• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.95.2016.tde-17052016-001503
Documento
Autor
Nome completo
Abner Cardoso Rodrigues Neto
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2016
Orientador
Banca examinadora
Sameshima, Koichi (Presidente)
Camargo, Raphael Yokoingawa de
Fujita, André
Hashimoto, Ronaldo Fumio
Ramos, Renato Teodoro
Título em português
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
Palavras-chave em português
Causalidade de Granger
EEG
Epilepsia
Processamento de sinais
Resumo em português
Redes complexas aplicadas em sinais de atividade cerebral mostraram a presença de anormais padrões de conectividade em pacientes que sofriam com doenças e outros distúrbios psiquiátricos. Logo, passou-se a cogitar a influência dessas estruturas na causa desses problemas e o que leva ao desenvolvimento desses padrões anormais. Do ponto de vista teórico, vários trabalhos mostram como a topologia de uma rede pode alterar um processo que se sustenta nela, por exemplo o modo como a rede influencia a propagação de falhas de um sistema, a sincronização ou processos de dispersão. Nesse sentido, o objetivo do trabalho é caracterizar as redes funcionais de pacientes durante episódios de crises de epilepsia, fazendo um paralelo entre a estrutura dessas redes e os processos dinâmicos envolvidos na crise, em especial a sincronização. Para isto, dados reais foram analisados e as redes inferidas em um primeiro passo. Depois, simulações de sistemas artificiais usando os parâmetros obtidos das análises, mostram o impacto dessas redes nos processos dinâmicos. Os resultados apontam para estruturas que podem aumentar a sincronização e a influência do modo de acoplamento nesses sistemas.
Título em inglês
Characterization and modeling of electrophysiological activity in patients with epilepsy
Palavras-chave em inglês
EEG
Epilepsy
Granger causality
Signal processing
Resumo em inglês
Complex networks applied to brain activity signals show the presence abnormal of connectivity patterns in patients suffering with diseases and others psychiatric disorders. From this, some authors began to question the influence of these structures in the cause of these problems and how it leads to the development of these abnormal patterns. From a theoretical point of view, several studies show how the topology of a network can change a process that maintains it, for example how a network influences the propagation of a system failure, synchronization or diffusion processes. In this sense, the objective of this study is to characterize the functional networks of patients during episodes of seizures, making a parallel between the structure of these networks and the dynamic processes involved in the epilepsy, in particular the synchronization. For this, real data were analyzed and the inferred networks in a first step. And then, artificial simulations using the parameters obtained from the analysis were employed to show the impact of these networks in dynamic processes. The results indicate structures that can enhance the synchronization and the influence of the coupling mode on these systems.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
teseabner.pdf (4.08 Mbytes)
Data de Publicação
2016-07-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.