• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.95.2018.tde-14032018-150144
Documento
Autor
Nombre completo
Ester Risério Matos Bertoldi
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Tribunal
Reis, Eduardo Moraes Rego (Presidente)
Marie, Suely Kazue Nagahashi
Oikawa, Márcio Katsumi
Título en portugués
Modelagem e implementação de banco de dados clínicos e moleculares de pacientes com câncer e seu uso para identificação de marcadores em câncer de pâncreas
Palabras clave en portugués
Banco de dados
Câncer de pâncreas
CaRDIGAn
Ensembl
ICGC
Modelo entidade-relacionamento
NGS
TCGA
Resumen en portugués
O adenocarcinoma pancreático (PDAC) é uma neoplasia de difícil diagnóstico precoce e cujo tratamento não tem apresentado avanços expressivos desde a última década. As tecnologias de sequenciamento de nova geração (next generation sequencing - NGS) podem trazer importantes avanços para a busca de novos marcadores para diagnóstico de PDACs, podendo também contribuir para o desenvolvimento de terapias individualizadas. Bancos de dados são ferramentas poderosas para integração, padronização e armazenamento de grandes volumes de informação. O objetivo do presente estudo foi modelar e implementar um banco de dados relacional (CaRDIGAn - Cancer Relational Database for Integration and Genomic Analysis) que integra dados disponíveis publicamente, provenientes de experimentos de NGS de amostras de diferentes tipos histopatológicos de PDAC, com dados gerados por nosso grupo no IQ-USP, facilitando a comparação entre os mesmos. A funcionalidade do CaRDIGAn foi demonstrada através da recuperação de dados clínicos e dados de expressão gênica de pacientes a partir de listas de genes candidatos, associados com mutação no oncogene KRAS ou diferencialmente expressos em tumores identificados em dados de RNAseq gerados em nosso grupo. Os dados recuperados foram utilizados para a análise de curvas de sobrevida que resultou na identificação de 11 genes com potencial prognóstico no câncer de pâncreas, ilustrando o potencial da ferramenta para facilitar a análise, organização e priorização de novos alvos biomarcadores para o diagnóstico molecular do PDAC.
Título en inglés
Database design and implementation of clinical and molecular data of cancer patients and its application for biomarker discovery in pancreatic cancer
Palabras clave en inglés
Cancer
CaRDIGAn
Database
Database design
Pancreatic ductal adenocarcinoma
Relational database
Resumen en inglés
Pancreatic Ductal Adenocarcinoma (PDAC) is a type of cancer difficult to diagnose early on and treatment has not improved over the last decade. Next Generation Sequencing (NGS) technology may contribute to discover new biomarkers, develop diagnose strategies and personalised therapy applications. Databases are powerfull tools for data integration, normalization and storage of large data volumes. The main objective of this study was the design and implementation of a relational database to integrate publicly available data of NGS experiments of PDAC pacients with data generated in by our group at IQ-USP, alowing comparisson between both data sources. The database was called CaRDIGAn (Cancer Relational Database for Integration and Genomic Analysis) and its funcionalities were tested by retrieving clinical and expression data of public data of genes differencially expressed genes in our samples or genes associated with KRAS mutation. The output of those queries were used to fit survival curves of patients, which led to the identification of 11 genes potencially usefull for PDAC prognosis. Thus, CaRDIGAn is a tool for data storage and analysis, with promissing applications to identification and priorization of new biomarkers for molecular diagnosis in PDAC.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-04-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.