146103.370,707-33.707,075B84,218.618,54186.082,714-18.727,137B100,0010.441,069104.331,152-43.311,516B100,009.769,61197.608,04323.919,571B100,0010.441,069104.331,152-43.311,516B100,0010.441,069104.331,152-43.311,516B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.673,68995.521,28944.787,113C100,009.673,68995.521,28944.787,113C100,009.673,68995.521,28944.787,113C100,009.673,68995.521,28944.787,113C100,00 </td <td>А</td> <td>100,00</td> <td>9.961,456</td> <td>99.345,219</td> <td>0,655</td>	А	100,00	9.961,456	99.345,219	0,655	
A100,009.769,61196.422,14535.778,548A61,906.700,09149.652,965122.470,349A100,0010.153,301102.268,293-22.682,927A100,0010.249,224103.729,830-37.298,296B87,509.194,07691.845,378-43.453,783B100,009.481,84494.726,71152.732,894B100,0010.345,146103.370,707-33.707,075B84,218.618,54186.082,714-18.727,137B100,0010.441,069104.331,152-43.311,516B100,0010.441,069104.331,152-43.311,516B100,0010.441,069104.331,152-43.311,516B100,0010.441,069104.331,152-43.311,516B100,0010.441,069104.331,152-43.311,516B100,0010.453,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.441,069104.331,152-43.311,510B100,009.865,53498.568,48714.315,130B100,009.865,53498.568,48714.315,130B100,009.673,68995.521,28944.787,113C100,009.673,68995.521,28944.787,113C100,009.673,68995.521,28944.787,113C100,	А	100,00	10.441,069	106.652,903	-66.529,033	
A61,906.700,09149.652,965122.470,349A100,0010.153,301102.268,293-22.682,927A100,0010.249,224103.729,830-37.298,296B87,509.194,07691.845,378-43.453,783B100,009.481,84494.726,71152.732,894B100,0010.345,146103.370,707-33.707,075B84,218.618,54186.082,714-18.727,137B100,0010.441,069104.331,152-43.311,516B100,009.769,61197.608,04323.919,571B100,009.769,61197.608,04323.919,571B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.961,45699.528,9310,471B100,0010.057,379100.858,581-0.859C100,009.673,68995.521,28944.787,113C100,009.643,5146103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,009.673,68995.521,28944.787,113C100,0010.	А	100,00	9.769,611	96.422,145	35.778,548	
A100,0010.153,301102.268,293-22.682,927A100,0010.249,224103.729,830-37.298,296B87,509.194,07691.845,378-43.453,783B100,009.481,84494.726,71152.732,894B100,0010.345,146103.370,707-33.707,075B84,218.618,54186.082,714-18.727,137B100,0010.441,069104.331,152-43.311,516B100,009.769,61197.608,04323.919,571B100,0010.441,069104.331,152-43.311,516B75,007.851,16178.399,161-33.991,608B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.451,301101.449,819-14.498,193B100,0010.455,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.057,379100.858,581-0.859C100,009.673,68995.521,28944.787,113C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,0010.345,146104.861,550-48.615,502C100,00 <td>А</td> <td>61,90</td> <td>6.700,091</td> <td>49.652,965</td> <td>122.470,349</td>	А	61,90	6.700,091	49.652,965	122.470,349	
A100,0010.249,224103.729,830-37.298,296B87,509.194,07691.845,378-43.453,783B100,009.481,84494.726,71152.732,894B100,0010.345,146103.370,707-33.707,075B84,218.618,54186.082,714-18.727,137B100,0010.441,069104.331,152-43.311,516B100,009.769,61197.608,04323.919,571B100,0010.441,069104.331,152-43.311,516B75,007.851,16178.399,161-33.991,608B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.568,48714.315,130B100,0010.057,379100.858,581-0.859C100,009.673,68995.521,28944.787,113C100,0010.249,224103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,00 <td>А</td> <td>100,00</td> <td>10.153,301</td> <td>102.268,293</td> <td>-22.682,927</td>	А	100,00	10.153,301	102.268,293	-22.682,927	
B 87,50 9.194,076 91.845,378 -43.453,783 B 100,00 9.481,844 94.726,711 52.732,894 B 100,00 10.345,146 103.370,707 -33.707,075 B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.441,069 104.331,152 -43.311,516 B 75,00 7.851,161 78.399,161 -33.991,608 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 10.345,146 103.370,707 -33.707,075 B 100,00 9.865,534 98.568,487 14.315,130	А	100,00	10.249,224	103.729,830	-37.298,296	
B 100,00 9.481,844 94.726,711 52.732,894 B 100,00 10.345,146 103.370,707 -33.707,075 B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.441,069 104.331,152 -43.311,516 B 75,00 7.851,161 78.399,161 -33.991,608 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 10.345,146 103.370,707 -33.707,075 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 9.865,534 98.568,487 14.315,130 B 100,00 9.64,456 99.528,931 0,471 B 100,00 9.865,534 98.189,935 18.100,652	В	87,50	9.194,076	91.845,378	-43.453,783	
B 100,00 10.345,146 103.370,707 -33.707,075 B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.441,069 104.331,152 -43.311,516 B 75,00 7.851,161 78.399,161 -33.991,608 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 10.345,146 103.370,707 -33.707,075 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 9.865,534 98.568,487 14.315,130 B 100,00 9.961,456 99.528,931 0.471 B 100,00 10.441,069 104.331,152 -43.311,516 C 98,18 9.577,766 94.186,966 39.930,344	В	100,00	9.481,844	94.726,711	52.732,894	
B 84,21 8.618,541 86.082,714 -18.727,137 B 100,00 10.441,069 104.331,152 -43.311,516 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.441,069 104.331,152 -43.311,516 B 75,00 7.851,161 78.399,161 -33.991,608 B 100,00 9.769,611 97.608,043 23.919,571 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 10.345,146 103.370,707 -33.707,075 B 100,00 10.345,146 103.370,707 -33.707,075 B 100,00 10.153,301 101.449,819 -14.498,193 B 100,00 9.865,534 98.568,487 14.315,130 B 100,00 9.961,456 99.528,931 0.471 B 100,00 10.441,069 104.331,152 -43.311,516 C 98,18 9.577,766 94.186,966 39.930,344	В	100,00	10.345,146	103.370,707	-33.707,075	
B100,0010.441,069104.331,152-43.311,516B100,009.769,61197.608,04323.919,571B100,0010.441,069104.331,152-43.311,516B75,007.851,16178.399,161-33.991,608B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,0010.153,301101.449,819-14.498,193B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,0010.057,379100.858,581-0,859C100,009.673,68995.521,28944.787,113C100,0010.249,224103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,0010.345,146104.861,550-48.615,502C100,0010.345,146104.861,550-48.615,502C100,0010.345,146104.861,550-48.615,502C100,00	В	84,21	8.618,541	86.082,714	-18.727,137	
B100,009.769,61197.608,04323.919,571B100,0010.441,069104.331,152-43.311,516B75,007.851,16178.399,161-33.991,608B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,0010.057,379100.858,581-0.859C100,009.673,68995.521,28944.787,113C100,0010.249,224103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787,113	В	100,00	10.441,069	104.331,152	-43.311,516	
B100,0010.441,069104.331,152-43.311,516B75,007.851,16178.399,161-33.991,608B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787,113	В	100,00	9.769,611	97.608,043	23.919,571	
B75,007.851,16178.399,161-33.991,608B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.345,146104.861,550-48.615,502C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113C100,0010.345,146104.861,550-48.615,502C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113	В	100,00	10.441,069	104.331,152	-43.311,516	
B100,009.769,61197.608,04323.919,571B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.665,53498.189,93518.100,652C100,0010.057,379100.858,581-0,859C100,009.673,68995.521,28944.787,113C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.073,68995.521,28944.787,113C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113	В	75,00	7.851,161	78.399,161	-33.991,608	
B100,0010.153,301101.449,819-14.498,193B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113	В	100,00	9.769,611	97.608,043	23.919,571	
B100,0010.345,146103.370,707-33.707,075B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.9481,84492.852,64371.473,575C100,009.673,68995.521,28944.787,113	В	100,00	10.153,301	101.449,819	-14.498,193	
B100,0010.345,146103.370,707-33.707,075B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.481,84492.852,64371.473,575C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787,113	В	100,00	10.345,146	103.370,707	-33.707,075	
B100,0010.153,301101.449,819-14.498,193B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787,113	В	100,00	10.345,146	103.370,707	-33.707,075	
B100,009.865,53498.568,48714.315,130B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113	В	100,00	10.153,301	101.449,819	-14.498,193	
B100,009.961,45699.528,9310,471B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,0010.057,379100.858,581-0,859C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113	В	100,00	9.865,534	98.568,487	14.315,130	
B100,0010.441,069104.331,152-43.311,516C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,0010.057,379100.858,581-0,859C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.481,84492.852,64371.473,575C100,009.481,84492.852,64371.473,575C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787,113	В	100,00	9.961,456	99.528,931	0,471	
C98,189.577,76694.186,96639.930,344C100,009.865,53498.189,93518.100,652C100,0010.057,379100.858,581-0,859C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113	В	100,00	10.441,069	104.331,152	-43.311,516	
C100,009.865,53498.189,93518.100,652C100,0010.057,379100.858,581-0,859C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,0010.345,146104.861,550-48.615,502C100,009.673,68995.521,28944.787,113	С	98,18	9.577,766	94.186,966	39.930,344	
C100,0010.057,379100.858,581-0,859C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787.113	С	100,00	9.865,534	98.189,935	18.100,652	
C100,009.673,68995.521,28944.787,113C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787.113	С	100,00	10.057,379	100.858,581	-0,859	
C100,009.481,84492.852,64371.473,575C100,0010.249,224103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787.113	С	100,00	9.673,689	95.521,289	44.787,113	
C100,0010.249,224103.527,227-35.272,271C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787.113	С	100,00	9.481,844	92.852,643	71.473,575	
C100,0010.249,224103.527,227-35.272,271C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787.113	С	100,00	10.249,224	103.527,227	-35.272,271	
C100,0010.345,146104.861,550-48.615,502C100,009.481,84492.852,64371.473,575C100,009.673,68995.521,28944.787.113	С	100,00	10.249,224	103.527,227	-35.272,271	
C100,009.481,84492.852,64371.473,575C100,009.673,68995.521.28944.787.113	С	100,00	10.345,146	104.861,550	-48.615,502	
C 100,00 9.673,689 95.521,289 44.787.113	С	100,00	9.481,844	92.852,643	71.473,575	
	С	100,00	9.673,689	95.521,289	44.787,113	

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)
equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk
С	100,00	10.441,069	106.195,873	-61.958,733
С	100,00	10.441,069	106.195,873	-61.958,733
С	100,00	9.961,456	99.524,258	0,476
С	100,00	9.865,534	98.189,935	18.100,652
С	97,91	9.865,534	98.189,935	-0,280
С	100,00	9.577,766	94.186,966	58.130,344
С	100,00	9.865,534	98.189,935	18.100,652
С	100,00	9.481,844	92.852,643	71.473,575
С	100,00	10.249,224	103.527,227	-35.272,271
С	100,00	9.481,844	92.852,643	71.473,575
С	100,00	9.769,611	96.855,612	31.443,883
С	100,00	9.865,534	98.189,935	18.100,652
С	100,00	9.865,534	98.189,935	18.100,652
С	100,00	10.153,301	102.192,904	-21.929,040
С	100,00	9.769,611	96.855,612	31.443,883
С	100,00	9.481,844	92.852,643	71.473,575
С	100,00	9.865,534	98.189,935	18.100,652
С	100,00	9.961,456	99.524,258	0,476
С	100,00	9.481,844	92.852,643	71.473,575
С	100,00	9.673,689	95.521,289	44.787,113
С	100,00	9.769,611	96.855,612	31.443,883
С	39,73	4.302,028	20.799,196	189.308,036
С	0,00	5.357,175	35.476,750	-354.767,502
С	100,00	9.865,534	98.189,935	18.100,652
С	100,00	10.249,224	103.527,227	-35.272,271
С	100,00	10.345,146	104.861,550	-48.615,502
С	100,00	10.345,146	104.861,550	-48.615,502
С	100,00	9.961,456	99.524,258	0,476
С	100,00	10.057,379	100.858,581	-0,859
С	100,00	9.673,689	95.521,289	44.787,113
D	98,21	9.769,611	99.071,102	-0,861
D	100,00	10.057,379	100.352,496	-0,352
D	100,00	9.481,844	97.789,708	22.102,916
D	100,00	10.153,301	100.779,628	-0,780
D	100,00	9.865,534	99.498,234	0,502
D	100,00	9.961,456	99.925,365	0,075
D	100,00	9.481,844	97.789,708	22.102,916
D	100,00	9.865,534	99.498,234	0,502
D	100,00	9.673,689	98.643,971	13.560,289
D	100,00	10.249,224	101.206,759	-12.067,591
D	100,00	10.345,146	101.633,891	-16.338,905
D	98,51	9.385,921	97.362,577	11.474,230

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)
equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk
D	100,00	10.441,069	102.061,022	-20.610,218
D	100,00	9.673,689	98.643,971	13.560,289
D	100,00	10.153,301	100.779,628	-0,780
D	100,00	9.481,844	97.789,708	22.102,916
D	100,00	10.057,379	100.352,496	-0,352
D	100,00	9.673,689	98.643,971	13.560,289
D	100,00	10.249,224	101.206,759	-12.067,591
D	100,00	9.673,689	98.643,971	13.560,289
Е	97,81	9.865,534	98.700,868	-0,891
Е	100,00	9.865,534	98.700,868	12.991,323
Е	100,00	9.481,844	94.954,246	50.457,538
Е	100,00	10.441,069	104.320,800	-43.208,000
Е	86,57	8.522,618	85.587,692	0,982
Е	100,00	9.673,689	96.827,557	31.724,431
Е	100,00	10.441,069	104.320,800	-43.208,000
Е	62,07	6.412,323	64.981,274	-29.112,737
Е	100,00	9.673,689	96.827,557	31.724,431
Е	100,00	10.057,379	100.574,179	-0,574
Е	100,00	10.345,146	103.384,145	-33.841,447
Е	63,64	6.412,323	64.981,274	-13.412,737
Е	100,00	9.865,534	98.700,868	12.991,323
Е	100,00	9.577,766	95.890,901	41.090,985
E	100,00	10.153,301	101.510,834	-15.108,339
E	100,00	10.057,379	100.574,179	-0,574
E	100,00	9.865,534	98.700,868	12.991,323
Е	100,00	9.769,611	97.764,212	22.357,877
Е	100,00	10.153,301	101.510,834	-15.108,339
Е	100,00	9.673,689	96.827,557	31.724,431
Е	100,00	10.153,301	101.510,834	-15.108,339
F	100,00	10.345,146	104.448,114	-44.481,140
F	93,16	9.002,231	86.359,402	68.005,985
F	89,29	9.385,921	91.527,605	-22.376,051
F	100,00	10.249,224	103.156,063	-31.560,631
F	80,00	7.755,238	69.562,740	104.372,600
F	78,76	7.851,161	70.854,791	79.052,091
F	100,00	10.441,069	105.740,165	-57.401,649
F	100,00	10.345,146	104.448,114	-44.481,140
F	100,00	9.961,456	99.279,910	0,720
F	100,00	10.345,146	104.448,114	-44.481,140
F	93,26	9.098,153	87.651,452	56.085,476
F	84,37	8.618,541	81.191,198	31.788,020
F	100,00	10.345,146	104.448,114	-44.481,140

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)	
equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk	
F	100,00	10.441,069	105.740,165	-57.401,649	
F	100,00	10.249,224	103.156,063	-31.560,631	
F	100,00	10.249,224	103.156,063	-31.560,631	
F	100,00	10.057,379	100.571,961	-0,572	
F	100,00	9.673,689	95.403,758	45.962,423	
F	0,00	4.493,873	25.633,010	-256.330,098	
F	100,00	10.057,379	100.571,961	-0,572	
F	100,00	10.441,069	105.740,165	-57.401,649	
F	100,00	9.961,456	99.279,910	0,720	
F	100,00	10.057,379	100.571,961	-0,572	
F	100,00	10.345,146	104.448,114	-44.481,140	
F	100,00	10.441,069	105.740,165	-57.401,649	
F	100,00	10.153,301	101.864,012	-18.640,122	
F	100,00	9.769,611	96.695,809	33.041,914	
F	100,00	9.577,766	94.111,707	58.882,931	
F	100,00	10.441,069	105.740,165	-57.401,649	
F	100,00	9.577,766	94.111,707	58.882,931	
F	100,00	9.577,766	94.111,707	58.882,931	
F	100,00	10.441,069	105.740,165	-57.401,649	
F	100,00	10.249,224	103.156,063	-31.560,631	
F	100,00	10.153,301	101.864,012	-18.640,122	
F	64,71	6.604,168	54.058,129	106.518,707	
F	100,00	10.441,069	105.740,165	-57.401,649	
F	100,00	10.441,069	105.740,165	-57.401,649	
F	100,00	10.057,379	100.571,961	-0,572	
F	100,00	10.249,224	103.156,063	-31.560,631	
F	100,00	10.153,301	101.864,012	-18.640,122	
F	100,00	9.577,766	94.111,707	58.882,931	
G	100,00	9.481,844	96.623,884	33.761,162	
G	100,00	9.865,534	99.171,811	0,828	
G	95,24	9.289,999	95.349,920	-0,110	
G	100,00	9.769,611	98.534,830	14.651,705	
G	100,00	9.769,611	98.534,830	14.651,705	
G	95,93	9.673,689	97.897,848	-19.678,476	
G	99,99	10.057,379	100.445,775	-0,456	
G	100,00	9.481,844	96.623,884	33.761,162	
G	100,00	9.961,456	99.808,793	0,191	
G	100,00	10.057,379	100.445,775	-0,446	
G	100,00	10.441,069	102.993,703	-29.937,028	
Н	100,00	9.865,534	98.553,576	14.464,243	
Н	100,00	9.769,611	97.520,681	24.793,192	
Н	100.00	9.769.611	97.520.681	24,793,192	

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)
equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk
Н	100,00	10.441,069	104.750,945	-47.509,454
Н	100,00	10.153,301	101.652,261	-16.522,606
Н	48,15	5.357,175	50.007,513	-18.575,129
Н	100,00	9.769,611	97.520,681	24.793,192
Н	100,00	9.481,844	94.421,996	55.780,041
Н	48,18	5.453,098	51.040,408	-28.604,079
Н	100,00	10.345,146	103.718,051	-37.180,505
Н	100,00	10.345,146	103.718,051	-37.180,505
Н	100,00	10.249,224	102.685,155	-26.851,555
Н	4,88	1.328,430	6.625,925	-17.459,249
Н	100,00	10.345,146	103.718,051	-37.180,505
Н	100,00	9.673,689	96.487,786	35.122,142
Н	100,00	9.481,844	94.421,996	55.780,041
Н	100,00	10.057,379	100.619,366	-0,619
Н	100,00	9.673,689	96.487,786	35.122,142
Н	100,00	10.441,069	104.750,945	-47.509,454
Н	100,00	10.153,301	101.652,261	-16.522,606
Н	100,00	9.481,844	94.421,996	55.780,041
Н	100,00	10.249,224	102.685,155	-26.851,555
Н	100,00	10.345,146	103.718,051	-37.180,505
Н	100,00	10.153,301	101.652,261	-16.522,606
Н	100,00	10.441,069	104.750,945	-47.509,454
Н	100,00	9.673,689	96.487,786	35.122,142
Н	100,00	10.057,379	100.619,366	-0,619
Н	100,00	9.577,766	95.454,891	45.451,091
Н	100,00	9.769,611	97.520,681	24.793,192
Н	100,00	9.577,766	95.454,891	45.451,091
Н	100,00	9.481,844	94.421,996	55.780,041
Н	100,00	10.249,224	102.685,155	-26.851,555
Ι	100,00	10.345,146	103.368,946	-33.689,460
Ι	100,00	9.577,766	95.953,064	40.469,362
Ι	100,00	10.153,301	101.514,976	-15.149,755
Ι	100,00	9.577,766	95.953,064	40.469,362
Ι	100,00	9.961,456	99.661,005	0,339
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	100,00	9.673,689	96.880,049	31.199,509
Ι	100,00	9.769,611	97.807,034	21.929,657
Ι	52,88	5.740,866	58.873,652	-59.936,525
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	100,00	9.577,766	95.953,064	40.469,362
Ι	100,00	10.057,379	100.587,990	-0,588
Ι	100,00	10.345,146	103.368,946	-33.689,460

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)
equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk
Ι	100,00	9.481,844	95.026,078	49.739,215
Ι	100,00	9.481,844	95.026,078	49.739,215
Ι	100,00	9.577,766	95.953,064	40.469,362
Ι	100,00	10.345,146	103.368,946	-33.689,460
Ι	100,00	10.345,146	103.368,946	-33.689,460
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	55,88	5.836,788	59.800,638	-39.206,378
Ι	100,00	9.673,689	96.880,049	31.199,509
Ι	100,00	10.441,069	104.295,931	-42.959,313
Ι	100,00	9.577,766	95.953,064	40.469,362
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	100,00	9.961,456	99.661,005	0,339
Ι	100,00	10.441,069	104.295,931	-42.959,313
Ι	89,09	8.810,386	88.537,182	0,553
Ι	100,00	9.673,689	96.880,049	31.199,509
Ι	100,00	10.441,069	104.295,931	-42.959,313
Ι	100,00	9.673,689	96.880,049	31.199,509
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	100,00	10.441,069	104.295,931	-42.959,313
Ι	100,00	9.577,766	95.953,064	40.469,362
Ι	100,00	10.057,379	100.587,990	-0,588
Ι	100,00	10.249,224	102.441,961	-24.419,607
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	100,00	10.345,146	103.368,946	-33.689,460
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	100,00	9.865,534	98.734,020	12.659,804
Ι	100,00	9.961,456	99.661,005	0,339
Ι	100,00	10.345,146	103.368,946	-33.689,460
Ι	100,00	9.961,456	99.661,005	0,339
Ι	100,00	10.153,301	101.514,976	-15.149,755
Ι	100,00	9.961,456	99.661,005	0,339
Ι	100,00	9.481,844	95.026,078	49.739,215
Ι	100,00	10.441,069	104.295,931	-42.959,313
J	100,00	10.441,069	104.543,818	-45.438,182
J	100,00	9.673,689	96.642,164	33.578,363
J	100,00	9.769,611	97.629,870	23.701,295
J	100,00	9.481,844	94.666,750	53.332,499
J	100,00	10.345,146	103.556,111	-35.561,114
J	100,00	10.153,301	101.580,698	-15.806,978
J	100,00	9.577,766	95.654,457	43.455,431
J	100,00	9.961,456	99.605,284	0,395
J	100,00	10.153,301	101.580,698	-15.806,978

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)
equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk
J	100,00	10.153,301	101.580,698	-15.806,978
J	100,00	9.673,689	96.642,164	33.578,363
J	100,00	10.441,069	104.543,818	-45.438,182
J	100,00	10.345,146	103.556,111	-35.561,114
J	100,00	9.865,534	98.617,577	13.824,227
J	100,00	10.153,301	101.580,698	-15.806,978
J	100,00	9.961,456	99.605,284	0,395
J	66,66	6.796,013	67.010,959	-0,351
J	100,00	10.057,379	100.592,991	-0,593
J	100,00	9.673,689	96.642,164	33.578,363
J	100,00	9.865,534	98.617,577	13.824,227
J	100,00	10.345,146	103.556,111	-35.561,114
J	100,00	9.961,456	99.605,284	0,395
J	100,00	9.865,534	98.617,577	13.824,227
J	100,00	9.481,844	94.666,750	53.332,499
J	100,00	9.481,844	94.666,750	53.332,499
J	100,00	10.441,069	104.543,818	-45.438,182
J	45,05	4.877,563	47.256,823	-22.068,234
J	100,00	9.961,456	99.605,284	0,395
J	100,00	9.961,456	99.605,284	0,395
J	100,00	9.673,689	96.642,164	33.578,363
J	100,00	10.057,379	100.592,991	-0,593
J	29,09	3.534,648	33.428,928	-43.389,281
J	100,00	9.673,689	96.642,164	33.578,363
J	100,00	10.441,069	104.543,818	-45.438,182
J	100,00	9.481,844	94.666,750	53.332,499
J	100,00	9.961,456	99.605,284	0,395
J	100,00	10.153,301	101.580,698	-15.806,978
J	100,00	10.057,379	100.592,991	-0,593
J	100,00	10.345,146	103.556,111	-35.561,114
J	100,00	10.441,069	104.543,818	-45.438,182
J	100,00	9.769,611	97.629,870	23.701,295
J	100,00	10.441,069	104.543,818	-45.438,182
J	100,00	9.769,611	97.629,870	23.701,295
J	100,00	9.673,689	96.642,164	33.578,363
J	100,00	9.961,456	99.605,284	0,395
Κ	100,00	10.249,224	103.136,671	-31.366,714
Κ	100,00	9.577,766	94.585,128	54.148,715
Κ	100,00	10.345,146	104.358,320	-43.583,204
Κ	100,00	10.057,379	100.693,373	-0,693
Κ	100,00	10.249,224	103.136,671	-31.366,714
Κ	100,00	9.769,611	97.028,426	29.715,735

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)	
equipamento	aprovacao_prod	predict.fixed	predict_ equipamento	etjk	
K	100,00	10.441,069	105.579,969	-55.799,693	
K	100,00	9.769,611	97.028,426	29.715,735	
K	96,15	9.289,999	90.920,182	52.298,184	
Κ	100,00	9.481,844	93.363,479	66.365,205	
Κ	100,00	9.769,611	97.028,426	29.715,735	
Κ	100,00	10.057,379	100.693,373	-0,693	
K	100,00	10.153,301	101.915,022	-19.150,224	
K	0,00	4.110,183	24.951,137	-249.511,367	
K	100,00	10.249,224	103.136,671	-31.366,714	
K	100,00	9.961,456	99.471,724	0,528	
K	100,00	10.057,379	100.693,373	-0,693	
K	100,00	9.673,689	95.806,777	41.932,225	
K	100,00	9.865,534	98.250,075	17.499,245	
K	100,00	9.865,534	98.250,075	17.499,245	
K	100,00	9.769,611	97.028,426	29.715,735	
K	100,00	10.249,224	103.136,671	-31.366,714	
K	100,00	10.441,069	105.579,969	-55.799,693	
K	24,07	3.055,035	11.512,998	125.570,021	
K	64,63	6.987,858	61.600,606	30.293,939	
K	100,00	10.249,224	103.136,671	-31.366,714	
K	100,00	10.057,379	100.693,373	-0,693	
K	100,00	9.481,844	93.363,479	66.365,205	
K	100,00	10.345,146	104.358,320	-43.583,204	
K	100,00	10.345,146	104.358,320	-43.583,204	
K	100,00	10.057,379	100.693,373	-0,693	
K	100,00	10.441,069	105.579,969	-55.799,693	
K	100,00	9.769,611	97.028,426	29.715,735	
K	100,00	9.577,766	94.585,128	54.148,715	
K	100,00	10.249,224	103.136,671	-31.366,714	
K	100,00	9.961,456	99.471,724	0,528	
K	100,00	10.057,379	100.693,373	-0,693	
K	100,00	9.481,844	93.363,479	66.365,205	
К	100,00	9.769,611	97.028,426	29.715,735	
K	100,00	9.673,689	95.806,777	41.932,225	
Κ	100,00	9.769,611	97.028,426	29.715,735	
Κ	100,00	10.441,069	105.579,969	-55.799,693	
K	100,00	10.057,379	100.693,373	-0,693	
Κ	100,00	10.057,379	100.693,373	-0,693	
K	100,00	9.865,534	98.250,075	17.499,245	
L	100,00	9.577,766	98.830,879	11.691,211	
L	100,00	9.673,689	99.123,221	0,877	
L	100.00	10.153.301	100.584.931	-0.585	

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

				(continua)
equipamento	aprovacao_prod	predict.fixed	predict_	etjk
			equipamento	
L	100,00	10.441,069	101.461,957	-14.619,570
L	100,00	9.481,844	98.538,537	14.614,631
L	100,00	9.673,689	99.123,221	0,877
L	100,00	10.057,379	100.292,589	-0,293
L	100,00	10.345,146	101.169,615	-11.696,150
L	100,00	9.865,534	99.707,905	0,292
L	100,00	9.769,611	99.415,563	0,584
L	100,00	10.441,069	101.461,957	-14.619,570
L	100,00	10.153,301	100.584,931	-0,585
L	100,00	9.865,534	99.707,905	0,292
L	100,00	10.153,301	100.584,931	-0,585
L	100,00	9.961,456	100.000,247	0,000
L	100,00	9.769,611	99.415,563	0,584
L	100,00	9.961,456	100.000,247	0,000
L	100,00	9.577,766	98.830,879	11.691,211
L	100,00	9.673,689	99.123,221	0,877
L	100,00	9.865,534	99.707,905	0,292
L	100,00	10.249,224	100.877,273	-0,877
L	100,00	9.865,534	99.707,905	0,292
L	100,00	10.153,301	100.584,931	-0,585
L	100,00	10.153,301	100.584,931	-0,585
L	100,00	10.057,379	100.292,589	-0,293
L	100,00	9.673,689	99.123,221	0,877
L	100,00	9.673,689	99.123,221	0,877
L	100,00	9.673,689	99.123,221	0,877
L	100,00	10.345,146	101.169,615	-11.696,150
L	100,00	10.249,224	100.877,273	-0,877
L	100,00	9.481,844	98.538,537	14.614,631
L	100,00	9.865,534	99.707,905	0,292
L	100,00	9.481,844	98.538,537	14.614,631
L	100,00	9.769,611	99.415,563	0,584
L	100,00	10.057,379	100.292,589	-0,293
L	100,00	9.673,689	99.123,221	0,877
L	100,00	9.481,844	98.538,537	14.614,631
L	100,00	10.441,069	101.461,957	-14.619,570

Apêndice I - Fitted Values para Modelo com Inclinação e Intercepto aleatórios

Fonte: Resultados originais da pesquisa.