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Resumo

Victor Chavauty Villela. Métodos estatisticos baseados no espectro para grafos
dirigidos. Dissertacdo (Mestrado). Instituto de Matemaética e Estatistica, Universidade
de Sao Paulo, Sao Paulo, 2024.

Grafos sdo frequentemente utilizados para modelar mecanismos complexos em diversas areas de estudo,
como redes sociais (social networks), conectividade entre regides do cérebro, ou interagdes proteina-proteina.
No entanto, devido a complexidade de sua estrutura, métodos estatisticos padrdo néo sdo suficientes para
encontrar correlacdes entre populagdes de grafos. Em um trabalho recente por Takahashi et al. (2012) foi
sugerido que o espectro do grafo é uma boa caracterizacdo de sua estrutura, e diversos métodos estatisticos
foram construidos baseado nessa ideia. Entretanto, esses métodos dependem dos autovalores do grafo terem
valor real, o que néo é satisfeito quando grafos sdo dirigidos. Neste trabalho estendemos estes resultados
para grafo dirigidos utilizando a distribui¢do de autovalores complexa como base. Assim, desenvolvemos
métodos de estimacdo de parametros para modelos de grafos aleatoérios, uma selecido de modelos, um teste
estatistico para comparar duas ou mais populacdes de grafos, um teste de associagio entre grafos e variaveis

de interesse, e um algoritmo de agrupamento.

Palavras-chave: Correlacdo de redes. Estatistica de grafos. ECoG.






Abstract

Victor Chavauty Villela. Statistical Methods for Directed Graphs Based on the
Graph Spectrum. Thesis (Master’s). Institute of Mathematics and Statistics, University
of Sao Paulo, Sao Paulo, 2024.

Graphs are often used to model diverse, complex phenomena in many fields, such as social networks,
brain region connectivity, or protein-protein interaction. However, due to the complexity of their structure,
standard statistical methods are insufficient in searching for a correlation between populations of graphs. In
a recent paper by Takahashi et al. (2012), they suggested that the graph spectrum is a good fingerprint of
the graph’s structure, and they developed several statistical methods based on this feature. These methods,
however, rely on the distribution of the eigenvalues of the graph being real-valued, which is false when
graphs are directed or weighted. In this thesis, we extend their results to directed graphs by working with the
distribution of complex eigenvalues instead. Then, we constructed a parameter estimator, a model selection

approach, a statistical test to compare two populations of graphs, a test for association between a graph and
variables of interest, and a clustering algorithm.

Keywords: Network Correlation. Graph Statistics. ECoG.
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Capitulo 1

Introduction

Graphs are often used to model the connection between things. Examples in the
literature include brain connectivity (BULLMORE e SPORNSs, 2009), social interactions (ScoTT,
2012), molecular interactions (BARABASI e OLTVAL 2004), or even the inter-regulation of
genes (ALON, 2006) (Andre FujITA et al., 2020).

Suppose, for example, we want to establish how a treatment affects different patients
with hormonal issues. We have three groups of patients, and each group receives a different
medication. By looking at the predicted gene network linked to how cells work, can we
tell which treatment was given?

Traditional computational methods to find similarities between graphs or sub-graphs
do not work when graphs present intrinsic randomness. Unfortunately, randomness is in-
trinsic to biological data, which makes it impervious to traditional computational methods
(SIQUEIRA SANTOS et al., 2014; Andre Fujita et al., 2020). Instead, more common approaches
include using graph characteristics like the number of nodes, edges, or centrality measures.
For example, one may apply traditional statistical methods to a centrality measure extracted
from the graphs (SIQUEIRA SANTOS et al., 2014).

Although centrality measures are helpful, they might not show the vast differences
between graphs. For example, take two graphs made using the Watts-Strogatz model, each
with a different rewiring probability. Although they were created with a different rewiring
parameter, they present the same average degree centrality measure because they have
the same number of connections (Andre Fujrta et al., 2020).

In 2012, Takahashi et al. (TAkAHASHI et al., 2012) proposed that the graph spectrum is a
good feature for describing the graph structure. They used the Kullback-Leibler and Jensen-
Shannon divergences between spectral distributions to measure the distance between
graphs. Using this concept, they constructed tools for

« a statistical test to compare two sets of graphs;
« a parameter estimator for random graph models; and

« a model selection approach.
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Recently, these ideas have been used to create a concept of correlation (DANIEL Ya-
suMAsA TAKAHASHI et al., 2017) / causality (RIBEIRO et al., 2021) between graphs and
spectrum-based clustering algorithms for complex networks (Ramos et al., 2023).

Unfortunately, those methods are limited to undirected graphs with real eigenvalues.
Instead, [ have extended them to directed graphs by examining the distribution of complex
eigenvalues.

In summary, I have implemented methods for:

« Estimating parameters for random graph models;

Selecting the model that best fits the observed graph;

Comparing between two or more populations of graphs (CHAVAUTY et al., s.d.);

Testing the correlation between graphs and other factors;

Grouping graphs using k-medoids clustering.

To showcase a demonstration of graph spectrum, I have also applied one of these
methods to a dataset consisting of ECoG data of a monkey under different stages of
anesthesia (CHAVAUTY et al, s.d.).
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Materials

2.1 Graphs

A graph G consists of a pair (N, E), where N is a set of nodes, and E is a set of edges
connecting a pair of nodes of G.

We will refer to this graph as weighted if every edge between two nodes i and j of
a given graph is associated with a complex value ¢;; € C. In contrast, in non-weighted
graphs, an edge between two nodes i and j will assume 1 if i and j are connected or 0
otherwise.

If for every pair of nodes i and j, the edges ¢;; and e;; (connecting i to j and j to i) are
equal, then we will call that graph undirected. Otherwise, it is directed.

A graph G’s adjacency matrix is defined as Ag = (e;;); j=1,», Where ¢;; is the value
associated with the edge connecting node i and node j.

We define the spectrum of a graph G as the set of eigenvalues of its adjacency matrix
Ag. If G is directed, its adjacency matrix is non-symmetrical. Therefore, its eigenvalues are
complex-valued. If G is undirected, its adjacency matrix is symmetrical, and its eigenvalues
are real-valued.

2.2 Spectral distribution

We define a random graph g as a family of graphs whose members are generated by a
probability law. For example, the Erdos-Rényi random graph is generated by creating n
nodes and connecting two nodes with a uniform probability p.

The complex Dirac delta is defined as the measure ¢ satisfying for every compactly
supported continuous function f:

A FGSeldx} = F(0).
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Figura 2.1: (a) An undirected graph on the left (b) A directed graph, where arrows indicate directiona-
lity.

An equivalent construction of the Dirac delta is the product of the 1-dimensional Dirac
delta in two variables, representing the real and the imaginary variables:

Sca + bi) = 5(a)5(b).

Suppose g is a directed random graph generated by some probability law. The complex
eigenvalues of its adjacency matrix A form random vectors. Let brackets () indicate expec-
tations concerning the probability law. In this scenario, we define the spectral distribution
of the random graph g as

1 v Aj
A) =lm(= Y Sc(A——L)).
e = lim(C 3% 60 =)
The distribution of p, can be used as a fingerprint of the random graph g (CravauTy
et al., s.d.).

2.2.1 Calculating the graph spectrum

The spectral density p, is generally not known. This motivates us to construct an
estimator f,.

To construct this estimator, we can follow a similar procedure for the undirected case
(Andre FujITA et al., 2020).

First, we compute the eigenvalues A, ..., A, of the graph’s adjacency matrix and apply
a multivariate kernel regression (Tran Duong, 2007). Dividing the resulting 2-dimensional
surface by the volume under the curve ensures that the result is a probability distribu-
tion.
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In Figure 2.2, we can see the difference between the spectral distribution of directed
and undirected graphs. By analyzing directionality, we also increase the dimensionality of
the space in which the eigenvalues reside, which impacts algorithm performance.

Spectrum distribution of an undirected graph Spectrum distribution of a directed graph
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Figura 2.2: Eigenvalues of undirected graphs are distributed on the real line, whereas eigenvalues of
directed graphs are distributed on the complex plane.

2.3 Entropy and Statistical Distance

2.3.1 Entropy

Let G be a graph and pg be its spectrum. Following the usual convention that 0log(0) =
0, we can define the entropy of the graph as

H(G) = H(pe) = = [ pa(ilogpa()d

This is also known as differential entropy (Cover e THOMAS, 2006). The spectral entropy
can be seen as a measure of a form of uncertainty that is associated with the random
graph. For example, Takahashi et. al. (TAxanAsHI et al., 2012) showed that the maximum
entropy for the Erdos-Renyi graph is achieved when edges are connected with probability
0.5.

2.3.2 Statistical Distance

The spectrum distribution is the distribution of complex eigenvalues of a graph model.
This spectrum distribution can be used as a fingerprint of the model so that by comparing
the spectrum of two different random graph models, we can establish a certain distance
between them (TAkAHASHI et al., 2012, VAN MIEGHEM, 2011). Similarly, we can compare
the spectrum of a graph to the spectrum distribution of a random graph model and obtain
a measure of how far apart the graph is from being generated from that specific model.
We are going to rely on distance functions that have been used literally.
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An example of those is the Kullback-Leibler (KL) (MacKay, 2003) divergence, which
compares between statistical distributions. For two probability densities, p, and g, the
Kullback-Leibler divergence is defined as

KL(p,q) = /@ p(x)log (%) dx

It is a powerful statistical pseudo-distance measuring how a probability distribution
differs from a second distribution. It is not strictly a distance in the context of metric
spaces.

Alternatively, we can use the classic L, distance defined as

Ly(p.q) = [D Ip(x) — q(x)llpdx

2.4 Random graph models

It is often impossible to establish how a graph was formed when dealing with biological
data. Besides, it is difficult to establish whether two graphs are similar simply by analyzing
their structures. Thus, one idea is to imagine these graphs resulting from a probabilistic
model with a set of parameters. There are several undirected random graph models.
Each random graph model has its advantages and disadvantages when modeling real-life
phenomena. In particular, we highlight three random graph models that have been used
in academia: Erdés-Rényi (ER) (ERDOs e RENYI, 1959), Watts—Strogatz (WS) (WATTS e
STROGATZ, 1998) and the Barabasi—Albert (PA) (BARABAST e ALBERT, 1999).

Directed models

Unfortunately, models for directed graphs are not as prevalent as the ones for undirected
graphs. We have developed a general extension of any directed random graph model. This
extension allows us to generate various directed random graphs on which we plan to
perform simulations. The description of the method is as follows:

Given a random model r with a parameter p, we extend this model as follows. Let p;
and p, be two parameters for model M. Then

1. Generate a graph G; with parameter p; and construct its adjacency matrix.
2. Generate a graph G; with parameter p, and construct its adjacency matrix.

3. Generate a matrix A whose upper triangular is the same as of G; and whose lower
triangular is the same as of G,.

4. Generate a graph G with adjacency matrix A.

The parameters p; and p, control the network’s inner and external connections, res-
pectively, represented on the upper and lower triangles of the graph’s adjacency matrix.
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In the scenario in which p; = p,, the resulting graph is still directed due to the random
element of the graph generation process.
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Figura 2.3: (a) Directed Erd6s-Rényi graph generated using parameters (0.2,0.2) (b) Directed Erdés-
Rényi graph generated using parameters (0.2, 0.8).
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Graphs face several distinct problems. Using the graph spectrum as a fingerprint of a
graph allows us to solve several of these problems. The following is a list of the methods
that have been implemented.

3.1 Parameter Estimation

A wide range of random graph models can be used to model natural phenomena. Each
model accepts a set of parameters as input and outputs a graph. Different random graph
models are suitable for modeling different biological or physical behaviors.

However, suppose we have a graph G, which we are certain comes from a specific
random model M. How can we establish which set of parameters p = (py, ..., pr) was used
to generate G?

Let py be a set of valid parameters for the random graph model M. Then, there exists a
set of graphs, M,,, corresponding to the graphs that can be generated by M under that
specific parameter. We can estimate the graph spectrum of this set. Let p,, be this spectrum.
Let D be a notion of distance (such as L,, L,, or KL). Then, suppose pg is the graph spectrum
of the original graph G. In that case, we can calculate the distance from this graph to the
graph model under the parameter p, by D(pg, pp,)

Under this notation, we say that the ideal parameter p is the one that minimizes the
distance D(pg, p).

However, we still need to estimate the spectral distribution of the random graph model
under a parameter p. We construct this estimator by averaging the spectral distribution of
N samples of the random model M and parameter p

B0 = 5 2 pa)

We then estimate the parameter as
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p=arg min D(pg, pp) (1)

Calculating this estimate is simply a matter of minimizing the function D(pg, p,).

Grid Search: The grid search consists of dividing the search space in a grid. The search
then iterates through every point in the grid, keeping track of the point that minimi-
zes the function. With a sufficiently small grid spacing, this method effectively finds
the correct parameter but with a high computational cost. This cost is exponential
based on the number of parameters of the random graph model. Therefore, it becomes
unfeasible if we attempt to estimate several parameters simultaneously.

Ternary Search: The ternary search is a divide-and-conquer algorithm that efficiently
locates an unimodal function’s maximum or minimum point. It recursively narrows
the search interval into three segments and compares function values at two points
within those segments. It is much more efficient than the grid search but may not
work for all models. If the distance function is not unimodal, then the search will
fail. To minimize this risk, our simulations show that working with L, distances is
better than KL.

Figure 3.1 shows the difference between grid search and ternary search.

Points evaluated during a grid search Points evaluated during a ternary search
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0.7
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Figura 3.1: Difference between a grid search and a ternary search: The black function illustrates a
common distance function we aim to minimize. The red dots represent points requiring evaluation for
the method to estimate the minimum. The grid search evenly divides the function into several chunks,
necessitating a total of 101 points for evaluation. In contrast, the ternary search only demands the
evaluation of 24 points. In parameter estimation, evaluating distance functions involves constructing
multiple graphs from a given model, estimating their spectral distribution, and using it as input in a
distance function. Therefore, it is important to minimize this evaluation whenever possible.
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3.2 Model Selection

Given a graph G, several random graph models M, ..., My can be ranked by their
Kullback-Leibler divergence. Models with low KL divergence are better for generating G
(TAKAHASHI et al., 2012).

Let M, ..., My be N different random graph models with, and let p1, ..., pn be their
respective estimators given by equation (1). Recall that each parameter p; is a vector. We
will denote its dimension by |p;].

If p; is the graph spectrum, and p, ..., py is the estimated spectrum distribution of
model M; under parameter p;, then we can choose the optimum model M; where

i = argmin 2K L(pg, p;) + 2| pi]

Here, the factor 2#(p;) acts as a penalization term to avoid overfitting. Note that this
term can be ignored if all parameters have equal dimensions.

This method allows us to extend our previously constructed parameter estimator to
the selection of optimum models for a given graph. Computationally, we need to compute
N estimators ﬁl, s ﬁN, which can be computationally intensive. However, we can replace
the KL function with any other distance measure between spectrum distributions (such as
L; or L,), allowing us to compute these estimators using a ternary search, significantly
reducing the computation time.

3.3 ANOGVA

Given k groups of graph samples, can we establish whether or not they originate from
the same graph population?

A perhaps naive approach is to select a (suitable) random graph model, estimate the
parameter used for each graph, and use traditional ANOVA with the estimated parameters
as input. However, for this to work, we first need to know which random graph model
was used to generate the graphs, which is very unlikely in most realistic scenarios. Other
non-parametric methods, like the Kolmogorov-Smirnov test, require independence of the
graphs, which is often not true when they result from a biological process. Therefore, we
will use an ANOVA-like approach following the ideas described by Fujita et al (André
Fujita et al., 2017) called ANOGVA.

In other words, we will perform a variation of the ANOVA using the complex distribu-
tion of eigenvalues of the graphs (CHAVAUTY et al, s.d.).

Suppose gi, ..., g be k distinct graph populations. If these graphs come from the same
population, their spectral distributions should be equal. Let p,, be the average graph
spectrum for group i, pg = ; Zle pg be the overall graph spectrum average, and D be the
Kullback-Leibler divergence.

The hypothesis that is being tested is the following:

11
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Hy : D(pg,, pc) = D(pg,: pc) = ... = D(pg, pg) = 0
Hy: D(pg,, pc) # D(py,, pc) for some i, j.

The alternative hypothesis is equivalent to stating that at least one of the graph
populations was generated by a different process.

Under the null hypothesis, we expect the statistic A = Zle D(pg,, pc) to be small.
Under the alternative hypothesis, we expect it to be large.

The distribution of A is unknown and highly dependent on the used random graph
model. Therefore, to test for significance, we will use a bootstrap approach.

The following algorithm describes how we compute the bootstrap.

Input: k groups of graphs, gi, ..., g, and a number of max-iterations Max
Output: A p-value

Estimate p,y, and pg;

Calculate A = Y5, D(py,, fo);

[y

[\

3 Set A = [];

4 for Max iterations do

5 Construct k new groups g;, ..., g by resampling (without replacement) the
original graph set;

6 Estimate the average spectrum distribution p ! for each new graph g ;

7 Calculate the overall graph spectrum average pg;

8 Calculate A" = 3% | D(ﬁ:gl, Po)-;

9 Append A’ to Ay;

10 end
11 Let p = Cardinality(A” € A, : such that A" > A) - T
12 return p;

Algorithm 1: ANOGVA

3.4 Permanogva

We are now interested in the following problem: Suppose we are given a population of
graphs alongside a set of variables for each graph. Can we identify if the set of variables is
related to the differences between the graph or if they are unrelated?

To verify this hypothesis, we will rely on a technique called permanova (ANDER-
SON, 2001; ANDERSON, 2017) (permanogva being the name given to its usage for graph
spectra). This is a semi-parametric method in which we construct a pseudo-f statistic,
a generalization of the standard F-statistic for classical statistics. Permanova tests for
correlation between samples’ inner distances and variables’ inner distances (ZArALA MA,
2006; SHEHZAD et al., 2014). Given that we can use the graph spectrum to compare distances
between graphs, we can test for correlation between graphs and a set of variables.

We start with a sample of k graphs and a set of t variables of interest for each graph.



3.4 | PERMANOGVA

Let D be a k x k distance matrix between each k graph in our sample. Let X be the k x ¢
matrix of ¢ variables of interest for each sample.

If D is written as D = {d; ;}, thenlet A = {a; ;} = {—}d? 1}, and let G be Gower’s centering

. . = 1 k . . .. . - _ 1 k
matrix for A, that is, if a; = ¢ D =1 18 the average of line i in matrix A, @ ; = ¢ D1 Gij
. .. . _ kK ~k .
is the average of column j in matrix A, and a_ = k1_2 i j=1Gij 18 the overall average of
matrix A, then

G={g}=1{a;—a, —a;+a}

Now, inspired by the standard equations used in linear regression, let H be the hat
matrix formed from X

H = X(X'X)'X".

Now, we can finally construct the pseudo-F statistic. We define the among-group sum
of squares as

SSA = tr(HG),

and, if I is the k x k identity matrix, we also define the residual sum of squares as

SSg = tr((I— H)G).
Then, we define our pseudo-F statistic as

0SS, k-t
~ SSgmax(t—1,1)

We will perform a bootstrap method for the statistical test. We are testing for the
following hypothesis:

Hy: There is no significance between the variables X and the distance between samples
seen in the matrix D

H;: At least one of the variables in the matrix X is associated with the distance between
samples seen in the matrix D

Bootstrap is going to occur according to the following steps.

13
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Input: A distance matrix D, A set of predictor variables X, and a number of
max-iterations Max

Output: A p-value

Calculate an original pseudo-F statistic;

2 for Max iterations do

3 Perform a sufficient amount of row-column permutations on the original
distance matrix D;

[

4 Calculate the new pseudo-F statistic F’ using the original H matrix and the
new G/;
5 end
¢ We calculate p as the percentage of times F was at least as large as the original
F;
return p;

3

Algorithm 2: Permanogva

3.5 K-Medoids

Suppose we have a set S of graphs, which came from k distinct populations of graphs,
Sis ..., Sk. We wish to assign each element of S to one of the groups.

Since we have well-defined notions of distance between graphs, we can use well-known
techniques such as the k-medoids or the k-means methods to solve this problem by using
the graph spectrum HASTIE et al., 2009.

Both methods were implemented to allow the usage of any of the distance functions
described in section 2.3.

3.6 Implementation

The previous methods were implemented in R, extending the existing StatGraph
package (SaNTOs e A. Fujita, 2017). We constructed the multivariate kernel density
estimator using the package ‘ks’ (Tarn DUONG et al., 2018) and optimized the parameter
estimator using the package ‘memoise’ (WickHAM ef al., 2021). The pre-release version
of the statGraph codebase for directed graphs can be found in https://www.github.com/
lesserfish/statGraph.
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Simulations

To verify the power of the methods described in this paper, I constructed a set of
simulations using the directed random graph models described in 2.4.

The following describes the simulations and their results.

4.1 Parameter estimation

I performed the following simulation to show the parameter estimator’s power.

4.1.1 Simulation:

1. I generated a graph using a random graph model with the directionality technique

described before.
2. The graph was created with parameters p,, p, for specific values of py, p, € [0, 1]

3. The search was done using the L, distance, with an epsilon of 0.01 using a ternary
search.

4. This same experiment was repeated 1000 times, creating a distribution of estimated
parameters

I used the following random graph models: Erd6s—Rényi (ER), Watts—Strogatz (WS),
and the Barabasi—Albert (PA). For the size of the graphs, I performed the simulation with
n =100, n = 300, n = 500, and n = 800.

In the first simulation, the parameters satisfied p; = p, so that the search could be
done in one dimension. An additional simulation is included when p; # p,, showcasing
that the search can be done in several parameters simultaneously.

4.1.2 Results:

Figures 4.1 to 4.3 show the distribution of parameters for the first simulation (where
p1 = p.) for all random graph models. Figure 4.4 shows the results of the second simulation
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(where p; # py).

We can see that increasing the size of the graph (and consequently increasing the
number of eigenvalue points of its adjacency matrix) improves performance.

Parameter estimator for the ER model with n = 100 Parameter estimator for the ER model with n = 500
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Figura 4.1: Results of the parameter estimator simulation for the Erd6s—Rényi model. A red vertical
line highlights the correct parameter of 0.35.

4.2 Model Selection

I performed the following simulation to show the power of the model selection.

4.2.1 Simulation:
1. I generated a graph with a given model

2. The graph was created with parameters p;, p, = 0.35 and with sizes ranging from
20 to 120.

3. I performed the model selection using ER, PA, and WS models as candidates.
4. Tused a ternary search with an epsilon of 0.01.

5. This same experiment was repeated 100 times for each size, allowing us to see how
frequently each candidate model was chosen.

4.2.2 Results

Figure 4.5 shows the rate of selection of each candidate model as the size of the graph
increases.



4.2 | MODEL SELECTION

Parameter estimator for the PA model with n = 100 Parameter estimator for the PA model with n = 500
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Figura 4.2: Results of the parameter estimator simulation for the Barabasi—Albert model. A red
vertical line highlights the correct parameter of 0.35.
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Parameter estimator for the ER model with n = 600
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4.3 ANOGVA

To show the power of the ANOGVA method, I performed the following simula-
tion.

4.3.1 Simulation:

1. I generated three groups of graphs. Each group contains 10 graphs with n = 400
nodes.

2. Groups 1 and 2 were generated with parameters p; = p, = p for a specific value of
pelo,1]

3. Group 3 was generated using parameter p; = p, = p + € for some small value of €

4. We then performed the ANOGVA algorithm using 100 iterations of bootstrap, obtai-
ning a p-value

5. This experiment was run 500 times, generating a distribution of p-values.

We expect that for very low values of €, the p-values should follow mostly a uniform
distribution. As € increases, the p-values should be mostly close to 0.

The following random graph models were used: Erd6s-Rényi (ER), Watts—Strogatz
(WS), and the Barabasi—Albert (PA).

4.3.2 Results:

We plot the results in an ROC plot. In this plot, the y-axis corresponds to the alpha-
acceptance threshold (@ = 1 — p), and the x-axis corresponds to the acceptance rate. Figure
4.6 shows the results.

4.4 Permanogva

To show the power of the Permanogva method, I performed the following simula-
tion.

4.4.1 Simulation:

1. I generated N = 30 samples of 2 variables V; and V,, each variable V; being distributed
normally around 0 (V; ~ N(0, 1))

2. For each sample, I generated a parameter value of

. . U1 U2
= d — — —
p = sigmoi (2 ;T €)

where € is normally distributed around 0 and describes a random effect.

3. For each sample, I generated a graph using parameters p; = p, = p
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ROC Curve - Anogva for the ER model with n = 400
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Figura 4.6: Results of the ANOGVA simulation for all models for several group sizes. We can see that,
as € increases, ANOGVA quickly becomes capable of verifying that the groups are indeed different.
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4. A distance matrix of size 30 x 30 was computed, using the L, metric between the
graph spectrum of each sample.

5. To simulate the alternative hypothesis, I calculated the permanogva result using this
matrix D and using the predictor matrix X = [V;,V,].

6. To simulate the null hypothesis, I calculated the permanogva result using this matrix
D and a random unrelated predictor matrix.

7. Irepeated this same experiment 500 times, keeping track of the p-values.

4.4.2 Results:

Instead of showing the p-value distribution, we plot the results in an ROC plot. In this
plot, the y-axis corresponds to the alpha-acceptance threshold, and the x-axis corresponds
to the acceptance rate. Figure 4.7 shows the results.

4.5 K-medoids

To show the strength of K-medoids, I performed the following simulation.

4.5.1 Simulation:

I generated two groups of 20 graphs, G; and G,. The second group was generated with
the same parameter as the initial group, with an added epsilon. I used K-medoids using
k = 2 with a distance matrix calculated using the L, distance. The ARI score (HUBERT e
ARABIE, 1985) was used to establish performance. For each ¢, the ARI score was calculated
30 times, and the mean and variances were used to create the plots.

4.5.2 Results:

Figures 4.8 to 4.10 show the ARI scores as we shift the € from 0 to a higher number. We
see that once we generate the graphs using a sufficiently different parameter, the spectral
distance is enough for us to distinguish between populations of graphs efficiently.
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Figura 4.7: Results of the Permanogva simulation for all models. On the left, we see the results when
the conditions for the null hypothesis are satisfied, i.e., the graphs are generated independently from the
predictor variables. On the right, we can see the results when conditions for the alternative hypothesis
are satisfied, i.e., the graphs are generated with the predictor variables. We can see that when the group
size increases, the power of Permanogva significantly increases.
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Figura 4.8: Results of the K-Medoids simulation for the Erdés—Rényi model. The line represents the
mean of the ARI score. The shaded area indicates the 95% confidence interval. As we increase the value
of €, the method rapidly can correctly cluster the graph populations. We also note that as we increase

the size of the graphs, the method becomes stronger.
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Figura 4.9: Results of the K-Medoids simulation for the Barabasi—Albert model. The line represents
the mean of the ARI score. The shaded area indicates the 95% confidence interval. As we increase the
value of e, the method rapidly can correctly cluster the graph populations. We also note that as we
increase the size of the graphs, the method becomes stronger.
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Figura 4.10: Results of the K-Medoids simulation for the Watts—Strogatz model. The line represents
the mean of the ARI score. The shaded area indicates the 95% confidence interval. As we increase the
value of €, the method rapidly can correctly cluster the graph populations. We also note that as we
increase the size of the graphs, the method becomes stronger.
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Applications to Biological data

To show the efficacy of the techniques described in this article, I used the ANOGVA
method (CHAVAUTY et al, s.d.) on a biological dataset consisting of 5 groups of graphs ob-
tained from one of the experiments associated with Project Tycho, whose goals are to share
reliable massive neural and behavioral data for understanding brain mechanism.

The purpose of the particular experiment was to compare neural activity between
most of the lateral cortex measured with electrocorticographic signals (ECoG) in a maca-
que during five stages: awake with eyes opened, Awake with eyes closed, Anesthetized,
Recovering with eyes closed, and recovering with eyes open.

5.1 Data Source

The data source used is titled ‘Anesthesia and Sleep Task’ and was obtained from
Project Tycho and downloaded via their website at wiki.neurotycho.org/.

Four experiments were conducted on a different monkey (YANAGAWA et al., 2013). In
each experiment, a monkey was seated in a primate chair with restricted arms and head
movement. In particular, for the monkey named George, the following steps describe the
experiment:

Neural data was acquired through 128 ECoG electrodes measuring ECoG signals from
most of the lateral cortex. Neural activity was recorded during all of the following stages.
Initially, the monkey was awake and opened its eyes, sitting calmly in his chair for 10
minutes. Next, the eyes of the monkey were covered with an eye mask to avoid evoking a
visual response. The monkey was left sitting in his chair for another 10 minutes. Recording
of neural activity was stopped while anesthesia was intramuscularly injected into the
monkey. By the point at which the monkey had stopped responding to manipulation of
the monkey’s hand or touching the nostril or philtrum with a cotton swab, neural activity
recording was resumed for another 20 minutes. After the anesthetized condition, the
monkey recovered from the anesthesia and was left alone for 55 minutes with its eyes still
covered. Next, the eye mask was removed, and the monkey was left to sit calmly on his
chair for another 10 minutes.
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Figura 5.1: Description of the Anesthesia and sleep task YANAGAWA et al., 2013.

5.2 Data processing and graph generation

The initial data generated by the experiment consisted of 128-time series in 5 categories:
conscious with open eyes, conscious with closed eyes, anesthetized, recovering with closed
eyes, and recovering with open eyes (CHAVAUTY et al., s.d.).

Initially, the data was processed through several finite impulse response (FIR) filters to
remove any effect caused by electrical interference (in particular, interference caused by
electrical sockets).

The filtered data was divided into several time windows, each lasting 4 seconds.
The graphs were generated using the generalized partial directed coherence (gPDC) (Sa-
MESHIMA e BAccALa, 2016).

The gPDC is a frequency domain approach to identify the direction of information
flow (Granger causality) between multiple time series. We say that a time series X Granger
causes another time series Y if knowledge of X (¢ — 1), ..., X(¢ — k) increases the prediction
of Y(2).

We carried out gPDC on the 128 frequencies of the filtered data. The result was five
sets of 128 groups of graphs (one for each generated frequency). Each group consisted of
several graphs, each representing a time window in its category. Each graph had 128 nodes
(each corresponding to a different ECoG electrode). The graph was directed and weighted,
where each edge between two nodes corresponded to the level of causality between the
ECoG electrodes.
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5.3 ANOGVA

To verify the power of the ANOGVA method, I performed the following experiment. I
selected a single-frequency domain on which the graphs were to be obtained. Given that
frequency, I chose 100 graphs from each of the 5 categories. This left me with:

1. G;: 100 graphs generated from the period when the monkey was awake with its eyes
opened

2. G,: 100 graphs generated from the period when the monkey was awake with its eyes
closed

3. Gs: 100 graphs generated from the period where the monkey was anesthetized

4. G4: 100 graphs generated from the period when the monkey was recovering with its
eyes closed

5. Gs: 100 graphs generated from the period when the monkey was recovering with its
eyes closed

Each of these graphs measured the flow of information between distinct brain seg-
ments.

5.3.1 First Experiment:

I first performed an ANOGVA test using the 5 groups. I was testing the following
hypothesis.

Hy: There is no difference between the information flow in any of the 5 categories versus

H;: There is a difference between the information flow in at least two of the categories

This experiment was run with a 1000 iterations bootstrap.

5.3.2 Second Experiment:

I then performed the same experiment but using pairwise groups. In specific, for every
two distinct groups G; and G;, I performed ANOGVA using only these two groups as an
input, thus testing the following hypothesis:

Hy: There is no difference between the information flow between G; and G;

Hi: There is a difference between the information flow between G; and G;

This experiment was also run with a bootstrap of 1000 iterations.

5.3.3 Third Experiment:

Since all graphs originate from the same monkey, there is a possibility that obtaining
low p-values in the previous experiments is not a consequence of the difference between
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the distinct categories. To verify if the significance of the previous experiments was valid,
I performed an ANOGVA test between each group and itself. In specific, I performed the
following for each group G;

1. I split group G; into two randomly sampled groups with no replacement, obtaining
Gi,l and Gi,2

2. I performed an ANOGVA test on these groups with a bootstrap of 300 iterations.
3. Istored the calculated p-value.
4. I'repeated this 300 times, generating a distribution of p-values.

If low p-values are explained by the fact that all graphs originate from the same monkey,
then performing ANOGVA using the setup described above should give us mostly low
p-values.

5.4 Results

5.4.1 First Experiment:

For the first experiment, we obtained a p-value less than the maximum sensitivity of
the bootstrap method of 0.001. This shows that there is indeed a significant difference
between information flow between at least two of the groups.

5.4.2 Second Experiment and Third experiment:

The results of the second and third experiments also indicate a strong difference
between each population group. Table 5.1 shows the p-values obtained when comparing
groups G; and G; with the ANOGVA method, with 1 000 iterations of the bootstrap. In figure
5.2, we see five images, which are the distribution of obtained p-values when comparing
each group with itself.

G G Gs Gy Gs
G, 0.002 <0.001 <0.001 <0.001
G, < 0.001 <0.001 0.076
Gs < 0.001 < 0.001
Gy < 0.001
Gs

Tabela 5.1: Results of second experiment. We see the p-value obtained when comparing each group
with each other, using the ANOGVA method with a maximum sensitivity of 0.001.

We can see that we obtain low p-values when comparing distinct groups. Any fear
that this might be because both groups originate from the same monkey can be eased by
looking at the results of the third experiment. We note a well-defined uniform distribution
in each experiment, proving that the graphs from the same monkey are insufficient to
justify a low p-value between groups.
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Figura 5.2: Results of the third experiment. We can see the distribution of p-values when comparing

each group with itself using the ANOGVA method.

We note that we could effectively distinguish between the groups, demonstrating our

methods’ efficiency against biological data.






Capitulo 6

Conclusion

We have developed several statistical techniques to

1. Estimate the parameter used to create a directed graph

2. Establish which random graph model was used to create a directed graph
3. Establish whether two or more populations of graphs differ

4. Verify correlation between a group of graphs and predictor variables

5. Cluster a group of graphs

We showed that we could also use our techniques to effectively distinguish between
the brain interaction network of a monkey under different phases of anesthesia. I believe
that more profound studies in computational methods related to graph spectra may help
us highlight more accurately the differences in the topology of these networks and identify
common graph topology patterns under different brain states.

There is already essential work being done in the area. In 1977, Vidal coined the term
brain-computer interface (BCI) and investigated applications of real-time detection of brain
events in EEG (Vipar, 1977). More recently, Neuralink’s company implanted its first brain
chip in a human (HERN, 2024). Like the Project Tycho experiment, Neuralink uses time
series data of electrical brain activity as input. There is significant interest in recognizing
common brain patterns, both in the medical and private Neurotechnology fields. The
approaches described here and in the original article by Takahashi (TAxanAsHI et al., 2012)
are mathematically flexible to allow their implementation in future technologies.
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