• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.95.2013.tde-15102013-183234
Document
Author
Full name
Thais Mayumi Oshiro
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2013
Supervisor
Committee
Baranauskas, José Augusto (President)
Brentani, Helena Paula
Hirata Junior, Roberto
Title in Portuguese
Uma abordagem para a construção de uma única árvore a partir de uma Random Forest para classificação de bases de expressão gênica
Keywords in Portuguese
Aprendizado de Máquina
Classicador Simbólico.
Expressão Gênica
Random Forest
Abstract in Portuguese
Random Forest é uma técnica computacionalmente eciente que pode operar rapida-mente sobre grandes bases de dados. Ela tem sido usada em muitos projetos de pesquisa recentes e aplicações do mundo real em diversos domínios, entre eles a bioinformática uma vez que a Random Forest consegue lidar com bases que apresentam muitos atributos e poucos exemplos. Porém, ela é de difícil compreensão para especialistas humanos de diversas áreas. A pesquisa de mestrado aqui relatada tem como objetivo criar um modelo simbólico, ou seja, uma única árvore a partir da Random Forest para a classicação de bases de dados de expressão gênica. Almeja-se assim, aumentar a compreensão por parte dos especialistas humanos sobre o processo que classica os exemplos no mundo real tentando manter um bom desempenho. Os resultados iniciais obtidos com o algoritmo aqui proposto são pro-missores, uma vez que ela apresenta, em alguns casos, desempenho melhor do que outro algoritmo amplamente utilizado (J48) e um pouco inferior à Random Forest. Além disso, a árvore criada apresenta, no geral, tamanho menor do que a árvore criada pelo algoritmo J48.
Title in English
An approach to the construction of a single tree from Random Forest to classification of gene expression databases
Keywords in English
Gene Expression
Machine Learning
Random Forest
Symbolic Classier.
Abstract in English
Random Forest is a computationally ecient technique which can operate quickly over large datasets. It has been used in many research projects and recent real-world applications in several elds, including bioinformatics since Random Forest can handle datasets having many attributes, and few examples. However, it is dicult for human experts to understand it. The research reported here aims to create a symbolic model, i.e. a single tree from a Random Forest for the classication of gene expression datasets. Thus, we hope to increase the understanding by human experts on the process that classies the examples in the real world trying to keep a good performance. Initial results obtained from the proposed algorithm are promising since it presents in some cases performance better than other widely used algorithm (J48) and a slightly lower than a Random Forest. Furthermore, the induced tree presents, in general, a smaller size than the tree built by the algorithm J48.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
monografia.pdf (3.06 Mbytes)
Publishing Date
2013-11-08
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.