• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.95.2007.tde-07032007-121126
Documento
Autor
Nome completo
Florencia Graciela Leonardi
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2006
Orientador
Banca examinadora
Galves, Jefferson Antonio (Presidente)
Farah, Shaker Chuck
Fernandez, Roberto
Fraiman, Jacob Ricardo
Garcia, Nancy Lopes
Título em português
Cadeias estocásticas parcimoniosas com aplicações à classificação e filogenia das seqüências de proteínas.
Palavras-chave em português
análise filogenética de proteínas
cadeias estocásticas parcimoniosas
classificação de proteínas
velocidade de convergência de algoritmos
Resumo em português
Nesta tese apresentamos alguns resultados teóricos e práticos da modelagem de seqüências simbólicas com cadeias estocásticas parcimoniosas. As cadeias estocásticas parcimoniosas, que incluem as cadeias estocásticas de memória variável, constituem uma generalização das cadeias de Markov de alcance fixo. As seqüências simbólicas às quais foram aplicadas as ferramentas desenvolvidas são as cadeias de aminoácidos. Primeiramente, introduzimos um novo algoritmo, chamado de SPST, para selecionar o modelo de cadeia estocástica parcimoniosa mais ajustado a uma amostra de seqüências. Em seguida, utilizamos esse algoritmo para estudar dois importantes problemas da genômica; a saber, a classificação de proteínas em famílias e o estudo da evolução das seqüências biológicas. Finalmente, estudamos a velocidade de convergência de algoritmos relacionados com a estimação de uma subclasse das cadeias estocásticas parcimoniosas, as cadeias estocásticas de memória variável. Assim, generalizamos um resultado prévio de velocidade exponencial de convergência para o algoritmo PST, no caso de cadeias de memória ilimitada. Além disso, obtemos um resultado de velocidade de convergência para uma versão generalizada do Critério da Informação Bayesiana (BIC), também conhecido como Critério de Schwarz.
Título em inglês
Parsimonious stochastic chains with applications to classification and phylogeny of protein sequences.
Palavras-chave em inglês
parsimonious stochastic chains
phylogenetic analysis of proteins
protein classification
rate of convergence of algorithms
Resumo em inglês
In this thesis we present some theoretical and practical results, concerning symbolic sequence modeling with parsimonious stochastic chains. Parsimonious stochastic chains, which include variable memory stochastic chains, constitute a generalization of fixed order Markov chains. The symbolic sequences modeled with parsimonious stochastic chains were the sequences of amino acids. First, we introduce a new algorithm, called SPST, to select the model of parsimonious stochastic chain that fits better to a sample of sequences. Then, we use the SPST algorithm to study two important problems of genomics. These problems are the classification of proteins into families and the study of the evolution of biological sequences. Finally, we find upper bounds for the rate of convergence of some algorithms related with the estimation of a subclass of parsimonious stochastic chains; namely, the variable memory stochastic chains. In consequence, we generalize a previous result about the exponential rate of convergence of the PST algorithm, in the case of unbounded variable memory stochastic chains. On the other hand, we prove a result about the rate of convergence of a generalized version of the Bayesian Information Criterion (BIC), also known as Schwarz' Criterion.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2007-08-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.