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Resumo

Victor Chavauty Villela. Métodos estatísticos baseados no espectro para grafos

dirigidos. Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade

de São Paulo, São Paulo, 2024.

Grafos são frequentemente utilizados para modelar mecanismos complexos em diversas áreas de estudo,

como redes sociais (social networks), conectividade entre regiões do cérebro, ou interações proteína-proteína.

No entanto, devido a complexidade de sua estrutura, métodos estatísticos padrão não são sucientes para

encontrar correlações entre populações de grafos. Em um trabalho recente por Takahashi et al. (2012) foi

sugerido que o espectro do grafo é uma boa caracterização de sua estrutura, e diversos métodos estatísticos

foram construídos baseado nessa ideia. Entretanto, esses métodos dependem dos autovalores do grafo terem

valor real, o que não é satisfeito quando grafos são dirigidos. Neste trabalho estendemos estes resultados

para grafo dirigidos utilizando a distribuição de autovalores complexa como base. Assim, desenvolvemos

métodos de estimação de parâmetros para modelos de grafos aleatórios, uma seleção de modelos, um teste

estatístico para comparar duas ou mais populações de grafos, um teste de associação entre grafos e variáveis

de interesse, e um algoritmo de agrupamento.

Palavras-chave: Correlação de redes. Estatística de grafos. ECoG.





Abstract

Victor Chavauty Villela. Statistical Methods for Directed Graphs Based on the

Graph Spectrum. Thesis (Master’s). Institute of Mathematics and Statistics, University

of São Paulo, São Paulo, 2024.

Graphs are often used to model diverse, complex phenomena in many elds, such as social networks,

brain region connectivity, or protein-protein interaction. However, due to the complexity of their structure,

standard statistical methods are insucient in searching for a correlation between populations of graphs. In

a recent paper by Takahashi et al. (2012), they suggested that the graph spectrum is a good ngerprint of

the graph’s structure, and they developed several statistical methods based on this feature. These methods,

however, rely on the distribution of the eigenvalues of the graph being real-valued, which is false when

graphs are directed or weighted. In this thesis, we extend their results to directed graphs by working with the

distribution of complex eigenvalues instead. Then, we constructed a parameter estimator, a model selection

approach, a statistical test to compare two populations of graphs, a test for association between a graph and

variables of interest, and a clustering algorithm.

Keywords: Network Correlation. Graph Statistics. ECoG.





v

Lista de Figuras

2.1 Directed and undirected graphs . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Eigenvalues of directed and undirected graphs . . . . . . . . . . . . . . . 5

2.3 Directed Erdős-Rényi graphs . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Dierence between a grid search and a ternary search . . . . . . . . . . . 10

4.1 Results of the parameter estimator simulation for the Erdős–Rényi model 16

4.2 Results of the parameter estimator simulation for the Barabási–Albert model 17

4.3 Results of the parameter estimator simulation for the Watts–Strogatz model 17

4.4 Results of the 2-dimensional parameter estimator simulation for all models 18

4.5 Results of the Model Selection simulation for all models . . . . . . . . . . 19

4.6 Results of the ANOGVA simulation for all models . . . . . . . . . . . . . 21

4.7 Results of the Permanogva simulation for all models . . . . . . . . . . . . 23

4.8 Results of the K-Medoids simulation for ER . . . . . . . . . . . . . . . . . 24

4.9 Results of the K-Medoids simulation for PA . . . . . . . . . . . . . . . . . 25

4.10 Results of the K-Medoids simulation for WS . . . . . . . . . . . . . . . . 26

5.2 Results of the third experiment in real data . . . . . . . . . . . . . . . . . 31

Lista de Tabelas

5.1 Results of the second experiment in real data . . . . . . . . . . . . . . . . 30





vii

Sumário

1 Introduction 1

2 Materials 3

2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Spectral distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Calculating the graph spectrum . . . . . . . . . . . . . . . . . . . 4

2.3 Entropy and Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Random graph models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Methods 9

3.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 ANOGVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Permanogva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 K-Medoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Simulations 15

4.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Simulation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Simulation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 ANOGVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Simulation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



viii

4.4 Permanogva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 Simulation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.2 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 K-medoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.1 Simulation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.2 Results: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Applications to Biological data 27

5.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Data processing and graph generation . . . . . . . . . . . . . . . . . . . . 28

5.3 ANOGVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 First Experiment: . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.2 Second Experiment: . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.3 Third Experiment: . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 First Experiment: . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.2 Second Experiment and Third experiment: . . . . . . . . . . . . . 30

6 Conclusion 33

Apêndices

Anexos



1

Capítulo 1

Introduction

Graphs are often used to model the connection between things. Examples in the
literature include brain connectivity (Bullmore e Sporns, 2009), social interactions (Scott,
2012), molecular interactions (Barabasi e Oltvai, 2004), or even the inter-regulation of
genes (Alon, 2006) (Andre Fujita et al., 2020).

Suppose, for example, we want to establish how a treatment aects dierent patients
with hormonal issues. We have three groups of patients, and each group receives a dierent
medication. By looking at the predicted gene network linked to how cells work, can we
tell which treatment was given?

Traditional computational methods to nd similarities between graphs or sub-graphs
do not work when graphs present intrinsic randomness. Unfortunately, randomness is in-
trinsic to biological data, which makes it impervious to traditional computational methods
(Siqueira Santos et al., 2014; Andre Fujita et al., 2020). Instead, more common approaches
include using graph characteristics like the number of nodes, edges, or centrality measures.
For example, onemay apply traditional statistical methods to a centrality measure extracted
from the graphs (Siqueira Santos et al., 2014).

Although centrality measures are helpful, they might not show the vast dierences
between graphs. For example, take two graphs made using the Watts-Strogatz model, each
with a dierent rewiring probability. Although they were created with a dierent rewiring
parameter, they present the same average degree centrality measure because they have
the same number of connections (Andre Fujita et al., 2020).

In 2012, Takahashi et al. (Takahashi et al., 2012) proposed that the graph spectrum is a
good feature for describing the graph structure. They used the Kullback-Leibler and Jensen-
Shannon divergences between spectral distributions to measure the distance between
graphs. Using this concept, they constructed tools for

• a statistical test to compare two sets of graphs;

• a parameter estimator for random graph models; and

• a model selection approach.
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Recently, these ideas have been used to create a concept of correlation (Daniel Ya-
sumasa Takahashi et al., 2017) / causality (Ribeiro et al., 2021) between graphs and
spectrum-based clustering algorithms for complex networks (Ramos et al., 2023).

Unfortunately, those methods are limited to undirected graphs with real eigenvalues.
Instead, I have extended them to directed graphs by examining the distribution of complex
eigenvalues.

In summary, I have implemented methods for:

• Estimating parameters for random graph models;

• Selecting the model that best ts the observed graph;

• Comparing between two or more populations of graphs (Chavauty et al., s.d.);

• Testing the correlation between graphs and other factors;

• Grouping graphs using k-medoids clustering.

To showcase a demonstration of graph spectrum, I have also applied one of these
methods to a dataset consisting of ECoG data of a monkey under dierent stages of
anesthesia (Chavauty et al., s.d.).
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Materials

2.1 Graphs

A graph  consists of a pair Φ  Ψ, where  is a set of nodes, and  is a set of edges
connecting a pair of nodes of .

We will refer to this graph as weighted if every edge between two nodes  and  of
a given graph is associated with a complex value  ∈ . In contrast, in non-weighted
graphs, an edge between two nodes  and  will assume η if  and  are connected or ζ
otherwise.

If for every pair of nodes  and  , the edges  and  (connecting  to  and  to ) are
equal, then we will call that graph undirected. Otherwise, it is directed.

A graph ’s adjacency matrix is dened as A υ ΦΨυη…, where  is the value
associated with the edge connecting node  and node  .

We dene the spectrum of a graph  as the set of eigenvalues of its adjacency matrix
A. If  is directed, its adjacency matrix is non-symmetrical. Therefore, its eigenvalues are
complex-valued. If  is undirected, its adjacency matrix is symmetrical, and its eigenvalues
are real-valued.

2.2 Spectral distribution

We dene a random graph  as a family of graphs whose members are generated by a
probability law. For example, the Erdös-Rényi random graph is generated by creating 
nodes and connecting two nodes with a uniform probability .

The complex Dirac delta is dened as the measure  satisfying for every compactly
supported continuous function  :

∫  ΦΨ {} υ  ΦζΨ.
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Figura 2.1: (a) An undirected graph on the left (b) A directed graph, where arrows indicate directiona-

lity.

An equivalent construction of the Dirac delta is the product of the η-dimensional Dirac
delta in two variables, representing the real and the imaginary variables:

 Φ α Ψ υ ΦΨΦΨ.

Suppose  is a directed random graph generated by some probability law. The complex
eigenvalues of its adjacency matrix Δ form random vectors. Let brackets ⟨⟩ indicate expec-
tations concerning the probability law. In this scenario, we dene the spectral distribution
of the random graph  as

ΦΨ υ LIM
→∞

⟨η


∑
υη

 Φ −
√

Ψ⟩.

The distribution of  can be used as a ngerprint of the random graph  (Chavauty
et al., s.d.).

2.2.1 Calculating the graph spectrum

The spectral density  is generally not known. This motivates us to construct an
estimator ̂ .

To construct this estimator, we can follow a similar procedure for the undirected case
(Andre Fujita et al., 2020).

First, we compute the eigenvalues η…   of the graph’s adjacency matrix and apply
a multivariate kernel regression (Tran Duong, 2007). Dividing the resulting θ-dimensional
surface by the volume under the curve ensures that the result is a probability distribu-
tion.
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In Figure 2.2, we can see the dierence between the spectral distribution of directed
and undirected graphs. By analyzing directionality, we also increase the dimensionality of
the space in which the eigenvalues reside, which impacts algorithm performance.

Figura 2.2: Eigenvalues of undirected graphs are distributed on the real line, whereas eigenvalues of

directed graphs are distributed on the complex plane.

2.3 Entropy and Statistical Distance

2.3.1 Entropy

Let  be a graph and  be its spectrum. Following the usual convention that ζΦζΨ υ
ζ, we can dene the entropy of the graph as

 ΦΨ υ  ΦΨ υ −∫ ΦΨΦΨ

This is also known as dierential entropy (Cover e Thomas, 2006). The spectral entropy
can be seen as a measure of a form of uncertainty that is associated with the random
graph. For example, Takahashi et. al. (Takahashi et al., 2012) showed that the maximum
entropy for the Erdos-Renyi graph is achieved when edges are connected with probability
ζ.λ.

2.3.2 Statistical Distance

The spectrum distribution is the distribution of complex eigenvalues of a graph model.
This spectrum distribution can be used as a ngerprint of the model so that by comparing
the spectrum of two dierent random graph models, we can establish a certain distance
between them (Takahashi et al., 2012, Van Mieghem, 2011). Similarly, we can compare
the spectrum of a graph to the spectrum distribution of a random graph model and obtain
a measure of how far apart the graph is from being generated from that specic model.
We are going to rely on distance functions that have been used literally.
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An example of those is the Kullback-Leibler () (MacKay, 2003) divergence, which
compares between statistical distributions. For two probability densities, , and , the
Kullback-Leibler divergence is dened as

Φ Ψ υ ∫ ΦΨ LOG(
ΦΨ

ΦΨ 
It is a powerful statistical pseudo-distance measuring how a probability distribution

diers from a second distribution. It is not strictly a distance in the context of metric
spaces.

Alternatively, we can use the classic  distance dened as

Φ Ψ υ ∫ ‖ΦΨ − ΦΨ‖

2.4 Random graph models

It is often impossible to establish how a graph was formed when dealing with biological
data. Besides, it is dicult to establish whether two graphs are similar simply by analyzing
their structures. Thus, one idea is to imagine these graphs resulting from a probabilistic
model with a set of parameters. There are several undirected random graph models.
Each random graph model has its advantages and disadvantages when modeling real-life
phenomena. In particular, we highlight three random graph models that have been used
in academia: Erdős–Rényi (ER) (Erdős e Rényi, 1959), Watts–Strogatz (WS) (Watts e
Strogatz, 1998) and the Barabási–Albert (PA) (Barabási e Albert, 1999).

Directed models

Unfortunately, models for directed graphs are not as prevalent as the ones for undirected
graphs. We have developed a general extension of any directed random graph model. This
extension allows us to generate various directed random graphs on which we plan to
perform simulations. The description of the method is as follows:

Given a random model  with a parameter , we extend this model as follows. Let η
and θ be two parameters for model  . Then

1. Generate a graph η with parameter η and construct its adjacency matrix.

2. Generate a graph η with parameter θ and construct its adjacency matrix.

3. Generate a matrix  whose upper triangular is the same as of η and whose lower
triangular is the same as of θ.

4. Generate a graph  with adjacency matrix .

The parameters η and θ control the network’s inner and external connections, res-
pectively, represented on the upper and lower triangles of the graph’s adjacency matrix.
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In the scenario in which η υ θ, the resulting graph is still directed due to the random
element of the graph generation process.

Figura 2.3: (a) Directed Erdős-Rényi graph generated using parameters Φζ.θ ζ.θΨ (b) Directed Erdős-

Rényi graph generated using parameters Φζ.θ ζ.ξΨ.
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Methods

Graphs face several distinct problems. Using the graph spectrum as a ngerprint of a
graph allows us to solve several of these problems. The following is a list of the methods
that have been implemented.

3.1 Parameter Estimation

A wide range of random graph models can be used to model natural phenomena. Each
model accepts a set of parameters as input and outputs a graph. Dierent random graph
models are suitable for modeling dierent biological or physical behaviors.

However, suppose we have a graph , which we are certain comes from a specic
random model . How can we establish which set of parameters  υ Φη…  Ψ was used
to generate ?

Let ζ be a set of valid parameters for the random graph model  . Then, there exists a
set of graphs, ζ , corresponding to the graphs that can be generated by  under that
specic parameter. We can estimate the graph spectrum of this set. Let ζ be this spectrum.
Let be a notion of distance (such as η, θ, or ). Then, suppose  is the graph spectrum
of the original graph . In that case, we can calculate the distance from this graph to the
graph model under the parameter ζ by Φ ζΨ

Under this notation, we say that the ideal parameter  is the one that minimizes the
distance Φ Ψ.

However, we still need to estimate the spectral distribution of the random graph model
under a parameter . We construct this estimator by averaging the spectral distribution of
 samples of the random model  and parameter 

̂ΦΨ υ
η



∑
−η

ΦΨ

We then estimate the parameter as
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̂ υ ARGMIN

Φ ̂Ψ (1)

Calculating this estimate is simply a matter of minimizing the function Φ ̂Ψ.

Grid Search: The grid search consists of dividing the search space in a grid. The search
then iterates through every point in the grid, keeping track of the point that minimi-
zes the function. With a suciently small grid spacing, this method eectively nds
the correct parameter but with a high computational cost. This cost is exponential
based on the number of parameters of the random graphmodel. Therefore, it becomes
unfeasible if we attempt to estimate several parameters simultaneously.

Ternary Search: The ternary search is a divide-and-conquer algorithm that eciently
locates an unimodal function’s maximum or minimum point. It recursively narrows
the search interval into three segments and compares function values at two points
within those segments. It is much more ecient than the grid search but may not
work for all models. If the distance function is not unimodal, then the search will
fail. To minimize this risk, our simulations show that working with  distances is
better than .

Figure 3.1 shows the dierence between grid search and ternary search.

Figura 3.1: Dierence between a grid search and a ternary search: The black function illustrates a

common distance function we aim to minimize. The red dots represent points requiring evaluation for

the method to estimate the minimum. The grid search evenly divides the function into several chunks,

necessitating a total of 101 points for evaluation. In contrast, the ternary search only demands the

evaluation of 24 points. In parameter estimation, evaluating distance functions involves constructing

multiple graphs from a given model, estimating their spectral distribution, and using it as input in a

distance function. Therefore, it is important to minimize this evaluation whenever possible.
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3.2 Model Selection

Given a graph , several random graph models η…   can be ranked by their
Kullback-Leibler divergence. Models with low  divergence are better for generating 
(Takahashi et al., 2012).

Let η…   be  dierent random graph models with, and let ̂η…  ̂ be their
respective estimators given by equation (1). Recall that each parameter ̂ is a vector. We
will denote its dimension by ‖̂‖.

If  is the graph spectrum, and ̂η…  ̂ is the estimated spectrum distribution of
model  under parameter ̂, then we can choose the optimum model  where

 υ ARGMIN


θΦ ̂Ψ α θ‖̂‖
Here, the factor θΛΦΨ acts as a penalization term to avoid overtting. Note that this

term can be ignored if all parameters have equal dimensions.

This method allows us to extend our previously constructed parameter estimator to
the selection of optimum models for a given graph. Computationally, we need to compute
 estimators ̂η…  ̂ , which can be computationally intensive. However, we can replace
the  function with any other distance measure between spectrum distributions (such as
η or θ), allowing us to compute these estimators using a ternary search, signicantly
reducing the computation time.

3.3 ANOGVA

Given  groups of graph samples, can we establish whether or not they originate from
the same graph population?

A perhaps naive approach is to select a (suitable) random graph model, estimate the
parameter used for each graph, and use traditional ANOVA with the estimated parameters
as input. However, for this to work, we rst need to know which random graph model
was used to generate the graphs, which is very unlikely in most realistic scenarios. Other
non-parametric methods, like the Kolmogorov-Smirnov test, require independence of the
graphs, which is often not true when they result from a biological process. Therefore, we
will use an ANOVA-like approach following the ideas described by Fujita et al (André
Fujita et al., 2017) called ANOGVA.

In other words, we will perform a variation of the ANOVA using the complex distribu-
tion of eigenvalues of the graphs (Chavauty et al., s.d.).

Suppose η…   be  distinct graph populations. If these graphs come from the same
population, their spectral distributions should be equal. Let  be the average graph

spectrum for group ,  υ η


υη  be the overall graph spectrum average, and  be the

Kullback-Leibler divergence.

The hypothesis that is being tested is the following:
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ζ ∶ Φη  Ψ υ Φθ  Ψ υ … υ Φ  Ψ υ ζ

η: Φ  Ψ ≠ Φ  Ψ for some   .

The alternative hypothesis is equivalent to stating that at least one of the graph
populations was generated by a dierent process.

Under the null hypothesis, we expect the statistic Δ υ 
υη Φη  Ψ to be small.

Under the alternative hypothesis, we expect it to be large.

The distribution of Δ is unknown and highly dependent on the used random graph
model. Therefore, to test for signicance, we will use a bootstrap approach.

The following algorithm describes how we compute the bootstrap.

Input:  groups of graphs, η…  , and a number of max-iterations 
Output: A -value

1 Estimate ̂η and ̂;

2 Calculate Δ̂ υ 
υη Φ̂η  ̂Ψ;

3 Set Δ̂ υ ;];
4 for  iterations do

5 Construct  new groups 
′

η…  
′

 by resampling (without replacement) the
original graph set;

6 Estimate the average spectrum distribution ̂′ for each new graph 
′

 ;

7 Calculate the overall graph spectrum average ̂
′

;

8 Calculate Δ̂
′

υ 
υη Φ̂

′

η
 ̂

′

Ψ.;

9 Append Δ̂
′

to Δ̂;
10 end

11 Let  υ CardinalityΦΔ̂
′

∈ Δ̂ : such that Δ̂
′

≥ Δ̂Ψ ⋅ η


;
12 return ;

Algorithm 1: ANOGVA

3.4 Permanogva

We are now interested in the following problem: Suppose we are given a population of
graphs alongside a set of variables for each graph. Can we identify if the set of variables is
related to the dierences between the graph or if they are unrelated?

To verify this hypothesis, we will rely on a technique called permanova (Ander-
son, 2001; Anderson, 2017) (permanogva being the name given to its usage for graph
spectra). This is a semi-parametric method in which we construct a pseudo-f statistic,
a generalization of the standard F-statistic for classical statistics. Permanova tests for
correlation between samples’ inner distances and variables’ inner distances (Zapala MA,
2006; Shehzad et al., 2014). Given that we can use the graph spectrum to compare distances
between graphs, we can test for correlation between graphs and a set of variables.

We start with a sample of  graphs and a set of  variables of interest for each graph.
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Let D be a  ⃧  distance matrix between each  graph in our sample. Let X be the  ⃧ 
matrix of  variables of interest for each sample.

IfD is written asD υ { }, then letA υ { } υ {−η
θ
θ }, and letG be Gower’s centering

matrix for A, that is, if . υ
η


υη  is the average of line  in matrix A, 

. υ
η


υη 

is the average of column  in matrix A, and 
.. υ

η
θ

υη 

υη  is the overall average of
matrix A, then

G υ { } υ { − . − . α ..}.

Now, inspired by the standard equations used in linear regression, let H be the hat
matrix formed from X

H υ XΦXXΨ−ηX
.

Now, we can nally construct the pseudo-F statistic. We dene the among-group sum
of squares as

 υ ΦHGΨ

and, if I is the  ⃧  identity matrix, we also dene the residual sum of squares as

 υ ΦΦI −HΨGΨ.

Then, we dene our pseudo-F statistic as

 υ




 − 

Φ − η ηΨ
.

We will perform a bootstrap method for the statistical test. We are testing for the
following hypothesis:

ζ: There is no signicance between the variables X and the distance between samples
seen in the matrix D

η: At least one of the variables in the matrix X is associated with the distance between
samples seen in the matrix D

Bootstrap is going to occur according to the following steps.
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Input: A distance matrix , A set of predictor variables  , and a number of
max-iterations 

Output: A -value
1 Calculate an original pseudo-F statistic;
2 for  iterations do

3 Perform a sucient amount of row-column permutations on the original
distance matrix D;

4 Calculate the new pseudo-F statistic 
′

using the original H matrix and the

new G
′

;
5 end

6 We calculate  as the percentage of times 
′

was at least as large as the original
 ;

7 return ;
Algorithm 2: Permanogva

3.5 K-Medoids

Suppose we have a set  of graphs, which came from  distinct populations of graphs,
η…  . We wish to assign each element of  to one of the groups.

Since we have well-dened notions of distance between graphs, we can use well-known
techniques such as the k-medoids or the k-means methods to solve this problem by using
the graph spectrum Hastie et al., 2009.

Both methods were implemented to allow the usage of any of the distance functions
described in section 2.3.

3.6 Implementation

The previous methods were implemented in R, extending the existing StatGraph
package (Santos e A. Fujita, 2017). We constructed the multivariate kernel density
estimator using the package ‘ks’ (Tarn Duong et al., 2018) and optimized the parameter
estimator using the package ‘memoise’ (Wickham et al., 2021). The pre-release version
of the statGraph codebase for directed graphs can be found in https://www.github.com/

lesserfish/statGraph.
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Capítulo 4

Simulations

To verify the power of the methods described in this paper, I constructed a set of
simulations using the directed random graph models described in 2.4.

The following describes the simulations and their results.

4.1 Parameter estimation

I performed the following simulation to show the parameter estimator’s power.

4.1.1 Simulation:

1. I generated a graph using a random graph model with the directionality technique
described before.

2. The graph was created with parameters η θ for specic values of η θ ∈ ;ζ η]

3. The search was done using the η distance, with an epsilon of ζ.ζη using a ternary
search.

4. This same experiment was repeated 1 000 times, creating a distribution of estimated
parameters

I used the following random graph models: Erdős–Rényi (ER), Watts–Strogatz (WS),
and the Barabási–Albert (PA). For the size of the graphs, I performed the simulation with
 υ ηζζ,  υ ιζζ,  υ λζζ, and  υ ξζζ.

In the rst simulation, the parameters satised η υ θ so that the search could be
done in one dimension. An additional simulation is included when η ≠ θ, showcasing
that the search can be done in several parameters simultaneously.

4.1.2 Results:

Figures 4.1 to 4.3 show the distribution of parameters for the rst simulation (where
η υ θ) for all random graph models. Figure 4.4 shows the results of the second simulation
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(where η ≠ θ).

We can see that increasing the size of the graph (and consequently increasing the
number of eigenvalue points of its adjacency matrix) improves performance.

Figura 4.1: Results of the parameter estimator simulation for the Erdős–Rényi model. A red vertical

line highlights the correct parameter of ζ.ιλ.

4.2 Model Selection

I performed the following simulation to show the power of the model selection.

4.2.1 Simulation:

1. I generated a graph with a given model

2. The graph was created with parameters η θ υ ζ.ιλ and with sizes ranging from
θζ to ηθζ.

3. I performed the model selection using ER, PA, and WS models as candidates.

4. I used a ternary search with an epsilon of ζ.ζη.

5. This same experiment was repeated 100 times for each size, allowing us to see how
frequently each candidate model was chosen.

4.2.2 Results

Figure 4.5 shows the rate of selection of each candidate model as the size of the graph
increases.
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Figura 4.2: Results of the parameter estimator simulation for the Barabási–Albert model. A red

vertical line highlights the correct parameter of ζ.ιλ.

Figura 4.3: Results of the parameter estimator simulation for the Watts–Strogatz model. A red vertical

line highlights the correct parameter of ζ.ιλ.
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Figura 4.4: Results of the 2-dimensional parameter estimator simulation for all models. On the left

we can see the results for the rst parameter, and on the right we can see the results for the second

parameter. A red vertical line highlights the correct parameters of Φζ.θλ ζ.ιλΨ.
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Figura 4.5: Results of the Model Selection simulation for all models. The title indicates which model

was used to generate the graph. On the y-axis, we see the rate of selection of each candidate model and

on the x-axis, we see the number of nodes used to generate the graph.
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4.3 ANOGVA

To show the power of the ANOGVA method, I performed the following simula-
tion.

4.3.1 Simulation:

1. I generated three groups of graphs. Each group contains 10 graphs with  υ κζζ

nodes.

2. Groups 1 and 2 were generated with parameters η υ θ υ  for a specic value of
 ∈ ;ζ η]

3. Group 3 was generated using parameter η υ θ υ  α  for some small value of 

4. We then performed the ANOGVA algorithm using 100 iterations of bootstrap, obtai-
ning a p-value

5. This experiment was run 500 times, generating a distribution of p-values.

We expect that for very low values of , the p-values should follow mostly a uniform
distribution. As  increases, the p-values should be mostly close to 0.

The following random graph models were used: Erdős–Rényi (ER), Watts–Strogatz
(WS), and the Barabási–Albert (PA).

4.3.2 Results:

We plot the results in an ROC plot. In this plot, the y-axis corresponds to the alpha-
acceptance threshold ( υ η−), and the x-axis corresponds to the acceptance rate. Figure
4.6 shows the results.

4.4 Permanogva

To show the power of the Permanogva method, I performed the following simula-
tion.

4.4.1 Simulation:

1. I generated υ ιζ samples of 2 variables η and θ, each variable  being distributed
normally around 0 ( ∼  Φζ ηΨ)

2. For each sample, I generated a parameter value of

 υ Φ
η

θ
−
θ

θ
α Ψ

where  is normally distributed around 0 and describes a random eect.

3. For each sample, I generated a graph using parameters η υ θ υ 
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Figura 4.6: Results of the ANOGVA simulation for all models for several group sizes. We can see that,

as  increases, ANOGVA quickly becomes capable of verifying that the groups are indeed dierent.
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4. A distance matrix of size ιζ ⃧ ιζ was computed, using the θ metric between the
graph spectrum of each sample.

5. To simulate the alternative hypothesis, I calculated the permanogva result using this
matrix D and using the predictor matrix X υ ;η θ].

6. To simulate the null hypothesis, I calculated the permanogva result using this matrix
D and a random unrelated predictor matrix.

7. I repeated this same experiment 500 times, keeping track of the p-values.

4.4.2 Results:

Instead of showing the p-value distribution, we plot the results in an ROC plot. In this
plot, the y-axis corresponds to the alpha-acceptance threshold, and the x-axis corresponds
to the acceptance rate. Figure 4.7 shows the results.

4.5 K-medoids

To show the strength of K-medoids, I performed the following simulation.

4.5.1 Simulation:

I generated two groups of 20 graphs, η and θ. The second group was generated with
the same parameter as the initial group, with an added epsilon. I used K-medoids using
 υ θ with a distance matrix calculated using the η distance. The ARI score (Hubert e
Arabie, 1985) was used to establish performance. For each , the ARI score was calculated
30 times, and the mean and variances were used to create the plots.

4.5.2 Results:

Figures 4.8 to 4.10 show the ARI scores as we shift the  from ζ to a higher number. We
see that once we generate the graphs using a suciently dierent parameter, the spectral
distance is enough for us to distinguish between populations of graphs eciently.
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Figura 4.7: Results of the Permanogva simulation for all models. On the left, we see the results when

the conditions for the null hypothesis are satised, i.e., the graphs are generated independently from the

predictor variables. On the right, we can see the results when conditions for the alternative hypothesis

are satised, i.e., the graphs are generated with the predictor variables. We can see that when the group

size increases, the power of Permanogva signicantly increases.
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Figura 4.8: Results of the K-Medoids simulation for the Erdős–Rényi model. The line represents the

mean of the ARI score. The shaded area indicates the πλΠ condence interval. As we increase the value

of , the method rapidly can correctly cluster the graph populations. We also note that as we increase

the size of the graphs, the method becomes stronger.
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Figura 4.9: Results of the K-Medoids simulation for the Barabási–Albert model. The line represents

the mean of the ARI score. The shaded area indicates the πλΠ condence interval. As we increase the

value of , the method rapidly can correctly cluster the graph populations. We also note that as we

increase the size of the graphs, the method becomes stronger.
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Figura 4.10: Results of the K-Medoids simulation for the Watts–Strogatz model. The line represents

the mean of the ARI score. The shaded area indicates the πλΠ condence interval. As we increase the

value of , the method rapidly can correctly cluster the graph populations. We also note that as we

increase the size of the graphs, the method becomes stronger.
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Capítulo 5

Applications to Biological data

To show the ecacy of the techniques described in this article, I used the ANOGVA
method (Chavauty et al., s.d.) on a biological dataset consisting of 5 groups of graphs ob-
tained from one of the experiments associated with Project Tycho, whose goals are to share
reliable massive neural and behavioral data for understanding brain mechanism.

The purpose of the particular experiment was to compare neural activity between
most of the lateral cortex measured with electrocorticographic signals (ECoG) in a maca-
que during ve stages: awake with eyes opened, Awake with eyes closed, Anesthetized,
Recovering with eyes closed, and recovering with eyes open.

5.1 Data Source

The data source used is titled ‘Anesthesia and Sleep Task’ and was obtained from
Project Tycho and downloaded via their website at wiki.neurotycho.org/.

Four experiments were conducted on a dierent monkey (Yanagawa et al., 2013). In
each experiment, a monkey was seated in a primate chair with restricted arms and head
movement. In particular, for the monkey named George, the following steps describe the
experiment:

Neural data was acquired through 128 ECoG electrodes measuring ECoG signals from
most of the lateral cortex. Neural activity was recorded during all of the following stages.
Initially, the monkey was awake and opened its eyes, sitting calmly in his chair for 10
minutes. Next, the eyes of the monkey were covered with an eye mask to avoid evoking a
visual response. The monkey was left sitting in his chair for another 10 minutes. Recording
of neural activity was stopped while anesthesia was intramuscularly injected into the
monkey. By the point at which the monkey had stopped responding to manipulation of
the monkey’s hand or touching the nostril or philtrum with a cotton swab, neural activity
recording was resumed for another 20 minutes. After the anesthetized condition, the
monkey recovered from the anesthesia and was left alone for 55 minutes with its eyes still
covered. Next, the eye mask was removed, and the monkey was left to sit calmly on his
chair for another 10 minutes.
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Figura 5.1: Description of the Anesthesia and sleep task Yanagawa et al., 2013.

5.2 Data processing and graph generation

The initial data generated by the experiment consisted of 128-time series in 5 categories:
conscious with open eyes, conscious with closed eyes, anesthetized, recovering with closed
eyes, and recovering with open eyes (Chavauty et al., s.d.).

Initially, the data was processed through several nite impulse response (FIR) lters to
remove any eect caused by electrical interference (in particular, interference caused by
electrical sockets).

The ltered data was divided into several time windows, each lasting 4 seconds.
The graphs were generated using the generalized partial directed coherence (gPDC) (Sa-
meshima e Baccala, 2016).

The gPDC is a frequency domain approach to identify the direction of information
ow (Granger causality) between multiple time series. We say that a time series  Granger
causes another time series  if knowledge of  Φ − ηΨ…   Φ − Ψ increases the prediction
of  ΦΨ.

We carried out gPDC on the 128 frequencies of the ltered data. The result was ve
sets of 128 groups of graphs (one for each generated frequency). Each group consisted of
several graphs, each representing a time window in its category. Each graph had 128 nodes
(each corresponding to a dierent ECoG electrode). The graph was directed and weighted,
where each edge between two nodes corresponded to the level of causality between the
ECoG electrodes.
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5.3 ANOGVA

To verify the power of the ANOGVA method, I performed the following experiment. I
selected a single-frequency domain on which the graphs were to be obtained. Given that
frequency, I chose 100 graphs from each of the 5 categories. This left me with:

1. η: 100 graphs generated from the period when the monkey was awake with its eyes
opened

2. θ: 100 graphs generated from the period when the monkey was awake with its eyes
closed

3. ι: 100 graphs generated from the period where the monkey was anesthetized

4. κ: 100 graphs generated from the period when the monkey was recovering with its
eyes closed

5. λ: 100 graphs generated from the period when the monkey was recovering with its
eyes closed

Each of these graphs measured the ow of information between distinct brain seg-
ments.

5.3.1 First Experiment:

I rst performed an ANOGVA test using the 5 groups. I was testing the following
hypothesis.

ζ: There is no dierence between the information ow in any of the 5 categories versus

η: There is a dierence between the information ow in at least two of the categories

This experiment was run with a η ζζζ iterations bootstrap.

5.3.2 Second Experiment:

I then performed the same experiment but using pairwise groups. In specic, for every
two distinct groups  and  , I performed ANOGVA using only these two groups as an
input, thus testing the following hypothesis:

ζ: There is no dierence between the information ow between  and 

η: There is a dierence between the information ow between  and 

This experiment was also run with a bootstrap of ηζζζ iterations.

5.3.3 Third Experiment:

Since all graphs originate from the same monkey, there is a possibility that obtaining
low p-values in the previous experiments is not a consequence of the dierence between
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the distinct categories. To verify if the signicance of the previous experiments was valid,
I performed an ANOGVA test between each group and itself. In specic, I performed the
following for each group 

1. I split group  into two randomly sampled groups with no replacement, obtaining
η and θ

2. I performed an ANOGVA test on these groups with a bootstrap of ιζζ iterations.

3. I stored the calculated p-value.

4. I repeated this 300 times, generating a distribution of p-values.

If low p-values are explained by the fact that all graphs originate from the samemonkey,
then performing ANOGVA using the setup described above should give us mostly low
p-values.

5.4 Results

5.4.1 First Experiment:

For the rst experiment, we obtained a p-value less than the maximum sensitivity of
the bootstrap method of ζ.ζζη. This shows that there is indeed a signicant dierence
between information ow between at least two of the groups.

5.4.2 Second Experiment and Third experiment:

The results of the second and third experiments also indicate a strong dierence
between each population group. Table 5.1 shows the p-values obtained when comparing
groups and with the ANOGVAmethod, with η ζζζ iterations of the bootstrap. In gure
5.2, we see ve images, which are the distribution of obtained p-values when comparing
each group with itself.

η θ ι κ λ

η 0.002  ζ.ζζη  ζ.ζζη  ζ.ζζη

θ  ζ.ζζη  ζ.ζζη 0.076
ι  ζ.ζζη  ζ.ζζη

κ  ζ.ζζη

λ

Tabela 5.1: Results of second experiment. We see the p-value obtained when comparing each group

with each other, using the ANOGVA method with a maximum sensitivity of ζ.ζζη.

We can see that we obtain low p-values when comparing distinct groups. Any fear
that this might be because both groups originate from the same monkey can be eased by
looking at the results of the third experiment. We note a well-dened uniform distribution
in each experiment, proving that the graphs from the same monkey are insucient to
justify a low p-value between groups.
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Figura 5.2: Results of the third experiment. We can see the distribution of p-values when comparing

each group with itself using the ANOGVA method.

We note that we could eectively distinguish between the groups, demonstrating our
methods’ eciency against biological data.
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Capítulo 6

Conclusion

We have developed several statistical techniques to

1. Estimate the parameter used to create a directed graph

2. Establish which random graph model was used to create a directed graph

3. Establish whether two or more populations of graphs dier

4. Verify correlation between a group of graphs and predictor variables

5. Cluster a group of graphs

We showed that we could also use our techniques to eectively distinguish between
the brain interaction network of a monkey under dierent phases of anesthesia. I believe
that more profound studies in computational methods related to graph spectra may help
us highlight more accurately the dierences in the topology of these networks and identify
common graph topology patterns under dierent brain states.

There is already essential work being done in the area. In 1977, Vidal coined the term
brain-computer interface (BCI) and investigated applications of real-time detection of brain
events in EEG (Vidal, 1977). More recently, Neuralink’s company implanted its rst brain
chip in a human (Hern, 2024). Like the Project Tycho experiment, Neuralink uses time
series data of electrical brain activity as input. There is signicant interest in recognizing
common brain patterns, both in the medical and private Neurotechnology elds. The
approaches described here and in the original article by Takahashi (Takahashi et al., 2012)
are mathematically exible to allow their implementation in future technologies.
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