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Resumo. São expostas as nossas contribuições na resolução de algu
mas questões algorítmicas nas áreas de combinatória, otimização com
binatória e teoria dos gratos.
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O estudo de problemas de combinatória, otimização combinatória e teo-
ria dos gratos do ponto de vista algorítmico tem diversas facetas. Dentre
elas estão por exemplo a determinação da complexidade computacional do
problema em questão, a busca por algoritmos eficientes, exatos ou não, de-
pendendo do problema, e a busca de implementações tão eficientes quanto
possível para os algoritmos existentes.

Essas três facetas estão interligadas, já que, ao considerar-se um problema,
de decisão ou de otimização, é natural tentar determinar a sua complexi-
dade. Essa informação indica o tipo de resultado que se pode esperar para
o problema em questão. Se o problema for NP-difícil, pode-se partir em
busca de classes de instâncias onde ele se torna tratável, ou, no caso de
problemas de otimização, pode-se, por exemplo, buscar bons algoritmos de
aproximação.

Já de posse de um algoritmo para um determinado problema, há ainda
a fase de, digamos, "acabamento", que visa responder à questão de qual
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é a melhor maneira de se implementar tal algoritmo. A busca de imple-
mentações eficientes bem como a condução de estudos experimentais com-
parativos entre algoritmos competitivos é uma parte importante da área de
projeto e análise de algoritmos.

Este texto aborda problemas e resultados que se enquadram nessas três
linhas. Os resultados de complexidade envolvem tanto técnicas usuais de
redução de problemas quanto técnicas mais recentes de reduções que pre-
servam aproximabilidade. A parte de projeto de algoritmos discutida neste
texto concentra-se especialmente no projeto de algoritmos de aproximação
para problemas de otimização NP-difíceis, mas inclui também refinamen-
tos de análises de algoritmos já existentes, bem como propostas de algorit-
mos exatos para problemas combinatórios tanto de decisão quanto de oti-
mização. O texto aborda também alguns estudos experimentais desenvolvi-
dos ou em andamento. Esses estudos envolvem geralmente a implementação
de algoritmos relativamente so6sticados, teste, análise e refinamento de tais
algoritmos. Muitas vezes, especialmente na parte de refinamento das im-
plementações, surgem questões algorítmicas simples mas inquietantes, que
envolvem, por exemplo, a escolha de estruturas de dados adequadas, o uso
de algoritmos conhecidos para resolver subproblemas, etc.

O texto está organizado da seguinte maneira. A próxima seção fala de
algoritmos de aproximação. Cada uma das demais seções trata de um pro-
blema ou de uma classe de problemas correlatos em que trabalhamos.

2. AI.GORTTMOS DE APROXIMAÇÃO

O desenvolvimento de algoritmos de aproximação surgiu em resposta à
dificuldade computacional de muitos dos problemas de otimização combi-
natória: em termos técnicos, muitos são NP-difíceis. Nessa situação, é
razoável sacriÊcar a otimalidade em troca de uma aproximação de boa quali-
dade que possa ser eâcientemente calculada. Esse compromisso entre perda
de otimalidade e ganho em eficiência é o paradigma dos algoritmos de apro-
ximação. Convém observar que um algoritmo de aproximação não é simples-
mente uma heurística: ele garante encontrar, eficientemente, um elemento do
domínio cujo valor guarda uma relação pré-estabelecida com o valor ótimo.

No início da década de 70, Garey, Graham e Ullman (1972), bem como
Johnson (1974), formalizaram o conceito de algoritmo de aproximação. O
conceito já estava implícito em um trabalho de Graham (1966) sobre um
problema de escalonamento em máquinas paralelas e em um trabalho de
Erdós (1967) sobre gratos bipartidos. Na década de 90, o estudo de algo-
ritmos de aproximação passou a receber um tratamento mais sistemático.
com a formalização e o uso de técnicas e ferramentas aplicáveis a toda uma
gama de problemas.

E importante mencionar também o aparecimento de certos resultados ne-
gativos de aproximabilidade: para alguns problemas, aproximar é tão difícil
quanto resolver. Em termos mais técnicos, alguns problemas não admitem
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algoritmos de aproximação com razão melhor que um certo limiar, a menos
que P = NP. As teorias nessa direção foram impulsionadas na década de 90
pelas descobertas de Arora ef aZ. (1992), que provaram resultados desse tipo
para vários problemas usando caracterizações probabilísticas da classe NP

O desenvolvimento de algoritmos de aproximação e de provas de inapro-
ximabilidade é uma das linhas de pesquisa que mais cresceu ultimamente na
área de otimização combinatória e teoria da computação. Esta observação
encontra respaldo na grande quantidade de artigos de pesquisa que surgiram
nos últimos anos. Vários livros sobre o assunto também foram publicados
recentemente: Ausiello ef aZ. (1999), Hochbaum (1997), Mayr ef aZ. (1998)
e Vazirani(2001). Outro indício da efervescência da área é a grande quan-
tidade de teses de doutorado concluídas na década de 90, algumas introdu-
zindo teorias revolucionárias .

São várias as nossas contribuições nessa linha de pesquisa. Além de uma
série de resultados que, por tratarem de algum problema específico, serão
discutidos nas seções a seguir, há um livro sobre o assunto (em português,
escrito por Carvalho ef aJ. (2001)). O livro discute desde algoritmos de
aproximação clássicos, como o de Graham (1966) e o de Christofides (1976),
até técnicas sofisticadas, desenvolvidas na última década, como o método
primal-dual para aproximação e o uso de programação semidefinida no pro-
jeto de algoritmos de aproximação.

Um algoritmo de aproximação é uma a-aprozámação para um problema
de otimização combinatória que busca minimizar (maximizar) uma função
se ele é polinomial e, para toda instância do problema, a razão (o inverso
da razão) entre o valor da solução viável produzida pelo algoritmo para essa
instância e o valor de uma solução ótima não ultrapassa (não fica abaixo
de) cv. Aqui, a tanto pode ser uma constante quanto uma função e é uma
razão de apraz mação do algoritmo. Quanto mais próxima de l a razão,
melhor.

3. PLANARIDADEEM GRAFOS

Questões relacionadas à planaridade são fundamentais em teoria dos gra-
tos e, por terem aplicações reais diversas, são também bem estudadas do
ponto de vista algorítmico. Nesta seção, são apresentados os problemas e
resultados de j1, 2, 3, 5, 6, 71.

3.1. Subgrafo planar máximo. Existem vários problemas de otimização
combinatória relacionados a planaridade. Um deles é o problema GT31
do livro de Ausiello et aJ. (1999) -- o proZ}Zemci do suógra/o planar máxi-
mo (PSPM): dado um grato, encontrar um subgrafo planar com o número
máximo de arestas. O PSPM é NP-difícil, o que motiva a busca por al-
goritmos de aproximação. Cimikowski(1995) analisou vários algoritmos
conhecidos para o PSPM e mostrou que nenhum deles tem razão de apro-
ximação maior que 1/3. (A razão de 1/3 é obtida trivialmente por qualquer
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algoritmo que produz um subgrafo planar maximal.) Uma de nossas contri-
buições é o primeiro algoritmo de aproximação para o PSPM com razão de
aproximação acima de 1/3 l51. Provámos primeiramente uma razão de 2/5
para este algoritmo l51 e mais tarde conseguimos melhorar esse resultado,
demonstrando por meio de uma análise justa e bastante técnica que o algo-
ritmo é uma 4/9-aproximação l3, 61. Esta é até hoje a melhor aproximação
para o PSPM. 'lYata-se de um algoritmo simples, mas que utiliza como su-
brotina um sofisticado algoritmo para o problema da paridade em matróides
gráficos. A complexidade resultante é de O(m3/2n logo n), onde n e m são,
respectivamente, o número de vértices e o número de arestas do grato de
entrada, que não é muito boa. Numa tentativa de obter um algoritmo mais
eficiente para o problema, obtivemos uma aproximação um pouco pior, de
razão 7/18, que consome tempo linear em gratos de grau limitado l51. No
mesmo artigo, mostramos ainda que o PSPM é Max SNP-difícil, o que im-
plica, segundo o resultado de Arora et aZ. (1992), que existe um c > 0 para o
qual não existe uma (l -- e)-aproximação para o PSPM, a menos que P = NP
Faria et aZ. (1999) melhoram esse resultado, mostrando que o PSPM é Max
SNP-difícil mesmo para gratos cúbicos.

3.2. Subgrafo planar de peso máximo. Uma extensão natural do PSPM
é a sua versão com pesos. As nossas aproximações acima não se aplicam
nesse caso. Mais difícil que a sem pesos a variante com pesos do PSPM se
mostrou especialmente interessante por ter possibilitado o inesperado uso
de técnicas bem-conhecidas de aproximação para o problema de Steiner
em gratos. Projetamos a primeira (e, do que sabemos, única até agora)
aproximação para o problema com razão maior que 1/3 l71. (A razão de
1/3 é obtida trivialmente por um algoritmo que, para um grato conexo com
pesos nas arestas, produz uma árvore geradora de peso máximo.) Nosso
algoritmo é uma (1/3 + 1/72)-aproximação. Infelizmente, o aumento na
razão de aproximação não é muito grande e a análise é longa e bastante
técnica.

3.3. Subgrafo máximo de um dado genus. Um resultado menor que
obtivemos enquanto trabalhávamos com o PSPM refere-se ao problema do
suógra/o máa; mo de gentis d: dado um grato conexo, encontrar um subgrafo
de genus no máximo d com número máximo de arestas. bata-se de um
algoritmo simples cuja razão de aproximação é pelo menos 1/4 l31.

3.4. Algoritmos para teste de planaridade. Mais recentemente inicia-
mos um estudo de vários algoritmos existentes para o teste de p/anaridade:
dado um grato, decidir se ele é ou não planar. É comum considerar também
a sua variante que, além da resposta SiM ou NÃo, produz um certificado à
resposta: um desenho plano do grato (mais precisamente, uma representação
combinatória do mesmo), caso ele seja planar, ou uma subdivisão do .Ka.3

ou do -KS no grato, caso ele não seja planar.
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O primeiro algoritmo linear para o teste de planaridade deve-se a Hop-
croft e Tarjan (1974). O algoritmo deles é uma engenhosa implementação do
método de Auslander e Parter (1961) e Goldstein (1963). (Algumas notas
sobre o algoritmo foram feitas por Deo (1976) e mais detalhes foram apre-
sentados por Williamson (1980/1985) e Reingold, Nievergelt, e Deo (1977).)

O segundo método de teste de planaridade comprovadamente linear deve-
se a Lempel, Even e Cederbaum (LEC) (1967). A implementação linear
desse método utiliza o algoritmo linear projetado por Even e Tarjan (1976)
para construir uma sf-numeração num grato e a estrutura de dados conhe-
cida como PQ-árvore proposta por Booth e Lueker (BL) (1976). (Chibo
ef a/. (1985) aumentaram as operações em PQ-árvores de maneira que um
desenho plano pudesse ser construído também em tempo linear.)

Todos estes algoritmos de planaridade são reconhecidamente complexos.
Recentemente, dois algoritmos lineares mais simples foram propostos na li-
teratura, um por Shih e Hsu (SH) (1993/1999), e outro por Boyer e Myrvold
(BM) (1999/2004). Ambos apresentam idéias similares e muito interessan-
tes, e podem ser vistos como implementações do método de LEC.

Baseados na descrição do algoritmo de SH feita por Thomas (1997), pro-
duzimos uma descrição do método de LEC que, na nossa opinião, aumenta o
entendimento dos algoritmos de BL, de SH e de BM (todos implementações
do método de LEC) l21. Junto com essa descrição, disponibilizámos e des-
crevemos em detalhes uma implementação do algoritmo de SH desenvolvida
por Nome (2003) sob nossa orientação (em conjunto com Pena). Esta é, até
onde sabemos, a primeira e única implementação existente deste algoritmo.
Num outro trabalho, complementamos e corrigimos a apresentação original
do algoritmo de SH jll.

4. PROBLEMA DE STEINER EM GRAFOS

O probierrza de Steiner (problema ND8 do livro de Ausiello et aZ. (1999))
é central na área de algoritmos de aproximação. A sua versão geométrica
foi introduzida por Gauss em uma carta a Schumacher. (Uma cópia desta
carta aparece, por exemplo, na capa do livro de Vazirani(2001).) Em termos
de gratos, ele pode ser descrito da seguinte forma: dados um grato G, um
conjunto S de vértices de G e uma função não-negativa c definida nas arestas
de G, que atribui a cada aresta um número que representa o "comprimento"
da aresta, encontrar uma árvore em G de comprimento total mínimo que
contenha todos os vértices de S. Este problema tem um amplo espectro
de aplicações, que vão desde projeto de circuitos VLSI até a construção de
árvores filogenéticas.

Uma árvore em G que contém os vértices de S é chamada de árvore
de Sfeáner. Os vértices de S são os chamados terra mais, enquanto que os
vértices que não estão em S são chamados de uértãces de Sfeiner.

Nosso algoritmo de aproximação para a versão com pesos do PSPM l71
busca por um cacto triangular (grato em que todo bloco tem no máximo 3
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vértices) no grato dado de peso o maior possível. Esse problema pode ser
reescrito como uma versão particular do problema de encontrar uma árvore
de Steiner 3-restrita mínima. Uma árvore de Steiner T é 3-re$t7'áfa quando
todo vértice de Steiner em T é adjacente em T a exatamente 3 vértices,
todos eles terminais. Essa variante do problema de Steiner é bem estudada
até por ter sido a base da primeira aproximação com razão menor que uma
constante menor que 2 para o problema de Steiner: o algoritmo das árvores
3-restritas de Zelikovsky (1993) . É sabido que a análise original do algoritmo
de Zelikovsky tinha alguns problemas. Durante vários anos, não havia na
literatura uma análise satisfatória desse algoritmo. O nosso trabalho na
versão com pesos do PSPM l71 colaborou um pouco no sentido de prover
alguns esclarecimentos sobre a análise do algoritmo das árvores 3-restritas.
Ele é por exemplo citado no surDeZ/ recente de Grõpl ef a/. (2001) sobre
algoritmos para o problema de Steiner.

Existem dezenas de variantes do problema de Steiner, várias delas menci-
onadas nos comentários de Ausiello ef a1. (1999) sobre o problema de Steiner
(ND8). A seguir, algumas destas variantes são apresentadas e são comenta-
das as nossas contribuições l8, 11l ou o nosso interesse em cada uma delas.

4.1. Problema de Steiner com colega de prêmios. O problema de Sfei-
,'er com co/eta de prêt«{os (preze-coJJecfÍ7zg SfeÍner frei) (PcsT), apesar do
que o nome indica, é definido usualmente da seguinte maneira. Seja G um
grato, c uma função não-negativa definida nas arestas de G e a- uma função
não-negativa definida nos vértices de G. O Post consiste no seguinte: dados
GI c e a', encontrar uma árvore T em G que minimize

>-''cz(r) c(e) + >:.gv(r) "(t').
Algoritmos de aproximação para o Post foram usados por Chudak, Rough-
garden e Williamson (2001), e também por Garg (1996), no estudo de outros
problemas de otimização.

As melhores aproximações conhecidas para o PCST baseiam-se no método
primal-dual de aproximação. Este método tem sido usado no projeto de
algoritmos exatos e de aproximação para vários problemas. Diferentes for-
mulações como problemas de programação inteira podem levar a diferentes
algoritmos. Uma de nossas contribuições aqui foi uma formulação diferente,
e um novo algoritmo para o pcsT baseado nela jlll.

A versão com raiz do post pede que a árvore T contenha um dado
vértice r, chamado de raiz. Goemans e Williamson (GW) (1995) usaram
o método primal-dual para derivar uma (2 -- 1/(n -- l))-aproximação para
a versão com raiz do PCST, onde n é o número de vértices do grato de en-
trada. Aplicando este algoritmo uma vez com cada um dos vértices como
raiz, eles obtiveram uma (2 -- 1/(n -- l))-aproximação para o post. Tal algo-
ritmo consome tempo O(n3 log n). Johnson, Minkoff e Phillips (JMP) (2000)
propuseram uma modificação do algoritmo de GW que permite executar o
método primal-dual uma única vez, resultando em um algoritmo O(n2 log n)
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para o post. Eles afirmam que essa modificação atinge a mesma razão que
o algoritmo de GW, porém isso não é verdade sempre. Cole et aJ. (2001)
referem-se à razão carreta do algoritmo de JMP, mas não apresentam uma
demonstração completa dessa razão.

O nosso algoritmo para o pcsT é na verdade muito semelhante ao algo-
ritmo de JMP. Ao estudarmos este último, deparado-nos com um problema
em sua análise que invalida a razão de aproximação anunciada pelos seus
autores. A degradação é pequena: o algoritmo é uma 2-aproximação. Porém
a análise que nos permitiu concluir a razão de 2 para o algoritmo de JMP é
delicada e justa jlll. O exemplo apresentado como prova de que a razão ori-
ginalmente anunciada não vale jlll serve também para mostrar que a nossa
análise é justa.

Foi durante a tentativa de escrever uma análise correta para o algoritmo
de JMP que derivamos as idéias para o nosso algoritmo, que é uma (2 -- 2/n)-
aproximação para o pcsT que também executa o método primal-dual uma
única vez, ou seja, consome tempo O(n2 log n) jlll. Uma outra curiosidade
é que, diferentemente do algoritmo de JMP, não é de todo óbvio que o nosso
algoritmo é polinomial.

4.2. Problema de Steiner com qualidade de serviço. Diversas varian
tes do problema de Steiner aparecem no contexto de distribuição de mídia,
que é geralmente feita através de uma árvore. Abaixo, uma dessas variantes
é descrita.

Considere um grato G, um vértice s, chamado de raiz, e uh inteiro não-
negativo r. para cada vértice o. O número r. é o requisito de ue/ocidade
lrafe requiremenl) do vértice u. Uma árvore muZt casa é uma árvore em G
que contém s e todos os vértices de G com requisito de velocidade positivo.

Para um conjunto não-vazio X de vértices, seja r(X) o maior requisito de
velocidade entre os vértices de X. Para uma aresta e na árvore multicast T.
denotamos por Xe O conjunto dos vértices da componente de T e que não
contém s. A largura de banda de uma aresta e em T é o número r(X.).

O problema de Steiner cona qualidade de serviço Çquality ofseruice Steiner
free) (Qos) consiste em: dados um grato G, uma função não-negativa c
de6nida nas arestas de G, um vértice raiz s e um requisito de velocidade r.
para cada vértice u de G, encontrar uma árvore multicast T que minimiza
a soma do custo de cada uma de suas arestas vezes a largura de banda da
aresta. Ou seja, minimiza

}-'eCE(7') Gele,

onde te é a largura de banda da aresta e em T
Charikar, Naor e Schieber (CNS) (2000) propuseram o primeiro algoritmo

com razão constante para o QoS. Num primeiro passo, todos os requisitos de
velocidade são arredondados para cima, para a potência de 2 mais próxima
Claramente isso no máximo dobra o valor de uma solução para o problema.
Num segundo passo, árvores de Steiner são produzidas para cada requisito de
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velocidade separadamente, com uma certa aproximação, digamos, a. A me-
lhor razão de aproximação conhecida atualmente para o problema de Steiner
é 1,55, portanto pode-se usar a H 1,55. A união destas árvores é a solução
produzida pelo algoritmo de CNS, que é uma 4cy-aproximação para o QoS.

Usando ainda uma técnica probabilística, Charikar, Naor e Schieber (2000)
reduzem a razão de aproximação para ea H 4,21, onde e = 2,71828.. ..
Karpinski et aZ. (2003) recentemente propuseram uma aproximação ainda
melhor, de razão 3,802.

Apresentamos uma 4,311-aproximação primal-dual probabilística para
Q'S, que foi derivada de uma formulação do problema como um programa
linear inteiro diferente das formulações usadas previamente ]8]. O resul-
tado infelizmente não ultrapassa a melhor razão conhecida para o problema,
porém o algoritmo de Karpinski ef aJ. (2003), que atinge a melhor razão,
utiliza árvores k-restritas, como os conhecidos algoritmos para o problema
de Steiner. Cromo o uso de árvores k-restritas implica em algoritmos com
alta complexidade computacional (especialmente se o valor escolhido de #
for alto), torna-se interessante ter algoritmos alternativos, mais rápidos, com
razões de aproximação semelhantes.

4.3. Problema de Steiner com grupos. O proa/ema de Sfeãner para gru-
pos (gr02zp Sfeãner frei) (GST) consiste no seguinte: dados um grato G, uma
função não-negativa c definida nas arestas de G, um inteiro k e conjuntos
gi, . . . , gk de vértices de G, encontrar uma árvore em G que contenha pelo
menos um vértice de cada gí e tenha comprimento total mínimo. Um con-
junto gi arbitrário é chamado de grupo. Há uma redução do problema da
cobertura mínima por conjuntos para o GST que preserva aproximação. As-
sim, não sÓ o GST é NP-difícil como, por um resultado de Feixe (1998) para
o problema da cobertura por conjuntos, a existência de uma (l -- õ) Ink-
aproximação para o GST implicaria que NP C DTIME(nO(loglog")), onde n
é o número de vértices de G. O melhor algoritmo de aproximação conhecido
para o GST deve-se a Garg, Konjevod e Revi(2000) e tem uma razão de
aproximação de O(log n loglog n log k). 'lYabalhamos (com Nierhofr) nesse
problema em busca de uma O(log k)-aproximação. Alguns resultados parci-
ais foram obtidos porém ainda há muito a fazer para obter-se um resultado
signiâcativo.

4.4. Estudos experimentais. Atualmente estamos trabalhando em dois
estudos experimentais relacionados ao problema de Steiner. Um deles en-
volve diversas implementações propostas na literatura para o algoritmo de
Goemans e Williamson (1995) para o problema da .Poresta de Steiner: a im-
plementação original sugerida por Goemans e Williamson, a implementação
de Cole et a/. (2001), a implementação de Klein (1994) e a implementação
de Gabow, Goemans e Williamson (1993).

O segundo estudo experimental que estamos conduzindo envolve os di-
versos algoritmos de aproximação para o problema de Steiner que utilizam
árvores k-restritas. (Uma árvore de Steiner T é k-restrita se toda subárvore
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maximal de T cujos vértices internos são de Steiner tem no máximo k vértices
terminais.) São eles o algoritmo das árvores 3-restritas (1993), o algoritmo
de Zelikovsky (1996), o algoritmo de Karpinski e Zelikovsky (1997) e o al-
goritmo de Robins e Zelikovsky (2000).

5 PROBLEMAS DE CONEXIDADE EM GRAFOS

C) estudo de conexidade em teoria dos grato tem importantes aplicações
em áreas de projeto e confiabilidade de redes. Diversos algoritmos de apro-
ximação têm sido desenvolvidos para o problema de encontrar subgrafos
satisfazendo certos requisitos de conexidade. Nesta seção, são apresentados
os problemas e resultados de l4, 9, 10, 121.

5.1. Subgrafo gerador Ã;-conexo mínimo. 'lYabalhamos no problema
ND28 do livro de Ausiello ef aZ. (1999) o proZ}Zema do suógrc!/o gerador k-
aresfa-conexo de famanAo mz'mimo (k-SGAC): dados um inteiro positivo k e
um grado G k-aresta-conexo, encontrar um subgrafo gerador k-aresta-conexo
de G com número mínimo de arestas.

Esse problema é NP-completo, mesmo para k :: 2: se o grato G é ha-
miltoniano, um subgrafo gerador 2-aresta-conexo de G com número mínimo
de arestas é um circuito hamiltoniano. Por muito tempo, 2 era a melhor
razão de aproximação conhecida para o k-SGAC. Tal razão vem do fato
que todo grato k-aresta-conexo tem grau mínimo pelo menos k e, conforme
Mader (1971/1972) demonstrou, todo subgrafo gerador k-aresta-conexo mi-
nimal tem no máximo kn arestas.

Karger (1999) apresentou uma (l + O(À,/'(ii;g ã)/%l))-aproximação para o
k-SGAC. A razão desse algoritmo é menor que 2 apenas quando k » logo.
Além desse, existem outros algoritmos na literatura com razão menor que 2
para valores particulares de k. Khuller e Vishkin (1994) por exemplo pro-
jetaram uma 1,5-aproximação para o 2-SGAC. Como observado por Khuller
e Raghavachari(1996), combinando esta aproximação com umas idéias de
Cheriyan, Kao e Thurimella (1993), pode-se facilmente obter uma (2 -- 1/k)-
aproximação para o k-SGAC.

Khuller e Raghavachari(1996) apresentaram o primeiro algoritmo que
atinge uma razão menor que uma constante menor que 2 para o k-SGAC.

Mais precisamente, eles mostraram que o algoritmo deles é uma 1,85-aproxi-
mação. Uma de nossas contribuições foi uma análise mais precisa do algo-
ritmo de Khuller e Raghavachari, que mostrou que ele é uma 1,75-aproxi-
mação para o k-SGAC j121.

A análise de Khuller e Raghavachari do algoritmo deles é na verdade
melhor que 1,85 para valores pequenos de k: é 1,5 para k :: 2, 1,666 . . . para
k = 3, 1,75 para Ã; -: 4, 1,733 . . . para k :; 5, etc. Estas delimitações são
justas para k = 2 e 3. Nossa análise melhorou as delimitações de Khuller
e Raghavachari para todo k ? 4. Em particular, para A - 4, obtivemos a
razão de 1,65 e para k = 5, obtivemos 1,68 j121.
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Khuller e Vishkin (1994) introduziram o seguinte conceito: um esZ)oço

de árvore (trem-c.zruing) num grato G = (y. E) é uma partição de y em
subconjuntos VI, . . . , Va com as seguintes propriedades. Cada subconjunto
consiste em um nó em uma árvore I'. Para cada vértice u em y.. todos os
vizinhos de u em G pertencem a }G ou a um % adjacente a iG na árvore I'
Eles usaram este conceito para provar a cota de 1,5 na razão do algoritmo
deles para k = 2. Apresentamos uma generalização do conceito de esboço de
árvore e usamos essa generalização para mostrar que o algoritmo de Khuller
e Raghavachari é uma 1,7-aproximação para o k-SGAC para k suâcientemente
grande j121.

O melhor algoritmo conhecido para o problema anualmente é uma
(1 + 2/(k + l))-aproximação projetada por Cheriyan e Thurimella (2000)
na mesma época em que melhoramos a análise do algoritmo de Khuller e
Raghavachari. Numa primeira fase, o algoritmo de Clheriyan e Thurimella
encontra um conjunto -M de arestas de cardinalidade mínima tal que todo
vértice do grato é incidente a pelo menos k arestas em M. Numa segunda
fase, o algoritmo encontra um conjunto minimal -F de arestas, disjunto de
M, tal que o grato induzido por M U F' é k-aresta-conexo. Este grato é a
saída do algoritmo, que consome tempo O(kSn2 + mi.Õ(log n)2), onde n e m
são, respectivamente, o número de vértices e arestas do grato. O algoritmo
de Khuller e Raghavachari por sua vez é mais rápido, consumindo tempo

Finalmente mostramos que o 2-sGAC é Max SNP-difícil, ou seja, existe
um c > 0 para o qual não existe uma (l + e)-aproximação a menos que
P - NPÍIUI

0(k'n*)

5.2. Problemas de multicorte. Uma outra categoria de problemas ligada
a conexidade são os problemas de cortes e multicortes. O problema do mu/tí-
corte m2'mimo (k-MC) consiste no seguinte: dados um grato G e uma coleção
de k pares {si, fi}, - - - , {sk, tk} de vértices distintos de G, encontrar um con-
junto de arestas de tamanho mínimo cuja remoção desconecta cada s{ do fi
correspondente. (Este é o problema ND28 do livro de Ausiello ef aZ. (1999).)

A versão com pesos do k-MC é denotado por k-wmc. O caso particular
dela em que k = 1 é caracterizado pelo famoso Teorema do /'/zzzo .A/ázimo
Oorfe Mz'mimo de Ford e Fulkerson (1956), e é solúvel em tempo polinomial.
Para k = 2, uma variante do Teorema do Fluxo Máximo Corte Mínimo vale
(veja Hu (1963) e ltai(1978)) e implica que o 2-WMC é solúvel em tempo
polinomial também. Dahlhaus et ai. (1994) mostraram que, para É ? 3, o
k-WMC é NP-difícil.

A melhor razão de aproximação para o k-wmc é O(Ioga) e deve-se a
Gare, Vazirani e Yannakakis (1997). Muita pesquisa tem sido feita em
busca de algoritmos melhores para classes especiais de gratos. Para gratos
planares, fardos e Vazirani(1993) apresentam um teorema aproximado de

Fluxo Máximo Corte Mínimo e um algoritmo com uma razão de aproximação
constante.
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Garg, Vazirani e Yannakakis (1996) consideraram o caso em que o grato
de entrada é uma árvore. Eles observaram que o k-MC restrito a estrelas

(árvores de altura 1) é equivalente, inclusive quanto à aproximação, ao pro-
blema da cobertura míh ma por uérf ces. Segue daí que o k-MC em estrelas é
NP-difícil e Max SNP-difícil. Na verdade, obter uma razão de aproximação
melhor que 2 parece bem difícil, já que é uma questão em aberto famosa a
existência ou não de um algoritmo de aproximação para cobertura mínima
por vértices com razão melhor que 2. Gang, Vazirani e Yannakakis (1996)
propuseram uma 2-aproximação para o k-uc em árvores.

Em nossos trabalhos l4, 9, 101, duas variantes do k-uc se mostraram úteis.
A primeira trata do problema do mu/ficorte mz'mimo de uért ces (üertez mu/-
ficuf) (k-VMC), que consiste no seguinte: dados um grato G e uma coleção de
k pares {si, fi}, - . - , {sk, tk} de vértices de G não-adjacentes distintos, cha-
mados terminais, encontrar um conjunto mínimo de vértices não-terminais
cuja remoção desconecta cada s{ do fi correspondente. A segunda trata
do problema do naif corte {rresfrífo mhíma de uér ices (unrestrácted perfez
mu/tÍcut) (k-UVMC), que consiste em: dados um grato G e uma coleção de k
pares {si , fi}, - . . , {sk, fk} de G, chamados terminais, encontrar um conjunto
mínimo de vértices de G cuja remoção desconecta cada s{ do ti correspon-
dente. (Nessa variante, terminais podem ser removidos.) O k-VMC é pelo
menos tão difícil quanto o k-UVMC, inclusive quanto à aproximação l91. De
fato, de uma instância do k-UVMC, podemos obter uma instância do k-VMC
adicionando, para cada si, um novo vértice s;, adjacente apenas a si, e para
cada ti, um vértice novo t;, adjacente apenas a fi. Cada par {si, ti} é subs-
tituído pelo novo par [si, ti}. Resolver esta instância do É-VMC é equiva]ente
a resolver a instância original do k-UVMC.

Garg, Vazirani e Yannakakis (1997) consideraram a versão com pesos

do A-VMC, denotado aqui por k-WVMC. Eles apresentaram uma O(log k)-
aproximação para esta variante em gratos arbitrários.

Primeiramente, mostramos que o k-vmc é NP-difícil em árvores de grau
limitado, enquanto que sua variante irrestrita é mais fácil: é polinomial
em árvores, mas torna-se NP-difícil em grados série-paralelos de grau limi-
tado f91.

A largura arbórea de um grato G pode ser de6nida utilizando-se a noção de
decomposição arbórea de G. O estudo de decomposições arbóreas começou
nos anos 80 e teve diversas conseqüências em duas áreas: teoria dos gratos
e projeto de algoritmos. Na primeira, decomposições arbóreas foram funda-
mentais na prova de Seymour e Robertson da famosa conjectura de Wagner
sobre menores de gratos: toda família de gratos fechada sobre as operações de
remoção e contrição de arestas pode ser caracterizada excluindo-se um con-
junto anito de gratos como menores. Na segunda, este conceito foi explorado
com sucesso no projeto de algoritmos polinomiais para diversos problemas
NP-difíceis em gratos com largura arbórea limitada.

Na verdade, o conceito de largura arbórea pode também ser usado para se
obter bons algoritmos de aproximação para alguns problemas de otimização
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que continuam NP-difíceis mesmo quando restritos a gratos com largura
arb(área limitada. No nosso caso, o k-UVMC é NP-difícil para gratos com
largura arbórea no máximo 2 l91, pois esta classe coincide exatamente com os
gratos série-paralelos. Um PTAS (po/g/comia/-leme approzámalÍon scÀeme)

para um problema de minimização (maximização) consiste numa família
{.A. : € > 0} de algoritmos tal (lue .4. é uma (l + c)-aproximação ((l -- e)-
aproximação) para o problema em questão, para todo c > 0. Projetamos
um PTAS bastante simples para o k-UVMC em gratos com largura arbórea
limitada f91.

Prosseguindo, derivamos uma redução que preserva aproximação, do k-
MC para o k-UVMC l91. Se a instância do k-MC tem grau e largura arbórea
limitada, então a instância correspondente do k-UVMC obtida pela redução
tem largura arbórea limitada. Combinando a redução com o PTAS, obtemos
um PTAS para o k-MC em gratos com grau e largura arbórea limitada l91.
Uma implementação linear do PTAS para árvores de grau limitado também
é descrita l91. De acordo com o teorema 6.8 do livro de Garey e John-
son (1979), um FPTAS, que seria ainda melhor que um PTAS, neste caso
não pode existir, a menos que P = NP. (Um FPTAS consiste numa família
{..4. : c > 0} de algoritmos tal que .4. é uma (l :L c)-aproximação para o
problema que consome tempo polinomial também em l/c.)

Posteriormente consideramos l41 a seguinte versão orientada do problema
(dÍrecfed mu/fícuf), introduzida por Klein ef aZ. (1997) e denotado aqui por
k-DMC: dados um grato orientado -Z) e k pares (si, tl), . . . , (sJ;, tk) de vértices

distintos de -D, encontrar um conjunto mínimo de arcos cuja remoção ga-
rante que nenhuma das componentes fortemente conexas do grato resultante
contém um dos pares Em outras palavras, ou todos os caminhos de si a fÍ
ou todos os caminhos de t{ a si foram quebrados.

Klein et aZ. (1997) mostraram uma O(logo k)-aproximação para a versão
com pesos do k-DMC em gratos orientados arbitrários. Conseguimos estender
os nossos resultados acima para gratos orientados, exibindo um PTAS para
o k-DMC em gratos orientados com largura arbórea or e zfada limitada [4].
O conceito de largura arbórea orientada, proposto por Johnson, Robertson,
Seymour, e Thomas (2001), difere da versão usual de largura arbórea. Por
exemplo, a classe dos gratos orientados com largura arbórea orientada zero
consiste nos gratos orientados acíclicos.

Do ponto de vista de complexidade, mostramos que o k-MC é NP-difícil
mesmo em árvores binárias (árvores com grau máximo três) l91. Assim,
na classe dos grados de grau e largura arbórea limitados, que contém as
árvores binárias, o k-mc é mais fácil (há um PTAS) que em gratos em geral,
mas ainda é NP-difícil. Estes resultados indicam que não podemos eliminar
nenhuma das três restrições no grifo de entrada -- sem pesos, grau limitado
e largura arbórea limitada -- e ainda obter um PTAS l91. Isso porque sabe-se
que, para um problema Max SNP-difícil, existe um PTAS apenas se P = NP,
e, lembre-se, o k-MC é Max SNP-difícil em estrelas. Ou seja, deixar o grau
ilimitado no grato de entrada torna o problema mais difícil. Mostramos
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que a versão com pesos do multicorte mínimo de arestas, o k-WMC, é Max
SNP-difícil em árvores binárias l91, portanto admitir pesos também torna o
problema mais difícil. Finalmente, mostramos que o k-MC é Max SNP-difícil
numa classe de gratos (waZZs) que têm grau máximo três e largura arbórea
ilimitada l91. Ou seja, permitir gratos com largura arbórea ilimitada também
torna o problema mais difícil. Para o caso orientado, mostramos resultados
semelhantes l41. Por exemplo, mostramos que o k-DMC é NP-difícil para
gratos orientados com largura arbórea no máximo um e grau de entrada e
saída no máximo três l4, 101.

6. PROBLEMAS ENVOLVENDO CIRCUITOS E CAMINHOS EM GRAFOS

Serão descritos aqui quatro problemas e nossas contribuições em cada
um deles j14, 15, 171. O primeiro é uma variante do famoso Tsp. Os dois
seguintes são versões para gratos mistos de dois problemas também bem-
conhecidos: o problema do carteiro chinês e o problema da cobertura mínima
por circuitos. O último problema discutido é uma generalização do problema
do caminho mais curto entre dois vértices num grato orientado.

6.1. Problema do UPS. Para apresentar o primeiro problema, é ne-
cessário introduzir um pouco de notação. Seja G o grifo completo sobre
um conjunto V de vértices. Uma função Z que atribui, a cada aresta uu de
G, um valor não-negativo Z.., representando o comprimento da aresta uu,
é chamada de /unção disfánc a em G. Diz-se que Z salas/az a desigualdade
fráa7zguZar se /.. $ Zu. + Zt,« para todo u, u e w em V'

Seja G um circuito hamiltoniano em G e S um subconjunto de y. O com-
primento de C' é a soma dos comprimentos Z.. para toda aresta uu em a.
O circuito C'' induzido por y em S, denotado por scs(O'), é definido como
o circuito que passa apenas pelos vértices de S e passa por eles na ordem
induzida por a. (Informalmente, C' é obtido de a fazendo-se um "sÀort-
cut" , como no algoritmo de Christoíides (1976), visitando apenas os vértices

Um conjunto p = {p« : u c }'} em que p. é um número em (0,11 é
chamado de uefor de probabÍZ dados sobre }'. Diz-se que um conjunto S
de vértices de V' /oí obtido aleatoriamente de acordo com p se ele resultou
do seguinte experimento aleatório: para cada vértice t;, independentemente,
inclua u em S com probabilidade p. (e não inclua com probabilidade l p,).

O problema do Pnifed Pareci Serra ce (pups) consiste no seguinte: dado
um conjunto V' de vértices, uma função distância J no grato completo G
sobre y, satisfazendo a desigualdade triangular, e um vedor de probabilida-
des p sobre y, encontrar um circuito hamiltoniano O em G que minimize a
esperança do comprimento de scs(C'), onde S é um conjunto obtido aleato-
riamente de acordo com p.

Esse problema, proposto por Savelsbergh (2001), aparece no seguinte con-
texto. Motoristas de companhias de entrega visitam clientes diariamente

de S.)
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para fazer entregas. Para a companhia, quanto menor a distância percor-
rida, melhor. Para o motorista, rotas que mudam drasticamente de um
dia para o outro são inconvenientes: é mais fácil cortar caminho em uma
rota 6xa. O pups, cujo objetivo captura estes dois pontos de vista, é pelo
menos tão difícil de aproximar quanto o Tsp métrico. E trivial obter uma
instância do Tsp métrico a partir de uma instância do PUPs: basta ignorar
o vedor de probabilidades. Considere uma instância (G, /,p) do pups em
que p. = 1 para pelo menos um vértice. Mostramos que a razão entre o
comprimento de uma solução ótima do Tsp métrico em (G,/) e o compri-
mento de uma solução ótima do pups em (G, Z, p) é no máximo l/p«i., onde
Pmin :' min.CV p. j151. Exibimos também um exemplo que mostra que esse
resultado é justo. Como conseqüência, o algoritmo de Christoâdes para o
Tsp métrico é uma 3/(2pmi.)-aproximação para o pups j151.

6.2. Carteiro chinês e cobertura por circuitos em gratos mistos. Os
próximos dois problemas estão definidos para gratos mistos. Gratos mistos
generalizam a noção de gratos orientados no sentido que podem conter tanto
arestas quanto arcos. Um gra/o rnÍsto é uma tripla M = (y. -E, ..4) onde V
é o conjunto de vértices, -E é o conjunto de arestas e .4 o conjunto de arcos
de M. Quando -E é vazio, diz-se que M é um grato orientado e, quando .4
é vazio, diz-se que M é um grato. (Note que apenas gratos mistos simples
estão sendo considerados, ou seja, laços e arestas/arcos paralelos não são
permitidos.)

Uma coZ,fartura por circuitos de um grato misto M = (y,.E,.4) é uma
família C ;: {Ci, - . . , (h} de circuitos de -M tal que cada aresta ou arco de
M pertence a pelo menos um circuito em C. O comprimento de C é a soma
do número de arestas e arcos dos circuitos em C.

O prol,gema da coZ,erfura «.hí«.a por circo tos (PCMC) consiste no se-
guinte: dado um grato misto .M fortemente conexo sem pontes, encontrar
uma cobertura por circuitos de M de comprimento mínimo. Lee e Waka-
bayashi(2002) mostraram que esse problema é NP-difícil se M é um grato
misto planar arbitrário. Ele é bem estudado quando M é um grato: Tho-
massen (1997) mostrou que este caso é NP-difícil. Além disso, este caso está
relacionado à bem conhecida conjectura da cobertura dupla por circuitos e
ao problema do carteiro chinês.

Seja M um grato misto fortemente conexo. Um passeio de carteiro em M
é um passeio fechado que contém todas as arestas e arcos de -M. Qualquer
cobertura por circuitos de comprimento k pode ser convertida em um passeio
de carteiro de comprimento k, mas o inverso não é verdade.

O problema do carteiro cÀ pzês (Pcc) em gratos mistos é uma variante do
PCMC: dado um grato misto ]W fortemente conexo, encontrar um passeio de
carteiro em M de comprimento mínimo.

Edmonds (1965) mostrou que o pcc pode ser resolvido em tempo poli-
nomial em grados e Edmonds e Johnson (1973) resolveram o problema para
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grados orientados. Por outro lado, Papadimitriou (1976) provou que o pcc
é NP-difícil em gratos mistos planares.

Estudamos a complexidade do PCMC e do pcc em gratos mistos com
largura arbórea limitada por uma constante. (O conceito de largura arbórea
usado aqui é a versão usual aplicada ao grato não-orientado subjacente ao
grato misto em questão.) A nossa contribuição é um algoritmo polinomial
para o PCMC e um para o pcc, ambos para gratos mistos com largura arbórea
limitada j141.

6.3. Caminhos mais curtos. O bem-conhecido problema do cam nAo mais
curto consiste no seguinte: dado um grato orientado -D, uma função não-
negativa Z nos arcos de .D e dois vértices s e t, encontrar um caminho P de
s a f que minimize /(P), onde Z(P) denota a soma de Z(e) sobre todos os
arcos e em P. Esse problema pode ser resolvido em tempo polinomial. O
quarto problema é a seguinte generalização do problema do caminho mais
curto, denotado por k-SPs: dados um grato orientado .D = (y. .4), funções
não-negativas Zi, . . . , Zk definidas nos arcos de -D e vértices s e t, encontrar
É caminhos Pi, . . . , Pk de s a t internamente disjuntos nos vértices tais que
Zi(Pi) + . . +ZJ;(PA) é o menor possível. O caso em que Zi = . . . = Zi; reduz-se
ao problema do fluxo máximo de custo mínimo e portanto pode ser resolvido
em tempo polinomial.

Primeiramente consideramos o k-SPs em gratos orientados acíclicos j171.
Algoritmos para encontrar caminhos disjuntos nos arcos em gratos orien-
tados acíclicos têm aplicações em problemas de escalonamentos e em pro-
blemas de atribuição de aeronaves. Reformulamos o k-SPs em grados ori-
entados acíclicos em termos de encontrar um caminho mais curto em um
grato orientado acíclico auxiliar, que tem tamanho exponencial em k. Essa
é uma conhecida reformulação que se deve a Pera e Shiloach (1978) para en-
contrar dois caminhos disjuntor nos vértices sob certas condições em gratos
orientados acíclicos. Mais tarde, isso foi estendido por Fortune, Hopcroft e
Wyllie (1980) no contexto de derivar um algoritmo polinomial para o pro-
blema de encontrar k caminhos disjuntos nos vértices sob certas condições
em gratos orientados acíclicos (veja também Schrijver (1993)). Dessa refor-
mulação, conseguimos, para todo k fixo, um algoritmo polinomial para o
Ã;-SPs restrito a gratos orientados acíclicos j171. Também mostramos que o
problema se torna muito mais difícil em gratos orientados arbitrários, mesmo
para k = 2. Mais exatamente, mostramos que, para qualquer constante c,
não existe rtc-aproximação para o 2-SPs a menos que P = NP, onde n é o
número de vértices do grato j171. Por outro lado, mesmo em gratos orien-
tados acíclicos, se k não estiver fixo, mostramos que o problema também é
difícil: para qualquer constante c, não existe nc-aproximação para o k-SPs
restrito a gratos orientados acíclicos a menos que P = NP [171. Esses dois
resultados de inaproximabilidade mostram que se removermos qualquer uma
das duas restrições sobre a entrada do algoritmo apresentado, o problema
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se torna intratável (a menos que P = NP), assim o resultado é num certo
sentido o melhor possível.

Nesta mesma ocasião, consideramos ainda uma variante do problema para
gratos (não-orientados), com múltiplos pares de terminais. Para esta vari-
ante, apresentamos um algoritmo polinomial para o caso em que todas as
funções comprimento coincidem, o grato dado é planar e todos os terminais
encontram-se numa ordem adequada na mesma face de um desenho plano
do grato j171.

7. PROBLEMAS COMBINATÓRIOS RELACIONADOS A BASES DE GRÓBNER

Quando se escreve um polinâmio em muitas indeterminadas. é costume
fixar uma ordem nas variáveis e expressar cada monõmio como um produto
ordenado de potências das variáveis. Um tal monõmio pode ser olhado como
uma palavra no monóide livre nas mesmas indeterminadas. Isso determina
uma função do monóide livre comutativo no monóide livre. Uma de nos-
sas contribuições foi uma análise do comportamento de ideais sobre essa
função j131. Para explicar isso melhor, é preciso introduzir um pouco de
n n+ n pg ''\

Seja X um alfabeto finito (de letras). Denota-se por IXI o monóide livre
comutativo sobre X e por X' o monóide livre sobre X. Os elementos de IXI
são chamados de monóm os e os de X* de paZauras. Quando íor conveniente,
supõe-se que X = {gl, z2) - . . , an}, de maneira que um monõmio possa ser

escrito em notação multiplicativa como zl:z;' . . - sç? . l)enota-se por <.A/> o
ideal gerado por um conjunto M, seja em IXI ou em X*. Assim, <.A4> =
WJXI se ]U Ç IXI, e <.M> :: X*JWX* se .M Ç X*. O epimor6smo canónico
de monóides X* --} IXI é denotado por a-.

Sabe-se que todo ideal num monóide livre comutativo é íinitamente gerado
(Lema de Dickson). O mesmo não vale para o monóide livre. Mostramos
uma caracterização boa de quando n't(<M>) é finitamente gerado para um
conjunto finito .A4 Ç IXI j131.

As próximas questões foram motivadas pelo estudo de apresentações não-
comutativas de álgebras afins e suas bases de Grõbner. Elas podem ser
apresentadas dentro do contexto de monóides como segue.

Para uma ordenação < das letras, diz-se que uma palavra é ordenczda
se suas letras ocorrem nela em ordem crescente; se zl < #2 < ' ' - -'< Zn,

uma tal palavra pode ser escrita de forma única como zl:z? . . z:'. Seja
a< : IXI -+ X* a função que leva cada monâmio m à única palavra ordenada
em r'i(m). Assim n'a< é a função identidade em IXI.

Considere ideais da forma Z<(M) = <a<(<M>)>, com M Ç IXI, isto é, o
ideal gerado por palavras ordenadas correspondendo a um ideal comutativo,
especificado por seus geradores. O primeiro problema que consideramos.
denotado aqui por pi, foi o seguinte: dado um conjunto finito M Ç IXI
e uma ordenação < de X, decidir se Z<(M) é ou não finitamente gerado.
O segundo, denotado por p2, busca uma ordenação: dado um conjunto
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finito .i14 Ç IXI, decidir se existe uma ordenação < de X tal que Z<(.A/) é
finitamente gerado.

Para dar respostas algorítmicas a estas questões, é preciso definir como
a entrada desses problemas é dada. Primeiramente, consideramos que os
monõmios de M são dados explicitamente, como vetores de expoentes. Neste
caso, o tempo do algoritmo é medido em função da soma do número de bits
nos expoentes. Para pi, exibimos uma caracterização que implica em um al-
goritmo polinomial que o resolve j131. Esta caracterização implica ainda que
o p2 está em NP. Mostramos também que, quando .M é livre de quadrados, o
p2 pode ser decidido em tempo polinomial, porém ele se torna NP-completo
mesmo quando M consiste apenas de monâmios quadráticos j131.

Consideramos ainda uma segunda maneira de se apresentar a entrada
do problema. Olhando para o ideal IXI como um subconjunto de lq", ele
é caracterizado pela propriedade "u 2 o C / implica que u C /", onde
os vetores são comparados componente a componente. Conjuntos com tal
propriedade podem ser apresentados como as soluções inteiras de um sistema
de inequações lineares, .Au ? b, Bu = 0, onde .4 e .B são matrizes inteiras.
.4 é não-negativa, e b é um vetou inteiro; de fato, qualquer ideal de ]X] é
uma união firJita de conjuntos dessa forma. Esse tipo de descrição pode
ser muito mais compacto que a lista de geradores de um ideall ou sqa, um
conjunto minimal de tais geradores pode ter tamanho super-polinomial no
tamanho total do sistema linear. Com a entrada apresentada nesse formato,
mostramos que os dois problemas acima bem como o problema de decidir se
7r-Í(<M>) é finitamente gerado para um conjunto finito M Ç IXI tornam-
se difíceis: este último e o PI são coNP-completos enquanto o p2 é NP-
difícil j131.

8 COLORAÇÕES DE ARESTAS EM MULTIGRAFOS

Nesta seção, os gratos podem ter arestas paralelas, mas não laços. Seja k
um inteiro não-negativo. IJm grato G é k-aresta-coZorz'ueZ se existe uma
função H : .E(G) --} {l, . . . , k}, chamada de k-aresta coloração, tal (lue K(e) #

n(/) para quaisquer duas arestas distintas e e / de G que têm pelo menos
um extremo em comum. O MdÍce cromático X'(G) de G é o menor k não-
negativo tal que G é k-aresta-colorível. É claro que X'(G) 2 A(G), onde
a.(G) é o grau máximo em G, mas existe uma outra delimitação inferior.
Seja.

J

I'(G) - max {2]E (; t/]) : U Ç V(G), IU1 2 3 e IUI é ímpar}
Se U é como acima, então todo emparelhamento no subgrafo de G induzido
por U tem tamanho no máximo l#lUIJ. Conseqüentemente, X'(G) 2 1'(G).
Se G é o grato de Petersen, ou o grato de Petersen com um vértice a menos
então X'(G) > max]Z\(G), [l'(G)] }.

Seymour conjecturou que X'(G) = maxlA(G), [l'(C)]} se G é um grato
planar. Tal conjectura provavelmente não tem uma prova fácil, pois implica
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o Teorema das Quatro Cores. No entanto, Seymour (1990) provou que
sua conjectura vale para gratos série-paralelos. Esse resultado é fácil para
gratos simples. A dificuldade está na presença de arestas paralelas. A prova
de Seymour é elegante e interessante, porém o passo da indução requer a
verificação de um grande número de desigualdades.

Nossa contribuição aqui é uma prova mais simples j161, baseada num lema
estrutural sobre gratos série-paralelos, que por sua vez é uma conseqüência
direta do bem-conhecido fato que todo grato série-paralelo simples tem um
vértice de grau no máximo dois. Nosso trabalho foi motivado pela conjec-
tura de coloração de arestas com listas (Zisf erige-caZoràng) (veja Bollobás e
barris (1985) e também o problema 12.20 no livro de Jensen e Toft (1995)).
Estávamos tentando adquirir intuição sobre esta conjectura para gratos série-
paralelos. Ela foi provada para gratos série-paralelos simples por Juvan,
Mohar e Thomas (1999), mas está em aberto para gratos série-paralelos
com arestas paralelas. Nossos esforços resultaram apenas numa prova mais
simples do resultado de Seymour e em um algoritmo linear para decidir se
um grato série-paralelo pode ou não ser colorido com um certo número de
cores j161.
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Abstract

A graph is planar if it can be drawn on the plane with vertices at unique locations
and no edge intersections except at the vertex endpoints. Recent research eRorts
Lave produced new algorithms for solving planarity-related problems. Shih and Hsu
proposed a linear-time algorithm based on a data structure they named PC-tree,
which is similar to but much simpler than a PQ-tree. The paper does not explain in
detail how to implement the routines that manipulate a PC-tree, and there are some
nontrivial correctness and run-time issues that were not addressed. So it is far from
trivial to derive a proper linear-time implementation from their description. This
paper presents additions to the theoretical íramework of the PC-tree algorithm
that are necessary to achieve correctness and linear running time. A linear-time
implementation that addresses the issues raised in this paper was developed in the
LEDA platform and is available.

* Research partially supported by PnoNEx/CNPQ 664107/1997-4 (Brazil)
t Supported by PAPnSP, a Brazilian funding agency.

l



1 Introduction
The first linear-time planarity testing algorithm is due to Hopcroft and Tarjas l91. The
method first embeds a cycle of the graph, then it breaks the remainder of the graph indo
a sequence of paths that can be added either to the inside or outside of the starting
cycle. Some corrections appear in l71, and significant additional details are presented by
Williamson j21, 231 as well as the text by Reingold, Nievergelt and Deo j181.

The second method of planarity testing proven to achieve linear time began with a
quadratic algorithm due to Lempel, Even, and Cederbaum j161 (the LEC algorithm).
The algorithm begins by creating an st-numbering for a biconnected input graph. One
property of an st-numbering is that there is a pata of higher numbered vertices leading
from every vertex to the vertex t, which has the highest number. Thus, ifthe input graph is
planar, there musa exist an embedding Gk of the first k vertices suco that the remaining
vertices (k + l to t) can be embedded in a single face of Gh. This planarity testing
algorithm was optimized to linear time by a pair of contributions. Even and Tarjan l81
optimized st-numbering to linear time, while Booth and Lueker jll developed the PQ-trem
data structure, which allows the planarity test to eíhciently maintain information about
the portions of the graph that can be permuted or flipped before and after embedding
each vertex. Chibo, Nishizeki, Abe, and Ozawa ISI augmented the PQ-tree operations se
that a planar embedding is computed as the operations are performed, all in linear time.

These algorithms are widely regarded as being quite complex l5, 14, 19l- Recent re-
search efforts have resulted in two simpler linear-time algorithms, proposed independently,
one by Boyer and Myrvold l3, 21 and the other by Shih and Hsu j191. Both algorithms
present a number of similar and very interesting ideas. One of the common ideas consists
of processing the vertices in a post-order traversal of the depth first search (DFS) tree of
the graph, or simply the reversal of the DFS number order (instead of an st-numbering).
This has the property that there is a path of unprocessed vertices from every vertex to
the root of the DFS-tree. While processing vertex u, the edges from u to the already
processed vertices are embedded (if possible).

The Boyer-Myrvold method uses a graph data structure to maintain the collection
of planar biconnected componente that are formed as edges are added. The cut vertices
separating the biconnected components are represented by 'virtual' vertices. For each
vertex u in reverse of the depth first search order, a preliminary bottom-up method is
performed to identify the 'active' portion of the DFS subtree rooted at u based on which
of its subtrees contam a proper descendant that, in the input graph, is adjacent to u by a
back edge. Then, a method called 'Walkdown' traverses the active DFS subtree in a top-
down fashion, embedding back edges from u to its descendants and merging biconnected
componente as necessary while preserving planarity. The Walkdown traversal method
obeys a few simple rules that guarantee that it will be abre to embed all edges from u to
its descendants except when a .K3.3 or -Ks menor can be identified.

The method of Shih and Hsu j191 also processes the vertices of the input graph from
descendants to ancestors, and it also adds the back edges from { to its descendants unless
a nonplanarity conditions is detected. To eEect this strategy, Shih and Hsu created a data
structure called a PC-tree, which is a simplified form of the Booth-Lueker PQ-tree. For
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each vertex ã, the algorithm first searches for a number of defined nonplanarity patterns
in the PC-tree, and if none are found, then a planarity reduction is applied to embed the
edges from { to its descendants. However, Shih and Hsu's formulation lacks a description of
how exactly to implement the routines that manipulate the PC-tree to solve the planarity
problem. Tais description is essencial for one to derive a linear-time implementation
of their algorithm, and there is a series of nontrivial details involved. Moreover. there
are some fiaws in the proof that the nonplanarity patterns and the planarity reduction
patterns together form an unavoidable set. Some of the problems were first reported in
Boyer's dissertation l21. The problems we solve are mainly additional non-planarity cases
that occur when a PC-tree contains C-nodes, and the more recent publications have not
solved these problems, but instead have focused on equating PQ-tree reductions on planar
graphs with PC-tree reductions j101 and the application of PC-trees to the consecutive

ones problem j11, 131. A book chapter under development by McConnell and Hsu j121
presente an alternate proof that accounts for the cases we independently discovered. The
proof often uses new definitions, graph theoretic arguments and an unrooted view of the
PC-tree in lieu of PC-tree constructs. Our presentation states the results in termo of
speciÊc non-planarity conditions that crise within a PC-tree as formulated in j191.

Section 2 first presente an overview of the PCl-tree data structure and algorithm as
presented in j191. Then, Section 3 presents corrections to the SH algorithm, and Section 4
presents a proof that the corrected SH algorithm does indeed distinguish between planar
and nonplanar graphs. As for performance, Section 5 describes two issues that arise when
one tries to crente a linear-time implementation of Shih and Hsu's ideas. The solutions for
these .two issues were inspired by Boyer and Myrvold l31. A linear-time implementation
that accounts for the correctness and speed issues described in this paper can be found at
http : //www . ime . usp br/'coelho/sh. Section 6 presents an empirical comparison of this

implementation to linear-time implementations of other well-known planarity algorithms.

2 0verview of Planarity by PC:-trees
The Shih-Hsu algorithm begins by embedding the depth first search tree (a trivial task).
The main processing modem is therefore concerned with embedding the back edges for
each vertex. The vertices are processed in a post-order traversal of the depth ârst search
tree. For a vertex í, the back edges from ã to its descendants are added. The back edges
from ! to its ancestors are embedded when those ancestors are processed.

If a graph G is planar, then it is always possible to produce a planar embedding Gi
of the subgraph induced by the subtree rooted by { such that all descendants of á with
back edge connections to ancestors of { are on the boundary of a single face of Gi. The
rationale is the same as that given above for the LEC algorithm. Hence, when the SH
algorithm is procqssing a planar graph, .it crentes successively larger partial embeddings
of the form Go, Gt, G2, . . . , G{, . . . , G., where the last result is an embedding of G.
Naturally, the SH algorithm musa also account for nonplanar graphs. Nonetheless, the
processing modem for vertex { remains quite simple: search the partial embedding
Gi.i for nonplanarity conditions established by several lemmata, and if none
are found, then apply a planarity reduction to produce Gi.
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The SH algorithm represents the partial embedding with a data structure called a
PC-tree. The starting PC-tree represents (7o, which is the depth first search tree only,
with no back edges. Each node of the tree is a P-node that represents a single vertex of
the input graph G. The PC-tree remains a tree at all Limes even though it conceptually
represents a subgraph that contains cycles as back edges from G are embedded. As pack
edges are added, they biconnect portions of the embedding that were previously separable.
The separable components are represented by multiple nodes of the PC-tree, and these
are consolidated into a single C-node representing the new biconnected component.

In general, the P-nodes of a PC-tree represent cut vertices in the parcial embedding,
and the C-nodes represent biconnected components. Before the back edges from a vertex
í to its descendants can be embedded, the partial embedding Gi-i musa be rearranged
se that vertices with back edge connections to proper ancestors of í are in a single face.
This rearrangement must follow certain rules. Specifically, the children of a P-node can
be arbitrarily permuted, and the children of a C-nodo can only be fiipped (reversed). The
nonplanarity conditions detect when the required rearrangement is not possible. If the
rearrangement is possible, then the planarity reductions perform the rearrangement, and
they consolidate portions of the PC-tree indo single C-nodes as necessary to eRect the
embedding of the new back edges and produce Gi.

Each C-node in a PC-tree has only P-node neighbors that represent vertices along the
external face bounding cycle of the biconnected component represented by the Cl-node.
For this reason, the P-node neighbors of a C-node are called its representatíue boundáng

cg/c/e (RBC). Given a C-nade c, the neighbor that is closer to á than c is the parent of c,
and the other neighbors of c are its children. However, the children of a C-node cannot
indicate the C-nodo as the parent (see Section 5.2), se in order to traverse from a child w
to the parent p of c (or vice versa), one of two paths around the RBC is taken.

In general, Zu denotes the PC-subtree rooted by t;, which represents the partial em-
bedding of a subgraph of G induced by the vertices of the DFS subtree rooted by vertex u.
For each DFS child r of {, the algorithm considers separately the embedding of back edges
between { and vertices in Tr. This is permissible since, given a subgraph /lí containing the
DFS tree of G plus all back edges between vertices in 7}, vertex í still separares any two
of its DFS children rl and r2 in .f/. Therefore, a Kuratowski subgraph cannot span the
subgraphs induced by Tr: and Tr, because there are not enough paths connecting them.

Within T, a subtree Ts is an {*-suZ)trem if it has unembedded back edge connections
only to proper DFS ancestors of à. Similarly, an í-suZ)trem is a subtree Ts of Tr that has
unembedded back edges only to {. The absence of the nonplanarity patterns is supposed
to guarantee that one of the planarity reductions is applicable. The planarity reductions
have the property that the children of P-nodes can be permuted and the children of C-
nodes can be flipped (reversed) such that all {-subtrees are near { and all á*-subtrees can
be avoided while visiting the ã-subtrees to embed the back edges to !. See Figure 1.

A terminal Rode is a node t in the PC-tree with the following properties: 1) t has a
child í-subtree or is adjacent to { by a back edge; 2) t has a child {*-subtree or is adjacent
to a proper ancestor of á by a back edgel 3) t has no proper descendants in the PC-tree
with the some properties. Terminal nodes are se named because they are the endpoints
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(a) (b)

Figure 1: Permute P-nodes and clip C-nodes to visit á-subtrees and to avoid ã* subtrees.
a) Darkened triangles are {-subtrees, whitened triangles are {*-subtrees, double circles
are C-nodes and single circles are P-nodes. b) The children of u are permuted, node c
is íiipped on the path axis (u, . . . , m), and u' is not changed since it has the desired
configuration.

of crát caZ pafhs to r that must be searched for nonplanarity conditions. As an example,
Figure 2 illustrates a nonplanarity condition that can crise if there are three or more
terminal nodes. Then, Lemma l (Lemma 2.5 in j191) describes a necessary condition for
planarity, the absence of which yields the Ka,3 menor appearing in Figure 3.

(a)(b)
Figure 2: (a) A PC-tree with three terminal nodes. (b) The corresponding K3.3 Minor.
Note that there are many possible variations in connections of the critical paths and the
á*-subtree connections to proper ancestors of á, but edge contraction is used to eliminate
unnecessary complexities.

Lemma l (Shih and Hsu) Suppose there are two terminal nortes u and u' án Tr. .[et
P be the uni,que pata in T frovn, u to 'ul. Let m, be the leüst common, ancestar oju and'u'
Let P' be the unique pata from 'm, to r. Let S = ÇuXXu is a. child of a nade in, P, but u
ãs not in P].. .Let S' --- {ullu ás a cã{/d o/ a Rode {n P' - {m}, but u ás not án p'} Ínoíe
th.t «-t*e'« « is e«ptU). The,«, fo« e«t» Rode « i«- S, T. is .itt-« .«- i-s«b*"e o, .«-
t'' -subtree, and for each norte u in S' , T. is arl i,-subtree.
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(a)(b.)
Figure 3: (a) An e*-subtree attached to a proper ancestor u' of m, the closest common
ancestor of two terminal nodes u and u'. (b) The resulting Ks,3 from j191

Proof. Since nonessential nodes are removed, if u in S or S' is not the root of an {-subtree

or {*-subtree, then Zu musa contam another terminal node, contradicting the assumption
of two terminal nodes. That u C S' cannot be the root of an {*-subtree is proven by
Figure 3, which depicts the resu]ting K3,3 menor. []
Remark; The proof of Lemma l (Lemma 2.5 in j191) is specific to PC-trees that contam
only P-nodes. Section 3 discusses difficulties with its extension to general PC-trens that
contam C-nodes.

3 Clorrections for the PC-tree Planarity Algorithm
The PC-tree method in j191 requires some fixes to yield a correct planarity tese. Aside
from the three terminal node case, Shih and Hsu present four necessary conditions for
maintaining planarity: "ln Lemma 2.5, Corollary 2.6, jandl Lemmas 3.1 and 3.2 we made
the assumption that graph G is planar in deriving at those conclusions. We shall show
that if these conclusions hold at each iteration by showing that these conditions imply a
feasible infernal embedding for each 2-connected component." j19, p. 1881. The authors
then proceed to demonstrate how to perform planarity reductions for the one and two
terminal node cases, but the proof does not show that the presence of the four necessary
planarity conditions yields only PC-trees that are reducible by the methods shown.

3.1 Patterns of child d-subtrees and d*-subtrees around a termo
nal C'-node

Perhaps the most critical problem for PC-tree planarity correctness pertains to Lemma
3.2 in j191. The lemma seeks to characterize the allowable pattern of child i-subtrees and
á*-subtrees around a terminal C-node. Put simply, the lemma states that for the root J of
any child {-subtree of a terminal C-node, one of the two RBC paths from .j to the parent
of the C-Rode musa contam only í-subtrees.
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While the lemma statement is certainly necessary to maintaining planarity, it is only
suíHcient in the one terminal node case when the terminal node has no proper ancestor
with a child á*-subtree. In the two terminal node case and the one terminal node case
where the terminal node has a proper ancestor with a child í*-subtree, it is possible to
be compliant with the statement of the lemma yet still have a nonplanarity condition.
Lemma 2 characterizes the additional restriction required on terminal C-nodes. Figure
4 depicts example PC-trees for the additional restriction, along with the resulting K3,3
minar

(a)(b)(c)
Figure 4: (a) A /(3,3 nonplanarity minor from l3j, (b) A corresponding PCl-tree with one
terminal C-node having the forbidden child á-ã* subtree pattern, (c) Another example
with two terminal C-nodes that have the forbidden child i-i* subtree pattern. Only one
of the terminal nodes musa be a C-node with the forbidden subtree pattern.

Len\nia 2 1fa, terra,in,al C-Rode c has a, propor ancestor Q toith either a, direct bo,ck erige to
ü propor ancestor of'i, or a. chia,d u n,ot a'n, am,Gestor ofc suco that T. contains an {' -subtree,
then c musa haue Q chia,d w for uhich ün RBC pata jrom w to the parent 'p ofc contains
cttl child i-subtrees o.fc.

Proof. The children of the terminal C-node in Figure 4(b) depict the minimal configu-
ration of forbidden subtrees to which all forbidden subtree patterns can be reduced. The
result is the K3,3 menor in Figure 4(a). Figure 4(c) shows that with two terminal nodes,
a terminal C-node also must not cave the forbidden subtree configuration because the
subtree containing the other terminal bode attached to the least common ancestor m is
analogous to a child i*-subtree, se again the K3,3 menor in Figure 4(a) results. n

3.2 Patterns of child i-subtrees and í*-subtrees around an enter
mediate C'-node

Lemma 3.1 of j191 places a necessary condition on the intermediate C-nodes of the path
P between two terminal nodes. Given an intermediate C-node c with neighbors u and u'
in P, one of the two RBC paths strictly between u and u' musa contam only {-subtrees
and the opposing RBC path strictly between u and u' musa contam only child í*-subtrees.
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There are three problems with this lemma in j191. First of all, as a proof by contradic-
tion, the proof must account for the negation of the condition in the theorem. The proof
in j191 presente the case of having bota a child ã-subtree and i*-subtree along a single RBC
path. However, it is possible to avoid tais case yet still have a nonplanarity condition
according to the lemma statement if both RBC paths contam only a child {*-subtree.
Secondly, the stated condition is not quite strong enough if the intermediate C-node is
m, the closest common ancestor of the terminal nodes. Lemma 3 provides the required
modifications to the statement and proof of Lemma 3.1 in j191. The third problem is
simply that Lemma 3.1 of j191 applies only to the two terminal node case, but Corollary 4
demonstrates the need to extend the necessary condition of the lemma to the analogous
scenario in the one terminal node case.

(a)(b)(c)
Figure 5: (a) A PC-tree in which m is a C-node with a child á-subtree below path P
between terminal nodes z and g/. (b) A PC-tree with an intermediate C-node that has
child á*-subtrees along both RBC paths from parent p to the nexo nade m in path P
(c) The corresponding K3,3 minor from l3j. Note: This minor also appears in the new
three terminal node case of Figure 7 as well as the forbidden child {-i* subtree pattern of
Lemma 3.2 in j191.

Lemma 3 Giuen the PC-trem Date P between tloo terminal nodos u and u' in T,, consider
nn {ntermediate C-nodo c ãn P -- l.u,u'} wáth neighbors u and u' {n P. Let m denota the
closest coram,on, ancestor of'u, ünd in the PC-trem. Then, the chia,dren, ojc ato'r\g o'r\e
RBC pata ofc strictly between u and u' mu,st be onlU child ã,-subtrees, and the OT)posing

RBC pata strictl'y between u and u' musa contam only chia,d {'' -subtrees. Further, i,fc = 'rn,
Lhes, the RBCI pctth containing the chia,d i,-subtrees m'ust algo contam the parQuE p ofc.

Proof. When c # m, the proof of Lemma 3.1 in j191 demonstrates the nonplanarity
condition that results if one RBCI path contains both a child á-subtree and {*-subtree.
The nonplanarity condition algo covers the case in which c = m and both a child {*-
subtree and {-subtree appear in the RBC pata that excludes the parent p of c. The
remaining points below were omitted from the proof of Lemma 3.1 in j191.
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When c = m, the RBC path strictly between u and u' that excludes the parent p can
still generate a nonplanarity condition even if it contains no child {*-subtree as required
by the parcial proof of Lemma 3.1. If that RBC path contains a child i-subtree, then
the PC-tree has the form depicted in Figure 5(a), which resulta in the K3.3 depicted in
Figure 5(c).

When c = m, the RBC path strictly between u and u' that includes the parent p of
c cannot contam a child i*-subtree. Given the root .j of such a child .j à*-subtree, one of
the nonplanarity minors depicted for Lemma 7 can be obtained by edge contracting the
RBC path to merge J with the parent p of c.

When c # m, then both RBC paths around c strictly between u and u' cannot contam

a child á*-subtree. If both RBC paths contam child {*-subtrees as shown in Figure 5(b),
then a K3,3 can be found according to the nonplanarity menor in Figure 5(c). n
Remark. The nonplanarity condition of Figure 5(a) is similar to the one in Lemma 3.2 of
j191, which requires the C-node to be a terminal node and z and y to be child á*-subtrees
that obstruct both RBC paths from m to the parent of the C-node.

Co ($tlaxy 4 Giuen one terminal norte u, \et P denota the Date from u to the farthest
incestor u' with a, child {'' -subtree. Let c be ün intermediüte C-n,ode in pata P XuÀ. For
c :# u' , tet u and u' denota the n,eighbors ofc in, P. For c = u' , let u denota the neighbor
ofc in P and let u' denota the cl,osest chi\d {''-subtree along either RBC pata from the
parent p ofc. The jol,towing conditions musa ha\d:

B The children, ofc in one RBC pata strictlU between u and u' musa contam onty child
{ -subtrees .

B The opposing RBC pata stricttU betwee'n,'u ünd u' musa contam onty child {" -subtrees

u' , then the RBC pata containing the child i,-subtrees musa algo contam p

3.3 Direct back edges as degenerate í-subtrees and {*-subtrees

There is an omission from the presentation of several results in j191, including Theorem
2.4, Lemma 2.5 and Corollary 2.6 of j191. Lemma 5 demonstrates that the nonplanarity
condition for Lemma 2.5 in j191 (Lemma l above) can still occur despite the absence of
the condition stated by the lemma. Since a number of other results in j191 have the some
problem, Corollary 6 makes a statement that fixes the underlying problem.

l.empa 5 Giuen the some a,ss'ümptions as Leram,a 1, nonptanarity can resutt if S' is
emT)ty or devota oj uedices that root child i* -subtrees.

Proof. A node in P' -- {m} can have a direct back edge to a proper ancestor of i. []

Corollary 6 .Á baGA erige fu, {) can be bons derem eguãuaZent to a cÀÍ/d {-subtree o/u, and

a, pack erige ('u, t) 'uihere t is a propor ancestor ojã, can be considerei equiuatent to Q child
i* -subtree of u.

Proof. Solely for the purpose of simplifying proof statements, such direct back edges can
be considered to be subdivided by an implicit degree two vertex w, which would be an
implicit child of u. n
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3.4 Additional cases of surrounding an ã*-subtree

Consider the extension of Lemma 2.5 in j191 (presented in Lemma l above) to the case of
a PC-tree that contains C-nodes. Specifically, suppose that the closest common ancestor
m of the two terminal nodes is in face a C-node whose parent has the only child {*-subtree

along the pata P'. Figure 6 depicts an example PC-tree and the corresponding Ks minor
pattern from l31. This case is of critical importance because some graphs that it representa
do not even contam a K3,3, which demonstrates that the proof of Lemma 2.5 does not "go
through for the case of general trees without any chances provided that the patins through
a C-node are interpreted correctly" j19, p. 1851. Lemma 7 properly extends Lemma 2.5
of j191, including a proof that no other nonplanarity patterns result from its necessary
condition.

(a)(b)
Figure 6: (a) A PC-tree in which the closest common ancestor of terminal nodes u and
u' is a C-node with a proper ancestor that has a child á*-subtree. (b) The corresponding
/(5 minor from l31.

Lesma 7 Suppose there are ttoo terminal nodos u and u' in T,, and tet m be their closest
common ancestor. Let P' be the unique pata from m to r. ifm has Q prol)er cuncestor in
T, with a child i*-subtree, trem the input graph is not planar.

Proof. If m is a C-nade, then the PC-tree has the form shown in Figure 6(a) and the
input graph can be edge contracted to the Ks in Figure 6(b) as follows. First, since r and
its ancestors are P-nodes, edge contract the proper ancestor of { indo one vertex t and do
nothing to { and r. For each C-node c in P' -- m, edge contract its RBC se that only
the parent and child of c in P' remam. Then, edge contract P' -- m into r. Similarly,
edge contract the RBCs of C-nodes in P -- m into a single edge per C-node. Then, edge
contract the proper descendants of m leading to u into either u if u is a P-node or a child
of u if u is a C-node. Likewise, edge contract the proper descendants of m leading to u'
indo either u' if it is a P-node or a child of u' if u' is a C-node.

On the other hand, if m is a P-node, then all C-nodos in Tr can be edge contracted as
described above. Then, the Ka,3 given for Lemma 2.5 in j191 is applicable (see Figure 3).
n
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The proof of Lemma 7 is algo important because it demonstrates the actual method
by which Ks homeomorphs are found by the PC-tree algorithm, which also contradicts
j19l: "we could have three terminal bodes being neighbors of a C-node, in which case we
would get a subgraph homeomorphic to -Ks as illustrated in Fig. 6." The Ks in Figure
6 of j191 is equivalent to Figure 6(b). It does not result in three terminal nodes, but is
instead discovered by the condition in Lemma 7. Moreover, the case of three terminal
node neighbors of a C-node depicted in Figure 7 should be part of an extension of Theorem

2.4 in j191 to PC-trees containing C-nodes, but again the proof does not extend to general
PC-trees because the K3,3 identified in the proof cannot always be obtained. Lemma 8
provides the proper extension of the three terminal node case to general PC-trees that
contam C-nodes.

Lex:nma 8 1fT. contains three terminal, n,odes, then the inl)ut grctph is not p\an,ür.

Proof. The proof of Theorem 2.4 in j191 provides the proper K3,3 in PC-trens contain-
ing only P-nodes (see Figure 2). For general PCl-trees containing C-nodes, only proper
descendants of r in Tr need to be considered since r and its ancestors are P-nodes.

For each of the three terminal nodes, denoted {i, {2 and í3, let Pi, P2 and P3 denote the
critical paths from each terminal node to r. Without loss of generality, label the terminal
nodes se that the join point Ji of Pi and P2 is equal or descendant to the join point .j2 of
the first two paths with P3. The endpoints of these criticam paths are r and each of the
terminal nodes. The endpoint r is a P-node. For each terminal C-node, edge contract
the children of the RBC indo a single vertex se that only the parent and one child of the
C-node remam, then use the child of the C-node as an image vertex of a K3.3, either from
Figure 2 or Figure 7 depending on the conditions described below.

For each internam C-node of each critical path except .ji and J2 (if either is indeed a
C-node), edge contract the RBC to a single edge containing the parent and child in the
critical path. Since the endpoints of the critical paths have already been discussed, this
leaves only .ji and .j2 to consider.

If both JI and .j2 are P-nodes, then clearly .7i can be used as the image vertex m
in Figure 2, and the K3,3 identified in j191 for the three terminal node case can still be
obtained. Teus, suppose one or bota of .ji and j2 are C-nodes.

Suppose .ji # .j2. If .ji is a P-node, then J2 muge be a C-node. Let cs denote the child

of J2 that leads to ã3, and let ci,2 denote the child of .j2 that leads to .ji. In this case .ji
can again be used as the image vertex w. The path from w to r leads up to ci.2. Then it
follows the RBC path from ci,2 through c3 to the parent ofJ2 then up to r. On the other
hand, if jt is a C-node with parent p and children ci and c2 leading to ái and {2, then
the RBC paths from p to each of ci and c2 can be contracted to a single edge. If .j2 is a
P-node, then p is the desired vertex to and we are done. If J2 is a C-nade, then .j2 must
be a proper ancestor of p. Again, we let p be the desired vertex w since the path from w
to r can be obtained by going around the RBC of .j2 as described above.

Finally, suppose .ji :: .j2 is a C-node. Let cl, c2 and c3 denote the children of the
C-node in RBC order that lead to each of the respective terminal nodes, and let p denote
the parent of the C-node. Unless the biconnected component represented by the C-node
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happens to have an internally embedded path connecting c2 and p, the desired vertex m
in the K3,3 of Figure 2 cannot be obtained. Figure 7(a) depicts the PC-tree for this case,
which reduces to the K3,3 in Figure 7(b). n

(a)(b)
Figure 7: (a) A PC-tree with three terminal node proper descendants of a C-node. Note
that the paths from the terminal nodes to the RBC vertices of the C-node have been

contracted. (b) The corresponding -Ks,3 minor from l31.

3.5 The case of zero terminal nodes

Lemma 9 presents an additional planarity reduction for zero terminal nodes, which occurs
in the final step of embedding every graph. This case is easy to resolve, but it is worth
mentioning lince it is essentially a missing planarity reduction.

Lesma. 9 if, during the embedding of ü biconnected graph G, there is Q stop i, for \ohich
zero terminal nortes üre identi$ed, then the PC-trem ca'r\ be reduced to G sinal,e C-nade paus
P-Rode neighbors for the RBCI ofthe C-nade.

Proof. If there are no terminal nodes, then there are no {*-subtrees within Tr. Having
no {*-subtrees prior to the last step contradicts the biconnectedness of G. Since G is
biconnected, by deÊnition its fina] embedding can be represented as described. []

4 Proof of Clorrectness for Modi6ed PC-tree Algo
rithm

This section presents a proof of correctness for the PC-trem algorithm as modified by the
lemmas and corollaries of Section 3. First, the planarity reduction patterns are clearly
characterized with property statements below. Then, violations of the properties are
mapped to the lemmas and corollaries se that it is clear that the planarity reduction
patterns are the only odes that do not result in a nonplanarity condition. lince it is
clear how to maintain planarity for each of the planarity reductions, the correctness of
l-ho nl .rnri+h m {'alia\xrç=

e)vx x ux&xx Av+xv T r VB
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For the two terminal node case, let u and u' denote the two terminal nodes. Let m
denote the closest common ancestor of u and u', and let P denote the PC-tree path (u,

, m, . . . , u'). Let P' denote the PC-tree path (r, . . . , m). For the one terminal node
case, let u denote the terminal node and let u' denote the ancestor of u closest to the root

of Tr that has a child í*-subtree. Let m be a second label for u'. Let P denote the path (u,
, u'), and let P' denote the pata (r, . . . , u'). To simplify the statement of properties,

consider path P to be arranged horizontally in the plane, and consider P' as extending
vertically upward from P. Let .L denote an infinite horizontal lhe that contains P

Property l JVodes án P' {m} haue no chá/d ã*-suótrees

Ptaper\y 2 The chitdren of nonterminat n,odes in P Core arranged se that all, chia,d i
subtrees Core abade L ünd alt child {' -subtrees are botou L.

Propet\y 3 EBcept for the case of o'ne ter'mi'nat C-n,ode and u -- u', the children of
;ermin,at n,odes in P are ürran,ged se that all child i-subtrees üre abate L and att child
{* -subtrees are betow l,.

Propex\y 4 For the case ofo'rte terminal C-Rode ünd u -- 'd, tet p be the parent ofu and
.et u and u' be the $rst child {" -subtrees in each of the tuo RBC T)ates e=tending h'om p.
I'he children ofu on the RBC T)ath strictlU betueen, 10 and m' that contains p musa be the
roots of all child i-subtrees ofu.

The proof of correctness of the modified PC-tree planarity algorithm in Theorem lO
will show that violations of the four properties above result in a nonplanarity condition.
That the above properties characterize the planarity reductions in 1191 and that the pla-
narity reductions embed all back edges from { to descendants of r while maintaining
planarity are taken to be straightforward. Moreover, the fact that maintaining planarity
through a]] steps implies the planarity of the graph and that íinding a nonplanarity con-
dition in a step implies the nonplanarity of the graph are also taken to be evident.

Theorem 10 The modi$ed PC-trem ptanarãty algorithm applies a ptanaritlJ reduction to
I'. if and on\U if there are no terminal nortes or if there are at post tuo terminal nortes
ünd Prol)erties 1, 2, 3, and 4 bota.

Proof. Case no terra na/ nortes: The planarity reduction described in Lemma 9 is applied.
Clase one terra naZ nade: Property l holds by definition. Property 2 holds if u = u'

because there are no nonterminal nodes in P. Property 2 holds if u # u' except for
nonplanarity conditions due to Corollary 4. If u # u', then Property 3 holds except
for nonplanarity conditions due to Lemma 2 and Property 4 holds degenerately (is not
applicable). On the other hand, if u = u', then Property 3 holds degenerately, and
Property 4 holds except for nonplanarity conditions due to Lemma 3.2 of j191.

Case fwo terra za/ nortes: Property l holds except for nonplanarity conditions due
to Lemma 7. Property 2 holds except for nonplanarity conditions due to Lemma 3.

13



Property 3 holds except for nonplanarity conditions due to Lemma 2 and Property 4
holds degenerately.

Case more tAan two ferminaZ Redes: if there are at least three terminal nodes in Tr,

then the input graph is not planar according to Lemma 8. vence no planarity reduction
is app]ied. []

5 lssues Concerning Linear-Time Performance
Shih and Hsu j191 present the ideal necessary to achieve linear total work for the identifi-
cation of terminal bodes, á-subtrees and {*-subtrees in all steps of the PC-tree algorithm.
However, there are two impedimento to achieving linear time by the methods stated in
j19li both are complexities that crise when planarity reductions are applied to a PC-tree
that contains C-nodes.

5.1 Maintaining the RBC when flipping C-nodes

The claim that the "RBG will be stored as a circular doubly linked lisa" j19, p. 1841

cannot be supported. When the representative bounding cycles of C-nodes must be
joined together, the direction of traversal of two successive C-nodes may be reversed at
the intervening P-node depending on which path contains the child {-subtrees in each
C-node. Joining the RBCs of two such C-nodes indo a circular doubly linked list would
requere the inversion of links in the RBC nodes of one of the two C-nodes. It is easy to
crente planar graphs in which O(n2) link inversions occur in total. To solve this problem,
one can represent the RBC with a dàscordant Zãst (defined in l31). When merging the
RBCs of two C-nodes separated by a P-node, only the neighbors of the P-node in the two
RBCs are linked together. If the merge must be done such that one C-bode is üipped
relative to the other, then the resulting RBC pointers after the merge will be in discord.
However, traversal of the RBC is still possible with only a little extra effort. When a
traversal arrives at a node u from a predecessor p along a discordant RBCI, the successor
of u is indicated by one of its two RBC pointers. The pointer to use is the one that does
notindicate p.

Figure 8: A discordant lisa of size 3 or more can be traversed by taking whichever pointer
does not leal back to the preceding node (from l31).

5.2 On the infeasibility of C-nodes as parents
In the conceptual ideal, every C-node and P-node indicates its parent according to the
PC-tree definition. However, the child P-nodes in the RBC of a C-node cannot indicate
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the C-node as their parent. Consider a C-node with the following properties: 1) The RBC
of the C-node has a subset S of children that root {*-subtrees which all have back edges

only to the last vertex to be processed, and 2) the RBC of the C-node algo has an O(n)
sized succession of children that root á*-subtrees which connect to proper ancestors of i

such that successive steps of the algorithm merge the RBC of the original C-node into
other ancestor C-nodes. At each merge, the members of S must be reparented to point to
the new C-node that becomes their parent after the planarity reduction. This reparenting
must be performed on a number of {*-subtree roots that is a constant fraction of n. and
the set of reparenting operations must be performed each time the parent C-node of the
members of S musa be changed to some other ancestor C-node with which the parent
is merged. This results in O(n2) performance in the worst case. The work could be
substantially reduced by using the methods of the union-find data structure (algo called
a disjoint set data structure in l61), but it would then have to be shown that the result is
not super-linear, which is the case for generalized union-find operations. Either way, j191
presents neither this more sophisticated parenting strategy nor the required proof.

Perhaps the simplest strategy to solve this problem is not to adopt a complex parenting
strategy and present a complex proof, but rather to let the parent pointer of all children of
a C-node simply be ni/, indicating they are pari of a Cl-node, and keeping a pointer from
each C-node child to its entry in the RBC. To find the parent of any node whose parent
pointer is niZ, traverse both directions around the RBC in parallel. This will obtain the
parent of the C-node by the shorter path, se that the work done will not exceed a constant
factor of the length of RBC that will be eliminated during the planarity reduction in the
same step. This is analogous to the method used in l3j to traverse the external faces of
biconnected componente that are merged during the processing of a vertex.

6 Empirical Results and Future Work
This paper has reported and solved a number of additional theoretical complexities that
crise in the published version of the Shih-Hsu PC-tree planarity algorithms j191. A few
years earlier, Thomas 1201 provided an alternate formulation of the Shih-Hsu planarity
algorithm that achieved linear-time performance for triconnected graphs. Thomas points
out that significant additional technical complications would crise when accounting for
graphs of lower connectivity and when one requires a planar embedding

Our implementation eKorts cave been based on extending the formulation in Thomas'
nomes as a way of better understanding and correcting the problems with the PC-tree
formulation in j191. The resulting LEDA-based implementation contains bode manifes-
tations of the PC-tree problem solutions reported in this paper. We have achieved a
linear-time implementation, both for producing a planar embedding and for isolating a
Kuratowski subgraph in a nonplanar graph. We have performed the some empirical teses
used in LEDA to compare the Hopcroft-Tarjan and Booth-Lueker implementations, and
all resulta are consistent with the results for maximal planar graphs (MP) and their non-
planar counterparts created by adding one random edge (MP+e). Figure 9 presents the
MP and MP+e empirical comparisons of our current implementation with the Hopcroft-
Tarjan (HT) and Booth-Lueker (BL) implementations in LEDA, as well as a non-LEDA
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implementation of the Boyer-Myrvold (BM) algorithm reported in l21. Note that there
are no HT results for nonplanar graphs because LEDA does not implement Williamson's
Kuratowski subgraph isolator (indeed Williamson 1241 knows of no O(n) implementation) .
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Figure 9: Empirical results comparing the SH, HT, BL and BM implementations on
testing and justifying maximal planar graph (left) and their nonplanar counterparts (right)
consisting of an extra random edge. The justification consists of creating an embedding
for a planar graph or isolating a Kuratowski subgraph of a nonplanar graph. Resulta for
HT on nonplanar graphs cannot be obtained from LEDA.

Although our implementation is not yet competitive with HT and BL, we believe that it
can be made more competitive, in part through further application of some of the methods
of the BM algorithm, which currently has the fastest implementation by about 2.5 tomes
on planar graphs and about 8 times on nonplanar graphs. Our implementation eHorts to
date have been principally concerned with correctness and linear-time performance. The
correctness concerne led us to extend Thomas' formulation based on an understanding
of the original LEC algorithm (this formulation appears in j171). We believe that the
success of this approach in finding and solving problema with the PC-tree formulation
substantiates the further investigation and exposition of the SH algorithm as an LEC-
type algorithm. Indeed, future work shall consist of refining tais alternate formulation
with the ultimate goal of developing a unified Leal-type framework for describing the SH,
BL and BM algorithms. As Williamson 1221 notes, "it would be desirable to have not one
but several basically diíTerent jlinear time Kuratowski subgraph isolatorsj" because the
condition of linearity "forces the emergence of a certain levei of insight unto the structure of
nonplanar graphs and Kuratowski's theorem." The PC-tree formulation j191, augmented
by the corrections in this paper, two variations of the BM algorithm l3, 21, and Karabeg's
analysis j151 of the BL algorithm collectively demonstrate four diRerent methods for the
discovery of nonplanarity. Along with the correspondence drawn between HT and BL
in l41, we believe that a more generalized LEC-type formulation could unify all of these
methods and increase our graph theoretic understanding of planarity.
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Abstract. We present a simple pedagogical graph theoretical descrip-
tion of Lempel, Even, and Cederbaum (LEC) planarity method based on
concepts due to Thomas. A linear-time implementation of LEC method
using the PCl-tree data structure of Shih and Hsu is provided and de-
scribed in details. We report on an experimental study involving this
implementation and other available linear-time implementations of pla-
narity algorithms.

I Introduction

The first linear-time planarity testing algorithm is due to Hopcroft and Tar-
jan l91. Their algorithm is an ingenious implementation of the method of Aus-
lander and Parter jll and Goldstein l81. Some notes to the algorithm were made
by Deo l61, and significant additional details were presented by Williamson [20,
211 and Reinhold, Nievergelt, and Deo j161.

The second method of planarity testing proven to achieve linear time is due
to Lempel, Even, and Cederbaum (LEC) j131. This method was optimized to
linear time thanks to the st-numbering algorithm of Even and Tarjan l71 and
the PQ-tree data structure of Booth and Lueker (BL) l21. Chiba, Nishizeki, Abe,
and Ozawa ISI augmented the PQ-tree operations so that a planar embedding is
also computed in linear time.

All these algorithms are widely regarded as being quite complex l5, 12, 171.
Recent research eHorts have resulted in simpler linear-time algorithms proposed
by Shih and Hsu (SH) j10, 17, 181 and by Boyer and Myrvold (BM) l3,41. These
algorithms implement LEC method and present similar and very interesting
ideas. Each algorithm uses its own data structure to efhciently maintain relevant
information on the (planar) already examined portion of the graph.

The description of SH algorithm made by Thomas j191 provided us with the
key concepts to give a simple graph theoretical description of LEC method. This
description increases the understanding of BL, SH, and BM algorithms, all based
on LEC method.

* Research partially supported by PnoNEx/CNPQ 664107/1997-4 (Brazil)
** Supported by FAPESP 00/03969-2 (Brazil).
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Section 2 contains de6nitions of the key ingredients used by LEC method.
In Section 3, an auxiliary algorithm is considered. LEC method is presented in
Section 4 and an implementation of SH algorithm is described in Section 5. This
implementation is available at http : //www . ime . usp . for/'coelho/sh/ and, as
far as we know, is the unique available implementation of SH algorithm, even
though the algorithm was proposed about 10 years ago. Finally, Section 6 reports
on an experimental study.

2 names, XY-paths, XY-obstructions and planarity

This section contains the definitions of some concepts introduced by Thomas j191
in his presentation of SH algorithm. We use these concepts in the coming sections
to present both LEC method and our implementation of SH algorithm.

Let H be a planar graph. A subgraph F of .E{ is a j'ame o/ .H if F is induced
by the edges incident to the external face of a planar embedding of -H (Figs. I(a)
and I(b)).

Fig. 1. (&) A graph .ll. (b) A frame of H. (c) A path P in a frame. (d) The complement
ofP

If G is a connected graph, -H is a planar induced subgraph of G and F is a
frame of .ll, then we say that F is a P'ame o/ .17 in G if it contains all vertices
of -Er that have a neighbor in I/c \ I/x. Neither every planar induced subgraph
of a graph G has a frame in G (Fig. 2(a)) nor every induced subgraph of a
planar graph G has a frame in G (Fig. 2(b)). The connection between frames
and planarity is given by the following lemme.

/(3,3

Fig. 2. (a) Subgraphs of ](3,a and ](s induced by the solid edges have no frames

(b) Subgraph induced by the solid edges has no frame in the graph.
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Lemma I (Thomas j191). /f # is an induced su6graph o/ a planar graph G
such that G -- yH is connected, then -Er has a .hume in G. H

Let F be a h'ame of .H and P be a path in -F. The basis o/ P is the sub-
graph of F formed by all blocks of .F which contain at least one edge of P. Let
OI,(J2).-., Ok be the blocks in the basis of P. For f = 1,2,..., k, let PI := Pn(7i
and, if Ci is a cycle, let Pt := Oi\ Pt, otherwise let Pi := .f\. The complement
o/ P in F is the path PI U P2 U . . . U Pi, which is denoted by P. If EP = a
then P := P (Figs. I(c) and I(d)).

Let W ' be a set of vertices in .l{ and Z be a set of edges in -H. A vertex u
in .]] sees W t/trough Z if there is a path in .H from u to a vertex in W with all
edges in Z. Let X and y be sets of vertices of a 6'ame F of .17. A path P in /'
with basis S is an Xy-path (Fig. 3) if

(pl) the endpoints of P are in X;
(p2) each vertex of S that sees X through Ep \ Es is in P;
(p3) each vertex of S that sees y through -Ep \ Es is in P;
(p4) no component of F -- ys contains vertices both in X and in y

Fig. 3. In (a), (b), (c), and (d), let P denote the thick path; its basis is shadowed.
(a) P is not an Xy-path since it violates (p3). (b) P is an Xy-path. (c) P is not an
Xy-path since it violates (p2). (d) P is not an Xy-path since it violates (p4).

There are three types of objects that obstruct an Xy-path to exist. They
are called Xy-obstructiorzs and are defined as
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(ol) a 5-tuple (a, ui , u2, u3, u4) where a is a cycle of F and ul , u2, u3, and u4 are
distinct vertices in C that appear in this order in a, such that ui and tls
see X through .EP \ fla and u2 and u4 see y through Ep \ .Ea;

(o2) a 4-tuple (C',ul,u2,u3) where a is a cycle of F and ul, u2, and u3 are
distinct vertices in C that see X and y through Ep \ Eal

(o3) a 4-tuple (u,K'i,K2,.K3) where u € yP and KI, -K2, and .K3 are distinct
components of F -- u such that Ki contains vertices in X and in y

The existence of an Xy-obstruction is related to non-planarity as follows

Lemma 2 (Thomas [191). .Let # be a planar connected subgraph o/ a graph G
and w Z,e a ue ez in Vc\yH such that G--yX and G-- (yH Ulw}) is connected.
Let F be Q b'came of H in G, let X be the set of neighbors ofw in Vr and tet Y
be th. set o/ nefghbo,; o/ Ua \ (VH U {w}) in Vp. .g f ' h.. .« X}''-.bst«.ct ''"
then G has a subdivision ojKa,a or Ks.

Sketch of the proof: An Xy-obstruction of type (ol) or (o3) indicates a K3,3-
subdivision. An Xy-obstruction of type (o2) indicates either a ](S-subdivision
or a -K3,3-subdivision (Fig. 4). H
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of .f(3,3 coming cram an Xy-obstruction. (c) Concrete example of an Xy-obstruction
leading to a .KS,S-subdivision,
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3 Finding XY-paths or X}'-obstructions

Let F be a connected frame and let X and y be subsets of yP. If F is a tree,
then finding an Xy-path or an Xy-obstruction is an easy task. The following
algorithm finds either an Xy-path or an Xy-obstruction in F manipulating a
tree that represents F

Let ZJ be the set of blocks of a connected graph .H and let T be the tree with
vertex set Zi U I/x and edges of the form .Bu where .B C 6 and u C yn . We call
T the block trees of .H (Fig. 5). Each node of T in B is said a C-node and each
node of T in yx is said a P-node.

Fig. 5. A graph and its block tree

Algorithm Central(F, X, y). Receives a connected frame F and subsets X
and y of yp and returns either an Xy-path or an Xy-obstruction in F

Let Zo be the block tree of F '. The algorithm is iterative and each iteration begins
with a subtree T of Zo, subsets Xr and }'r of }b and subsets W and Z of yP. The
sets Xr and }'r are formed by the nodes of T that see X and y through Ezo \ Er,
respectively. The sets ly and Z contain the P-nodes of Zo that see X and y through
ETo \.Er, respectively. At the beginning of the first iteration, T:: To , Xr = X, }''T = y,
W' :: X, and Z = y. Each iteration consists of the following:

Case 1: Each leaf of T is in Xr n yr and T is a path.
Let R be the set of P-nodes of T.

For each C-node (; of T, let Xa ;= Uo n (W U R) and yc := uo n (z u R)
Case IA: Each C-node O of T has a path Po containing Xa and internally

disjoint from yo
Let .I)p be the path in r ' obtained by the concatenation of the paths in
{.f'c : C is a C-node of 7'}.
Let P be a path in F with endpoints in X, containing /)p and containing
Uo n W ' for each block (; in the basis of P
Return P and stop.

3 The leaves in yx make the definition slightly di#erent than the usual
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Case IB: There exists a C-node C of T such that no path containing Xa is
internally diqoint hom ]/o.
Let ui, u2, u3, and u4 be distinct vertices of a appearing in this order in (;,
such that ui and us are in Xa and u2 and u4 are in Yo
Return (C, ul , u2 , us, t;4) and stop.

Case 2: Each leaf of T is in Xrflya« and there exists a node u of T with degree greater
than 2.

Case 2A: u is a Cl-node.
Let a be the block of /' corresponding to u.
Let t;i, ti2, and u3 be distinct P-nodes adjacent to u in T
Return (a, ui , u2, ua) and stop

Clare 2B: t; is a P-node.

Let Ot, (72, and Os be distinct C-nodes adjacent to u in T.
Let .1(I, .1(2, and ](s be components of F -- u such that Cf is a block of /(t + u
(£ - 1, 2, 3).
Return (o, Kt, K2, K3) and stop.

Case 3: There exists a leaf / of T not in Xr n }%.
Let u be the node of T adjacent to /
Let T ' := T -- /.
Let Xr, := (XT \ {/}) U {u} if / is in Xr; otherwise Xr, := Xr
Let yr, := (VT \ {/}) U {u} if / is in Vr; otherwise yP, := yr.
Let W ' := W ' U {u} if / is in X7' and u is a P-node; otherwise W ' := W '
Let Z ' := Z U {u} if / is in }'r and a is a P-nodes otherwise Z ' := Z.
Start a new iteration with T ', Xr,,yr,, W , and Z ' in the roles of T, Xr,yT, W ',
and Z, respectively.

The execution of the algorithm consists of a sequence of "reductions" made by
Case 3 followed by an occurrence of either Case I or Case 2. At the beginning of
the last iteration, the leaves of T are called terminals. The concept of a terminal
node is used in a fundamental way by SH algorithm. The following theorem
follows from the correctness of the algorithm.

Theorem 3 (Thomas j191). .VP is a P'ame o/ a connected graph and X andy
are subsets a/ }}, then either there ezfsts an Xy-path or arz Xy-abstraction

4 LEC planarity testing method

One of the ingredients of LEC method is a certain ordering ui , u2, . - . , ti. of the
vertices of the given graph G such that, for f = 1, . . . , n, the induced subgraphs
Gllul , . . . , Dill and Gllui+i , - - . , u.}l are connected. Equivalently, G is connected
and, for f = 2, . . . ,n -- 1, vertex ui is adjacent to uj and uk for some j and k
such that I $ .j < f < k $ n. A numbering of the vertices according to such an
ordering is called a £EO-numbering of G. If the ordering is such that uiu« is an
edge of the graph, the numbering is called an st-numher£ng j131. One can show
that every biconnected graph has a LEC-numbering
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Fig. 6. (a) A frame F and an Xy-path P in thick edges. (b) F after moving the
elements of X to one side and the elements of y to the other side of P. Squares mark
vertices in yp \ yp that do not see y \ yp through Ep \.Es, where P is the complement
and S is the basis of P. (c) F together with the edges with one endpoint in F and the
other in w. (d) A frame of H + w.

LEC method examines the vertices of a given biconnected graph, one by one,
according to a LEC-numbering. In each iteration, the method tries to extend a
frame of the subgraph induced by the already examined vertices. If this is not
possible, the method declares the graph is non-planar and stops.

Method LEC(G). Receives a biconnected graph G and returns YnS if G is
planar, and NO otherwise.

Number the vertices of G according to a LEC-numbering. Each iteration starts with
an induced subgraph .ll of G and a frame F ' of -ZI in G. At the beginning of the first
iteration, .f7 and F are empty. Each iteration consists of the following:

Case l: .Er = G.
R.eturn YES e stop.

Case 2: .1? # G.
Let w be the smallest numbered vertex in G -- yx .
Let X ::: {u C yp : uw C Ec}.
Let y := {u C yp : there exists u C Vc \ (yH U {w}) such that uu € Ea}
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Case 2A: There exists an Xy-obstruction in F
Return NO and stop.

Case 2B: There exists an Xy-path P in F
Let P := <wo, toi, . ;: . , wk) be the complement of P and let S be the basis of P
Let R be the set of vertices in yp \ I/p that do not see y \ }'b through l?p \ .Es
(Figs. 6(a) and 6(b)).
Let F ' be the graph resulting 6'om the addition of w and the edges wwo
and wwk to the graph F -- R (Fig. 6(c)).
Let H ' := H + w (Fig. 6(d)).
Start a new iteration with .17' and F ' in the roles of /i and F respectively.

The following invariants hold during the execution of the method

(led) .H and G -- ya are connected graphs;
(lec2) F is a frame of .H in G.

These invariants together with Lemmas land 2 and Theorem 3 imply the cor
rectness of the method and the following classical theorem.

Theorem 4 (Kuratowski). .4 graph is planar d ' and only i/ ft has no swbdfuf
siam o/ .1(3,3 or 1(5. H

Three of the algorithms mentioned in the introduction are very clever linear-
time implementations of LEC method. BL use an st-numbering instead of an
arbitrary LEC-numbering of the vertices and use a PQ-tree to store F '. SH use
a DFS-numbering and a PC-tree to store F. BM also use a DFS-numbering and
use still another data structure to store F. One can use the previous description
easily to design a quadratic implementation of LEC method.

5 Implementation of SH algorithm

SH algorithm, as all other linear-time planarity algorithms, is quite complex to
implement. The goal of this section is to share our experience in implementing it.

Let G be a connected graph. A Z)FS-numbeHng is a numbering of the vertices
of G obtained from searching a DFS-tree of G in post-order. SH algorithm uses
a DFS-numbering instead of a LEC-numbering. If the vertices of G are ordered
according to a DFS-numbering, then the graph olli + 1, . . . , nll is connected, for
f = 1, . . . , n. As a DFS-numbering does not guarantee that .27 := Gill, . ... , f -- lll
is connected, if there exists a frame F of .H and .H is not connected, then F is also
not connected. Besides, to compute (if it exists) a frame of .H + f, it is necessary
to compute an .Xy-path for each component of F that contains a neighbor of f.

Let u be a vertex of /' and a be a block of F containing u and, if possible,
a higher numbered vertex. We say u is actfue if u sees X U y through Ep \ Ec
PC-tree

The data structure proposed by SH to store F is called a PO-tree and is here
denoted by T. Conceptually, a PC-tree is &n arborescence representing the rel-
evant information of the block forest of F. It consists of P-nodes and O-nodes.
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There is a P-node for each active vertex of F and a C-node for each cycle of F
We refer to a P-node by the corresponding vertex of F '. There is an arc from a
P-node u to a P-node u in T if and only if uu is a block of F. Each C-node c has
a circular list, denoted -RBa(c), with all P-nodes in its corresponding cycle of F,
in the order they appear in this cycle. This list starts by the largest numbered
P-node in it, which is called its head. The head of the list has a pointer to c. Each
P-node appears in at most one R1?(7 in a non-head cell. It might appear in the
head cell of several -Rios. Each P-node u has a pointer nonheadRBa.ce//(u)
to the non-head cell in which it appears in an RB(;. This pointer is Nui.L if
there is no such cell. The name RJ?a extends for representatfue bo ndfng cycle
(ngs. 7(a)-(c)).

Let T ' be the rooted forest whose node set coincides with the node set of T
and the arc set is defined as follows. Every arc of T is an arc of T '. Besides these
arcs, there are some ufduaZ arcs: for every C-node c, there is an arc in T ' from
c to the P-node which is the head of R.BO(c) and there is an arc to c #om all
the other P-nodes in R.B(;(c) (Fig. 7(d)). In the exposition ahead, we use on
nodes of T concepts such as parent, child, Zea/, ancestral, descendant and so on.
By these, we mean their counterparts in T '

Forest T ' is not really kept by the implementation. However, during each
iteration, some of the virtual arcs are determined and temporarily stored to
avoid traversing parts of the PC-tree more than once. So, each non-head cell
in an RB(7 and each Cl-node has a pointer to keep its virtual arc, when it is
determined. The pointer is Nuu. while the virtual arc is not known.

Values h(u) and b(u)

For each vertex u of G, denote by h(u) the largest numbered neighbor of u in G.
This value can be computed together with a DFS-numbering, and can be stored
in an array at the beginning of the algorithm.

For each node u of T, let b(t;) := maxlh(u) : u is a descendant ofu in T}. For a
C-node of T, this number does not change during the execution of the algorithm.
On the other hand, for a P-node of T, this number might decrease because its set
of descendants might shrink when T is modified. So, in the implementation, the
value of b(c) for a C-node c is computed and stored when c is created. It is the
maximum over b(u) for all u in the path in T corresponding to the Xy-path in
F that originated c. One way to keep b(t;) for a P-node u is, at the beginning of
the algorithm, to build an adjacency list for G sorted by the values of h, and to
keep, during the algorithm, for each P-node of T, a pointer to the last traversed
vertex in its sorted adjacency list. Each time the algorithm needs to access b(u)
for a P-node u, it moves this pointer ahead on the adjacency list (if necessary)
until (1) it reaches a vertex u which has u as its parent, in which case b(u) is the
maximum between h(u) and b(u), or (2) it reaches the end of the list, in which
case b(t,) = h(u).

'l)aversal of the PC-tree

The traversal of the PCl-tree T, inspired by Boyer and Myrvold l3, 41, is done
as follows. To go from a P-node u to a node u which is an ancestral of u in T,



10

(d) o ll
A

6
C2

15 14

6
cl

-04 . . - .a . . . .34 3 1

: i '
Fig. 7. (a) A graph G, a DFS-numbering of its vertices and, in thick edges, a dame F
of Cjl . . 111 in G. (b) Black vertices in frame F are inactive. (c) The PC-tree T for F,
with Egos indicated in dotted. (d) Rooted tree T ' corresponding to T; virtual arcs
are dashed.

one starts with z = u and repeats the following procedure until z = u. If z is a
P-node and nonheadRz?a.ceZZ(z) is Nul.I,, move z up to its parent. If z is a P
node and nonheadRl?a.ceJZ(z) is non-NUI.L, either its virtual arc is NULL or not.
If it is non-Nul.I,, move z to the C-node pointed by the virtual arc. Otherwise,
starting at norzheadRZ7a.ce/Z(z), search the RZ?a in an arbitrary direction until
either (1) the head of the Rl?a is reached or (2) a cell in the RZ?(7 with its virtual
arc non-NUH, is reached or (3) a P-node # such that b(y) > w is reached. If (3)
happens before (1), search the R.BO, restarting at nonheadR.BC.cell(z), but in
the other direction, until either (1) or (2) happens if (1) happens, move z to
the C-node pointed by the head. If (2) happens, move f to the C-node pointed
by the virtual arc. In any case, search all visited cells in the RBa again, setting
their virtual arcs to z. Also, set the virtual arc from z to the head of its R1?(7.

In a series of moments, the implementation traverses parts of T. For each
node of T, there is a mark to tell whether it was already visited in this iteration
or not. By visited, we mean a node which was assigned to z in the traversal
process described above. Every time a new node is included in T, it is marked as
unvisited. Also, during each phase of the algorithm where nodes are marked as
visited, the algorithm stacks each visited node and, at the end of the phase, un-
stacks them all, undoing the marks. This way, at the beginning of each iteration,
all nodes of T are marked as unvisited.

The game trick with a stack is done to unset the virtual arcs. When a virtual

arc for a node u is set in the traversal, u is included in a second stack and, at
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the end of the iteration, this stack is emptied and all corresponding virtual arcs
preset back to NULL.

Terminals

The next concept, introduced by SH, is the key on how to search efficiently for
an Xy-obstruction. A node t of T is a fermfnaJ if

(tl) Z,(t) > w;
(t2) t has a descendant in T that is a neighbor of w in Gi
(t3) no proper descendant of t satisfies properties (tl) and (t2) simultaneously.

Because of the orientation of the PC-tree, one of the terminals from Section 4
might not be a terminal here. This happens when one of the terminals from
Section 4 is an ancestor in the PC-tree of all others. An extra eHort in the
implementation is necessary to detect and deal with this possible extra terminal.

The first phase of an iteration of the implementation is the search for the
terminals. This phase consists of, for each neighbor u of w such that u < w.
traversing T starting at u until a visited node z is met. (Mark all nodes visited
in the traversall this will be left implicit from now on.) On the way, if a node
u such that b(u) > w is seen, mark the first such node as a candidate-termfnaZ
and, if z is marked as such, unmark it. The result from this phase is the list of
terminals for each component of F

Search for Xy-obstructions

The second phase is the search for an Xy-obstruction. First, if there are three
or more terminals for some component of F, then there is an Xy-obstruction of
type either (o2) or (o3) in F (Case 2 of Central algorithm). We omit the details
on how to eHectively find it because this is a terminal case of the algorithm.
Second, if there are at most two terminals for each component of F, then. for
each component of F with at least one terminal, do the following. If it has two
terminals, call them ti and t2. If it has only one terminal, call it fi and let tZ
be the highest numbered vertex in this component. Test each C-node c on the
path in T between tt and t2 for an Xy-obstruction of type (ol) (Close IB of
Clentral algorithm). The test decides if the cycle in /' corresponding to c plays
or not the role of a in (ol). Besides these tests, the implementation performs
one more test in the case of tu,o terminals. The least common ancestor m of ti
and t2 in T is tested for an Xy-obstruction of type (o2), if m is a C-node, or an
Xy-obstruction of type (o3), if m is a P-node. This extra test arises from the
possible undetected terminal.

To perform each of these tests, the implementation keeps one more piece
of information for each C-node c. Namely, it computes, in each iteration, the
number of P-nodes in R-Ba(c) that see X through EP \ Eo, where C ' is the cycle
in F ' corresponding to c. This number is computed in the first phase. Each a-
node has a counter that, at the beginning of each iteration, values I (to account
for the head of its -Rl?C '). During the first phase, every time an RBa is entered
through a P-node which was unvisited, the counter of the corresponding C-node
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is incremented by 1. As a result, at the end of the first phase, each (relevant)
C-node knows its number.

For the test of a C-node c, the implementation searches R.BC'(c), starting
at the head of R.BC'(c). It moves in an arbitrary direction, stopping only when
it finds a P-node u (distinct from the head) such that b(u) > u. On the way,
the implementation counts the number of P-nodes traversed. If only one step is
given, it starts again at the head of J?l?a(c) and moves to the other direction
until it finds a P-node u such that b(u) > w, counting the P-nodes, as before.
If the counter obtained matches the number computed for that C-node in the
first phase, it passed the test, otherwise, except for two cases, there in an Xy-
obstruction of type (ol). The first of the two cases missing happens when there
are exactly two terminals and c is the lower common ancestor of them. The
second of the two cases happens when there is exactly one terminal and c is
(potentially) the upper block in which the Xy-path ends. The test required
in these tn,o cases is slightly di#erent, but similar, and might give raise to an
Xy-obstruction of type (ol) or (o2). We omit the details.
PC-tree update
The last phase refers to Case 2B in LEC method. It consists of the modification
of T according to the new frame. First, one has to add to T a P-node for w.
Then, parts of T referring to a component with no neighbor of w remain the
same. Parts of T referring to a component with exactly one neighbor of to are
easily adjusted. So we concentrate on the parts of T referring to components
with two or more neighbors of w. Each of these originates a new C-node. For
each of them, the second phase determined the basis of an Xy-path, which is
given by a path (2 in T. Path C? consists basically of the nodes visited during
the second phase. Let us describe the process in the case where there is only one
terminal. The case of two terminals is basically a double application of this one.

Call c the new C-node being created. Start R.B(7(c) with its head cell, which
refers to w, and points back to c. Traverse (2 once again, going up in T. For
each P-node u in Q such that nonheadRBO-ce/I(u) is NULL, if b(u) > w (here
we refer to the possibly new value of b(u), as u might have lost a child in the
traversal), then an l?l?a cell is created, referring to u. It is included in Rl?O(c)
and nonheadRl?O.cell(u) is set to point to it. For each P-node u such that
nonheadR.Ba.ceZJ(u) is non-NULL, let c ' be its parent in T. Concatenate to
R.BC'(c) a part of RBa(c '), namely, the part of R.BC'(c ') that was not used to
get to c ' in any traversal in the second phase. To be able to concatenate without
traversing this part, one can use a simple data structure proposed by Boyer
and Myrvold l4, 31 to keep a doubled linked list. (The data structure consists
of the cells with two indistinct pointers, one for each direction. To move in a
certain direction, one starts making the first move in that direction, then, to
keep moving in the same direction, it is enough to choose always the pointer
that does not lead back to the previous cell.)

During the traversal of Q, one can compute the value of b(c). lts value is
simply the maximum of b(u) over all node u traversed. This completes the de-
scription of the core of the implementation.
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Certificate

To be able to produce a certificate for its answer, the implementation carries
still more information. Namely, it carries the DFS-tree that originated the DFS-
numbering of the vertices and, for each C-node, a combinatorial description
of a planar embedding of the corresponding biconnected component where the
P-nodes in its R.Ba appear all on the boundary of the same face. We omit the
details, but one can find at http : //www . ime . usp for/'coelho/sh/ the complete
implementation, that also certificates its answer.

6 Experimental study

The main purpose of this study was to confirm the linear-time behavior of our
implementation and to acquire a deeper understanding of SH algorithm. Boyer
et aZ. jill made a similar experimental study that does not include SH algorithm.

The LEDA platform has a planarity library that includes implementations
of Hopcroft and Tarjan's (HT) and BL algorithms and an experimental study
comparing them. The library includes the following planar graph generator rou-
tines: maximal-planar-map and random.planar-map. Neither of them generates
plane maps according to the uniform distribution j141, but they are well-known
and widely used. The following classes of graphs obtained through these routines
are used in the LEDA experimental study:

(GI) random planar graphsl

(G2) graphs with a K3,3: six vertices from a random planar graph are randomly
chosen and edges among them are added to form a K'3.3;

(G3) graphs with a K'S: five random vertices from a random planar graph are
chosen and all edges among them are added to form a .KSI

(G4) random maximal planar graphsl

(G5) random maximal planar graphs plus a random edge connecting two non-
adjacent vertices.

Our experimental study extends the one presented in LEDA including our
implementation of SH algorithm made on the LEDA platform and an imple-
mentation of BM algorithm developed in C. We performed all empirical tests
used in LADA to compare HT and BL implementations j151. The experimen-
tal environment was a PC running GNU/Linux (RedHat 7.1) on a Celeron
700MHz with 256MB of RAM. The compiler was the gcc 2.96 with options
-DLEDA.CHECKING.OFF -0.

In the experiments jlS, p. 1231, BL performs the planarity test 4 to 5 times
faster than our SH implementation in all five classes of graphs above. For the
planar classes (GI) and (G4), it runs 10 times faster than our SH to do the
planarity test and build the embedding. On (G2) and (G3), it is worse than our
SH, requiring 10% to 20% more time for testing and finding an obstruction. On
(G5), it runs within 65% of our SH time for testing and finding an obstruction.
For the planarity test only, HT runs within 70% of our SH time for the planar
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classes (GI) and (G4), but performs slightly worse than our SH on (G2) and
(G3). On (G5), it outperforms our SH, running in 40% of its time. For the
planar classes (GI) and (G4), HT is around 4 times faster when testing and
building the embedding. (The HT implementation in question has no option to
produce an obstruction when the input graph is non-planarl indeed, there is no
linear-time implementation known for finding the obstruction for it 1221.) BM
performs better than all, but, remember, it is the only one implemented in C
and not in the LADA platform. It runs in around 4% of the time spent by our
SH for testing and building the embedding and, for the non-planar classes, when
building the obstruction, it runs in about 15% of our SH time on (G2) and (G3)
and in about 10% of our SH time on (G5). (There is no implementation of BM
available that only does the planarity testing.) The time execution used on these
comparisons is the average CPU time on a set of 10 graphs from each class.

(GI)TEST IG2)TEST+0BSTRUCTION

0 10000 20000 30000 40000 50000 60000

Number of vertices

0 10000 20000 30000 40000 50000 60000

Number of vertices

IG5)TEST+0BSTRUCT10N

0 10000 20000 30000 40000 50000 60000
Number of vertices

Fig. 8. Empirical results comparing SH, HT, BL, and BM implementations
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Figure 8 shows the average CPU time of each implementation on (a) (GI) for
only testing planarity (against BM with testing and building an embedding, as
there is no testing only available) , (b) (G2) for testing and finding an obstruction
(HT is not included in this table, by the reason mentioned above), (c) (G4) for
testing and building an embedding, and (d) for testing and firming an obstruction
(again, HT excluded).

We believe the results discussed above and shown in the table are initial and
still not conclusive because our implementation is yet a prototype. (Also, in our
opinion, it is not fair to compare LEDA implementations with C implementa-

Our current understanding of SH algorithm makes us believe that we can
design a new implementation which would run considerably faster. Our belief
comes, first, from the fact that our current code was developed to solve the
planarity testing only, and was later on modified to also produce a certificate
for its answer to the planarity test. Building an implementation from the start
thinking about the test and the certificate would be the right way, we believe, to
have a more efficient code. Second, during the adaptation to build the certificate
(specially the embedding when the input is planar) made us notice several details
in the way the implementation of the test was done that could be improved.
Even though, we decide to go forward with the implementation of the complete
algorithm (test plus certificate) so that we could understand it completely before
rewriting it from scratch. The description made on Section 5 already incorporates
some of the simplifications we thought of for our new implementation. It is our
intention to reimplement SH algorithm from scratch.

toons
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Finding Large Planar Subgraphs and
Subgraphs of a Given Genus

Large

Gruia Cilinescu ''' and Cristina G. Fernandes M

Georgia Institute of Technology

Abstract. We consider the MAXIMUM PLANAR SUBGRAPH prob-
lem - given a graph G, find a largest planar subgraph of G. This problem
has applications in circuit layout, facility layout, and graph drawing. We
improve to 4/9 the best knowrl approximation ratio for the MAXIMUM
PLANAR SUBGRAPH problem. We also consider a generalization of the
previous problem, the MAXIMUM GENUS D SUBGRAPH problem
given a connected graph G, find a maximum subgraph of G of genus at
most Z). For the latter problem, w-e present a simple algorithm whose
approximation ratio is 1/4.

I Introduction

The MAXIMUM PLANAR SUBGRAPH problem is: given a graph G, find a sub-
graph of G of maximum size, where size is the number of edges. This problem has
applications in circuit layout, facility layout, and graph drawing [F92, TDB881.

MAXIMUM PLANAR SUBGRAPH is known to be NP-Complete [LG77].
Therefore we are looking for polynomial-time approximation algorithms. For a
graph G, let Opt(G) be the maximum size of a planar subgraph of G. Given
an algorithm A that takes (representations of) graphs G as input and outputs
planar subgraphs of G, define A(G) to be the size of the planar graph A pro-
duces when G is the input. Now let us define A's perlformarzce or approrimatfon
ratio to be the infimum, over all (representations of) graphs G, of A(G)/Opf(G)
(if Op{(G) > 0, and I otherwise). In the literature, authors sometimes ensure
that their performance ratio is at least one by defining it to be the reciprocal
of ours. The goal is to find a polynomial-time approximation algorithm with
approximation ratio as big as possible.

The following concept is useful for finding large planar subgraphs. A frfarz-
gu/ar structure is a graph whose a]] cyc]es are triangles (i.e., have length three).
Note that triangular structures are planar: a triangular structure cannot contain
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a subdivision of /X's or /(3.3. In fact, all the blocks of a triangular structure are
edges or triangles.

Before the algorithm presented in ICFFK96j, the best known approximation
ratio for the MAXlhlUM PLANAR SUBGRAPH problem was 1/3. The basic
idea of that paper was to look for large triangular structures. More specifically,
the best algorithm presented in [CFFK96], from now on denoted by A, simply
outputs a maximum triangular structure in the input graph G (that is, which is
a subgraph of G). Finding a maximum triangular structure in G is solvable in
polynomial time, by using a matroid parity algorithm ILP86, GS851.

Given a graph #, let mts(H) denote the number of edges in a maximum
triangular structure in #. Define p(H) = mts(#)/I.F(H)I if -F(H) # g, and
p(n) = I if E(H) = a. If # is a maximum planar subgraph of G, then mts(G) ?
mts(H) = p(X)IZ(X)I, implying that the approximation ratio of algorithm A
is at least p(H). In fact, it is exactly p(G), if the input graph G happens to be
planar.

In [CFFK96], it was proved that p(#) ? 2/5 = 0.4, provided that H is planar.
It was also shown that there is a family of planar graphs H{ for which p(#i)
tends to 4/9. In this paper, we show that for any planar graph -llr, p(H) Z 4/9.
It follows that the approximation ratio of algorithm A is exactly 4 = 0.444 . .
This improves the best known ratio for the hIAXIMUM PLANAR SUBGRAPH

Next we consider the MAXIMUM GENUS 1) SUBGRAPH problem: given a
connected graph G and an integer d 2 0, find a subgraph -17 of G of maximum
size with an embedding of genus at most d. This is, to our knowledge, the first
time this problem is considered in the literature.

This problem is NP-hard. The particular case when d = 0 is the MAXIMUM
PLANAR SUBGRAPH problem. And, deciding if G is the optimum solution is
equivalent to deciding if the genus of G is at most d, which is an NP-complete
problem ITh89].

There is a trivial polynomial-time approximation algorithm for the MAX-
IMIUM GENUS Z) SUBGRAPH problem with performance ratio of 1/6. We
describe a new algorithm and prove its performance ratio is at least 1/4

In section 2, we give a better lower bound on the size of a maximum triangular
structure in a planar graph. Also, we conclude that 4/9 is the approximation ratio
of algorithm A. In section 3, we describe and analyze the new algorithm for the
MAXIMUM GENUSDSUBGRAPHproblem.

to 4/9

2 Maximum Triangular Structures in Planar Graphs

A trfangu/ar cactus is a graph all of whose edges lie in cycles and all cycles
are triangles. In this section, we give a better lower bound on the number of
triangles in a maximum triangular cactus in a planar graph. Using this lower
bound, we prove that p(H) ? 4/9, for any planar graph H. Previously, the best
lower bound for p(#) was 2/5 ICFFK961



Let G be a graph on n vertices. Let 7' = {Vi,. . .,Mx} be a partition of
the vertices of G and Q = {Ei, . . . , .F«} be a partition of the edges of G. For
I $ { $ m, let ui denote the number of classes (from now on, sometimes referred

to as co/or c/ashes) % of P met by .Ei. We call the ordered pair (?, Q) ua/fd /or
G if every triangle of G has either at least two vertices in the same block of P
or all three edges in the same block of (2. Set

@(P',Q) « k + E=:: 1"'#-J li)

Note that @(P ', Q) ? 0, and that there is always a valid pair (P, Q) for G (e.g.,
p'=lb''(G)},Q={.F(G)}). ' ' ' ''

According to Lovfsz and Plummer ILP861, we have the following theorem:

Theorem 1. The number o/frfang/es in a maximum trfangu/ar cacftls fn a graph
G f ' 'q«aJ to the mi«im«m o/@(7', Q) fak '« o.., «JZ «.Jfd p'f,' (7', Q) /o, G. ;

Let G be a planar graph with n vertices. Embed G in the plane without
crossing edges, obtaining a plane graph. Let t be the number of edges missing
for this embedding to be triangulated. A triangulated plane graph has 3n -- 6
edges, if n 2 3. So t = (3n -- 6) -- IZ(C)I, that is, it does not depend on the
embedding.

We will prove the following theorem.

Theorem 2. fet G be a connected planar graph with n > 3 uertfces. Z,et f be fhe
number of missing edges, defined as abode. Then

@(7', Q) Z :(n - 2 - f), /o ' a// -a/fd paf,s (7', Q) .P, (,;. l2)

Prod/ By induction on the number of edges of G. Let us denote by .Ec the edge
set of G and by }'c its vertex set.
Basis. leal $ 2n 4.

Then t 2 (3n -- 6) -- (2n -- 4) = n -- 2, and Theorem 2 holds, since @(7', Q) ?
0 ? i(n 2- t)
/nductfoe step. leal > 2n -- 4

Suppose that, for any connected planar graph H on n vertices such that
IExl < leal, Theorem 2 holds for H. Let us prove that theorem 2 holds for G.

We begin by embedding (; in the plane without crossing edges, obtaining a
plane graph. Next, we augment G to get a triangulated plane graph G '. The
edges we add are called missing edges. The number of missing edges in G ' is t.

Let (7',Q) be a valid pair for G, with 7) = {Vi,...,UX} and Q =
{E:,. . ., E.}. As before, for I $ f $ m, let u{ denote the number of classes
b of P met by E{. We may assume that if uiS 2, then IZi= 1. (if ui $ 2
and l-Eil > 1, then we can split Ei into individual edges, obtaining a new edge
partition Q '. Any triangle in G with three edges in the old Ef has also at least

; Lov6sz was contacted and agreed that the formula given here, which differs slightly
from that in [LP86], is correct.



two vertices of the same color, because uiS 2. Therefore (P ', Q ') is also a valid
pair for G. And, moreover, @(P, Q ') = @(P, Q), because llf?J = 0 when u $ 2.)

Assume that for l$ f $ q, IUl= pi? 2 and for g < i$ k, IUl= 1. The
last k -- g blocks are singletons. Let us call a vertex f a singleton if {a;} € P '
Let s = h q be the number of singletons and p = )ll:lr:i pf be the number of
vertices which are not singletons. So

n =p+s and k= q+s l3)

Observe that P ' is a partition of the vertices of G ' (since G and G ' have
the same vertex set), Q is a partition of the edges of G (not of G '), and for
any triangle of G ' (not of G), facial or not, at least one of the following three
conditions holds
jl) At least two of its vertices are of the same color. We say that the triangle is
covered by a color.
l2) All three edges are in the same class Ej of Q. We say that the triangle is
covered by art edge class.

(3) One or more of its edges is a missing edge. This corresponds to the fact that
this triangle does not exist in G. We say that the triangle is covered by a missing

A /Uefa/ trfarzgle is a triangle in G ' which is the boundary of some face of G '
A facial triangle T of G ' is a /acfal trfarzgle rzezghborfrzg uerter u if it contains u.

Let us partition the set of singletons into three sets .4, .B, C, according to
how the facial triangles neighboring these singletons are covered.

edge

,4: The set of singletons all of whose neighbors are of the same color.
B: The set of singletons f not in .4 such that there is an edge class which covers

one of the facial triangles neighboring f
G: The,set of all singletons not in ..'l U -B

Notice that all the facial triangles neighboring a singleton in .4 (even the ones
containing missing edges) are covered by a color. Also not all facial triangles
neighboring a singleton in (; ale covered by a color class (otherwise, all of its
neighbors would have the same color and this singleton would be in .A)= And no
facial triangle neighboring a singleton in C is covered by an edge class (otherwise,
this singleton would be in set Z?l.

Let a, b and c be the sizes of .4, B and (.;, respectively. Observe that s, the
number of singletons, satisfies

s = a+b+c l4)

For each singleton f in B, we choose an { such that Ef covers a facial triangle
neighboring r. We denote by si the number of singletons f which have chosen
Ei. Observe that -Ef meets all singletons which have chosen -Bil therefore

'i $ ui. (5)

Moreover, if IEil = 1, then s{ = 0, because Ei cannot cover any triangle.



(;ase 1; There is an { such that ui = s{ = 4
This means that there are four distinct singletons f, y, w, z in 1? which are the

only vertices .Ej meets. Each of f, y, w, z has chosen Ei, implying that .Ef must
cover a facial triangle neighboring z. This facial triangle meets only a subset
of these four vertices. Without loss of generality, we may assume this facial
triangle is rg/w. Ei also covers a facial triangle neighboring z. Also without
loss of generality, we may assume it is 3/toz. Then {£3/, 3/m, zw, yz, wz} f Ei f
{fg/, g/u ', zu ' , g/z , wz, a;z} .

Let Gi be G after we remove the edges yw and a;z (if edge zz exists). From
the pair (?, Q), which is valid for G, we obtain a pair (7), Qi) which is valid for
Gi by taking Qt = Q, except that the ita block of Qi is .E{ -- {g/w, rz} split into
individual edges (and otherwise the partitions are the same). Note that this pair
l7), Qt) is indeed valid for Gi: each triangle in GI is covered exactly as it was
covered in G (the triangles covered by class Ef do not exist in GI).

Observe that Gi is connected, and so it is a connected planar graph. More-
over, it has fewer edges than G. Thus, we can apply induction, and conclude
that @(7), Qt) ? : (n -- 2 tl), where tt is the number of missing edges for Gi

to be triangulated. Because we removed at most two edges from G to get Gi,

The new classes in Qt have zero contribution to @(P, QI) (since any edge
class of size one contributes zero), and, since the contribution of .Ff to @(P, Q)
is l4:?J = 1,itfollowsthat@(P',Qi) =0(7',Q)--i. ' ' ' ''

Putting all this together, we have that

ti $ t + 2

p(z ', e) ; a(7', Q:)+12 il("-2-t:)+i? {("-2-(f+2))+i? :l("-2-t)
Case 2. There is no f such that ui = si= 4.

Clonsider pairs (.j, F), where I $ j $ q and /' is a face of C']b], the plane
subgraph of G ' induced by the vertex set },. Let c ' be the number of such'pairs
(J, F ') where some vertex not in .4 is embedded in F. Call each of these c ' pairs
special.

Recall that p is the number of vertices which are not singletons, q is the
number of color classes with more than one vortex, { is the number of missing
edges in G ', and a, b, c are the numbers of singletons in A, B, a, respectively.

The next lemmas give upper bounds on a, b and c, which will be needed to
complete the proof of Theorem 2.

Lemma 3. a $ 2p -- 3g -- c '

Proo/ Each singleton f in .4 has al! neighbors of some color J $ q. Clearly a; is
embedded in a face of G'lUc -- {fll. Because all neighbors of z are in t6, this
face F is also a face of G']tJ], and there cannot be any other vertex embedded
in r '. Therefore the size a of .A is at most the number of pairs (j, f ') which are
not special

The maximum number of pairs (J, F), where f ' is a face of C']b], is 2pj -- 3
jif PJ = 2 then it has only one facet if pj > 2 then it has the maximum number



of faces when it is triangulated, and in this case, it has 2pj -- 4 faces). Therefore
there are at most E1:3;i(2pj -- 3) = 2p -- 3q pairs (j, F), where J $ q and F is
a face of a']b]. From these pairs (j, /'), c ' of them (the special ones) have a
vertex not in ..'l embedded in F. Thus the number of pairs (j, F) which are not
specia[ is at most 2p -- 3g -- c ', and therefore a $ 2p -- 3q -- c '. []

Lemma 4. Z ' $ 3 )ll:Z:i [!iiiJ;J

Prod/ if we prove that si $ 3lli5=liJ, then by summing si $ 3llfi?iJ over
f C {1, 2, ..., m}, the lemme follows, since b = :1:1:t si

First, if uiS 2, then IZi = 1, which implies that si = 0. And, so si = 0 =
SI 2 J. If ui > 2, then by equation (5), we know that si $ ui. As a consequence,

siS 31 , j can only be false if u{ = si = 4. But this does not happen because
we are given that for no f does ui= si= 4. []

Lemma 5. c < t + c '

Proo/ A missing edge covers at most two facial triangles. Therefore, it sufbces
to prove the existence of at least 2c -- 2c ' facial triangles which must be covered
by missing edges

Let us associate a set of facial triangles with each component of C'[(.;]. hlore
specifically, for a component of a'lCI whose vertex set is I), let us associate a set
of either 2lnl dr 21l)1 -- 2 facial triangles, each with at least one vertex in 1), such
that each such facial triangle must be covered by a missing edge. We will make
sure that each of these facial triangles will have its three vertices in di#erent
color classes and at least one of them is in a. (The triangle is not covered by a
color class and, because of the vertex in (l;, it is not covered by an edge class.
So, it has to be covered by a missing edge.)

Observe that the sets of facial triangles corresponding to two different com
portents of C'[(;] are disjoint (since there is no edge between two di#erent com-
ponents of a'[(;], there cannot be a triangle with vertices in two di#erent com-
ponents of a'Ecl). If at most c ' of the components are associated with a set with
2lZ)1 -- 2 facial triangles, then in total we must have at least 2c -- 2c ' facial tri-
angles which must be covered by missing edges (since }l:o IZ)I = c). This would
complete the proof of Lemme 5.

Let Z) be the vertex set of a component of C']C] A re/euarzt /aaa/ tr£ang/e
/or D is a facial triangle of G ' with at least two vertices in 1). Let /o be the
number of faces of C'jZ)I (which is a connected graph), /3 be the number of faces
of a'lol which are also faces of G ', and eD be the number of edges in a'lol

Because leal > 2n 4, there are at most(3n--6) --(2n--4+1) = n--3
missing edges. A missing edge covers at most two facial triangles. So there are at
most 2rz -- 6 facial triangles covered by missing edges. But in G ' there are 2n -- 4
facial triangles (all the faces of G '). Thus, there are facial triangles covered by
colors or by edge classes. If there are facial triangles covered by colors, then some
vertices have the same color. This means that there are vertices which are not

singletons, implying C ?4 ya if all vertices are singletons and a facial triangle is



covered by an edge class, then the singletons neighboring this facial triangle are
in l?. It follows that C # UC

Embedded in the faces of a'lz)I are all the vertices of VC -- D. Now yC -- D :)
yc -- C # a. Thus there is at least one face of G']D] which contains some vertex
of Uc -- Z) #: g- This face of a'lz)I is not a face of G ', since no face of G ' contains
any vertex. Thus /3 < /o .

Claim 6 ///3 = /o -- I there there are at least 2lZ)1 -- 2 relevant /ncfaJ trfartg/es
for D. if ia < fn - 'Z then there are at least '2\D\ relevant facial triangles for D.

Proo/ A relevant facial triangle for Z) has at least two vertices in Z), which means
it contains an edge e in C'lnl. But e is contained in exactly two facial triangles
of G '. These are the only two relevant facial triangles for D that contain e. This
would give us 2eo of the desired relevant facial triangles for D, except that not
all of them are distinct. If a facial triangle is counted by two edges, then all three
of its vertices are in 1), which implies it is a face of C'jZ)I (and, being a facial
triangle, also of G '). Moreover, it was counted exactly three times (once for each
of its edges). Therefore we have 2eo -- 2/s relevant facial triangles for Z). Now,
if /3 = /o. -- 1, applying Euler's formula, we get 2eo 2/3 = 2eo -- 2(/o -- I) =
2(IDI 2) + 2 = 2lOI -- 2 relevant facial triangles. If /3 $ /n -- 2, we get
2eo -- 2/3 ? 2en -- 2(/o -- 2) = 2(lnl -- 2) + 4 = 21.OI. n

Include these 2lZ)I (if possible) or 2lnl -- 2 relevant facial triangles in the set
of facial triangles corresponding to G'fl)]

To guarantee that at most c ' of the components of C'lCI have only 2lZ)1 -- 2
facial triangles in their corresponding sets, we will need to add two more facial
triangles to some of the sets that currently have only 21.0I 2. Now let 1) be
the vertex set of a component of a'[(71 such that a]] the faces of G'rZ)] but one
are faces of G ', that is, /3 = /o -- I. (Any component induced by a set ly with
/3 $ /o, -- 2 already has 2lZyl associated facial triangles.)

Since all the faces of C'lnl but one are faces of G ' , by the previous paragraph,
all the vertices in Uc D must be embedded in the same face of C']-O] (that
face is the only face which is not a face of G ').

Claim 7 Z,et G ' be a trfarzgulated plane graph with ziertez sef V '. .Lef 1) be a
Iron-empty) set of \vertices of G' such that the subgraph of G' induced by D,
(r'lZI)I, is connected, and a/J uerlices in 1/ -- Z) are emzbedded in the same /ace o/
C'lZ)I. Then G'lV ' -- 1)1 is corznected.

For this extended abstract, we omit the proof of this claim, and also the proof
of next claim.

Because C']O] is connected, all vertices of Z) are embedded in the same face
of G'lyc Z)I. Call this face /''

Claim 8 0ne o/ fhe /o//owing ho/ds;
.a) At! the vertices on the boundary oj F ' are of the same color j $ q
case, f '' is a /ace o/ C'll,GI.

In this



Kbb There are t\oo distinct facial triangles ofG' , each with exactly.one uerte= in
D and the other tloo vertices of di#erent colors.

If (b) holds, add the two extra facial triangles to the set of facial triangles
corresponding to C'lOI. Note that they are di#erent from the ones already in
the set because they contain exactly one vertex of -D and all the others contain
at least two vertices of Z). Each set 1) for which (b) holds is now associated with
a set of at least 2lOI facial triangles.

For hou many components of C'lC'l can (a) hold? Let us show that each
component of a'lcl for which (a) holds correspot)ds to one of the c ' special
pairs, and that di#erent components correspond to diRerent special pairs.

Let D be the vertex set of a component of C'lCI for which (a) holds. Let us
prove that there is a special pair (.j, F ') such that the only vertices ofC embedded
in F '' are the vertices in D. Let F ' be the face of G'Eya 1)] in which the vertices
of D are embedded. Recall that G'lyC -- i)I is connected. Because (a) holds for
this component, F '' is a face of a'l\GI. Since the vertices of D are embedded in
F''.. and vertices of 1) are not in ..4. some vertex not in ..4 is embedded in /'': this

makes the pair (.j, /'') special. The only vertices of G ' embedded in F '' are in Z)
(because F '' is a face of G']UC -- J)]). Since the only vertices of C ' embedded in
F' are the vertices in D, no other component of O'l(;l (with a di#erent set I))
will correspond to this pair (J, F ').

So the number of components such that (a) holds is at most the number c ' of
special pairs. Thus there are at most c ' components of C'lCI such that (a) holds,
which completes the proof of Lemme 5, by the discussion in the third paragraph
of the proof. n

Using (1) and the upper bounds given by the previous lemmas, we conclude
the proof of Theorem 2 as follows:

a(I '', o) = « - k + EZ:l''#'J, by(i),
= p - q + E=::1"?'J , by (3),
? p -- q + b/3, by Lemme 4,

= p -- g+(s -- a -- c)/3, by equation(4),

? p- q+ s -(2P - 3q . c ') --(t + c '), by L.mmas 3 and 5,

=(p + s)/3 -- t/3 = n/3 -- {/3, by the first equation in(3),

2 (n 2 t)/3. D

Corollary9. /J H is a plane graph, then p(#) ? {

Proof We may assume # is connected and has at least three vertices. Let t
be the numbed of missing edges for H to be triangulated. By Euler's formula,
E(H)1 = 3n -- 6 t, where n ? 3 is the number of vertices of#

A maximum triangular structure in H can be obtained by extending a max-
imum triangular cactus to a corlnected graph (by adding edges without forming



any new cycles). Also, a maximum triangular structure in -ZI has one more edge
per triangle than a spanning tree of .I/.

From theorems I and 2, the number of triangles in a maximum triangular
cactus is at. least {(n 2 -- t). From this, we conclude that mts(#) ? n l+
!(n -- 2 -- t), and then

,(#) ? g . .+-- : il:;:l£ 2 ;, ''- ,-i ' ? o.
D

Recall, the output of algorithm A is a maximum triangular structure in the
input graph.

Corollary 10. The performance ratio o/ a/gorffhm .4 is 5

3 Subgraphs of a Given Genus

In this section, we describe and analyze an algorithm for finding a large subgraph
(of a given graph) with an embedding of genus at most d.

Without loss of generality, we may assume that the input graph G has at least
n -- I +d edges. Recall that G is connected. So, consider P a connected spanning
subgraph of G with n -- 1 + d edges. It is easy to find an embedding of P of genus
d: a spanning tree of P is planar, and adding one edge increases the genus of the
embedding by at most one. One can think of this as putting a new handle for
each of the d edgeil we add. Since, by Euler's formula, Opt(G) $ 3n + 6d -- 6,
we have l-B(P)1 2 {Opt(G). It follows that achieving an approximation ratio of
1/6 is trivial.

Notice that for the above P to have a ratio of exactly 1/6, the embedding of
genus d of an optimum solution H must be almost triangulated (that is, almost
all the faces have length three).. Therefore G has many triangles, which we can
use as follows: if P is a connected graph with an embedding of genus g, and 7'
is a triangle with all vertices in P, then the graph (L'(P), E(P) U E(7')) has an
embedding of genus at most g -F 2

We hope to embed three more edges, but increase the genus by only two. A
detailed analysis shows that, using this idea, we can develop an algorithm with
approximation ratio of 1/4. Using more complicated graphs instead of triangles,
one can obtain a more complicated algorithm with approximation ratio of } + c,
for some small positive c.

For simplicity, we shall only give a high level description of the algorithm.

Algorithm B
Step /.- Start with a plane embedding of P, a spanning tree of the input graph

Step 2. Repeatedly (as long as possible, and while the genus of the resulting
embedding of P is at most d) find a triangle T of G which has at least two edges
not in P. Add the edges of the triangle (not in P) to P, modifying the embedding



of P, so that its genus increases by at most one if two edges are added, or at
most two if all three edges of 7' are added.

Step J. Repeatedly (as long as possible, and while the genus of the resulting
embedding of P is at most d) add an edge of -E(G) \ E(P) to P, modifying the
embedding of P, so that its genus increases by at most one.

Step #. Output P and the embedding of P of genus at most d

Note that the algorithm can be implemented in polyrlomial time, since one
can exp]icit]y ]ist a]] the triangles of G in time IE(C)l} [CN851. Also steps 2 and
3 iterate at most IZ(C)I times.

Theorem 11. The approrfmatfon ratio o/ algorithm B zs

We omit the proof of this theorem by lack of space

4 open Problems

To our knowledge, nothing is known about a polyrlomial-time algorithm with
constant approximation ratio for finding the genus of a given graph
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Multicuts in Unweighted Digraphs with
Bounded Degree and Bounded Tree-Width

Gruia Cilinescu * Cristina G. Fernandes t

Abstract
The Directed Multicut problem can be defined as: given a digraph Z) and a collection of k pairs

of distinct vertices (si, ti) of Z), find a minimum set of edges whose removal ensures that none of the
strongly connected components includes one of the k pairs of vertices. We restrict our attention ta
bounded-degree and bounded-tree-width digraphs (the directed version of tree-width) and present some
bad and good news; Bad news: Directed Multicut is still NP-hard in unweighted digraphs with tree-
width one and bounded degree. Good news: there is a polynomial-time approximation scheme (PTAS)
for Directed Multicut in unweighted digraphs with bounded tree-width and bounded degree, that is, for
any E > 0, there is a polynomial-time (I + c)-approximation algorithm.

I Introduction

We consider the Directed Mlulticut problem, introduced by Klein, Plotkin, Rao and Tardos l3l: given a
digraph -D and a collection of k pairs of distinct vertices (si, ff) of Z), find a minimum set of edges whose
removal ensures that none of the strongly connected components includes one of the k pairs of vertices. In
other words, for all {, either all paths from si to tf or all paths from ff to si must be broken.

A particular case of this problem is the Feedback Arc Set problem: given a digraph .D, find a
minimum set of arcs of -D whose removal results in an acyclic digraph. This problem is known to be NP-
hard l21, therefore so it is the I)irected Multicut. We thus search for efficient approximation algorithms.
The performance rat o o/ an appraz nation algorithm .4 for a minimization problem is the supremum, over
all possible instances /, of the ratio between the size of the output of .A when running on .r and the size of
an optimal solution for /. We say ..4 is an cr-approx;fmaf£07z aZgorffhm if its performance ratio is at most a.
The smaller the performance ratio, the better.

Klein et al. l31 presented a O(logo A)-approximation algorithm for edge-weighted Directed Multicut in
general digraphs. In this paper we extend the results in jll to digraphs. We give a PDAS for Directed
Multicut in unweighted digraphs with bounded degree and bounded tree-width. It is worth mentioning
that we mean here the concept of tree-width in digraphs, introduced by Johnson, Robertson, Seymour,
and Thomas l41, and which diners from the one in undirected graphs. For example, the class of digraphs
of tree-width zero consists of all acyclic digraphs. We will present the formal definition of tree-width in
the next section.

As in jll, we find useful a variation of the Directed Multicut problem. The Directed Unrestricted
Vertex Multicut problem is: given a digraph 1) and a collection of k pairs of vertices (si, tf) of .D called
terminals, find a minimum set of vertices whose removal ensures that none of the strongly connected
components includes one of the k pairs of vertices. (Note that terminals might be removed.)

We prove that Directed Multicut is NP-hard in digraphs of tree-width one and bounded degree and
that Directed Unrestricted Vertex Multicut is NP-hard in tree-width two and bounded-degree digraphs.

Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616. Research partially done while at
Georgia Institute of Technology and supported in part by NSF grant CCR-9319106. E-mail: calinesc@cs.iit.edu.

'Department of Computer Science, University of Sio Paulo, Brazil. E-mail: cris©ime.usp.for. Research partially done
while at Georgia Institute of Technology and supported in part by NSF grant CCR-9319106, FAPESP (Proc. 96/04505 2)
and PRONEX(MCT/FINEP)(Proj. 107/97). ' ' '
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Our PDAS for Directed Multicut in unweighted digraphs with bounded degree and bounded tree-
width follows very much the idea of a PTAS for the undirected case jll. We first give a straightforward
PTAS for Directed Unrestricted Vertex Multicut in digraphs of bounded tree-width. Then we present an
approximation-ratio preserving reduction from Directed Multicut to Directed Unrestricted Vortex Multicut.
If the Directed Multicut instance digraph has bounded degree and bounded tree-width, the Directed
Unrestricted Vertex Multicut instance obtained by the reduction has bounded tree-width. (This reduction

is very different from the undirected reduction in jll.) Combining thC reduction with the PTAS for Directed
Unrestricted Vertex Multicut in digraphs of bounded tree-width, we obtain a PTAS for Directed Multicut
in digraphs with bounded degree and bounded tree-width.

2 'l:ree-Width and Multicuts in Digraphs

Johnson et al. l41 presented the following definition of tree-width in digraphs.
An arborescence is a digraph R such that R has a vertex ro, called the root of n, with the property

that for every vertex r C y(R) there is a unique directed walk from rO to r. Thus every arborescence arises
from a tree by selecting a root, and directing all edges away from the root. If r, r ' € V(R), we write r ' > r

if r ' # r and there exists a directed walk in R with initial vertex r and terminal vertex r '. If e C -E(-R),
we write r ' > e if either r ' = r or r ' > r, where r is the head of e. We also write e ,"- r when e is incident

Let -D be a digraph and let Z g V(-D). The digraph obtained from D by deleting Z will be denoted
by Z) \ Z. We say that a set .S f V(.D) is Z-normal if there is no directed walk in 1) \ Z with first and
last vertex in S that uses a vertex of -0 \ (Z U .S).

An arboreaZ decomposition o/ a dfgraph -D is a triple (R,X,W), where R is an arborescence, and
X = (X. f }''(.O) : e C -E(R)) and W f }'(D) : r C }'(R)) satisfy

(1) (W:, : r C V'(R)) is a partition of y(-D), and
(2) if e C .E(R), then U{Wr : r C y(R), r > e} is X.-normal.
The width o/ (R, X, W) is the least integer m such that I U.-, X. U W,I $ w + I for all r € y(R). The

tree-width o/ D, denoted by dtw(-D), is the least integer w such that -D has an arboreal decomposition of
width w.

Next we describe a PTAS for Unrestricted Vertex Multicut in digraphs with bounded tree-width. This
PTAS is very similar to the one for undirected graphs in jll. Recall that a PTAS consists of, for each c > 0,
a polynomial-time algorithm for the problem with a performance ratio of at most 1 + €. Let us describe
such an algorithm.

The input of the algorithm is a digraph .D, an arboreal decomposition O = (R, X, W) of -Z), and a set
C of pairs of vertices of -D. Given a subdigraph .Zy of -D, denote by C(D ') the set of pairs in C whose two
vertices are in -D ', and by -D \ ly the subdigraph of D induced by V(.D) \ y(D '). For the description of the
algorithm, all the instances we mention are on a subdigraph -D ' of -D and the set of pairs to be disconnected
is C(-D '). So we will drop C(ly) of the notation and refer to an instance only by the digraph ly. Denote
by opt(D ') the size (i.e., the number of vertices) of an optimal solution for -D '

Consider R rooted at to and an arbitrary ordering of the children of each vertex of -/?. For a vertex u
of R, let R(u) be the subarborecence of R rooted at u. Let I)(u) be the subdigraph of -D induced by the
set Z = U{W,, : ,' C y(R),,' 2 u}. Let t [(dt«,(O) + ])/'].

In this abstract, we give only a general description of the algorithm: label the vertices of R in postorder.
Find the lowest labeled vertex r such that an optimal solution for -D(r) has at least t vertices. If there is
no such vertex, let r be the root of R. Let e be the edge of R entering r (if r is the root, let e undefined).
Using the already computed optimal solutions for the children of r, find an approximate solution S, for
1)(r) such that IS,I $ (1 +c)opf(Z)(r)) and Xe UWr g S,.' Ifr is the root of R, then output S,. Otherwise,

with r

2



let .Zy = -D\ (.D(r) UXe) and let O ' = (.R ', X ', W '') be the arboreal decomposition of -D ' where R ' = R\R(r)
and XI, = X/ \ (Xe U I'''(.D(r))), for all / C -E(-R '), and W.' = Ws \ X., for all s C }''(R '). Recursively get a
solution S' for D '. Output S :; S' U S,.

The set S produced is a solution for the Directed Unrestricted Vertex Multicut in Z). Indeed if O is a

directed circuit either entirely in D(r) U Xe or entirely in -D ' and containing s and f for some (s, t) c C,
then y(c ') n s # 0 (C ' either intersects S, or S'). If (J is a directed circuit with vertices in -D(r) (that is,
in Z) and in ly, containing s and t for some (s, t) C C, then O has a vertex in X. g S. g .S because Z is
X.-normal. Besides, the set S has size at most (I + c)opt(-D).

3 Reduction from Directed Multicut to Unrestricted Vertex Multicut
Now we present an approximation-ratio preserving reduction from Directed Multicut to Directed Unre-
stricted Vertex Multicut. The reduction is very di#erent from the undirected reduction in jll. Consider an
instance of Directed Multicut, that is, a digraph D = (y, -E) and a set C of pairs of distinct vertices of .D.
Let us describe the corresponding instance of Directed Unrestricted Vertex Multicut.

The input graph for Directed Unrestricted Vertex Multicut is the following digraph .D '. (To avoid
confusion, we will refer to vertices of -D ' as nodes and to edges of Zy as arcs.) The set of nodes of D ' is E
plus m copies ui, . . . , u. of each vertex u C y, where m is the number of edges in .D. There is an arc in
D' from a copy of u C V to e C E if u is the tail of e, and there is an arc in .D ' from e € .E to a copy of
u C y if u is the head of e. These are all the arcs in .D '. Note that .D ' is a bipartite digraph (edges of -D
in one side and copies of vertices of D in the other).

Now let us describe the set of pairs of vertices of ly. For each pair (s, t) in C, we have in C ' pairs (si, t.j)
for all I $ f,j $ m. Clearly .Zy can be obtained from 1) in polynomial time. Note that C ' has hm2 palm.
Also C ' can be obtained from -D and C in polynomial time.

Lemma 3.1 For ang/ solution S' /or the -Directed t/nrestrfcted Verfez Mulffczzt in .D ' there is a solution
S g -D(D) ;«.i fi«t ISI $ 1S'
Proof. We may assume -S' is a minimal solution for the Directed Unrestricted Vertex Multicut in .D '
If S' g .B(-D) then we take S := S'. If not, let u € y(-D) and I $ f $ m be such that ui c S/. Then
S' -- {ui} is not a solution in .D ', which implies that there is a pair (s, f) C C ' and a directed circuit Q in
.D ' \ (S' -- {ui}) containing s and f (because s and t are in the same strongly connected component). If
u.f g S' for some I $ j $ m, the circuit obtained from Q by substituting ui by uj is a directed circuit
in Z)' \ S' and contains a pair in C ', a contradiction. Thus uj C .S' for all I $ .j $ m. In this case,
S'l ? m = 1-E(O)I and we take S := .E(.D). In both cases S is a solution in -D ' and ISI $ 1S'l, which

completes the proof of the lemma. H

Lemme 3.1 together with the following theorem, whose proof is similar to the proof of Theorem 4 in jll,
completes the reduction.

Theorem 3.2 S q E(.D) is Q solution lfor Directed Multicut in D i.f and only ijS is a solution .for Directed
[l/nrestrfcfed Uertez J14zzrffcuf {n .D '

The next lemme shows that, if the instance of Directed Multicut is a digraph with bounded degree
and bounded tree-width, then the corresponding instance of Directed Unrestricted Vortex Multicut has
bounded tree-width. For this, we need some notation. For a vertex u in a digraph .D, we denote by d+D(o)
the set of edges in .D with u as tail. For a set S of vertices of D, ab(.s) is the set of edges with tail in S
and head not in S.

Lemme 3.3 1fD has bounded degree and bounded tree-loidth, then D' has bounded tree-width.

Proof. Let -D be a digraph with bounded degree and bounded tree-width and .D ' be obtained from the
reduction described above. Let us present an arboreal decomposition of .D ' whose tree-width is at most

3



(dtw(.D) + I)(A + 1), where A is the maximum outdegree of -D.
Let O = (.R, X, W) be an arboreal decomposition of .D of width dtw(.D). Let R ' be an arborescence

obtained from R by substituting each edge e C -B(.R) from a vertex r ' to a vertex r in -R by a directed
path Pe = <UO,. . . ,Um> of length m, starting at uO = r ' and ending at u. = r, where ul, . . . ,Um-l are

new vertices. Let / be the edge in -B(Pe) from ui-i to ui, I $ f $ m. If f = 1, then let y/ :- SB(X.),
else let y/ := 8 (X. U W,). For f = 1, . . . ,m, let Wrz g; V'(-D ') be the set containing the fth copy in -D '
of each vertex in W,. Set Z«: := Wrl U 8B(W,) and, for f = 2, . . . ,m, set Z.: := Wri. Let us prove that

O' = (-R ', y, Z) is an arboreal decomposition of .D '
First note that (Z« : u C y(R ')) is a partition of y(ly). Now let / be an edge of R '. We need to show

that Z ' := U{Z« : u € y(R '), u > /} is y/-normal. Let e C .E(-R) be such that / C -E(Pe). Let f, y € Z ' be
such that there is a directed path Q ' in -D ' from z to 3/ which uses a node in y(.D ') Z '. Choose z, 3/ C Z '
so that Q ' has minimum length. We need to show that V(Q ') n y/ # a. We analyze two cases.

If z gl .B(D) then let #' C y(-D ') be the node following z in Q '. Note that z ' C -E(D) Z ', because of

the bipartition of .D ' and the choice of z and 3/. This implies that .f is not the first edge of the path Pe.
Thus f is a copy of a vertex in W, and z ' C 8B(W,) g; y/.

If z C E(-D) then let C? be the path in -D which starts at the tail of a and visits the vertices of D in the
same order in which they (their copies in fact) appear in Q '. Let Z g; V(1)) be the set of vertices with at
least one copy in Z '. Note that Z = U{W, : r C V(B),r > e}. Both endpoints of Q are in Z. Indeed, the
tail of any edge of -D in Z ' is also in Z ' (because, by construction, if a C -E(.D) n z« then one copy of its
tail is also in Z«) so the first vertex of Q is in Z. Also the last vertex of Q ' is not in .E(-D) (for the same
reason), and this implies that the last vertex of C2 is in Z. Thus Q is a path in Z) between two vertices
of Z. Since O is an arboreal decomposition of .D, there is a vertex of Xe in (2. But this implies Q ' has a
node in y/, because y/ a (i]5(x.). This completes the proof that O ' is an arboreal decomposition of -D '

Now we just need to verify that the width of O ' is at most (dtw(D) + I)(A + 1). For thats'let
r' C y(.R '). If r ' is a vertex of .R, then let r = r ', otherwise, r ' was added when an edge e of R was
substituted by a path between its endpoints. Let r be the tail of e. Note that I u/-,, y/ u Z,,I $
I(U.-,X. U Wr) U aB(U.-,X. U Wr)I g (df«,(.0) + 1)(A + 1). n

Combining the reduction described above and the PTAS from the previous section, we obtain a PTAS
for Directed Unweighted Multicut in digraphs with bounded degree and bounded tree-width.

4 Clomplexity results

A bfdfrecfed free is a digraph which has as underlying graph a tree al-td two opposite directed edges for
each edge in its underlying graph. Similarly, a b£dfrecfed series-parallel dfgraph has as underlying graph
a series-parallel graph, and two opposite directed edges for each edge in its underlying graph. Bidirected
trees have tree width one and bidirected series-parallel digraphs have tree-width two, by Proposition 2.1
in l41. By a simple modification of the proofs for the undirected case jl, Theorems 7 and 101, we can prove
the following.

Theorem 4.1 J)frecfed .A/uZtfcuf and Z)frecfed C/'nresfrfcfed yerfez A/uitfcuf are .VP-hard respectfueig/ in
bfdfrected trees and bfdirected series-paratte! d£graphs with maz mum {n and out degree three.

The modification consists of using, in each of the reductions, a digraph whose underlying graph is exactly
the one described in the corresponding undirected case. Besides, the digraph has two opposite directed
edges for each edge in its underlying graph. Note that any directed path in this digraph corresponds to a
path in its underlying graph and Dice-versa. For the edge version, we also note that any feasible solution
can be converted in a feasible solution with edges directed away from the root, without increasing the size
of the solution, by simply replacing any edge directed towards the root by the parallel edge directed away
from the root. The reductions work exactly as in the undirected case, so we omit them in this abstract.
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270 CALINESCU ET AL

1.INTRODUCTION

MAXIMUM PLANAR SUBGRAPH is the following problem: given a
graph G, find a planar subgraph of G with the maximum number of edges.
This problem has applications in circuit layout, facility layout, and graph
drawing [F92, TDB88].

MAXIMUM PLANAR SUBGRAPH is known to be NP-complete
[LG77]. For a graph G, ]et us define Opf(G) to be the maximum size of a
planar subgraph of G, where size is the number of edges. Given an
algorithm A that takes graphs G as input and outputs subgraphs of G,
define A(G) to be the size of the planar graph A produces when G is the
input. Now let us define A's .redo/mafzce or approxfmarfo/z xafio r(A) to be
the infimum, over all graphs G, of A(G)/(1)pf(G) (if Opr(G) > 0, and I
otherwise). In the literature, authors sometimes ensure that their perfor-
mance ratio is at least I by defining it to be the reciprocal of ours.

Numerous approximation algorithms for MAXIMUM PLANAR SUB-
GRAPH appear in the literature, the simplest ones being Spanning Tree
(output any spanning tree of G, assuming G is connected) and Maximal
Planar Subgraph (output any planar subgraph to which the addition of any
new edge would violate planarity). Spanning Tree is known to have
performance ratio 1/3 (see be]ow). Dyer, Fou]ds, and Frieze [DFF85]
proved that Maximal Planar Subgraph has performance ratio 1/3.
CimikowskitCim95] proved that a path-embedding heuristic of Chiba,
Nishioka, and Shirakawa [CNS79] and an edge-embedding heuristic of Cai,
Han, and Taqan [CHT93] have performance ratios not exceeding 1/3. ]n
the same paper, Cimikowski studied two other polynomial-time heuristics:
the ''vertex-addition heuristic '' and the ''cycle-packing heuristic.'' The
performance ratio of the former, to the authors' knowledge, is not known,
whereas for the cycle-packing algorithm, it is 0. Dyer, Foulds, and Frieze
[DFF85] studied two other a]gorithms and proved that each has perfor-
mance ratio at most 2/9. A]so see [JM93].

In short, to the authors' knowledge, no previously proposed algorithm
was known to have a performance ratio exceeding 1/3. What makes the
problem more tantalizing is that achieving a performance ratio of 1/3 is
trivial. In fact, Spanning Tree has performance ratio 1/3, since every
spanning tree of a connected graph on /z vertices has /z -- I edges and
every planar graph on /z vertices has at most 3/z -- 3 -- 1) edges
(and there are planar graphs on /z vertices with 3/z -- 6 edges, for all
}z 2: 3). No previous algorithm could beat the bound achieved by a trivial
algorithm.

In this paper, we present two new approximation algorithms for MAXI-
MUM PLANAR SUBGRAPH. Each achieves a performance ratio exceed-
ing 1/3. The higher performance ratio is 4/9 - 0.444 . . . and is achieved
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by an algorithm which (surprisingly) invokes an algorithm for the graphic
matroid parity problem as a subroutine and which runs in time O(m3/2/z
log6n), where m is the number of edges in G and /z is the number of
vertices in G. A greedy variant still has performance ratio 7/18 =
0.3888 . . . and runs in linear time on graphs of bounded degree.

Next, we provide an extension of the main algorithm. We provide a
nontrivial approximation algorithm for MAXIMUM OUTERPLANAR
SUBGRAPH, which is this problem: given G, find an outerplanar sub-
graph of G of maximum size. (An ozzfep/anal graph is a graph which can
be drawn in the plane without crossing edges, with all vertices on the
boundary of the exterior face [H72].) This new a]gorithm has performance
ratio at least 2/3, which surpasses the bound of 1/2 which is trivially
obtained by producing a spanning tree.

Last, we show that MAXIMUM PLANAR SUBGRAPH is Max SNP-
Hard, implying that there is a constant € > 0 such that the existence of a
polynomial-time approximation algorithm with performance ratio at least
I -- € wou]d imply that P LMSS92]. In addition, we show that the
complementary problem, called NONPLANAR DELETION or NPD
given G = (P, -E), produce a smallest subset .L f .E such that (r, .E -- Z,)
is planar is also Max SNP-Hard.

2. THE APPROXIMATION ALGORITHMS

In this section we present the two new algorithms for MAXIMUM
PLANARSUBGRAPH.

Let us give some motivation for our algorithm. As we said, given a
(connected) graph G, an algorithm which outputs a spanning tree of G
achieves a performance ratio of 1/3. A graph whose cycles all have length
3. that is, are triangles, is planar, as it cannot contain a subdivision of Ks
or K3. 3. Moreover, note that a connected spanning subgraph of G whose
cycles are triangles, besides being planar, has one more edge per triangle
than a spanning tree of G has.

Our better algorithm produces a subgraph of G whose cycles are
triangles, and, among these subgraphs, has the maximum number of edges.
It can be implemented in time O(m3'/2n logo/z), where m is the number of
edges in G and n is the number of vertices in G, using a graphic matroid
parity algorithm, as we will see later. We first present a greedy version of
the algorithm.

Z.\. A Greedy Version of the Algorithm

Algorithm A, presented below, is a greedy version of our algorithm. It
has a performance ratio of 7/18 - 0.3888 . . . . After presenting the algo-
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rithm and proving its performance ratio is 7/18, we will show it can be
implemented in linear time for graphs with bounded degree. We begin
with some definitions.

A /Ha/z.gzf/ar czzc/us is a graph whose cycles(if any) are triangles and such
that all edges appear in some cycle. A tHaW/ar cacfzzs I/z cz gzlap/z G is a
subgraph of G which is a triangular cactus.

A /Ha/zguZar sfmcMre is a graph whose cycles (if any) are triangles. A
friangu/ar srmcf re I/z a grzzp/z G is a subgraph of G which is a triangular
structure. Note that every triangular cactus is a triangular structure, but
not vice versa.

Algorithm A produces a triangular structure in the given graph G. The
algorithm consists of two phases. First, A greedily constructs a maximal
triangular cactus Si in G. Second, A extends Si to a triangular structure
Sz in G by adding as many edges as possible to St without forming any
new cycles.

Given a graph G (r, .E) and .E ' f .E, we denote by G[.E'] the spa/z-

/zf/zg subgraph of G induced by .E ', that is, the graph (?', .E '). (Note that
this is not the usual definition of a subgraph induced by an edge set, since
we require the subgraph to be spanning.)

ALGORITHM A. Starting with .Ei = £3, repeatedly (as long as possible)
find a triang]e 7' whose vertices are in different components of G]-Ei], and
add the edges of T to Ei.
Let Si :
Starting with -Ez repeatedly (as long as possible) find an edge e in G
whose endpoints are in different components of G]-Ez], and add e to -Ez.
Let Sz := (;[.EZ].
Output S2.

Note that Sz is indeed a triangular structure in G. As we mentioned
before, Sz is planar since it does not contain cycles of length greater than
3

THEOREM 2.1 The pedomtance ratio ofAlgorithm A. is I/\8
Prop/ First, let us show that the performance ratio is at least 7/18.

Without loss of generality, we may assume G is connected, ahd has at least
three vertices. Observe that the number of edges in Sz is the number of
edges in a spanning tree of G plus the number of triangles in .Sli. So it
suffices to count the number of triangles in Si.

Let .H be a plane embedding of a maximum planar spanning subgraph
of G. Let n 2: 3 be the number of vertices in G, and let r 2 0 be such that
3/z -- 6 -- f is the number of edges in .17. We can think of r as the number
of edges missing for .f] to be a triangulated plane graph. The number of
triangular faces in .f/ is at least 2/z -- 4 -- 2f. (This is a lower bound on the
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number of triangular faces of .H since if .H were triangulated, it would
have 2/z -- 4 triangular faces, and each missing edge can destroy at most
two of these triangular faces.)

Let k be the number of components of Si each with at least one
triangle, and let pi, .pz , . . . , .px: be the number of triangles in each of these
components. Let .p ..p.. We will prove that p, the number of
triangles in Si, is at least a constant fraction of /z -- 2 -- f. Note that if a
triangle cannot be added to Si, it is because two of its vertices are in the
same component of Si. Hence one of its edges has its two endpoints in the
same component of Si. This means that at the end of the first phase, every
triangle in G must have some two vertices in the same component of Si. In
particular, every triangular face in .H must have some two vertices in the
same component of Si, and therefore one of its three edges must be in the
subgraph of .H induced by the vertices in a component of Si. Thus we can
associate with each triangular face .F in .H an edge e in .F whose
endpoints are in the same component of Si. But any edge e in H lies in at
most two triangular faces of .H, so e could have been chosen by at most
two triangular faces of .H. It follows that the number of triangular faces in
H is at most twice the number of edges in H whose endpoints are in the
same component of Si.

Let .H ' be the subgraph of .H induced by the edges of H whose
endpoints are in the same component of Si. Note that .p£ 2: 1, for all i, and
that the number of vertices in the ith component of Si is 2.pf + 1 2: 3.
Since .H ' is planar, .H ' has at most Et i(3(2.pi + 1) -- 6) = 6.p -- 3k
edges. By the observation at the end of the previous paragraph, 2(6.p --
3k) 2: 21.E(n')1 2: (number of triangular faces in -H) 2: 2/z -- 4 -- 2r. From
this, we have

n 2 -- f + 3k n -- 2 -- r
>

6 ' 6

Therefore the number of triangles in Si is at least (n -- 2 -- r)/6, and the
ratio between the number of edges in Sz and the number o.f edges in -H is
at least

/z -- I + (n -- 2 -- r)/6
3/z -- 6 -- f

7/z -- 8 -- f 7
>

18?z -- 36 -- 6r ' 18

since f 2: 0. This completes the proof that the performance ratio of
Algorithm A is at least 7/18.

Now, we will prove that the performance ratio is at most 7/18. Let S be
any connected triangular cactus with .p > 0 triangles. S has 2.p + 1 2: 3
vertices. Let S' be any triangulated plane supergraph of S on the same set
of vertices (S' can be obtained from S by adding edges to S until it
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becomes triangulated). Since S' is triangulated, S' has 2(2p + 1) -- 4
4p -- 2 (triangular) faces. For each face of S', add a new vertex in the face
and adjacent to all vertices on the boundary of that face. Let G be the new
graph. Observe that G is a triangulated plane graph and has (2p + I) +
(4.p -- 2) 6p -- I vertices. This means that G has 3(6.p -- 1) --6
-- 9 edges. With G as input for Algorithm A, in the first phase it can
produce Si = S, and Sl2 can be S plus one edge for each of the new
vertices (the vertices in G not in S). The number of edges in S is 3p.
Hence S2 can have 3p + (4p -- 2) = 7p -- 2 edges, while G has 18p -- 9
edges. Thus the ratio between the number of edges in Sz and the number
of edges in G is

@ 2

918p

By choosing p as large as we wish, we get a ratio as close to 7/18 as we
want. I

2..L. \. Linear Time for Bohn,ded-Degree Graphs

In case G has bounded degree d, we can implement Algorithm A in
linear time. First, we describe the implementation of the first phase. At
any time, the vertices of the graph are partitioned into three sets: new,
active, and used. At the beginning, all the vertices are new and .Ei = £13.

The following process is repeated indefinitely. Test if there are any new
vertices. If there are none, halt. Test if there are any active vertices. If
there are none. choose a new vertex and make it active. Choose an active
vertex x and ''use '' it: that is, while there exist two new vertices y and z
adjacent to x and to each other, choose such a pair, add the edges of the
triangle .D,z to .Ei and make y and z active. When there are no two new
vertices adjacent to x and adjacent to each other, mark .r used.

We will show in detail how ''using '' one vertex takes time O(dz). All the
other operations keeping lists of new and active vertices, initializing an
array with the status of each vertex, initializing an auxiliary array, and
maintaining the list of edges in .Ei--can easily be implemented in O(/z)
time. This means the running time of this implementation is O(ndz).

Before and after ''using '' a vertex x, the auxiliary array has a 0 for each
vertex. Going through the adjacency list of x, we change to I the entry of
the auxiliary array for each new vertex encountered. Then, going again
through the adjacency list of x, for each new vertex zl encountered, go
through the a(]jacency list of u, checking if some neighbor of u is marked
I in the auxiliary array. This takes time O(d) for each neighbor of x, for a
total of O(dz) time. In this way we find, one after the other, all triangles
formed by x and two new vertices. Each time such a triangle is found,
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mark as active the two new vertices in the triangle and place a 0 for each
in the auxiliary array. At the end of this process, go through the adjacent
list of x and change back to 0 all remaining entries which are I in the
auxiliary array.

First, we note that .Ei is a triangular cactus. Indeed, at any time when
we add a triangle to .Ei, two of the vertices of the triangle are of type new,
and since a new vertex is always an iso]ated vertex in G[.Ei], adding the
three edges of the triang]e keeps G[.Ei] a triangu]ar cactus.

To prove that .Ei is maximal, we maintain the following invariant. All
vertices which are active at a given time are in the same connected
component of G]-Ei] at that time. To see this, note that a node u is made
active either because there are no active nodes left, in which case u is the

only node active, or is made active by an active vertex .r, a neighbor in G
of u which is being used, and in this case the edge u£x is inc]uded in G[.Ei].

Now, let us prove that -Ei at the end of the process is maximal, in that
no triangles can be added to it. Consider a triangle WZ not in .Et. The
triangle .D/z has at least two vertices in the same component of G[.Ei] for
the following reason. When the process stops, it is because there are no
new vertices. Thus either x, y, and z are active, or at least one of them is
used. If .r, y, and z are active, by the invariant, the three of them are in
the same component of G[.Ei]. ]n the other case, assume x is the first
among x, y, and z to be used. While x was being used, the triangle WZ
was processed. It was not added to ri because at least one of y and z, say
y, was active. Since x was also active at that moment, x and y were (and
sti[[ are) in the same component of G[.Et], by the invariant.

In this paragraph we describe how to implement in linear time the
second phase of Algorithm A. The time is O(lr(C)I + I.E(C)I) and does
not depend on the graph's having bounded degree. Recall that at the end
of the first phase we have a set .Ei of edges. First, compute the connected
components of G[.Ei]. Let C(o) be the connected component of G[.Ei]
containing vertex u c r(G). Then construct a multigraph .H in the follow-
ing way: P(H) is the set of connected components of G[.Ei], and for each
edge uu c .E(G), include in .E(.H) one edge (labeled uu) with endpoints
C(zz) and C(z;) if C(zz) :# C(u). Run a graph traversal algorithm (for
example, DFS) on .H and obtain a maximum spanning forest F ' (which we
view as a subset of -E(-H)) of .H. Output -Ez - {aolthere is an edge in .F
labeled uu}.

2.2. ..4 Better,4[gorithm

The new algorithm, Algorithm B below, finds a maximum triangular
structure (one with the maximum number of edges) in a given graph G.
Algorithm B has performance ratio 4/9, and can be implemented in time
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O(m3'/2/z log6/z). Now let us present the algorithm and the analysis of its
performance ratio.

Algorithm B also has two phases. In the first one, B constructs a
maximum triangular cactus .Si in G. We will show later how to use a
graphic matroid parity algorithm to construct Si. In the second phase, B
extends Si to a triangular structure SZ in G, as before, by adding to Si as
many edges as possible which do not form new cycles.

At.GOKITnM B. Let Si be a maximzzm triangular cactus in (;.
Starting with .E2 SI), repeatedly (as long as possible) find an edge e in
G whose endpoints are in different components of G]-EZ], and add e to

Let Sz := (1;[.E2].
Output S2.

E
2

Observe that Sz is a triangular structure in G, and therefore is planar.
To analyze the algorithm, we need a definition. In any graph Z,, let mfs(.L)
denote the number of edges in a maximum triangular structure in .L.
Define p(.L) fs(.L)/I.E(.L)I if .E(.L) :' g, and p(Z,) if .E(Z,)

The main result of this section is Corollary 2.11, which states that the
performance ratio of Algorithm B is 4/9. As we will see, the proof of
Corollary 2.11 is not difficult, given the next two theorems.

Let G = (P',.E) be a graph on /z vertices. Let .g {ri,. .,Ht} be a
partition of the vertices of G and @ = {.Ei, . .:. , .E.} be a partition of the
edges of G. For 1 < f K m, let zli denote the number of classes (some-
times referred to as co/or c/czsses) q of .g met by .Ei. We call the ordered
pair (#', @) ua/id jor G if every triangle of G has either at least two
vertices in the same part of #' or all three edges in the same part of @. Set

'(", ") - « - * l::::$ 1b-?l. ( 1)

Note that a)(.g ', @) 2 0, and that there is always a valid pair (.g ', @) for G
(e.g., # - {l'(G)}, @' {.E(G)}).

According to Lovfsz and Plummer [LP86], we have the fo]]owing theo-
rem

TnEOKKM 2.2. Zhe /lumber ofrrfa/zg/es i/z a maximum fda/zgu/ar cactus i/z
a graph G is equal to the minimum of (b(.g), @) taken oder al! Dali,d pairs
(.g, @) /or G.i

I Lovfsz was contacted and agreed that the formula given here, which differs slightly from
that in [LP86], is correct.
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Let G be a planar graph with /z vertices. Embed G in the plane without
crossing edges, obtaining a plane graph. Let r be the number of edges
missing for this embedding to be triangulated. A triangulated plane graph
has 3/z -- 6 edges, if /z 2: 3. So r = (3/z -- 6) -- 1.E(C)l; f does not depend
on the embedding

We will prove the following theorem.

THEOREM 2.3. .Lef G be cz co/z/zecfedp/a/zczr graph wff/z /z 2 3 ue ices
Let t be the number of mksittg edges, de$ned as abode. Then

l

'p(£", @') 2: 'i(" 2 - r) (2)

for all uatid paps (..g, @) for G

As shown in Theorem 2.10, it follows easily from Theorems 2.2 and 2.3
that p(.H) 2 4/9 for all planar graphs H.

The proof of Theorem 2.3 is technical and long, so let us start with a
general description. The proof is by induction on the number of edges in
G, the basis being simple to prove, as we will see. The inductive step starts
with a connected plane graph G and a valid pair (.g,@), where .g =
(rl,. . . ,Hk} and @ = {.Ei,... ,.E.}. We concentrate on si/zg/efo/zs, which
are vertices o of G such that {u} c.g '.

The singletons are partitioned into three sets ..4, .B, and C as follows.
Let G ' be a triangulated plane supergraph of G with the same set of
vertices. .d is the set of singletons all of whose neighbors in G ' have the
same color (all neighbors in G ' are in the same q for some ./). A jacia/
fHa/zgZe is a triangle in G ' which is the boundary of some face of G '. .B is
the set of singletons u not in .d such that there is a facial triangle
containing o with all edges in one edge class .Ef for some f. We say
singleton o e .B chooses some such edge class -Ef. C contains all remaining
singletons.

Each singleton in .B will choose an edge class .Ef. For I K i g m, let
u; be the number of classes q of # met by .Ef, and let sl be the number
of singletons in -B that have chosen .Et

The inductive step is divided into two cases. The simpler case is the one
in which there is an i such that u. = s; = 4. In this case, induction is
applied to a smaller graph constructed from G, and after some accounting,
the theorem follows.

The hard case is the one in which there is no i such that u, = s; = 4. In
this case, the result will be proved directly induction will not be applied.
Recall that r is the number of edges missing for G to be triangulated (i.e.,
the number of edges in G ' not in G). Let s be the number of singletons,
let p be the number of nonsingleton vertices, that is, p = /z -- s (where n
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is the number of vertices of G), and let q be the number of nonsingleton
colors, that is, q Then the following upper bounds on 1..41, 1.el, and
ICI will be proved:

. I.al g 2.p -- 3q -- c ' (Lemma 2.4),

. -B K 3EE:i[(ul -- 1)/21 (Lemma 2.5),

. ICI K f + c ' (Lemma 2.6)

for some carefully chosen c '
The upper bounds on I.XI and I.el are not hard. The hard one is the

upper bound on ICI. The theorem follows easily from these upper bounds
and some accounting.

Proofof Theorem 2.3. By induction on the number of edges of G. Let
us denote by -Ec the edge set of G and by Ec its vertex set.

.Bash. I.Ecl g 2n -- 4.
Then r 2: (3/z -- 6) -- (2/z -- 4) = /z -- 2 and therefore (1)(.g, @) 2: 0 2

(1/3)(/z -- 2 -- f) for all valid pairs (.g, a) for G.

/nducfiue step. I.EC1 > 2/z -- 4.
Suppose that for any connected planar graph .H on /z vertices such that

,EHI < 1.ECI, d)(.g, @') 2 (1/3)(n -- 2 -- rH) for all valid pairs (.g, @') for
.H, where fx denotes the number of edges missing for H to be triangu-
lated. Let us prove that (D(#', @) 2 (1/3)(/z -- 2 -- f) for all valid pairs
(.g ', @) for G.

We begin by embedding G in the plane without crossings, obtaining a
plane graph. Next, we augment G to get a triangulated plane graph G '
The edges we add are called miss!/zg edges. The number of missing edges in

Let (.g',@) be a valid pair for G, with .g = {ri,...,Ht} and @ =
{.E:, . . . , .E.}. As before, for 1 < i K m, let zli denote the number of color
classes q of .g met by .Ei. We may assume that

u; K 2 + 1.E.1 - 1. (3)
If zziK 2 and I.Eil > 1, then we can split .Ei into individual edges, obtaining
a new edge partition #'. Any triangle in G with three edges in the old .Ei
also has at least two vertices of the same color, because u. g 2. Therefore
(.g, @') is also a valid pair for G. And, moreover, (D(#', @') ®(@, @),
because I(u -- 1)/2J n I g u K 2.

Assume that, for I <./ < q, lql =p/ 2 2 and, for q </ K k, l61 = 1.
Let us call a vertex .r a sf/zg/efo/z if {x} c.g '; thus the last k -- q color
classes are singletons. Let s = k -- q be the number of singletons and
p = Elr. ipi be the number of vertices which are not singletons. So

rz -.p +s and k-q +s. (4)

G' is £
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Observe that .@ is a partition of the vertices of G ' (since G and G ' have
the same vertex set), @ is a partition of the edges of G (not of G '), and for
any triangle of G ' (not of G), facial or not, at least one of the following
three conditions holds.

(1) At least two of the vertices are of the same color. We say that
the triangle is covered by cz co/or.

(2) All three edges are in the same class .E. of &'. We say that the
triangle is covered by a/z edge c/ass.

(3) One or more of its edges is a missing edge. This corresponds to
the fact that this triangle does not exist in G. We say that the triangle is
covered by a missing edge.

A $acla/ /Hang/e is a triangle in G ' which is the boundary of some face of
G'. (Note that a facial triangle is not necessarily a triangle in G, but it is a
triangle in G '.) A facial triangle 7' is a /acid/ rdang/e /ze gabon/zg z;e#a u if
it contains u.

Let us partition the set of singletons into three sets ..4, .B, and C,
according to how the facial triangles neighboring these singletons are
covered.

H
color.

The set of singletons all of whose neighbors in G ' are of the same

.B: The set of singletons x not in .d such that there is an edge class
which covers one of the facial triangles neighboring .r.

C: The set of singletons not in .4 u .B.

Notice that all the facial triangles neighboring a singleton in .H (even
the ones containing missing edges) are covered by a color. Also, not all
facial triangles neighboring a singleton in C are covered by a color class
(otherwise, all of its neighbors in G ' would have the same color and this
singleton would be in .4). And no facial triangle neighboring a singleton in
C is covered by an edge class (otherwise, this singleton would be put in set
.B, if it is not already in .4).

Let a, h, and c be the sizes of .4, .B, and C. respectively..Observe that s,
the number of singletons, satisfies

s +c. (5)

For each singleton x in -B, we choose an f such that .Ef covers a facial
triangle neighboring x. We denote by st the number of singletons x in .B
which have chosen .Ei. Observe that .Ei meets all singletons which have
chosen .E,; therefore

s: g u.. (6)

Moreover, if I.Eil = 1, then sl = 0, because .Ef cannot cover any triangle.
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Case 1. There is an f such that u, = s; = 4.
This is the simpler case, in which we apply induction.
In this case, there are four distinct singletons x, y, w, z in -B which are

the only vertices .Ef meets. Each of x, y, w, z has chosen .Ei, implying that
.Ef must cover a facial triangle neighboring .r. This facial triangle meets
only a subset of these four vertices. Without loss of generality, we may
assume this facial triangle is .D'w. .Ei also covers a facial triangle neighbor-
ing z. Also without loss of generality, we may assume it is ywz. Then
{.D ', yw, xw, yz, wz} f .Ef f {.D,, yw, xn ', yz, wz, xz} (see Fig. 1).

Let Gi be G after we remove the edges yw and xz (if edge xz exists).
From the partition @ of -E(G) we obtain a partition ai of ,E(Gi) in the
following way: all parts of ai are the same as the corresponding parts of
@, except that .Ef is replaced by four parts. Each of these four parts
contains exactly one edge from .Ei -- {yw, m}. Note that indeed ai is a
partition of .E(Gi). Also, the pair (.g, ai) is valid for Gt: each triangle in
Gi is covered exactly as it was covered in G (the triangles covered by class
.E. do not exist in GI).

Observe that Gt is connected, and so it is a connected planar graph.
Moreover, it has fewer edges than G. Thus we can apply induction, and
conclude that ®(.g ', ai) 2 (1/3)(/z -- 2 -- fl), where fi is the number of
missing edges for Gt to be triangulated. Because we removed at most two
edges from G to get Gi, fi g r + 2.

The new classes in a'i have zero contribution to ©(.g, ai) (since any
edge class of size I contributes 0), and, since the contribution of .Ef to
a)(#', @') is 1(4 -- i)/2J it follows that 'D(#, Z'i)

Putting all this together, we have

'D(.g, @') - 'D(£', @'-) + 12 {(« - 2 - r:) + I
2: {(« - 2 -(r + 2)) + 1> ';(n - 2 - r).

Case 2. There is no i such that u.
This is the hard case, whose proof requires several pages. We start by

defining c ', used in the upper bounds on a and c.

FIG.I Edges in Zi. After removing yw and, if it exists, xz, no triangles are left
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Consider pairs (./,F), where I g./ g q and .F is a face of C']K], the
plane subgraph of G ' induced by the vertex set K. Let c ' be the number of
such pairs (./, F ') such that some vertex not in .a is embedded in /'. Call
each of these c ' pairs specie/.

Recall that p is the number of vertices which are not singletons, q is the
number of color classes with more than one vertex, f is the number of
missing edges in G ', and a, b, c are the numbers of singletons in .4, .B,C,
respectively.

The next lemmas give upper bounds on a, b, and c which will be needed
to complete the proof of Theorem 2.3.

LKMMA 2.4. a K 2P -- 3q -- c '

Procr Each singleton x in .4 has all neighbors in G ' of some color
/ K q; hence p; 2: 2. Clearly, x is embedded in a face of G']Ec -- {x]].
Because all neighbors of x in G ' are in K, this face -F is also a face of
C']q], and there cannot be any other vertex embedded in .F. Therefore
the size a of H is at most the number of pairs (/, f ') which are not special.

The maximum number of pairs (./, .F), where ,F is a face of C']K], is
2.p/ -- 3 (if p/ it has only one face; if pi> 2 then it has the
maximum number of faces when it is triangulated, and in this case, it has
2p; -- 4 faces). Therefore there are at most E7.i(2& -- 3) 2.p -- 3q
pairs (./, .F), where ./ K q and .F is a face of G']q]. Fromthese pairs (/, F).
c' of them are special (have a vertex which is not in .4 embedded in .F).
Thus the number of pairs (/, -F) which are not special is at most 2p -- 3q
-- c ', and therefore a K 2.p -- 3g -- c '. I

LEMMA 2.5. h g 3EE:il(zzt -- 1)/2J.

.Pyo(# if we prove that st g 3[(24. -- 1)/21, then by summing si K 31(u.
-- 1)/2j over f c {11, 2, . . . , m}, the lemma follows, since b = EZ: :s..

First, by (3), if ui K 2, then I.Ei= 1, which implies that si = 0. And, so
s. = 0 = 31(24i -- 1)/2]. If zzi > 2, then we use the fact that inequality (6)
implies that sl g ui. As a consequence, st K 31(24i -- 1)/2J can only be false
if zzl = sl = 4. But this does not happen because we are given that for no f
does zzi = si = 4. 1

Lemma 2.6 is the difficult upper bound. After this, we do some account
ing, and the theorem follows.

LEMMA 2.6. c K / + c '

Proof.
that is,

Since there is nothing to prove if c 0, we may assume c # 0

c#g (7)
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A missing edge covers at most two facial triangles. Therefore it suffices
to prove the existence of at least 2c -- 2c ' facial triangles which must be
covered by missing edges.

Let us associate a set of facia] triang]es with each component of G'tC].
More specifica]]y, for a component of G']C] whose vertex set is D, let us
associate a set of either 21.01 or 21.01 -- 2 facial triangles, each with at least
one vertex in -D, such that each such facial triangle must be covered by a
missing edge. We will make sure that each of these facial triangles will
have its three vertices in different color classes and at least one of them is

in C. (The triangle is not covered by a color class and, because of the
vertex in C, it is not covered by an edge class. So it has to be covered by a
missing edge.)

Observe that the sets of facial triangles corresponding to two different
components of G']C] are diqoint (since there is no edge between two
different components of G']C], there cannot be a triangle with vertices in
two different components of G']C]). If at most c ' of the components were
associated with a set with 21.01 -- 2 facial triangles, then in total we would
have at least 2c -- 2c ' facial triangles which would have to be covered by
missing edges (since Eo 1.01 would complete the proof of Lemma

Let -D be the vertex set of a component of G'tC]. A re/eua/zf jacicz/
aiczrzg/ajar .D is a facial triangle of G ' with at least two vertices in .D. Let
/n be the number of faces of G'[.D] (which is a connected graph), ]et /s
be the number of faces of G']Z)] which are also faces of G ', and let eo be
the number of edges in G']D].

Let us start by proving that C :# Ec. Because I.Ec1 > 2/z -- 4, there are
at most (3/z -- 6) -- (2n -- 3) = /z -- 3 missing edges. A missing edge cov-
ers at most two facial triangles. So there are at most 2/z -- 6 facial triangles
covered by missing edges. But in G ' there are 2/z -- 4 facial triangles (all
the faces of G '). Thus there are facial triangles covered by colors or by
edge classes. If there are facial triangles covered by colors, then at least
two vertices have the same color. This means that there are vertices which
are not singletons, implying that C :# Ec. If all vertices are singletons and
a facial triangle is covered by an edge class, then the singletons neighbor-
ing this facial triangle are in -B. It follows that in either case

2.6

(8)

Embedded in the faces of G'[.D] are a]] the vertices of Ec -- .D. Now
Ec -- Z) 2 Ec -- C :# £3. Thus there is at ]east one face of G']Z)] which
contains some vertex of Ec -- .D :# ]Z. This face of G']-D] is not a face of
G', since no face of G ' contains any vertex. Thus /3 < /o.
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CI..PXm'Z.I. lff, - fn -
triangles for D. lff. $ fn
triangles for D.

I f/ze/z there are ar /e£zsr 2101 -- 2 re/eua/zrjacfa/
. 'Z then there are at least 2\D\ relevant facial

Proof A relevant facial triangle for -D has at least two vertices in Z),
which means it contains an edge e in G']Z)]. But e is contained in exactly
two facial triangles of G '. These are the only two relevant facial triangles
for .D that contain e. This would give us 2eo of the desired relevant facial
triangles for .D, except that not all of them are distinct. If a facial triangle
is counted by two edges, then all three of its vertices are in .D, which
imp[ies it is a face of G'[.D] (and, being a facia] triang]e, a]so of G ').
Moreover, it was counted exactly three times (once for each of its edges).
Therefore we have 2eo -- 2/a relevant facial triangles for .D. Now, if
.f3 = /o -- 1, applying Euler's formula, we get 2eo -- 2/3 = 2eo -- 2(/n --
1) -01 -- 2) + 2 = 21Z)1 -- 2 relevant facial triangles. If .f3 K/o -- 2,
we get 2eo -- 2./'s 2: 2en -- 2(/o -- 2) 2(1.Z)1 -- 2) + 4 21.01. 1

Include these 21.Z)I (if possible) or 21.01 -- 2 relevant facial triangles in
the set of facia] triang]es corresponding to G']Z)].

To guarantee that at most c ' of the components of G']C] have only
ZIZ)1 -- 2 facial triangles in their corresponding sets, we will need to add
more facial triangles to some of the sets that currently have only 21Z)1 -- 2.
Now [et .D be the vertex set of a component of G']C] such that a]] the
faces of G'[.D] but one are faces of G ', that is, /3 -/o ' ]. (Any
component induced by a set .D ' with /3 g/o, -- 2 already has 21.0'1
associated facial triangles.)

Since /3 =/n -- ], a]] the faces of G'[.D] but one are faces of G '. ]t
follows that all the vertices in Ec -- .D must be embedded in the same face
of (;'[.D] (that face is the on]y face which is not a face of (;'). App]ying
Claim 2.8 (presented below) to G ' and .D (as M and S, respectively), we
conc[ude that G']Ec -- .D] is connected.

We use the termino]ogy given in [BM76] for a facia] wa]k and for the
length of a face.

Cn..){\M 'Z.8. Let M = (V, E) be a connected plane muttigraph (.possibly
with loops) whose faces alt bade length at most '3. Let S be a nonempty set of
vertices ofM such that the subgraph M\S\ ofM induced by S k connected,
and att uertices in V-- S are embedded in the same face of M\S\. Then
M[F ' -- S] is connected.

/'roof We may assume that I ''
of edges in M[S].

S # i3. By induction on the number
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.Basis. M[S] has no edge.
M[S] consists of a unique vertex [z. Suppose M]P ' -- S] is not connected.

Because M is connected, a]] the components of M]]' -- S] are adjacent to
some vertex in S, that is, to zz. The plane embedding of M determines a
cyclic ordering of the edges of M incident with u. Then there exist two
consecutive edges in the cyclic ordering, say ei and e2, such that their
other endpoints be]ong to different components of M[P ' -- S]. But this is
impossible, because then the length of the face of M lying between ei and
e, would be at least 4, a contradiction.

/nducrfue Step. There is an edge in M[S].
[f there is an e in M[S] with two distinct endpoints u and u, contract e

obtaining a new connected plane multigraph H with a new vertex w
corresponding to zz and z;. (H's vertex set p '' is (P ' -- {zz, u}) U {w}.) Let
S' -- {zz, u}) u {w}. The hypotheses of the claim hold for .H and S': .H
is connected, H[.S'] is connected (//[S'] is M[S] after contracting e), a]]
the faces of .H have length at most 3 (since contracting edges cannot
increase the length of a face), S' :# £3, and all vertices in P ' -- S' = }'' -- S
are embedded in the same face of .H[S']. (There is a natura] correspon-
dence between faces of a graph and faces of the graph obtained after
contracting an edge of the graph.) Furthermore, .H[S'] has fewer edges
than M[S]. Hence, by the inductive hypotheses, .H[P ' -- S'] is connected,
and hence M]['' -- S] P ' -- S'] is connected.

[f every edge in M[S] is a coop, then ]et e be such a ]oop, and ca]] its
unique endpoint u. Note that because M[S] is connected, S = {u}. Then e
divides the plane (minus e and a) into two open regions R and R '
Because a]] vertices of P -- S are embedded in the same face of M[S],
there is no vertex in }'' -- S embedded in one of these two regions; without
loss of generality, let it be R. So there is no vertex embedded in R. This
implies that any edge embedded in -R is a loop, with u as its endpoint.

We consider two cases. The first case is the one in which there is some
edge embedded in R. Then let .H be the graph obtained from M by
removing all edges of M embedded in R (they are all loops). Note that .H
has fewer edges than M. We will prove that the hypotheses of the claim
ho[d for .H and S. .17 and .H[S] are connected since we removed only
loops. The only face of .H which is not a face of M is R, and the boundary
of R consists of only e: -R has length 1. Therefore all the faces of H have
[ength at most 3. So, by the inductive hypothesis, .H]]'' -- S] is connected,
and hence M][' -- S] = .H[P -- .S] is connected.

In the second case, there is no edge embedded in R. Hence R is a face
of M (with only one edge on the boundary). Let -H be the graph obtained
from M by removing e. Again, -H has fewer edges than M. Let .F be the
other face of M having e in its boundary. Removing e creates only one
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new face r ' in .H (which is the union of R, .F, and e). The boundary of the
new face F ' is the union of the boundaries of .R and .F minus e. The
boundary of R consists of only e. Thus the boundary of .F ' has one edge
(edge e) fewer than the boundary of .F, implying that the length of /'' is I
less than the length of /'. Therefore all the faces of .H have length at most
3. So, by the inductive hypotheses, -H[P -- S] is connected, and therefore
M[[' -- S] = .H[P -- S] is connected. ]

We proceed with the proof of Lemma 2.6.
Because G'[.D] is connected, a]] vertices of .D are embedded in the same

face of G']Ec -- Z)]. Call this face .F '

CI..F.xm 'Z.q. One of the following holds

I.a) All the vertices on the boundaO of F' are of the same color j $ q.
In //z]s case, F '' is zz gage of C']q].

(})$ There are two distinct facial triangles of G' , each with exactly one
uertex in D and the other two vertices of di#erent colors.

Hoof The boundary of .F ' is a c]osed wa]k in G']Zc -- Z)]. Moreover,
Ec -- .D cannot be a set containing only one vertex x. This is true because
of the following reasoning. Otherwise this vertex would have to be a
singleton (because vertices in Z) are singletons, none can have the same
color as x), more specifically, a singleton in .H or in .B (it could not be in
C, because it is adjacent to at least one vertex of Z), and hence would be in
the same component of G'tC] as defined by -D), with all neighbors in (Z)
and hence) C. Any vertex of G ' has at least two neighbors, and a singleton
x in .4 has all the neighbors of the same color, and therefore none of its
neighbors can be a singleton. It follows that no neighbor of x can be in C;
hence x € .4. A singleton x in .B has a neighboring facial triangle (with
vertices x, y, and z) covered by an edge class. But then y cannot be in C
(since it has a neighboring facial triangle covered by an edge class); hence

Therefore IZc -- Z)1 > 2. Hence the boundary of /'' cannot consist of
only one vertex. (if there is only one vertex on the boundary of a face of a
simple plane graph, then the graph consists of only this vertex, and this
does not happen because IZc -- Z)1 2 2.)

If all vertices on the boundary of F ' have the same color ./, then clearly
/ g q (there are at least two vertices on the boundary of .F ' and hence in
q, so / K q). Also, because the only vertices embedded in .F ' are the
vertices of Z), which are not of co]or ./, /'' is a]so a face of C']q]. This is
case {aJ.

If, on the other hand, not all the vertices on the boundary of F '' have
the same color, then, traversing the boundary of -F ' (which is a closed

x £B
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walk), we will find at least two ''oriented '' edges whose endpoints have
different colors. Each edge on the boundary of F ' is on the boundary of
exactly two triangular faces of G '. At least one of these triangular faces is
contained in .F '. More specifically, if an edge on the boundary of .F ' is
traversed twice, then the two triangular faces containing this edge on the
boundary are contained in.F '

Let us show that any of these triangular faces contained in -F ' has a
vertex of .D on its boundary. Suppose not. A triangular face with the three
vertices on its boundary in Zc -- .D is a face of G']Zc -- .D]. So this
triangu[ar face would be a face of G']Zc -- .D] contained in -F ', which is a
face of G']Ec -- .D]. Because faces of a graph are diqoint, this can only
happen if /'' coincides with this triangular face of G '. But this is impossi-
ble, because .F ' is not a face of G ' (all vertices in .D are embedded in F ').

Traversing the boundary of -F ', for each ''oriented '' edge we traverse, we
find a (distinct) facial triangle of G ' contained in F '', containing the
(unoriented version of the) oriented edge and a vertex of -Z) on its
boundary (if the two ''oriented '' edges are not the same unoriented edge,
then each appears on the boundary of a different triangle, otherwise, the
one unoriented edge appears in two distinct triangles). The facial triangles
corresponding to the two ''oriented '' edges we picked satisfy the require-
ments of (b). I

If (b) holds, add the two extra facial triangles to the set of facial
triang[es corresponding to G'[.D]. Note that they are different from the
ones already in the set because they contain exactly one vertex of -D and
all the others contain at least two vertices of Z). Each set .D for which (b)
holds is now associated with a set of at least 21.01 facial triangles.

For how many components of G']C] can (a) hold? Let us show that each
component of G']C] for which (a) holds corresponds to one of the c '
special pairs, and that different components correspond to different spe-
cial pairs.

Let D be the vertex set of a component of G']C] for which (a) holds.
Let us prove that there is a special pair (./, .F ') such that the only vertices
of C embedded in .F ' are the vertices in Z). Let .F ' be the face of
G']Ec -- .D] in which the vertices of /) are embedded. Recall that G'lEc --
Z)] is connected. Because (a) holds for this component, F '' is a face of
a']K]. Since the vertices of .D are embedded in .F ', and vertices of .D are
not in .H, some vertex not in .4 is embedded in F'l this makes the pair
(j, /'') special. The only vertices of G ' embedded in .F ' are in .D (because
F'' is a face of G'tEc -- -D]). Since the only vertices of C embedded in F '
are the vertices in .D, no other component of G']C] (with a different set
Z)) will correspond to this pair (./, /'').
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So the number of components such that (a) holds is at most the number
c' of special pairs. Thus there are at most c ' components of G']C] such
that (a) holds, which completes the proof of Lemma 2.6, by the discussion
in the third paragraph of the proof. I

Using (1) and the upper bounds given by the previous lemmas, we
conclude the proof of Theorem 2.3 as follows:

'p",')-«-*--.:lb7--l '«u

;,-«-- .$1b-FI '«w
l

zp - q + 3'z, by Lemma 2.5

l
P ') by Eq. (5)

l
2:P (2.P - 3q - .') (r + ''))

by Lemmas 2 .4 and 2.6
l
'i(.p + ')

l
3'

l
- -n-

3

l
> i("

l

'i '
2

bythe firstequationin (4)

£)

This completes the proof of Theorem 2.3. l
Recall that a triangular structure is a graph all of whose cycles are

triangles. Also that m/s(.L) denotes the number of edges in a maximum
triangular structure in a graph Z,. And p(Z,) fs(.L)/I.E(.L)I is -E(Z,) #
a, and p(.L) - I if .E(.L)

THEOREM2.10 lfH is a planar graph, then p(.H) z 4./9

Proof We may assume -H is connected and has at least three vertices.
Let f be the number of missing edges for .H to be triangulated. By Euler's
formula, I.e(.H)1 = 3/z -- 6 -- f, where /z 2 3 is the number of vertices of
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A maximum triangular structure in H can be obtained by extending a
maximum triangular cactus to a connected graph (by adding edges without
forming any new cycles). Also, a maximum triangular structure in .H has
one more edge per triangle than a spanning tree of .H.

From Theorems 2.2 and 2.3, the number of triangles in a maximum
triangular cactus is at least (1/3)(/z -- 2 -- /). From this, we conclude that
mfs(.H) 2 n -- 1 + (1/3)(n -- 2 -- /), and then

rz--1+(1/3)(n--2--r) 4/z--5--f 4
nr H ') > = 2: --

3n -- 6 -- r 9/z -- 18 -- 3r 9

for all £ 2 0. 1

COROI,I,ARY 2.II The pedomnance ratio ofAtgorithm B is exactly A./9

.f)ro(# Let G be a graph and let .H be a maximum planar subgraph of
G. Clearly, mfs(G) 2: mfs(.H). Now Opf(G) I.E(.n)I implies that
.B(G)/Opr(G) .E(.H)1 2 mfs(.H)/I.E(.H)I .H). By Theorem
2.10, p(,H) 2 4/9 for any planar graph .H. And from this we infer that the
performance ratio of -B is at least 4/9.

Next we prove that the performance ratio of Algorithm B is at most 4/9.
Let G ' be any triangulated plane graph on n ' vertices. Call P ' the vertex
set of G '. Since G ' is triangulated, G ' has 2n ' -- 4 (triangular) faces. For
each face of G ', add a new vertex in the face and adjacent to all three
vertices on the boundary of that face. Let G be the new graph and let }''
be the vertex set of G. Observe that G is a triangulated plane graph, and
has n ' + (2n ' -- 4) = 3n ' -- 4 vertices. Therefore G has 3(3n ' -- 4) -- 6 =
9n ' -- 18 edges. Let S be a maximum triangular structure in G.

Any edge in G has at least one endpoint in }''. Moreover, ll''l = n '
Therefore a maximum matching in G has at most lz ' edges (each with at
least one distinct endpoint in }'''). The following gemma is observed in
[LP86, P. 440].

Ltlamp,. 2.1.2. ifS is a triangularstmcture with t triattgles irt a given graph
G, then there is a matching in G ofsize t.

IJsing Lemma 2.12, we conclude that S has at most /z ' triangles. Recall
that S, being a triangular structure, is a spanning tree of G plus one edge
per triangle in S, which implies that S has at most (3/z ' -- 5) + n ' = 4n ' -- 5
edges. Furthermore, G has 9/z ' -- 18 edges. Therefore the ratio between
the number of edges in S and the number of edges in G is

4n ' 5

9n ' - 18

By choosing /z ' as large as we wish, we get a ratio as close to 4/9 as we
want. I
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How can one find a maximum triangular cactus quickly? A graphic
matroid parity algorithm can be used to construct a maximum triangular
cactus in a given graph [LP86]. The prob]em so]ved by a graphic matroid
parity algorithm is GRAPHIC MATROID PARITY (GMP): given a
multigraph G ' - (P ', .E ') and a partition of the edge set .E ' into pairs of
distinct edges {./', ./''}, find a (simple) forest r ' with the maximum number of
edges, such that .f c /' if and only if .f ' c .F for all ./' c .E '

Let us show how to reduce the problem of finding a maximum triangular
cactus in a given graph G GMP. This is done by describing a
multigraph G ' - (p '', .E ') and a partition .g of .E ' into pairs of distinct
edges of .E ', such that, from a solution to GMP for G ' and .g, we can
construct a maximum triangular cactus in G.

First, let P ' = P. Now, let us describe .E ' and the partition .g. Initially,
.E ' = {3 and @ = £13. For each triangle in G with edge set 7', let e, e ' be
any pair of distinct edges in T. Add two new edges .f and .f ' to .E ', ./ with
the same endpoints as e, and ./' with the same endpoints as e '. We say
that 7' conesponds to {./:, .f'}. Insert {.f, ./"} into .g. The construction of E '
and .@ is complete.

We say a forest -F in G ' is ua/fd if ./' c .F if and only if ./'' c -F for all .f
in .E '. Observe that any valid forest has an even number of edges. The
following lemma states a relation between valid forests in G ' and triangu-
lar cacti in G. Let m and /z be the number of edges and vertices,
respectively, in G.

LxmmA. 'z.\3. There is a valid forest F in G' with 2p edges if and only if
there is a triangular cactus S in G with p triangles. Moreover, S can be
obtained from F in time O(.n).

Proof Assume that S is a triangular cactus in G with p triangles. Note
that an edge in S appears in exactly one cycle; otherwise that edge is a
chord in a cycle of length at least 4. So if in each triangle we replace the
three edges by the two edges ./',.f ', we are left with a valid forest in G ',
with 2.p edges.

Assume now that F is a valid forest in G ' with 2.p edges. Note that
2.p g /z -- 1. For each pair {./', ./:'} in /', substitute .f, .f ' by e, e ' and add the
third edge of the coresponding triangle. The substitution can be done in
O(1) time per pair, in a total time of O(.p), which is O(/z).

Call the resulting graph S. Next we prove that S is a triangular cactus
with .p triangles. Note that S is a subgraph of G. Each edge in S appears
in a cycle: the corresponding triangle. In order to show that S is a cactus,

we need to prove that each cycle has length 3. We can substitute .f, ./'' by
e, e ' and add the third edge for each pair {.f,./"} one at a time, and we
maintain the invariant that each cycle consists of {e, e'}, corresponding to a
matched pair {./', ./:'} of .F, and the third edge of the corresponding triangle.
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This property is true before substituting the first pair and adding any third
edge, since .F is a forest. Let us prove that we maintain the invariant after
substituting /,.f ' by e, e ' and adding e" of a triangle whose edges are
{e, e',e"}. We know that before substituting ./:. ./'' by e, e ' and adding e". .f
and .f ' did not appear in any cycle, by the invariant. We need to show that
substituting .f,.f ' by e,e ' and adding e" only creates the cycle e,e ', e"
Because e is parallel to / and e ' is parallel to ./', any cycle created by the
substitution of .f,.f ' by e,e ' and the addition of e" has to contain e"
(otherwise .f and .f ' would appear in a cycle).

Assume for a contradiction that there is a cycle C which is not e, e ', d '
Assume first that C contains neither e nor e '. By replacing e" by ./: and

.f ' in C, we either get a cycle with .f and /' and without e,e',e", a
contradiction, or a union of two cycles (this is the case in which C goes
through the common endpoint of ./' and .f '). But one of these cycles
contains ./: and does not contain e, e ', e", a contradiction. If C contains e
and e" but not e ', then by replacing e and e" by .f ' in C we get a cycle
containing ./' and not e, e ', e", contradicting the invariant. The case in
which C contains e ' and e" but not e is similar. It follows that .S is a
cactus.

For each two edges in .F we get a triangle in S, for a total of p triangles.
This completes the proof. I

As described by Chiba and Nishizeki]CN85], we can explicitly list all the
triangles in a graph G with m edges in time O(m3'/Z). So I.E'l is O(m3'/z).

Gabow and Sta]]mann [GS85] describe an a]gorithm for GMP, which
runs in time O(m'n ' logo/z '), where m ' and /z ' are the number of edges and
vertices, respectively, in the input graph. In our case, n ' = n and m '
which is O(m3'/z). This gives a time bound of O(m3'/2/z logs/z) for this
phase

From the output of the Gabow-Stallmann algorithm, it is easy to find a
maximum triangular cactus in time O(n) (Lemma 2.13). Therefore the
total time is O(m3'/2/z log6/z).

3.0UTERPLANARSUBGRAPHS

Serendipitously, Algorithm B produces outerplanar graphs, so it is an
approximation algorithm for MAXIMUM OUTERPLANAR SUB-
GRAPH[, which is NP-comp]ete [GJ79, p. 197].

In fact, any algorithm which produces a spanning tree has performance
ratio at least 1/2, because any outerplanar graph on /z 2: 2 vertices has at
most 2n -- 3 edges (see below). A careful analysis shows that the perfor-
mance ratio of B when used for MAXIMUM OUTERPLANAR SUB-
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GRAPH is at least 2/3. This is an easy consequence of Theorem 3.2, in
order to prove which we need some preliminaries.

An outerplanar graph G is a mazxlma/ ozz/e/pZarzczrgaph if no edge can
be added without losing outerplanarity. As mentioned in [H72, p. 106],
every maximal outerplanar graph G with at least three vertices is a
triangulation of a polygon (i.e., the boundary of the exterior face is a
Hamiltonian cycle and each interior face is triangular). By [H72, Coro]]ary
11.9], G must have a vertex of degree 2 and 21r(a)1 -- 3 edges (this last
statement is also true for lr(C)I

LxmmA. 3.\. Let H be an embedding of a maximal outerplanar graph as
the thangulation of a pobgon. lfH has an odd number n '' \ of
vertices, then there is a triangular cactus in H with p triangles. lfH has an
yuen number n vertices and W is an edge on the boundary of the
exteriorface, then there is a triangular cactus S in H with p -- \ triangles such
that in S, x an,d y are not connected.

Notice that we obtain the maximum number of triangles possible. In the
former case all vertices are in the same component of the cactus, while in
the latter, the cactus has two components.

Proi=$ We use a plane embedding of .H.
The proof is by induction on lz, the number of vertices of .H. The case

/z = I is trivial. If n = 2 (in this case there is only one edge and p = 1),
the theorem is true.

We inductively construct a triangular cactus of the given size.
Let /z 2p + 1. Let u be a vertex of degree 2. Let x and y be its

neighbors. They are adjacent, since interior faces are triangles. The graph
H -- {u} is maximal outerplanar (since it has (2n -- 3) -- 2
edges) and has an even number of vertices. It is easy to check that if a
triangular cactus S' in this smaller graph has the property that x and y are
not connected in S', we can add the triangle Jyu to get a triangular cactus
in .H. The size of this cactus is p -- 1, by induction, plus 1, for a total of .p.

Let n and let the edge .W be on the boundary of the exterior face.
This edge is on the boundary of a triangular face .x}/o on the inside.
Walking along the H.amiltonian cycle which is the boundary of the exterior
face, starting at o and in the direction that visits .r just before y, let .Di be
the set of vertices visited between u and x, inclusive, and let n.
Walking along the Hamiltonian cycle in the opposite direction again
starting at z;, let .Dz be the set of vertices visited between u and y,
inclusive, and let /zz = IZ)zl; Di n .D2 = {z;} and Di U Z)z = }''(.H). The
only edge in .H between .D: -- {u} and Z)2 -- {u} is the edge .W.
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HI

FIG. 2. Graphs .lli and .flZ, built from .f/. The shaded region gives an example of a
triangular structure of the desired size, like the one constructed in the last paragraph of the
proof of Lemma 3.1.

Let Ht be the subgraph of .H induced by vertex set -Di, with, say ei
edges, and let .Hz be the subgraph of H induced by vertex set .Dz, with,
say, e2 edges (see Fig. 2).

We have ni + /z2 is odd, since z; is counted twice. Let us say without loss
of generality that /zl = 2.pi + I is odd and /zz = 2pz is even. Then
/z = 2(pt +pz). We have ei + e2 ' (2/z -- 3) -- 1, as from .Z? only the
edge .W is not an edge of either Ht or .r/z.. Since ei g 2ni -- 3 and
e2 g 2/zz -- 3, we infer that ei + ez K 2(/zl + /zz) -- 6 = 2(/z + 1) -- 6
2/z -- 4. Since, in fact, ei + ez = 2/z -- 4, we infer that ei = 2/zi -- 3 and
ez = 2/zz -- 3. Thus both .Hi and .HZ have to be maximal outerplanar, as
they have the maximum allowable number of edges.

Then by the inductive hypothesis we can construct in .Ht a cactus Si
with pi triangles. If we apply the inductive hypothesis to -Hz with [y being
the edge on the exterior face, we obtain a triangular cactus S2 with pz -- I
triangles in which y and o are not connected. Then, putting together the
edges of Si and Sz, we get S, a cactus in .H. In the new cactus S, any
possible x -- y-path must visit u, since neither Si nor S2 has edge 4/. But
in Sz, y and u are not connected. It follows that x and y are not
connected in S, so S is the desired cactus. S has pi + (.p2 -- 1) triangles,
which is exactly the number we wanted. I

In conclusion, for a maximal outerplanar graph with /z vertices, we can
find a triangular structure with I(/z -- 1)/2J triangles.

We now prove a lower bound on p(H).
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THEOREM 3.2. lfH is outerplanar, then p(.H) >. 'Z/'S

/%roroof Let .H be any 2-connected outerplanar graph. We add f edges
to obtain a maximal outerplanar plane graph .H '. Note that .H ' has 2/z -- 3
edges and a triangular structure S with exactly [(/z -- 1)/2J triang]es.

However, the f missing edges can destroy at most f of these triangles in
S, because S is a cactus. If f z /z/2, we infer that

n -

p(a ') a: 'i;-:T
1 2

>
- /z/2 ' 3

Assume to the contrary that f K [(n -- 1)/21. Then the number of edges
in the triangular structure .S is at least /z -- I + ([(/z -- 1)/2j -- r). Thus

,(x) : !-:-!:i:l0 - iy21 - '
The worst case is achieved when r = 1(/z -- 1)/2J and is 2/3.

If H is not 2-connected, we can do the above analysis for each of the
2-connected components (an edge appears in exactly one 2-connected
component) and infer that a maximum triangular structure has 2/3 of the
edges in .H. I

The theorem above is tight, in the sense that there are outerplanar
graphs .H for which p(-H) is arbitrarily close to 2/3. In fact, there are
outerplanar graphs H. with 2f vertices and 3f -- 2 edges which do not
have any triangle.

COROI.LARA 3.3. 4/goHfhm B /zas pe/jormcznce m/io 2/3 jor .lt41'{.X7.
MUM OUTERPLANAR SUBGRAPH.

4. THE COMPLEXITY OF THE PROBLEMS

Papadimitriou and Yannakakis [PY91] defined a natura] variant of NP
for optimization problems: the complexity class Max SNP. This class, as
they have shown, contains several well-known optimization problems, such
as MAX 3-SAT and MAXIMUM CUT. In this section, we prove that
MAXIMUM PLANAR SUBGRAPH (MPS) is Max SNP-hard, as its
complementary version: given a graph, find a smallest subset of its edges
whose removal results in a planar graph. This means, by results of Arora
ef a/. [ALMSS92], that there is a constant € > 0 such that the existence of
a polynomial-time approximation algorithm for MPS with performance
ratio at least I -- c implies that P = .NP, and that an analogous statement
can be made about the complementary problem.
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As in [PY91], we use the concept of .L-redzzcfion, which is a special kind
of reduction that preserves approximability. Let .4 and .B be two optimiza-
tion problems. We say .4 .Z..-redzzces to .B if there are two polynomial-time
algorithms ./: and g and positive constants a and /3, such that for each
instance / of..4,

1. Algorithm .f produces an instance /' /) of -B, such that the
optima of / and /', of costs denoted OpfH(/) and C)pfa(/'), respectively,
satisfy Opr,(/') K a Op/H(.r).

2. Given any feasible solution of /' with cost c ', algorithm g pro-
duces a solution of / with cost c such that lc -- OpfJ(/)I g P.lc ' --
OP/a ( .r')I.

The main result of this section is

THEOREM 4.1 MAXIMUM PLANAR SUBGRAPH is Mmc SNP-hard

.f%roroof Denote by ZSP4(1, 2) the following variant of the traveling
salesman problem: given a complete graph, a pair of distinct vertices x, y,
and cost I or 2 for each edge, such that the graph induced by the edges of
cost I has maximum degree at most 4, find a Hamiltonian path from x to
y of minimum cost. Papadimitriou and Yannakakis [PY93] showed that
71SP4(1, 2) is Max SNP-hard.

We shall prove ZSP4(1,2) Z,-reduces to MPS. The basic idea of the
reduction comes from Liu and Ge]dmacher [LG77], where the decision
version of MPS is proved to be NP-complete.

The first part of the I,-reduction is the polynomial-time algorithm .f and
the constant a. Given any instance / of TSP4(1, 2), :.f produces an instance
G of MPS such that the cost of the optimum of G in MPS, denoted
Op/Mps(G), is at most a times the cost of the optimum of .r in TSP4(1, 2),
denoted by Op/rsP4O.D(.r), that is, (1)p/ups(G) K a ' OP/rsp,o,D(/).

Consider an instance / of ZSP4(1, 2). / is a complete graph K = (r, .E),
a pair of distinct vertices x, y of P, and a subset .Et of .E consisting of the
edges of cost 1. Let .H (}', .Ei) and -H ' U .h u -F2), where
T =lfo,fi,fz,r3}, 7' rl 1,/= £13, .Fi= {rofi,fof3,ftfz,ft£3,fix,rzr3,f3y}, and
Fz rlfoz, fzz} (see Fig. 3).

Denoting by /z the number of vertices of .H, let G be the graph obtained
from -H ' by (1) replacing each edge e in Fi by 2/z parallel internally
diqoint paths of length 2 (having new internal vertices) between the
endpoints of e and (2) replacing each edge e in /'2 by eight parallel
internally diqoint paths of length 2 (having new internal vertices) between
the endpoints of e (see Fig. 4).

Clearly, G can be obtained from / in time polynomial to the size of /.
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edges in Fi

- - - - edges in F2

FIG. 3. Graph .fl ' constructed from .f/

LEMMA 4.2. Op/Mps(G) K 124 ' C)prrsp.o,D(/).

.l+oo£ Observe that OPrrsp.o.D(/) 2: n -- 1. A clear upper bound for
O72rwps(G) is the number of edges of G. To compute this, note first that H
has maximum degree at most 4 by the definition of 7'SP4(1, 2), and so -H
has at most 2/z edges. Let us call the edges in Fi 2/z-edges and the edges in
F: 8-edges. There are seven 2/z-edges: .Fi contains seven edges, each of
them corresponding to 4/z edges in G. There are 2/z 8-edges: .Fz contains
2/z edges, each of them corresponding to 16 edges in G. Hence the
number of edges in G outside of H is 7 . 4n + 16 . 2n = 60/z. The total
number of edges in G is therefore at most 2n + 60lz = 62/z g 124(n -- I).
Therefore O77rwps(G) g 124(n -- 1) K 124 ' (1)Pr sp a,a(-r). I

FIG.4. Edge e and its substitution by internally diqoint paths of length 2
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This finishes the first part of the .L-reduction, since we can take

The second and hard part of the .L-reduction is the constant /3 and the
algorithm g. Given a planar subgraph of G with m edges, g produces in
polynomial time a Hamiltonian path from x to y of cost f in K such that
/ -- OPrrsp.a,a(/)I K /31m -- Op/Mps(G)I. We shall see that /3 I sufflces.

First, given a planar subgraph P of G, let us describe another planar
subgraph P ' of G with at least as many edges as P. Moreover, P ' shall
contain all edges of G not in .H.

Let e be a 2n-edge or an 8-edge of ,H '. We say e Wears in P if P
contains both edges of a// the paths of length 2 corresponding to e. In this
case, we also say that the endpoints of e zzre adyace/zf i/z P by fhe 2/z-edge or
8-edge e. We say e is mfssf/zg i/z P if P. contains both edges of /zo/ze of the
paths (of length 2) corresponding to e. (in this case, if e is an 8-edge, then
P is missing at least eight of its 16 edges in G corresponding to e.) it is
possible that a 2n-edge or an 8-edge of -H ' neither appears in P nor is
missing in P

Let us modify P so that any 2n-edge or 8-edge of H ' either appears in
P or is missing in P. This is done as follows. If a 2/z-edge or an 8-edge e of
H' neither appears nor is missing in P, then we insert in P all edges of G
in the paths (of length 2) corresponding to e. Note that P remains planar.
Clearly, the number of edges in P cannot decrease by this operation. The
new graph is also called P

Now we can describe P '. We have three cases: (1) if some 2/z-edge e
does not appear in P, then define P ' to be the graph induced by all edges
of G not in .H; (2) if all the 2/z-edges and the 8-edges of .H ' appear in P
then let P ' be the same as P; and (3) if all the 2n-edges of -H ' appear in
P, but not all the 8-edges, then we modify .P to obtain P ', as described in
the next two paragraphs.

The idea is to remove from P some edges of H and add to P edges of
.l?' not in .H so that all the 8-edges of .H ' appear in the modified graph,
and it remains planar and has at least as many edges as the original -P.

Let U be the set of vertices u of .H such that at least one of the two
8-edges incident to u in -H ' is missing in P. Observe that IUI 2: 1, as case
(2) considered IU1 = 0. For each vertex o in U, remove from P all edges of
H incident to t; in P (at most four edges are removed per vertex) and add
to P all the edges outside of .H so that the two 8-edges incident to o
appear in P (at least eight edges are added, corresponding to the 8-edges
incident to u missing in P). To guarantee that the graph obtained this way
is planar, we must make room to embed the modified 8-edges. This is done
by also removing from P all edges of H incident to y (if they were not
already removed). Let P ' be the graph obtained after all these modifica-

124

toons
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LEMMA 4.3. P' is planar and has at least as man? edges as P

Prop/I in case (1), we include in P ' at least 2/z edges that do not
appear in P (at least one in each of the 2/z paths corresponding to e), and
we remove at most 2/z edges, the maximum number of edges in -H. So P '
has at least as many edges as P. Moreover P ' is planar.

There is nothing to be proved in case (2).
Case (3) is the complicated one. First, note that P ' has at least as many

edges as G, since, for each vertex in U, we remove at most four edges and
add at least eight. Furthermore, we remove at most four edges incident to
y. Hence we gain at least (8 -- 4)1U1 -- 4 41U1 -- 4 2: 0 edges, since

Now, let us show that P ' is planar. We can think of the 2/z-edges and
8-edges as single edges, as they are in H ' (since if we can embed a single
edge, we can embed a 2/z-edge or an 8-edge as well). We will modify a
given embedding of P into an embedding for P '

Let C be the cycle (using four 2n-edges) to, rt, fz, f3, ro. Observe that the
2/z-edges in C appear in P, since we are in case (3). Given an embedding
for .P, cycle C divides the plane into two regions, Ri, containing the
2/z-edge fi/3, and Rz (see Fig. 5). The 2/z-edge rife separates ro from f2 in
R:. Moreover, each vertex in P -- U (the vertices of .H not in U) is
adjacent in P by 8-edges to to and /z. Because to and fz are separated in
Ri, none of these vertices can be embedded in Rt, which implies they must
be embedded in RZ. Keep these vertices (ro,rl,fz,f3 and the vertices in
P -- U) embedded as they are.

Now, observe that y is adjacent in P ' only to ro, fz (by 8-edges), and r3
(by a 2n-edge). Furthermore, y is the only vertex in -H which is adjacent to
f3. This means, before we embed y, the vertices ro, rz, and r3 are not

U l>

FIG. 5. Cycle C, regions Ri and RZ = R'Z U R ';
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separated in .Rz.: Therefore y can be embedded in Rz with the 2/z-edge

f3y and the 8-edges foy and yfz ''next to '' the 2/z-edges rots and f3r2. The
edges foy and yfz together split region Rz into two regions, R'z , containing
edge r3y, and .R%, containing vertex fi. Observe that to and f2 are not
separated in R ';, since r3 is the only vertex, besides to and rz, which is
adjacentto y (by a 2/z-edge).

All the vertices in U -- {x} are adjacent in P ' only to to and fz (by
8-edges), and therefore they all can be embedded in -R '; with their two
8-edges ''next to '' the 8-edges foy and yfz. If x c U then observe that .r is
the only vertex in /7 which is adjacent in P ' to ri (by a 2/z-edge). This
means, before we embed x, the vertices to, ri, and /2 are not separated in
R%. Therefore x can be embedded in .R% with the 2/z-edge xrl and the
8-edges fox and xfz ''next to '' the 2/z-edges lori and fifa. If x f U then it
does not need to be moved in the embedding. The embedding obtained
this way is a plane embedding of P ', completing the proof that P ' is
planar. I

Observe that P ' contains all the edges of G not in H. Let -F be the set
of edges of H appearing in P '

LxmmN 4.A.. The graph Gp k a collection ofuertex-disjointpaths
which can be extended in K (.the complete graph on V) to a Hamiltonian path
Pom x to y, in pot#nomial time.

Pro(# . Let us prove that Gr satisfies the following four conditions: (1)
There is no vertex of degree greater than 2 in Gr. (2) Vertices x and y
have degree at most I in Gr. (3) There is no cycle in Gr. (4) if x and y are
in the same component of Gr , then this component spans all vertices in }'.
We will prove each of these conditions holds by contradiction.

Suppose (1) does not hold. Let zo be a vertex in }'' of degree at least 3 in
G},. Let zi, zz, z3 be three of its neighbors in Gr. (Notice that zo, zi, zz, z3
are distinct vertices of .H, so they are distinct of ro, rz.) Then each one of
fO,f2.zO is adjacent in .P ' to each one of zi,z2,z3 (some of them are
adjacent in P ' by 8-edges). Therefore to, rz, zo; zi, zz, z3 define a subdivi-
sion of K3.3 in P ', a contradiction, because P ' is planar. Thus (1) holds.

Suppose (2) does not hold. If x has degree more than I in Gr, let zi and
z2 be two of its neighbors in GP. (Notice that zi and zz are distinct
vertices of .H, distinct of x, so they are distinct of ro, rz.) Then each one of
to,/Z,x is adjacent in P ' to each one of fi,zi,zz (some of them are
adjacent in P ' by 2/z-edges or 8-edges). Therefore to, fz, x; fi, zi, z2 define
a subdivision of K3.3 in P ', a contradiction, because P ' is planar. Analo-
gously, we have a contradiction if y has degree more than I in Gr. Thus
(2) holds.
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Suppose (3) does not hold. Let zi, z:, z3 be three vertices in a cycle of
Gr. (Since zi, zz, z3 must have degree at least 2, they are not x or y by
condition (2), and they are not to or fz since they are vertices of .17.) Then
zi, zz, z3, ro, /z are pairwise linked by internally vertex-diqoint paths (the
path between to and rz uses the two 8-edges incident to x, while the others
use one 2/z-edge or 8-edge). Therefore, to, rz , zi, zz, z3 define a subdivision
of -Ks in P ', a contradiction, because P ' is planar. Hence (3) holds.

Suppose (4) does not hold. Let zo be a vertex in }' which is not in the
component having x and y in Gr. In this case, ro, rt, f2, x, y are pairwise
linked by internally vertex-diqoint paths (the path between f. and fZ uses
zo, the path between ri and y uses r3, the path between x and .y is in Gr,
and the others use one 2n-edge or 8-edge). Therefore, ro, fl, r2, x, .y define
a subdivision of .Ks in P ', a contradiction, because P ' is planar. Hence (4)
holds.

Therefore, the conditions hold. From (1) and (2), we conclude that G, is
a collection of paths. From (2) and (3), these paths can be extended in K
(the complete graph on }'') to a Hamiltonian path from .r to y. Further-
more, note that this can be done in polynomial time. I

Let .f/P be a Hlamiltonian path from x to y containing all edges in /'
and some edges (in K) of cost 2. .11P exists by Lemma 4.4. Denote by m '
the number of edges of P ' and by r the cost of .17P

Now the following lemma states that /3 exists, and specifically, /3 = 1.
LEMMA 4.5.

f -- OPfrsp,o,D(/) OpfWPS(G) -- m '

andhence

r -- 0Prrsp.0 . a( .r) I ""' -- OprMps(G)I

Proof As in the proof of Lemma 4.2, the number of edges in G outside
of .H is 60/z. All these edges are in P '. Therefore the number of edges in -F
is m ' -- 60/z. And the cost of .17P is

f I) - (m ' - 60n) (9)

Let Q be an optimal solution of MPS for G. Using the same argument
for Q that we used for P, Lemma 4.4 and the argument above imply the
existence of a Hamiltonian path of cost 2(n -- I) -- (Opfwps(G) -- 60/z).
Therefore

OPrrsp,o,D(.r) g 2(/z 1) - (0Pr«.ps(G) 60") (10)
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Given an optimal solution .17P* of Tsai(1, 2) for /, we can construct a
solution of MPS for G by selecting all the edges outside of .H plus the
edges of cost I in .f/pH '. Observe that these edges really determine a planar
subgraph of G. Let z be the number of these edges. Since we have 60/z
edges in G outside of .H, .17P* has z -- 60rz edges of cost I and the
remaining ones (of its /z -- I edges) have cost 2. This means that

OPrrsp,a,a(.r) - 2(/z -- I) - (z - 60/z)

2: 2(n -- 1) -- (0Pf«,p.(G) 60,z), ( 1 1)

since OpfwPS(G) 2: z.
Therefore, from (lO) and (11), we have

OPfrsp.o . a( .r ) 2(« - 1) - (0Pf«.p.(G) - 60«)

And this together with (9) means

f -- 0Pfrsp.0,D(.r) - 0Pf«.ps(G)

Hence Ir -- Oprrsp.a.z)(/)I - Im ' -- Op/wps(G)I. I
From m K m ', it follows that

f -- OPfrsp,o,D(.r) g OPf«.ps(G)

and

OPfrsp,a.a(.r)I g I ' Im 0P£w,s(G) I

This completes the proof of Theorem 4.1 l
Let us denote the complementary version of MPS by NPD: given a

graph G, find a smallest set of edges of G whose removal results in a
planar graph.

A slight modification of the Z,-reduction presented above proves the
following.

T'Kxoppm A..6. NPD is Max SNP-hard

Proof The first part of the .L-reduction is almost the same. From an
instance / of TSP4(1,2), we construct G in exactly the same way. As
before, OP/rsp.a.z)(.r) 2: /z -- 1. As in the proof of Lemma 4.2, the maxi-
mum number of edges of G is 62/z. Thus the optimum of G in NPD,
denoted as OpfXPO(G), is at most 62/z. And then Opfxpn(G) K 62n g
124(n -- 1) g 124 0Pfrsp,o.D(/). We can take a = 124, as before.
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In the second part, given an instance / of ZSP4(1,2), let G be con-
structed from / as in the previous reduction. Let Z) be a subset of the
edges of G whose removal results in a planar subgraph of G. We shall find
in polynomial time a Hamiltonian path /{P such that f -- OPfrsp,(i. 2)(-r) g
d -- Oprxpo(G), where r is the number of edges in .f/P and d ='1.01. Just
as we took a planar subgraph P of G and found a planar subgraph P '
which contains all edges of G not in -H, and is at least as large as P, from
Z) we can find a set .D ' of edges of G containing /zo/ze of the edges of G
not in .H, which is at least as sma// as D. Applying Lemme 4.4, we can
obtain a Hamiltonian path .17P, as before, in polynomial time.

Now, let us prove that /3 exists. Let m ' be the number of edges in P '
Note that d ' + m ' C)I. Moreover, Opfv,.(G) + Oprw,o(G) Z(C)I.
Therefore, d ' -- Opfxpn(G) = Opfwps(G) -- m '. Applying Lemma 4.5, we
conclude that f -- C)pfrsp.o,D(/) -- OpfxPO(G), which, together with
d' g d, implies that we can take /3 = 1. 1

5. OPEN PROBLEMS

Many open problems are suggested by this research. How large a
performance ratio one can achieve is an obvious one. Is there a linear-time
approximation algorithm for MAXIMUM PLANAR SUBGRAPH with
performance ratio 1/3 + €? (A m ima/ planar subgraph can be found in
[inear time [H95, D95].) is there any approximation a]gorithm with a
constant performance ratio for NPD? What performance ratio can be
achieved for THICKNESS (given G, partition the edges of G into as few
planar subgraphs as possible)? A factor of 3 here is trivial, via arboricity.
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Chapter I
A Better Approximation Algorithm for Finding Planar Subgraphs

Gruia C15,linescu * Cristina G. Fernandes t Ulrich Finkler + Howard Karloff ':

Abstract MUM PLANAR SUBGRAPH appear in the literature.
the simplest ones being Spanning 'llee (output any
spanning tree of G, assuming G is connected) and Max-
imal Planar Subgraph (output any planar subgraph to
which the addition of any new edge would violate pla-
narity). Spanning 'lYee is known to have performance
ratio 1/3 (see below). Dyer, moulds and Frieze IDFF851
proved that Maximal Planar Subgraph has performance
ratio 1/3. CimikowskilCim951 proved that a path em-
bedding heuristic of Chiba, Nishioka and Shirakawa
[CNS79] and an edge embedding heuristic of Cai, Han
arid Tarjan ICHT931 have performance ratios not ex-
ceeding 1/3. In the same paper, Cimikowski studied two
other polynomial-time heuristics: the "verLex-addition
heuristic" and the "cycle-packing heuristic." The per-
formance ratio of the former, to the authors' knowledge,
is not known, whereas for the cycle-packing algorithm,
it is 0. Dyer, moulds and Frieze IDFF85] studied two
other algorithms and proved that each has performance
ratio at most 2/9. Also see [JM931.

In short, to the authors' knowledge, no previously
proposed algorithm was known to have a performance
ratio exceeding 1/3. What makes the problem more
tantalizing is that achieving a performance ratio of 1/3
is trivial.. In fact, Spanning 'hee has performance ratio
1/3, since every spanning tree of a connected graph on
rz vertices has n -- I edges and every planar graph on n
vertices has at most 3n 3 = 3(n -- 1) edges (and there
are planar graphs on rz vertices with 3n -- 6 edges, for
all n ? 3). No previous algorithm could beat the bound
achieved by a trivial algorithm.

In this paper, we present two new approximation
algorithms for MAXIMUM PLANAR SUBGRAPH.
Each achieves a performance ratio exceeding 1/3. The
higher performance ratio is 2/5 = 0.4 and is achieved by
an algorithm which (surprisingly) invokes an algorithm
for the graphic matroid parity problem as a subroutine
and which runs in time O(m3/2nlog6n). A greedy
variant still has performance ratio 7/18 = 0.3888..., and
runs in linear time on graphs of bounded degree.

Next, we provide an extension of the main algo-
rithm. We provide a nontrivial approximation algo-
rithm foi MAXIMUM OUTERPLANAR SUBGRAPH.
which is this problem: given G, find an outerplanar sub-

The MAXIMUM PLANAR SUBGRAPH problem--given a
graph G, find a largest planar subgraph of G--has applica-
tions in circuit layout, facility layout, and graph drawing. No
previous polynomial-time approximation algorithm far this
NP-Complete problem was known to achieve a performance

ratio larger than 1/3, which is achieved simply by producing
a spanning tree of G. We present the first approximation al-

gorithm for MAXIMUM PLANAR SUBGRAPH with higher
performance ratio (2/5 instead of 1/3). We also apply our al-
gorithm to find large outerplanar subgraphs. Last, we show
that both MAXIMUMS PLANAR SUBGRAPH and its com-
plement, the problem of removing as few edges as possible
to leave a planar subgraph, are Max SNP-Hard.

I Introduction
MAXIMUM PLANAR SIJBGRAPH is this problem:
given a graph G, find a planar subgraph of G of
maximum size, where size is the number of edges.
This problem has applications in circuit layout, facility
layout, and graph drawing IF92, TDB881.

MAXIMUM PLANAR SUBGRAPH is known to
be NP-Complete ILG77]. For a graph G, let us define
Opt(G) to be the maximum size of a planar subgraph of
G. Given an algorithm A that takes (representations of)
graphs G as input and outputs subgraphs of G, define
A(G) to be the size of the planar graph A produces
when G is the input. Now let us define A's perlormarzce
or approrimatfon ratio r(A) to be the infimum, over
all (representations of) graphs G, of A(G)/Opt(G) (if
Opt(G) > 0, and I otherwise). In the literature, authors
sometimes ensure that their performance ratio is at least
one by defining it to be the reciprocal of ours.

Numerous approximation algorithms for IVIAXI
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graph of G of maximum size. (An outerpianar graph is a
graph which can be drawn in the plane without crossing
edges, with all vertices on the boundary of the exterior
face IH721.) This new algorithm has performance ratio
at least 2/3, which surpasses the bound of 1/2 which is
trivially obtained by producing a spanning tree.

Last, we shaw that MAXIMUM PLANAR SUB-
GRAPH is Max SNP-Hard, implying that there is a
constant f > 0 such that the existence of a polynomial-
time approximation algorithm with performance ratio
at least I -- € would imply that P = ATP IALMSS921.
In addition, we show that the complementary prob-
lem, called NONPLANAR DELETION or NPD given
G = (V. E), produce a smallest subset f f -B such that
(y,E f) is planar is also Max SNP-Hard.

Algorithm A produces a triangular structure in the
given graph G. The algorithm consists of two phases
First, A greedily constructs a maximal triangular cactus
St in G. Second, A extends Si to a triangular structure
S2 in G by adding as many edges as possible to Si
without forming any new cycles.

Given a graph G = (V '. .E) and .E ' g .F, we denote
by al.F'l the spanning subgraph of G induced by E ',
that is, the graph IV. -D ')

Algal'ithm A
Starting with Ei = g, repeatedly (as long as possible)
find a triangle T whose vertices are in di#erent compo-
nents of CIEll, and add the edges of T to Ei
Let SI := G].8l].

Starting with E2 = -Et, repeatedly (as long as possible)
find an edge e in G whose endpoints are in diRerent
components of (l;l.F21, and add e to E2
Let S2 := (1;].El2].
Output S2.

2 The Approximation Algorithms
In this section w© present the two new algorithms
for NIAXIMUM PLANAR SUBGRAPH. The higher
performance ratio is at least 2/5=0.4.

Let us give some motivation for our algorithm. As
we said, given a (connected) graph G, an algorithm
which outputs a spanning tree of G achieves a per-
formance ratio of 1/3. A graph whose cycles all have
length three, i.e., are triangles, is planar, as it cannot
contain a subdivision of -KS or /{3,3. Moreover, note
that a connected spanning subgraph of G whose cycles
are triangles, besides being planar, has one more edge
per triangle than a spanning tree of G.'

Our better algorithm produces a subgraph of G
whose cycles are triangles and, among these subgraphs,
has thee:'maximum number of edges. It can be imple-
mented in time O(m3/2n logo n), where m is the number
of edges in G and n is the number of vertices in G, using
a graphic matroid parity algorithm, as we will see later.
We first present a greedy version of the algorithm.

Note that S2 is indeed a triangular structure in G.
As we mentioned before, S2 is planar since it does not
contain cycles of length greater than three.

TnEOKEM 2.1 The per$ormarzce ratio o/ algorithm
,4 £.$ :L

18

Prod/. First let us show that the performance ratio
is at least 7/18. Without loss of generality, we may
assume G is connected, and has at least three vertices
Observe that the number of edges in S2 is the number
of edges in a spanning tree of G plus the number of
triangles in Si. So it sulhces to count the number of
triangles in Si.

Let .llr be a maximum planar spanning subgraph of
G. Let rz 2 3 be the number of vertices in G, and t > 0
be such that 3n -- 6 -- t is the number of edges in #
We can think of f as the number of edges missing for an
embedding of H to be a triangulated plane graph. The
number of triangular faces in # is at least 2n -- 4 2t
IThis is a lower bound on the number of triangular faces
of a plane embedding of H since if H were triangulated,
it would have 2n 4 triangular faces, and each missing
edge can destroy at most tuo of these triangula.r faces.)

Let A be the number of components of Si each
with at least one triangle, and let pi,p2, . .,PX be the
number .of triangles in each of these components. Let
p ' >,i;ipi. We will prove that p, the number of
triangles in Si , is at least a constant fraction of n --2 t
Note that if a triangle cannot be added to Si, it is
because two of its vertices are in the same component
of Si . Hence, one of its edges has its two endpoints in
the same component of St This means that at the end
of the first phase, every triangle in G must have some

2.1 A Greedy Version of the Algorithm. Al-
gorithm A, presented below, is a greedy version of our
algorithm. It has a performance ratio of 7/18=0.3888....
After presenting the algorithm and proving its perfor-
mance ratio is 7/18, we will show it can be implemented
in linear time for graphs with bounded degree. We begin
with some definitions.

A triarzgu/ar cactus is a graph whose cycles (if any)
are triangles and such that all edges appear in some
cycle. A fHangtzlar cactus in a graph G is a subgraph
of G which is a triangular cactus.

A fr£a7zguZar structtfre is a graph whose cycles (if
any) are triangles. A triangular sfructtire in a graph G
is a subgraph of G which is a triangular structure. Note
that every triallgular cactus is a triangular structure,
but not Dice versa.
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two vertices in the same component of Si . In particular,
every triangu]ar face in ]7 must have some two vertices
in the same component of Si, and therefore one of its
three edges must be in the subgraph of # induced by the
vertices in a component of Si. Thus we can associate
with each triangu]ar face F ' in -]] an edge e in F ' whose
endpoints are in the same component of Si. But any
edge e in # lies in at most two triangular faces of #,
so e could have been chosen by at most two triangular
faces of #. It follows that the number of triangular
faces in H is at most twice the number of edges in ]lr
whose endpoints are in the same component of Si

Let ]7' be the subgraph of -17 induced by the edges
of J7 whose endpoints are in the same component of
Si. Note that pf ? 1, for all f, and that the number
of vertices in the iti component of St is 2pf + 1 ? 3.
Since .#' is planar, #' has at most }l'X;:(i(2pi+ I) --
6) = 6p 3k edges. By the observation at the end

of the previous paragraph, 2(6p -- 3k) ? 21.F(n')I ?
(number of triangular faces in H) 2 2n -- 4 -- 2t. From
this, we have

The number of edges in S is 3p. Hence, S2 can have
3P+ (4p-- 2) = 7p-- 2 edges, while G. has 18p-- 9 edges.

Thus, the ratio between the number of edges in S2 and
the number of edges in G. is

7p 2 7
iii;a ': B + ',

because p > gf#

2.1.1 Linear Time for Bounded-Degree Graphs.
In the case G has bounded degree d, we can implement
algorithm A in linear time. We u,ill only describe the
implementation of the first phase, as the second one can
clearly be implemented in linear time.

At any time, the vertices of the graph are parti-
tioned in three sets: new, active and used. At the be-
ginning, all the vertices are new. If there are no active
vertices, choose a new vertex and make it active. Choose
an active vertex f and "use" it; that is, include in the
cactus St , one after the other, triangles formed by a; and
two new vertices, making these vertices active. Mark f
"used" at the end of this process.

Using one vertex takes constant time as all degrees
are bounded by d. We maintain the invariant that
all triangles which contain a used vertex have been
processed and all vertices which are active at a given
time are in the same connected component of G].Fi] at
that time.

It is not hard to see that at the end, .Fi is maximal,
in that no triangles can be added to it.

. n -- 2 -- t + 3k . n -- 2--f
p ::: "'''T

Therefore the number of triangles in Si is at least "-2-1
and the ratio between the number of edges in S2 and
the number of edges in .Er is at least

n-- I + !!:g:£ 7n
3n 6--t 18n

8

36

since f 2 0. This completes the proof that the
performance ratio of algorithm A is at least 7/18.

Now, we will prove that the performance ratio is at
most 7/18. This is done by presenting, for any c > 0,
a p/anal graph G. such that algorithm A, with G. as
input, can produce a subgraph S2 of G. such that the
number of edges in S2 is at most 7 +c times the number
of edges in G.

Given ( > 0, let p be an integer such that p >
gf!?. Let S be any connected triangular cactus with
p triangles. S has 2p + I Z 3 vertices. Let S' be any
triangulated plane supergraph of S on the same set of
vertices (S' can be obtained from S by adding edges to S
until it becomes triangulated). Since S' is triangulated,
S' has 2l2p+ 1) -- 4 = 4p-- 2 (triangular) faces. For each
face of S' , add a new vertex in the face and adjacent to
all vertices in the boundary of that face. Let G. be
the new graph. Observe that G. is a triangulated plane
graph and has (2p + 1) + (4p -- 2) = 6p -- I vertices.
This means that G. has 3(6p 1) -- 6 = 18p -- 9 edges.
With G. as input for algorithm A, in the first phase it
can produce .$ :: S, and S2 can be S plus one edge for
each of the new vertices (the vertices in G. not in S).

2.2 A Better Algorithm. The new algorithm, al-
gorithm B below, finds a maximum triangular structure
(one with the maximum number of edges) in a given
graph G. Algorithm B has performance ratio at least
0.4, and can be implemented in time O(m3/2n logo n).
Now, let us present the algorithm and the lower bound
of 0.4 on its performance ratio.

Algorithm B also has two phases. In the first one,
B constructs a maximum triangular cactus Si in G. We
will show later how to use a matroid parity algorithm
to construct Si. In the second phase, B extends Si to
a triangular structure S2 in G, as before, by adding to
SI as many edges as possible which do not form new
cycles

Algorithm B

Let Si be a maximum triangular cactus in G.
Starting with .E2 = E(SI), repeated]y (as long as
possible) find an edge e in G whose erldpoints are in
di#erent components of G]-E2], and add e to E2.
Let S2 := (rlll21
Output S2.



4 G. Cilinescu, C. G. Fernandes, U. Finkler, H. KarlofF

Observe that S2 is a triangular structure in G, and
therefore is planar. To analyze the algorithm, we need
a definition. In any graph #, let mts(#) denote the
number of edges in a maximum triangular structure in
#. Define p(#) = mt.(#)/I.D(#)I if E(-F) # g, and
p(X) = I if E(.a) = g.

We will prove that p(H) 2 0.4 provided that J7 is
planar. (And later we will prove that p(#) ? 2/3 if n
is outerplanar.) The key to understanding the analysis
of algorithm B is the following. If G is any graph,
let H be a maximum planar subgraph of G. Clearly
mts(G) 2 mts(#). Now Opt(G) = 1-E(X)I implies that
B(G)/Opt(G) /I.B(X)I ? mt;(H)/l-E(H)I =
p(H). If we prove that p(H) 2 0.4 for any planar #,
we can infer that the performance ratio of B is at least

THEOREM 2.2. // .11 is a planar graph, then
P(H) ? 0.4.

Prod/I The theorem is easily verified if .ll has fewer
than three vertices, so let us assume that H has n 2
3 vertices. We may furthermore assume that # is
connected. Embed H in the plane. Choose t ? 0 so
that IE(X)1 = 3n 6 -- t.

Now let J be any triangular cactus obtained by
choosing triangular faces of .ll until no more can be
addedl say the final J has k components. Let p be the
number of triangles in J.' As in the proof of Theorem
2.1, if we count twice every edge in .llr whose endpoints
are in the same component of J, we will "cover" every
triangular face of H; and, in fact, each triangular face
of J will be covered three times, by the three edges

bounding the face. Let s be the number of edges in
# whose endpoints are in the same component of J.
Let / be the number of triangu]ar faces in -Z]. Since
the p triangles in J are covered three times, we have
({ -- p) + 3p = / + 2p $ 2s. As in Theorem 2.1, we have
s 5; 6p -- 3k and / ? 2n -- 4 -- 2t.

It follows that 2n -- 4 -- 2t + 2p $ / + 2p $ 2s $
2(6p -- 3k), so that

0.4

TnEOKEU 2.3. The perl/brmarzce ratio o/ a/gorfthm
B is af most l}

Prod/I We will prove this by presenting, for any
c > 0, a p/anal graph G. such that algorithm B, with
G. as input, can produce a subgraph S2 of G. whose
number of edges is at most 4 + c times the number of
edges of G.

Given f > 0, let n ' be an integer such that n ' > g;#.
and n ' ? 3. Let Gf be any triangulated plane graph on
lz ' vertices. Call y ' the vertex set of G!. Since G! is
triangulated, Gf has 2n ' -- 4 (triangular) faces. For each
face of G!, add a new vertex in the face and adjacent
to all three vertices on the boundary of that face. Let
G. be the new graph, and let y be the vertex set of
G.. Observe that G. is a triangulated plane graph, and
has n ' + (2n ' -- 4) = 3n ' -- 4 vertices. Therefore, G. has
3(3n ' -- 4) 6 = 9n ' -- 18 edges.: Let S be a maximum
triangular structure in G.

Any edge in G. has at least one endpoint in V '
Moreover, IV'l = n '. Therefore, a maximum matching
in G. has at most n ' edges (each with at least one
distinct endpoint in V '). The following lemme is
observed in ILP86, p. 440]

LEMMA 2.] . // .9 is a trfangu/ar structure with t
triangles in a giuert graph G, then there is a matching
{n G o.f size t

Using the lemme above, we conclude that S has
at most n ' triangles. Recall that S, being a triangular
structure, is a spanning tree of G. plus one edge per
triangle in S, which implies that S has at most (3n '
5) + n ' = 4n ' -- 5 edges. Furthermore, G. has 9n ' 18
edges. Therefore the ratio between the number of edges
in S and the number of edges in G. is

4n '-- 5 4
9n/ -- 18 < 9 + q

because n ' > fiF '. H

How can one find a maximum triangular cactus
quickly? A graphic matroid parity algorithm can be
used to construct a maximum triangular cactus in a
given graph [LP861. The problem so]ved by a graphic
matroid parity algorithm is GRAPHIC MATROID
PARITY (GMP): given a multigraph H = (VH,Ex)
and a partition of the edge set Ex into pairs of distinct
edges {.f,/'}, find a (simple) forest F with the maxi-
mum number of edges, such that / C F if and only if
/' C F ', for all .f C Ex

Let us show how to reduce the problem of finding a
maximum triangular cactus in a given graph G = (V, .B)
to GRIP. This is done by describing a multigraph G ' =
IV ', E ') and a partition 7) of E ' into pairs of distinct
edges of -E ', such that, from a solution to GMP for G '

~ 2n--4--2t+6k n--2--t+3k ... n--2--tP z :: / "'':'
'' 10 5 ' 5

Since p(-#)
have

1li$?fP, «sing mt'(H) 2 (" -- 1) + p, we

,.«, * :;;=F - #=;4 * ;,
for any t Z 0

COROLLARY 2.] The perlformance ratio o.f a/go-
rfthm B ff at,least 0.4

The next theorem gives an upper bound on the
performance ratio of algorithm B.
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and 7), we can construct a maximum triangular cactus

First let b ''' = r. Now, let us describe .8' and the
partition 7). Initially, .B ' = 0 and P = g. For each

triangle in G with edge set T, let {e, e'} be any pair of
distinct edges in T. Add two new edges .f and .f ' to E ',
/ with the same endpoints as e, and /' with the same
endpoints as e '. We say that T corresporzds to {/, /'}.
Insert / and .f ' into P

We say a forest F in G ' is t;a/fd if / C F if and only if
/' C F ', for all .f in E '. Observe that any valid forest has
an even number of edges. The following lemme states a
relation between valid forests in G ' and triangular cacti
in G. Let m and n be the numbed of edges and vertices,
respectively, in G.

LEMMA 2.2. There is a ualfd /oresf F ' in (l;' with
2p edges if and only if there is Q triangular cactus S in
] with 1) triclngles. Moreover, S can be obtained from
F' ra«d «ice «ersaJ in fim. O(n).

For lack of space, we omit the proof of this lemme,
which is used implicitly in [LP861.

As described by Chiba and Nishizeki ICN851, we
can explicitly list all the triangles in a graph G with m
edges in time O(m:/:). So l-B'l is O(m;/').

Gabow and Stallmann [GS851 describe an a]gorithm
for GMP, which runs in time O(m'n ' logo n/), where m '
and n ' are the number of edges and vertices, respec-
tively, in the input graph. In our case, n ' = n and

m' = IZ'l, which is O(m3/2). This gives a time bound
of O(m3/2rz logo n) for this phase.

From the output of the Gabow-Stallmann algo
rithm, it is easy to find a maximum triangular cactus
in time O(n) (Lemma 2.2). Therefore the total time is
O(m '/'« log ' «) .

in G
is triangular). By IH72, Clot. 11.9], G must have a
vertex of degree two and 2lV(C)1 -- 3 edges (this last
statement is also true for IV(C)1 = 2).

LEMMA 3.1. J,et .IJ be a marfmaZ ozzferp/anal '
graph. lfU has avl odd nuTnber n -- 'Zp F L oj vertices,
then there is a triaTlgular cactus in H with p triangles.
ifH has an eden number n - '2p of vertices and =y is
]n edge on the boundary olthe ea;tenor face, theft there
is a tv"iangular cactus S in H with p-- I triangles such
that = and y are not connected in S.

Notice that we obtain the maximum number of
triangles possible. Irl the former case all vertices are in
the same component of the cactus, while in the latter.
the cactus has two components.

Proc/ \Ve use a plane embedding of .llr.
The proof is by induction on n, the number.of

vertices of -H. The case n = I is trivial. If n = 2 (in
this case there is only one edge and p = 1), the theorem
is true.

We inductively construct a triangular cactus of the
given size.

Let n = 2p + 1. Let u be a vertex of degree
two. Let z and 3/ be its neighbors. They are adjacent,
since interior faces are triangles. The graph .lr -- {u].
is maximal outerplanar (since it has (2n -- 3) -- 2 =
2(n -- 1) -- 3 edges) and has an even number of vertices.
It is easy to check that if a triangular cactus S/ in this
smaller graph has the property that z and y are not
connected in S', we can add the triangle zg/z/ to get a
triangular cactus in #. The size of this cactus is p -- I,
by induction, plus one, for a total of p.

Let n = 2p and let the edge zy be on the boundary
of the exterior face. This edge is on the boundary of
a triangular face zyu on the inside. Walking along
the Hamiltonian cycle which is the boundary of the
exterior face, starting at u and in the direction that
visits f just before y, let Z)I be the set of vertices

visited between u and f, and let ni = IZ)tl. Walking
along the Hamiltonian cycle in the opposite direction
again starting at u, let 1)2 be the set of vertices visited

between u and y, and let n2 :: l-Dolt Z)I n Z)2 = {u} and
Di UZ)2 = V(#). The only edge in n between Z)I {u}
and D2 -- {t;} is the edge zy.

Let Hi be the subgraph of -ll induced by vertex set
I)i, with, say, ei edges, and let .ll2 be the subgraph of
]7 induced by vertex set Z)2, with, say, e2 edges.

We have ni + n2 is odd, since z; is counted twice
Let us say without loss of generality that ni = 2pi + I
is odd and n2 = 2p2 is even. Then n = 2(pi + p2). We
have el+e2 =(2n--3) 1, as from# onlythe edge fg/ is
not an edge of either f7i or ]lr2. Since ei $ 27zt -- 3 and
e2 $ 2n2 -- 3, we infer that ei + e2 $ 2(nl + n2) -- 6 =
2(n+1)--6 = 2n--4. Since, intact, ei.+e2 = 2n 4, we

3 0uterplanar Subgraphs

Serendipitously, Algorithm B produces outerplanar
graphs, so it is an approximation algorithm for MAX-
IMUM 0UTERPLANAR SUBGRAPH, which is NP-
Complete IGJ79, p. 197]. In fact, any algorithm which
produces a spanning tree has performance ratio at least
1/2, because any outerplanar graph on n ? 2 vertices
has at most 2n -- 3 edges (see below). A careful analysis
shows that the performance ratio of B when used for
MAXIMUNI OUTERPLANAR SUBGRAPH is at least
2/3. This is an easy consequence of Theorem 3.1, in
order to prove which we need some preliminaries.

An outerplanar graph (; is a marina/ ouferp/arzar

graph if no edge can be added without losing outerpla-
narity. As mentioned in IH72, p. 106], every maximal
outerplanar graph G with at least three vertices is a
triangulation of a polygon (i.e., the boundary of the ex-
terior face is a Hamiltonian cycle and each interior face
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infer that el := 2nt -- 3 and e2 :: 2n2 -- 3. Thus both ]7i
and J]'2 have to be maximal outerplanar, as they have
the maximum number of edges.

Then by the inductive hypothesis we can construct
in XI a cactus Si with pi triangles. If we apply the
inductive hypothesis to J72 with uy being the edge on
the exterior face, we obtain a triangular cactus S2 with
p2 -- I triangles in which y and u are not connected.
Then putting together the edges of .Si and S2 we get S,
a cactus in H. In the new cactus S, any possible f g/-
path must visit u, since neither Si nor S2 has edge fy.
But in S2, g/ and u are not connected. It follows that f
and g are not conJlected in S, so S is the desired cactus.
S has pi +(p2 -- 1) triangles, which is exactly the number
we wanted. H

4 The Complexity of the Problems
Papadimitriou and Yannakakis [PY911 defined a natura]
variant of NP for optimization problems: the complex
ity class Max SNP. This class, as they have shown, con-
tains several well-known optimization problems, such
as MAX 3 SAT and MAXIMUM CUT. In this sec
Lion, we prove that MAXIMUM PLANAR SUBGRAPH
(MPS) is Max SNP-hard, as is its complementary ver-
sion: given a graph, find a smallest subset of its edges
whose removal results in a planar graph. This means, by
results of Aroma et al. IALMSS921, that there is a con
staHL c > 0 such that the existence of a polynomial-time
approximation algorithm for MPS with performance ra-
tio at least I -- c implies that P = NP, and that an anal-
ogous statement can be made about the complementary
problem

As in ]PY91], we use the concept of Z)-redtictfon,
which is a special kind of reduction that preserves
approximability. Let ,4 and .B be two optimization
problems. We say .4 f-reduces to .B if there are
two polynomial-time algorithms / and g, and positive
constants a and P, such that for each instance / of ,4,

1. Algorithm / produces an instance /' = /(/) of
B, such that the optima of / and /', of costs
denoted Opt.4(/) and Opts(/') respectively, satisfy
Opts(/') $ a . Opt.4(/), and

In conclusion, for a maximal outerplanar graph with
n vertices, we can find a triangular structure with l11fipJ
triangles.

Naw we prove a lower bound on p(#).
TnEOKEM 3.1. // -1] is outerp/afzar, there p(H) ?

Prod/ Let J] be any 2-connected outerplanar
graph. We add t edges to obtain a maximal outerplanar
plaJle graph Jlr '. Note that -ll ' has 2rz -- 3 edges and a

triangular structure S with at least l!!flJ triangles.
However, the t missing edges can destroy at most {

of these triangles in S, because S is a cactus. If t ? ?,
we infer that

2/3

2. Given any feasible solution of /' with cost c ',
algorithm g produces a solution of / with cost c
such that lc -- Opt..!(.r) 5; p . lc ' -- oPfB(.r')I.
The main result of this section is
TnKOKnw 4.1. M,4X/A/t/M P1,.4ATHB .9ZI/B-

GRAPFI is Max SNP-hurd.

,'«, ; -;ih ; ;.
Assume to the contrary that t $ 115J'J. Then the

number of edges in the triangular structure is at least
« -- I + (l::?'J t). Then

Proc/. Denote by TSP4(1, 2) the following variant
of the traveling salesman problem: given a complete
graph, a pair of distinct vertices f,y, and costs one
or two for each edge, such that the graph induced by
the edges of cost one has maximum degree at most
four, find a Hamiltonian path from = to y of minimum
cost. Papadimitriou and Yannakakis IPY931 showed
that TSP4(1, 2) is flax SNP-hard

We shall prove TSP4(1, 2) f-reduces to MPS. The
basic idea of the reduction comes from Liu and Gem:
macher ILG771, where the decision version of MPS is
proved to be NP-complete

The first part of the Z,-reduction is the polynomial-
time algorithm / and the constant a. Given any
instance / of TSP4(1,2), / produces an instance G
of MPS such that the cost of the optimum of G in
MPS, denoted Optmps(G), is at most a times the
cost of the optimum of / in TSP4(1,2), denoted by
OptrsP.(t.2)(/), i.e., Optmps(G) $ a . Optrsp.(1.2)(/)

,(«) 2 " -:l,jlFI - :.
The worst case is achieved when t = 111fiJ and is g.

If .H is not 2-connected, we can do the above

analysis for each of the 2-connected components (an
edge appears in exactly one 2-connected components
and infer that a maximum triangular structure has {
of the edges in ]lf. n

The theorem above is tight, in the sense that there
are outerplanar graphs H for which p(#) is arbitrarily
close to 2/3. In fact, there are outerplanar graphs Hi
with 2f vertices and 3f -- 2 edges which do not have any
triangle.

COROLLAR)' 3.] . .Algorithm 13 has perl/ormance
ratio 'ZIZ for MAXIMUM OUTERPLANAR SUB-
GRAPH.
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we can take a = 124.

The second and hard part of the f-reduction is
the constant P and the algorithm g. Given a planar
subgraph of G with m edges, g produces in polynomial
time a Hamiltonian path from f to y of cost t in /T
such that It- Optrsp.(i,2)(/)1 $ /7jm Opfmps(G)I.
We shall see that P = I suRces.

First, given a planar subgraph P of G, let us
describe another planar subgraph P ' of G with at least
as many edges as P. Moreover, P ' shall contain all edges
of G not in .H

Let e be a 2n-edge or an 8-edge of #'. We say e
appears in P if P contains both edges of aZ/ the paths of
length two corresponding to e. In this case, we also say

that the endpoints of e are adjacent in P bg/ the 2n-edge
or 8-edge e. We say e is missing in P if P contains both
edges of norse of the paths (of length two) corresponding
to e. (in this case, if e is an 8-edge, then P is missing
at least eight of its 16 edges in G corresponding to e.)
It is possible that a 2n-edge or an 8-edge of .ll ' neither
appears in P nor is missing in P

Let us modify P so that any 2n-edge or 8-edge of
J?' either appears in P or is missing in P. This is done
as follows. If a 2n-edge or an 8-edge e of #' neither
appears rlor is missing in P, then we insert in P all
edges of G in the paths (of length two) corresponding
to e. Note that P remains planar. Clearly, the number
of edges in P cannot decrease by this operation. The
new graph is also called P

Now we can describe P '. We have three cases: (1) if
some 2n-edge e does not appear in P, then define P ' to

be the graph induced by all edges of G not in -ZJ; (2) if
all the 2n-edges and the 8-edges of .ET ' appear in P, then
let P ' be the same as PI and (3) if all the 2n-edges of n '
appear in P, but not all the 8-edges, then we modify P
to obtain P ', as described in the next two paragraphs.

The idea is to remove from P some edges of .F and
add to P edges of .H ' not in -llr so that all the 8-edges of
H' appear in the modified graph, and it remains planar
and has at least as many edges as the original P

Let U be the set of vertices t; of .lr such that at least
one of the two 8-edges incident to u in .ll ' is missing
in P. Observe that IUI ? 1, as case (2) considered
UI = 0. For each vertex u in U, remove from P all

edges of # incident to u in P (at most four edges are
removed per vertex) and add to P all the edges outside
of # so that the two 8-edges incident to u appear in
P (at least eight edges are added, corresponding to the
8-edges incident to u missing in P). To guarantee that
the graph obtained this way is planar, we must make
room to embed the modified 8-edges. This is done by
also removing from P all edges of H incident to Z/ (if
they were not already removed). Let P ' be the graph

in F'l (2n-edges)

edges in F2 (8-edges)

Figure 1: Graph #' constructed from .l?

Consider an instance / of TSP4(1,2). / is a
complete graph /T = (V, E), a pair of distinct vertices

z,y of y and a subset -ai of -8 consisting of the
edges of cost one. Let # = (r.Ei) and #' = (b ' U
T,.Ei U F'i U F2), where T = {to,fi,t2,fa}, T n V =
g, FI = {toti,{otaltit2)tiff,tiz,t2t3,t3y} and F'2 =
U,.«{to,,t,.} (see fig«r. I).

Denoting by rz the number of vertices of .FJ, let G
be the graph obtained from .llr ' by (1) replacing each
edge e in /'l by 2n parallel internally-disjoint paths
of length two (having new internal vertices) between
the endpoints of e and (2) replacing each edge e in Fa
by eight parallel internally-disjoint paths of length two
(having new internal vertices) between the endpoints of

Clearly G can be obtained from / in time polyno-
mial in the size of /.

GEMMA 4.1 . OPtMPS(G) $ 124 ' OPfTSP.(1,2)(.r).

Prod/. Observe that Optrsp.(i,2)(/) ? n 1. A
clear upper bound for OptmPS(G) is the number of
edges of G. To compute this, note first that ]l has
maximum degree at most four by the definition of
TSP4(1,2), and so ]r has at most 2n edges. Let us
call the edges in /'i 2n-edges and the edges in F'2 h-
edges. There are seven 2n-edges: /'i contains seven
edges, each of them corresponding to 4n edges in G.
There are 2n 8-edges: F'2 contains 2n edges, each of
them corresponding to 16 edges in G. Hence the number
of edges in G outside of .]] is 7 . 4n + 16 . 2n = 60n.
The total number of edges in G is therefore at most
2n+60rz = 62n $ 124(n 1). Therefore, Optmps(G) $

124(n - 1) $ 124 ' 0PZpsp.0,2)(/). H

This finishes the first part of the f-reduction, since

e
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in R2 with the 2n-edge t3y and the 8-edges toy and
yt2 "next to" the 2n-edges tot3 and t3f2. The edges
toy and g/t2 together split region R2 into two regions
al containing edge t3g/, and Rg colltaining vertex fi.
Observe that to and t2 are not separated in Rg, since t3
is the only vertex, besides to and f2, which is adjacent
to y rby a 2n-edge)

All the vertices in U {z} are adjacent in P ' only
to to and t2 (by 8-edges), and therefore they all can
be embedded in ay with their two 8-edges "next to"
the 8-edges tog/ and yt2. If f C U then observe that
f is the only vertex in # which is adjacent in P ' to
fi (by a 2n-edge). This means, before we embed 3, the
vertices to, tt and t2 are not separated in Xg. Therefore,
r can be embedded in Rlf with the 2n-edge zti , and the
8-edges toz and rtZ "next to" the 2n-edges ton and
tito. If z e U then it does not need to be moved in
the embedding. The embedding obtained this way is a
plane embedding of P ', completing the proof that P ' is
planar. H

Observe that P ' contains all the edges of G not in
.E/. Let F ' be the set of edges of .H appearing in P '

LnwMA 4.3. 7'he graph GP = (y, F ') is a co//ecfzon
oluerte=-disjoint paths \ohich can be intended in K (the
complete graph on V) to a Hamiltonian path from z to
y, in polynomial tfTrte.

Proc/. Let us prove that Gr satisfies the following
four conditions: (1) There is no vertex of degree greater
than two in GP. (2) Vertices z and g/ have degree at
most one in GP. (3) There is no cycle in GP. (4) if
r and g/ are in the same component of Gp, then this
component spans all vertices in y. We will prove each
of these conditions holds by contradiction.

Suppose (1) does not hold. Let zo be a vertex in V
of degree at least 3 in GP. Let zi, zz, zs be three of its
neighbors in GP. (Notice that zo, zi, z2, z3 are distinct
vertices of ]lr, so they are distinct of to, t2.) Then each
one of to, tZ, zo is adjacent in P ' to each one of zl, z2, z3
(some of them are adjacent in P ' by 8-edges) . Therefore,
to,t2, zo;zi, z2, z3 define a subdivision of .li'3.3 in P ', a
contradiction, because P ' is planar. Thus, (1) holds.

Suppose (2) does not hold. If z has degree more
thar] one in GP, let zi and z2 be two of its neighbors in
GP. (Notice that zi and z2 are distinct vertices of #
distinct of z, so they are distinct of to, t2.) Then each
one of to, t2, z is adjacent in P ' to each one of ti, zi, z2
jsome of them are adjacent in P ' by 2n-edges or 8-
edges) . Therefore, to, t2, al ti, zi , z2 define a subdivision
of B:3,3 in P ', a contradiction, because P ' is planar
Analogously, we have a contradiction if g/ has degree
more than one in Gp. Thus, (2) holds

Suppose (3) does not hold. Let zi,z2,z3 be three
vertices in a cycle of GP. (Since zl,z2,zs must have

Figure 2: Cycle C ', regions Rt and R2 al:u ag

obtained after all these modifications.

LEMMA 4.2. P ' is planar arid has aZ least as many
edges as P.

Prod/. In case (1), we include in P ' at least 2n edges
that do not appear in P (at least one in each of the 2n
paths corresponding to e), and we remove at most 2n
edges, the maximum number of edges in #. So P ' has
at least as many edges as P. Moreover P ' is planar.

There is nothing to be proved in case (2)
Cease (3) is the complicated one. First note that P '

has at least as many edges as G, since, for each vertex in
U, we remove at most four edges and add at least eight.
Furthermore, we remove at most four edges incident to
y. Hence, we gain at least (8 -- 4)IUI -- 4 = 4lUI -- 4 2 0
edges, since IP ? I

Now, let us show that P ' is planar. We can think of
the 2n-edges and 8-edges as single edges, as they are in
#' (since if we can embed a single edge, we can embed
a 2n-edge or an 8-edge as well). We will modify a given
embedding of P into an embedding for P '.

Let C be the cycle (using four 2n-edges)
to,tt,t2)t3,to. Observe that the 2n-edges in C; appear
in P, since we are in case (3). Given atl embedding
for P, cycle C divides the plane into two regions, Ri,
containing the 2n-edge tlt3, and R2 (see figure 2). The
2rz-edge tito separates to from t2 in Ri. Moreover, each
vertex in y -- U (the vertices of # not in U) is adjacent
in P by 8 edges to to and t2. Because to and t2 are sep-
arated in Rt, none of these vertices can be embedded in
Rt, which implies they must be embedded in R2. Keep
these vertices (to,ti,t2,t3 and the vertices in b '' -- U)
embedded as they are.

Now, observe that 3/ is adjacent in P ' only to to,t2
(by 8-edges) and t3 (by a 2n-edge). Furthermore, y
is the only vertex in H which is adjacent to t3. This
means, before we embed 3/, the vel'tices to, t2 and t3 are
not separated in R2. Therefore, g/ can be embedded
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degree at least two, they are not f or g/ by condition (2),
and they are not to or t2 since they are vertices of n.)
Then zi, z2, z3,to,t2 are pairwise .linked by internally
vertex-disjoint paths (the path between to and t2 uses
the two 8-edges incident to f, while the others use one
2rz-edge or 8-edge). Therefore, to, t2, zl, z2, za define a
subdivision of /T5 in P ', a contradiction, because P ' is

planar. Hence, (3) holds.
Suppose (4) does not hold. Let zo be a vertex in }'

which is not in the component having f and g/ in GP. In
this case, to, ti, t2, a, g/ are pairwise linked by internally
vertex-disjoint paths (the path between to and f2 uses
zo, the path between ft and y uses t3, the path between
r and 3/ is in GP, and the others use one 2n-edge or
8-edge). Therefore, to, ti, f2, a, g/ define a subdivision of
/fS in P ', a contradiction, because P ' is planar. Hence,
l4) holds.

Therefore, the conditions hold. From (1) and (2),
we conclude that GP is a collection of paths. From
(2) and (3), these paths can be extended in /{ (the
complete graph on y) to a Hamiltonian path from
r to y. Furthermore, note that this can be done in
polynomial time. H

Let .17P be a Hamiltonian path from f to 3/ contain-
ing all edges in F and some edges (in /T) of cost two.
J?P exists by Lemme 4.3. Denote by m ' the number of
edges of P ' and by t the cost of .17P.

Now the following Letnma states that P exists, and
specifically, P = 1. This will complete the proof of the
theorem.

LEMMA 4.4.

all the edges outside of .Zlr plus the edges of cost one
in #P*. Observe that these edges really determine a
planar subgraph of G. Let z be the number of these

edges. Since we have 60n edges in G outside of .fl, .lJP*
has z -- 60n edges of cost one and the remaining ones
jof its n -- I edges) have cost two. This means that

0Ptpsp.0,(/) = 2(n-l)-(z-60«)
2 2(n - 1) - (Opts,S(G) 60n),

since Optmps(G) ? z.

Therefore, from (4.2) and (4.3), we have

oPfrsp.O, (-r) = 2(n - I) - (Optmps(G) - 60n)

And this together with (4.1) means

t 0Ptrsp.0.2)(.r) = 0Pfmps (G)

Hence it -- Opfrsp.(i,2)(/)1 = 1m ' -- Optmps(G)I
From m $ m ', it follows that

t - oPtrsP.O,D(,r) $ oPt«.PS(G) - m

and

t 0Ptrsp.0.D(/)I $ 1 . lm 0Pfmp. (G) I

This completes the proof of Theorem 4.1. H

Let us denote the complementary version of MPS
by NPD: given a graph G, find a smallest set of edges
of G whose removal results in a planar graph.

A slight modification of the f-reduction presented
above proves the following.

TnnoKKM 4.2. ]V]P]) is .Afar S]VIP-hard.

Prod/ The first part of the Z,-reduction is almost
the same. From an instance / of TSP4(1,2), we
construct G in exactly the same way. As before.
OPfrsp.(i,2)(/) ? n -- 1. As in the proof of Lemme
4.1, the maximum number of edges of G is 62n. Thus,
the optimum of G in NPD, denoted as OptWpn (G), is at
most 62n. And then OpfXpo(G) $ 62n $ 124(n-- 1) $
124 . Optrsp.(i,2)(/). We can take a = 124, as before.

In the second part, given an instance / of
TSP4(1, 2), let G be constructed from / as in the pre-
vious reduction. Let Z) be a subset of the edges of G
whose removal results in a planar subgraph of G. We
shall find in polynomial time a Hamiltonian path .ETP

such that t OptPsp.(1,2)(/) $ d OptXPn(G), where
t is the number of edges in HP and d = 1-0I. Just as
we took a planar subgraph P of G and found a planar
subgraph P ' which contains a]] edges of G not in ]7.
and is at least as large as P, from Z) we can find a set
D' of edges of G containing lzorze of the edges of G not

t - OPfrsp.(i,q(-r) = Optmps(G) m ',

arid hence

t - oPtrsp.o,q(.r) lm ' - 0Ptmps (G) I

Prop/ As in the proof of Lemma 4.1, the number
of edges in G outside of ]r is 60n. All these edges are
in P '. Therefore, the number of edges in F is m ' -- 60n.
And the cost of .17P is

(4.1) Z = 2(« - 1) (m ' - 60«)

Let Q be an optimal solution of MPS for G: Using
the same argument foi C2 that we used for P, Lemme
4.3 and the argument above imply the existence of a
hamiltonian path of cost 2(n-- I) --(Optmps(G) 60n)
Therefore

(4.2) 0Ptrsp.(i,2)(/) $ 2(n-l) (0Ptmps (G) - 60n)

Given an optimum solution HP* of TSP4(1, 2) for
/, we can construct a solution of MPS for G by selecting
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in H, which is at least as sma// as Z). Applying Lemme
4.3, we can obtain a Hamiltonian path #P, as before,
in polynomial time.

Now, let us prove that P exists. Let m ' be the
number of edges in P '. Note that d ' + m ' = lz(a)I.
Moreover, OptWps(G) + Opf/.,Pi'(G) = E(C)I. There-
fore, d ' -- OptXPn(G) = Optmps(G) -- m '. Applying

Lemme 4.4, we conclude that t -- Optrsp.(i,2)(/) =
d' OptWpo(G), which, together with d ' $ d, implies
that we can take P = 1. H
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5 open Problems
Many open problems are suggested by this research.
How large a performance ratio can one achieve is an
obvious one. Is there a linear-time approximatiorl al-
gorithm for MAXIMUM PLANAR SUBGRAPH with
performance ratio 1/3 + f? (A marina/ planar sub
graph can be found in linear time IH95, D951.) is there
any approximation algorithm with a constant perfor-
mance ratio for NPD? Can one achieve a performance
ratio of 1/3 + c for MAXINIUM WEIGHT PLANAR
SUBGRAPH, which is this problem: given a weighted
graph, find a planar subgraph of maximum weight. For
this problem, any maximum weight spanning tree can
be shown to have weight at least one third of the opti-
mum. What performance ratios are achievable for find-
ing heavy outerplanar subgraphs? What performance
ratio can be achieved for THICKNESS (given G, par-
tition the edges of G into as few planar subgraphs as
possible)? A factor of 3 here is trivial, via arboricity.
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A New Approximation Algorithm for Finding Heavy
PlanarSubgraphsi

Gruia Calinescu,Z Cristina G. Femandes,3 Howard Karloff.4 and

Alexander ZelikovskyS

Abstract. We provide the first nontrivial approximation algorithm for MAXIMUM WEIGHT PLANAR SUB-
GRAPn, the NP-hard problem offending a heaviest planar subgraph in an edge-weighted graph G. This problem
has applications in circuit layout, facility layout, and graph drawing. No previous algoithm for MAXIMUM
WEIGHT PLANAR SUBGRAPH had a performance ratio exceeding 1/3, which is obtained by any algorithm that

produces a maximum weight spanning tree in G. Based on the Berman--Ramaiyer Steiner tree algorithm, the
new algorithm has performance ratio at least 1/3 +1/72 and at mast 5/12. We also show that if G is complete
and its edge weights satisO the triangle inequality, then the perfomiance mtio is at least 3/8. Furthermore,
we derive the first nonhvial performance ratio(7/12 instead of 1/2) for the NP-hard MAXIMUM WnGln '
OUTERPLANAR SUBGRAPH problem.

Key Words. Weighted planar graph, Approximation algorithm, Performance ratio

1. Introduction. MAXIMUM WEIGHT PLANAR SUBGRAPH is this problem: given a graph

G with a nonnegative weight defined for each edge, find a planar subgraph of G of
maximum weight. This problem---especially this weighted version--has applications in
graph drawing, circuit layout, and facility layout.

G/aph drnwfng is the process of drawing a graph, usually on a two-dimensional
medium, as "nicely" as possible, where "nicely" is defined by the application. A long an-
notated bibliography on the large class of graph-drawing algorithms is found in [BETT].
A plane embedding of a planar graph G could naturally be viewed as "nice." Graph-
drawing experts have studied many different ways of drawing planar graphs in the plane,
so as to maximize some optimization criterion [CON], [CYN], [LNS], [T]. For a non-
planar graph G, one can start by drawing a planar subgraph of G, using some preferred
method for drawing planar graphs [TBB], [BN'IT], and then drawing the remaining
edges. PZanarfzarfo/z is the process of obtaining a planar graph from a nonplanar one
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[CNS], [OT], [JTS]. ]f diHerent edges are not equa]]y important, each edge might come
with a weight reflecting the importance of drawing that edge; the edges in a maximum
weight planar subgraph would be drawn first. Algorithms designed specifically for this
weighted p[anar subgraph prob]em have been studied by Eades et a].[EFG], Jiinger and
Mutzel [JMl], Dyer et a]. [DFF], and Fou]ds and Robinson [FR]. Two other references

dea[ing with finding p]anar subgraphs areIJM2] andIL].
Another application of MAXIMUM WEIGHT PLANAR SUBGRAPH is arrhffecf ra/.Poor

p/arz/zing: the laying out, in some optimal or near-optimal way, of a set of facilities
[DFF], [F], [FR], [M2]. Krejcirik [K] presented the first graph-theoretic approach to
architectural floor planning, which sometimes yielded improved so]utionsIHW]. For
each pair of facilities (1, ./), m€f denotes the desirability of placing ! adjacent to ./. The
'desirability" of the layout is defined to be the sum of the ml/'s of adjacent facilities
i, j. The goal is to produce a layout with sum as high as possible. This problem can be
modeled as an instance of MAXIMUM WEIGHT PLANAR SUBGRAPH: the vertices are the
facilities and the weight of the edge between facilities land J is m!/.

Architectural koor planning--graph-theoretic and not--has traditionally been used
in the design of industria] plants [DFF], [F], [lliR], [M2], but also in the design of airports
[BFP], hospita]s [E], universities [DH], and ]ibraries [F]']. Often mi is the number of
people expected to travel from facility ito facility ./.

Another important application of MAXIMUM WEIGHT PLANAR SUBGRAPH is cfrcuir
/ayo lr [Ml], [M2]. The goa] is to ]ay out a circuit on a one-]ayer board to maximize the
number of connections between components. Now mO represents the number of desired
connections between components land j. The maximum weight planar subgraph gives
a largest subset of connections that can be laid out without wire crossings on a board.

These applications justify the interest in solving MAXIMUM WEIGHT PLANAR SUB-

GRAPH. Unfortunately, because MAXIMUM WEIGHT PLANAR SUBGRAPH is NP-hardILG],
a polynomial-time exact algorithm is unlikely to exist. For this reason, we study approx-
imation algorithms for MAXIMUM WEIGHT PLANAR SUBGRAPH.

We define the pei$ormance raffo of an algorithm A that takes weighted graphs G and
produces planar subgraphs H of G as the infimum, over all weighted graphs G, of the
ratio between the weight of H and the weight Opr(G) of a heaviest planar subgraph of
G; the performance ratio is at most one. In fact, MAXIMUM WEIGHT PLANAR SUBGRAPH

is known to be Max SNP-hard even when all the edge weights are onetCFFK]. This
means there is an 8 > 0 such that no approximation algorithm achieves a ratio ofl-- f
for the problem, unless P = NP. The best (largest) known c, however, is tiny, making
I -- 8 very f ar kom the best previously known performance ratio for MAXIMUM WEIGHT
PLANAR SUBGRAPH, which was 1/3 [C]. Any a]gorithm that produces a maximum weight
spanning tree (see Section 3.4) achieves the 1/3 ratio. See [DFF] for three a]gorithms
for the weighted case and]CFFK] for a list of three others for the unweighted case, all
having performance ratio at most 1/3. In this paper we present the first algorithm for
MAXIMUM WEIGHT PLANAR SUBGRAPH to cross the 1/3 threshold: its pei:formance ratio
is at least 1/3 + 1/72. We also prove that its performance ratio is at most 5/12.

In the unweighted case, any algorithm producing any spanning tree of G has perfor-
mance ratio 1/3 (a spanning tree has n -- I edges and a planar subgraph has at most
3/z -- 3), and a recent paper exhibited a polynomial-time algorithm with a performance
ratio of 4/9 [CFFK]. However, the weighted case seems much more difficu]t. The key
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idea in the algorithms of [CFFK] is to produce a graph a]] of whose cycles are triangles (a
rriang /ar irrz£cMre, which is necessarily planar), having many triangles. Each triangle
gives one more edge than a spanning tree would have--the dore triangles, the better. A
simple algorithm greedily choosing triangles and then connecting them achieves 1/3 + 8
for a fixed positive f]CFFK]. To get 4/9, one finds a /aFFair triangular structure in the
input graph, which, surprisingly, can be done in polynomial time.

Unfortunately, the algorithms for the unweighted case do not work in the weighted
case. First, one clearly cannot take arbitrary triangles, regardless of their weight. One
must focus, of course, on heavy Uiangles. How? Recall that in the unweighted case,
one can choose triangles(never creating any cycles of length exceeding three) and then
arbitrarily tie together the components into a connected graph. In the weighted case,
focusing on heavy triangles early on, without regard for the later step of co/znecffng the
triangles, might force the algorithm to use overly light edges to connect the triangles.
Second, it is not known whether a /zeavieif triangular structure in G can be found in
polynomial time. Graphical matroid parity is used to find a largest triangular structure
in an unweighted graph]CFFK], graphical matroid parity being solvable in polynomial
timeIGSJ; weil/fred graphical matroid parity is not known to be NP-hard or in P. Third,
although in the unweighted case, proving that a heaviest (i.e., largest) triangular structure
in G has weight at least ({ + c)Opf(G) is not hard (indeed, a greedily constructed
triangular structure suf:flees), whether the same property held for weighted graphs was
not known. In fact, we can prove that this is so only indirectly by noting that our algorithm
has performance ratio at least 1/3 + 1/72, and that its output is a triangular structure.

For most approximation algorithms proposed recently, the perfomlance ratios for
the weighted cases are the same as those for the unweighted cases [CST], [S]. [GW],
[FG], [H2], [H3]. We, however, can prove on]y that the performance ratio for MAXIMUM
WEIGHT PLANAR SUBGRAPH is at least 1/3 + 1/72, whereas the pel:formance ratio for
MAXIMUM WEIGHT PLANAR SUBGRAPn in the unit-weight case is at least 4/9. Of course,
these are only the best bounds known. We leave to the reader the(open) problem of
proving that the bestpossib/e performance ratios are the same.

Our algorithm provides two other results. First, in the important special case in which
G is a complete graph whose edge weights satisfy the triangle inequality, we can prove a
better performance ratio of 3/8 = 0.375. Second, since our algorithm produces triangular
structures and any triangular structure is outerplanar (i.e., can be drawn in the plane with
all vertices on the boundary of the outer face), we have an approximation algorithm for
MA)<IMUM WEIGHT OUTERPLANAR SUBGRAPH. laze can prove a performance ratio of at

least 7/12, whereas producing a spanning tree gives a performance ratio of 1/2.(The
best ratio known in the unweighted case is 2/3]C]VK].)

Our algorithm exploits an analogy between Steiner trees and triangular structures.
Modeled on the two-phase Berman-Ramaiyer Steiner tree a]gorithm [BR], the algorithm
is clearly polynomial time. However, its analysis is difficult. A "road map" guiding the
reader through the analysis appears in Section 3.1.

2. The Algorithm. MAXIMUM WEIGHT PLANAR SUBGRAPH is this problem: given a
graph G with a nannegative weight defined for each edge, find a planar subgraph of G
of maximum weight.
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Let G = (y, E) be a connected graph with a nonnegative weight function w on
the edges. Recall that a triangular structure is a graph all of whose cycles(if any) are
triangles. A rrfa/zguZar sfrzzcfz/re !n a graf;z G is a subgraph of G which is a triangular
structure. We will describe an algorithm which produces a heavy triangular structure

Before precisely describing the algorithm, we need some notation. The vortex sets in
all graphs will be obvious, so we will identify a graph with its edge set.

The algorithm has two phases, the evaluaf/on p/base and the consfrzzcfion p/base.
The evaluation phase(executed first) maintains a tree whose edges are not only from
the original graph, but also some arr$cfa/ edges. The artificial edges have weight,
also denoted by w. We denote by Ni the set of two artificial edges added in the ith
augmentation(which willbe defined soon).

We start with Zo, a maximum spanning tree in G = Go. We will maintain the invariant
that 7} is a maximum spanning tree in Gi = (V, E u (UJ.i nO)). Gi is, in fact, a
multigraph.

Let A be a triangle of G, the original graph. In the spanning tree 7}.i, there is a
unique vertex s such that the paths in 7}.1 from i to each of the three vertices of A
are edge-disjoint. For each of these three paths (at most one of which may be trivial),
choose an edge of minimum weight on the path, if possible. Now label the vertices of
A as x, y, z such that the weight of the minimum weight edge ei on the s-x path is
at most the weight of the minimum weight edge e2 on the s-y path, which is at most
[he weight of the minimum weight edge e3 on the s-z path.(if this cast path is trivia],
leave e3 undefined and, by an abuse of notation, say that w(e3) :: oo.) The edges of the
triangle A are unnamed.

One can easily check that e! and e2 are two edges of 7}.i such that each of the three
connected components of t.t \lei , e2} contains one vortex of A. Moreover, among all
the choices of pairs (e, .f) of edges of 7l-i whose removal pairwise disconnects x, y, and
z, the pair (ei , ez) has the least total weight. We define the gain gi-i(A) ofr/ze triangle
A wffh nespecf to 7}-i to be gi-i(A) = w(A) -- w(el) -- w(e2), where by w(A) we
mean the sum of the weights of the three(original) edges of the triangle A.

We call the following operation azfgmenfing fhe free 7l-i by f/ze frlangle A. This
is done only if gf.i(A) > O, so we assume now that gr-t(A) > O. An augmentation
produces a tree 7} of greater weight.

Let el be a new artificial edge with endpoints x and z and w(el) = w(ei) + gi-i (A).
Let e; be a new artificial edge with endpoints y and z and w (e;) = w (e2) +gl I (A). Note
that both e; and el! are parallel to existing(unnamed) edges of the triangle A. Let Ni =
{e{, e;}. Then replace ei by el and replace e2 by e; to get 7l: 7} = (7l-t\tei , e2}) U aG.

Note that ei and e2 might themselves be artificial edges. Because vertices x, y, z are in
separate components of 7}.i\tei, ez}, 7} is a tree. We will see later that n is a maximum
spanning tree of G{ .

inG

2.1. T%e Eva/uaffon Phase. The evaluation phase starts with a maximum spanning tree
Zo in Go = G, and sets 7" to be the set of all triangles in G. Repeatedly, the algorithm
removes any one triangle A from 7, and calculates its gain gf.t(A) relative to the
current tree 7}.t . If nonpositive, it does nothing, while if positive, it augments 7}.i by
A to get t (and ]Vf), sets Ai+ A, and increments i. This process continues until 7 is
exhausted.
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Here is the evaluation phase

Evaluation Phase

l
2

3

4

5

6

7

8

9

10

1 1

12

Let Zo be a maximum spanning tree in G; i
Let 7" be the set of all triangles in G
while 7 # g do

Choose any A c 7"
if gi.t(A) > 0 then

Augment 7}.i by A to get 7} and 7Vt
A.£ <--. A
i +-l+l

endif
7' +- 7\€A.}

endwhile
f *..- i -- \.

+-1

2.2. The Co/zs/ruc/to/z P/base. The goal of the construction phase is to use the spanning
tree T/, the sets Ar/, ny i, Ar/-z, . . . , Ari, and the triangles A/, A/-i, A/ 2, . . . , Ai
from the evaluation phase to build a connected triangular structure in Go := G. This
is done iteratively by maintaining a connected triangular structure Sf in Gi, for i =

/,/ -- I, .f 2, ...,0, where Gt =(y, EU(UJ-i NJ)).The spanningtree 7/ in G/
serves as the connected triangular structure Sf in GJ ' to get us started. From that point
on, in the ith iteration(l= .f, .f -- 1, . . . , 1), consider the two-element set IVi. We must
ensure that JVm Si.t = g, since Si.i must be a subgraph of Gi-i and the edges of Ni
do not appear in Gi-i . What happens next depends on Irvin Si I. If INi n Sil :: 0, we
simplyset Si-i +- Si; ISi.il= IS.-l.Ifj;VinSij= 1,then weset Si-i +-(SivVI)U{/z},
where ;z is a heavy edge chosen to guarantee that Sf-t is connected; again, ISi-i I := I Si I.
The most interesting case is the one in which Iain Sil = 2, that is, ]Vig Si. Then we
set Si-t <--(Si\Ni) U Ai. Since IAil= 3, we have ISf-il= ISil+ I. his through this
step that we add triangles to the final So and improve on the maximum spanning tree.

Here is the construction phase.

Construction Phase

l
2
3

4
5

6

Sf +-' Tf
for f = / downto I do

if INi n Sil = 0 then Si.i .t = Si
if INi n Sil = I then

S'i e- Si\Ni
Find edge /z of Gi-i of maximum
weight with endpoints in diHerent
components of S;
S£.i +- S; U {h}

endif
if INi n Sfl = 2
then Si.i +- (Sf \Ni) U Ai

endfor
Output So

/* ISi-tl = IS£ +/

/'k SI has two connected components I '/

7
8

9

10

1 1

/+ lsf-il = lsil 4'/

/'k ISi-il = ISi + I */
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3.1. Road it/ap. The output of our algorithm, when the input is a weighted connected
graph G, is So. If S is a subgraph of G or a set of edges of G, then we denote by w(S)
the sum of w(e) over all e in S. Our analysis proceeds as follows:

l

2

First, we prove that So is a (connected) triangular structure in G (Section 3.2). This
ensures that the output is a planar subgraph of G.
We prove in Section 3.3 that the weight of So is at least the average of the weight of
Zo, a maximum spanning tree in G, and the weight of T/, a spanning tree (indeed,
maxim m spanning tree) in the supergraph G/ of G obtained during the evaluation
phase.

We will see shortly that w(ZO) Z {Opr(G), where Opr(G) is the weight of a

heaviest planar subgraph of G. We circuitously prove that w(SO) Z ( 1 + ;)Opr(G)
via two lower bounds on w(Zo) (the tHvial bound that w(ZO) Z 1Opr(G) and a more
difficult one), and an easy lower bound on w(r/).
In Section 3.4 we prove the trivial fact that w(ZO) Z I w(P) for any planar subgraph

Section 3.5 contains a plethora of lemmas needed to prove the easy lower bound on

In Section 3.6 we introduce the concept of a "good" set S of triangles in a plane
graph P. Let b(A) denote the median weight of the edges in triangle A. Section 3.6.1
provides a proof of the easy lower bound on w(T/ ):

Pong

W(Tf)/

3.

4

5

wW) Z {wP) + g l:i: b(A)I

6
provided only that S is a good set of triangles in a plane subgraph P of G.
In Section 3.6.2 the reader will find the technically most important fact of the analysis,
Corollary 20, which has Lemma 19 as its crux. Corollary 20 states that if P is a
weighted plane subgraph of G, then there is a good family .S of triangles of P such
that

w(zo)z w(H-$1 >11:b(a)ILac.s J

7
This is the difbcult lower bound.

Letting P be any plane subgraph of G and letting P :: >1:a:s b(A), for the good
family 8 of triangles of P given by Corollary 20, we have
(a) w(TO) Z {u'(P),

(b) w(To) Z 4io(P) -- 4P, and

(c) w(T/) Z {w(P) + £P.
The last two conditions and w(SO) Z 41w(Zo) + w(T/)] say that w(SO) is at least
(! + c) w (P) unless P is large. However, when P is large, the first and third conditions,
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taken with w(SO) Z 11w(Zo) + w(T/)], say that w(SO) Z ({ + c)w(P)
statement that

The formal

11w(Zo) + 'u(T/)] Z ({ + 4)w(P)

whatever the value of P, appears in Section 3.7. Taking P to be a heaviest planar
subgraph of G, we are done.

Section 3.9 proves that the performance ratio is at least 3/8 if the edge weights in the
input graph G satisfy the triangle inequality.
Section 3.10 gives a 7/12 bound for the problem of finding a heaviest outeiplanar
subgraph in G. A ratio of 1/2 is obtained by any maximum spanning tree.

8

9

3.2. So is a Con/zecfed Trfangzf/ar Sfruc/ure in G. We concentrate on the construction
phase. When going from Sr to Si.i, we make sure that Si.i n ]Vi= g; thus Sf.i is
a subgraph of Gi.I. In particular, So is a subgraph of G = Go. The fact that Si is a
connected triangular structure for allifollows from the following lemma.

LEMMA 1. Rare// f € {.f / -- I, .f -- 2, .
c)des are triangles in the original graph G

0\, Si is a connected graph, alt ofwhose

PROOF. Sf is a spanning tree, so for i= .f, the gemma is true. We assume that the
lemma holds for some f, / Z iz 1, and prove it holds for i-- 1 . We follow the cases of
each iteration of the construction phase.

If INi rl Si 1 = 0, then Si-i = Si, which has the desired properties.
Suppose now that jlVin Si 1 = 1 . Then S; is obtained from St by removing an artificial

edge. This edge, being artificial, by the inductive hypothesis does not belong to any
cycle. It follows that S; has two components. Then in line 7 one edge is added between
the two components of S;. Hence this new edge does not belong to any cycle of Si.i and
therefore all cycles of sf-t are cycles of Si . Also, Si.i is connected.

Suppose for the remainder of the proof that j;Vin Sil = 2. We use the notation from
the definition of augmentation. .Ni= {ei, e;}, where el has endpoints x and z and el!
has endpoints y and z. By the inductive hypothesis, since both el and el! are artificial
edges, neither appears in any cycle of St. Let/i, /2, and e be the edges of the original
(simple) graph with endpoints x and z, y and z, and x and y, respectively. Consider
S' = (Si\JVi) U {/] , /2} (the two edges of Ni are replaced by two edges parallel to them).
Then in S' all cycles are triangles of the original graph G and the edges /i and /2 do not
appear in any cycle. We have Sf.i = S' U {e}.

We know thatbefore adding e, /I and /2 did not appear in any cycle. We will showthat
adding e only creates the cycle </1 , /2, e>. Any cycle we might create by adding e has to
contain e, of course. Suppose, for a contradiction, that adding e creates a cycle C other
than </1 , /2, e> - Assume first that C contains neither /I nor /2. By replacing e in C by /I
and /2, we either get a cycle containing/I and /2 but not e, a contradiction, or a union
of two cycles(this is the case in which C goes through the common endpoint of /I and
/2). However, one of these cycles contains/i and does not contain e, a contradiction.
If C contains /[ and e, but not /2, then by replacing /] and e in C by /2, we get a
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cycle containing /2 and not e, contradicting the fact that before adding e,/i and /2
did not appear in any cycle. The case in which C contains /2 and e, but not /I, is
similar.

It follows that in Sf-t all cycles are triangles of the original graph. Also, since SI is
connected, S' is connected and therefore Si.i is connected.[]

COROLI,ARY 2 So is a connected triangular strucMre in G and }uence planar,

3.3. A I,owen Boaz/zd on f/ze Weld/zr of So. :: We need the following lemma and its coral
lary, analogues of Steiner tree Lemmas 3.5 and 3.7 inIBR].

LEMMA 3. Ror i = I , .f, lo(Si-l) Z w(Si) -- gf.t(Ai)

PROOF. The proof follows the three cases from each iteration of the construction phase.
As above, let Ai:: )gz and let ei and e2 be the two edges removed from t.i during
the lth augmentation. Ni= {el, e;} is the set of artificial edges added during the fth
augmentation. Also w(el) = w(ei) + gi-i(Af) and u;(e;) = w(e2) + gi-i(Ai).

IfjNinSil= O, then Si-i= SI andthe lemma follows from thefactthatgt.i(Ai) > 0.
If lavin sll = 2, then w(Si-l) = w(Si) -- w(e{) -- w(e;) + w(AI) = w(Si) --

w(ei) -- gi-t (AI) -- w(e2) -- gl-i (Ai) + w(AI) = w(S!) -- gf.t(Ai), since gi-i (AI) =
w(A.f ) -- w(ei) -- w(e2).

Now suppose that jJVin Srl = 1. Wb only consider the case Nin Si = bell; in
the case evin Si :: {e;}, a similar argument applies. The endpoints of e; are x and z
and therefore in S; = Si \(el}, x and z are in two different components (by Lemma I).
Consider the (unique) path in 7}.i from .r to z. There is at least one edge on this path
which has endpoints in two di#erent components of S;; choose such an edge and call
it e. We conclude that the edge h selected by the algorithm in the construction phase
satisfies w(h) Z w(e). Note also that ei is the minimum weight edge on the path in 7}.i
from x to z, so w(el) $ w(e). Then we have w(h) Z w(ei) = w(el) -- gl--t(Ai). We
conclude that w(Sl-l) = w(Si) -- w(e;) + w(h) Z w(Si) -- gf-t (Ai). []

COROLLARY4 w(So) Z {(w(Zo) + w(T/))

PKOOP.

w(T/) :

E£:'.
«(a)).

It is immediate.that for i= 1, . ..: , .f, to(7}) = w(7l-t) + 2gi-t (Ai), and thus
w(Zo) + 2 )1.If:t gi-i(Af). It follows, by Lemma 3, that w(SO) Z w(Sf) --

I(Af) = u'(T/) -- E£:i gi-i(Ai) = w(ZQ) + E£i gf-i(Af) = {(W(ZO) +
n

3.4. A Trivia/ Z,over Bo nd on f/ze Weft/zr ofa J14czxlmzzm Spanning &oresf. The proof
of the next lemma uses the concept of arborfciW, defined below, and a theorem by
Nash-Williams.

DEnNiTloN 1. The arborfciQ of a graph is the minimum number of spanning forests
into which its edge set can be partitioned.
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Wb have this classic theorem

TnEOKKM 5 (Nash-Wi]]iams; see [N] and [CMW+]). T/ze arboriciQ of a graf/z G if
Ehe maximum, over all subgraptls H ofG with at least two vertices, of

LebxmP. 6. Let J: be a famit) of graphs closed under taking subgraphs, such that,for
someposffive fnreger c, I E(G)I $ c(I y(G)I -- I)Jor a// G in /'. Z.e/ w be a /zonnegafive
weightfUnction on the edges ofsome G in J:, and let F be a maximum spavtningforest
in G. T%en w(F) Z (I/c)w(G).

PROOF. Let G be a graph in .F. We have IZ(X)I $ c(I V(H)I -- 1) for any subgraph H
of G, because .F is closed under taking subgraphs. Thus, by 'l-heorem 5, the arboricity
of G is at most c.

This means that the edge set of G can be partitioned into c forests Fi , . . . , Fc. Clearly
we have w(FI) + . - - + w(Fc) = w(G). However, w(r ') Z w(E) for all i, and this
imp[iesthatw(G) = w(Fi)+ . .+w(Fr) Sc . w(F).[]

The proof method of Lemma 17 gives an altemative way to prove Lemma 6 without
relying on arboricity.

COROLLARY 7 (see Theorem 3.3 of [D[;F]). Zzr P be a ifznpZe p]a/mr graph wi/h a
rlonnegative weightlutlction w de$tted on its edges. if F is a maximum spanningforest
in P, rien lo(F) Z !w(P).

PROOF. Apply Euler's formula (IZ(P)I $ 3(IV(P)I
the family of simple planar graphs.

1)) and Lemma 6 with c 3 to
D

Recall that Zo is a maximum spanning tree in G. As a consequence of Corollary 7
we have w(ZQ) = {w(P), for any planar subgraph P of G.

3.5. Some Lemmas

DEFINnloN 2. If T is a spanning tree in a connected multigraph ,f7, and c and d are
vertices of /7, let i/dear(c, d) denote the weight of the lightest edge on the c-d path
in T

Lemmas 8--12 are used solely in the proof of Lemme 13

LEWMa 8. Let H be a connected multigraph and !et T be a maximum spanning free
in H. Let a # b be two vertices. Let e be a minimum weight edge on the avb path in T
Lef e' be a new edge with endpoints a, b and ofweight w(e') >. w(e) = indexr(.a, b).
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Deane H ' = H U {e'} and T ' (T U {e'})\te}. T%e/z 7'' ff a spa/znf/zg /ree f/z /7'

1. /or a// vertices zl, u, I/zdexr,(u, u) Z f/zdexr(zz, u), a/zd
2.. T' is a maximum spanning tree in H'

PROOF. That 7' is a spanning tree in /7' is obvious.
Let C be the unique cycle in T U (e'} = 7'' U {e}. Let H and ti be two vertices and let

P and P ' be the unique paths in T and 7'', respectively, between u and u. Let us prove

If P does not contain e, then P = P ' and therefore ilzdexr,(zl, u) = Indexr(u, u).
Assume now that P contains e. Then P is composed of three paths: Pi , flom H to the

first vertex of C on P; Pa, a segment of C containing e; and P], from the last vortex of
C on P to u. Pi or P3 may be trivial. Similarly, P ' is composed of three paths: Pi, P;
and P3 , where /% is a segment of C containing e '. Let / be an edge of minimum weight
on P ', so that w(./:) = f/zdexr,(z{, u).

If .f is on Pi or P3, then .f is on P and therefore f/zdexr,(u, u) = w(.f) Z I/zdexr (u, u).
If .f is on /%, then w(.f) Z io(e) (e is the minimum weight edge on C since w(e ') Z

w(e)). Since e is on P, w(e) Z f/zdexr(u, u) and therefore w(/) Z fndexr(zl, u). Hence
indexr,(u, t;) Z fndexr(u, u). The proof of part I is complete.

The statement that 7' is a maximum spanning tree in H ' is equivalent to the statement
that T ' is a spanning tree in H ' and for any edge .f of H ' with, say, endpoints H and u,
w(/) $ f/zdexr, (u, u); an analogous statement holds for T and H [AMO, Theorem 3.3].

Because 7 is a maximum spanning tree in /7, for all edges / in H, with, say, endpoints
H and u, w(/) $ 1ndexr(u, u) $ fndexr,(u, u). Also, w(e ') = f/zdexr,(a, b), because e '
has endpoints a and b, and e ' c T '. It follows that for all / € H ', with endpoints u, u,

w(.f) $ indar,(u, u). This makes 7'' a maximum spanning tree in H '. []

part I

LEMMA 9. Xor i:: 0, 1, 2, . . . , .f, Z. Is a maximum spa/znlng free in Gi, a/zdjor a//
f Z I and a// verffcei u # u, fndex7} . (u, u) $ indent (u, u).

PROOF. By induction on i, the case of 1 = 0 being Uivial. Choose iZ I and assume
that 7l-i is a maximum spanning tree in Gi.i.

We can think of the augmentation of the tree 7}.i by a triangle Ai of positive gain
gi.i(Af) as taking place in two steps in the first step, a new artificial edge e{ with
endpoints x, z and weight w(el) = w(ei) + gf-i (Aj) > w(ei) is added to the tree 7} 1
and to Gi-i, and then ei is removed from the tree. Let 7;'.i = (7l-i U {el })\lei } be the
resulting tree and let GI.i :: Gl-i U {ei} be the resulting graph. In the second step, an
artificial edge e; with endpoints y, z and weight w(el!) = w(ez) + gi-i (Ai) > w(e2) is
added to tLI and to GI.i ; next, ez is removed from the tree. 7} = (%t.t U {e;})\tell is
the resulting tree and Gi= CI.I U {e2} is the resulting graph.

We prove the gemma by applying Lemma 8 twice. The first time, we set .f7 ;: GI.i,
T = 7} i, a = x, b = z, e = e], e ' = e;. We have w(e ') > to(e), as needed.
T' = (T U {el})\lela = tt.i and H ' = GI.i. We conclude straightf orwardly that

f/zdex7l '.. (u, u) = f/zdeirr,(zi, u) Z fndexr(u, u) = 1/zdex .. (u, u)

and that %t.i is a maximum spanning tree in CI.I.
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The second time, we let /7 = GI.i, 7' = tLi , a :; y, b = z, and e = e2. We need e2
to be a minimum weight edge on the y--z path in tLt , but this holds since the y--z paths in
7}.i and %t.i are the same. We set e ' = e;, with endpoints y, z. We have w(e;) > w(ez),
as needed. Conveniently, T ' = (t ' I U {el!})\leZ} :: 7} and H ' :; GI.i U {e;} = Gi.
Now fndex8(u, u) Z IndexCL. (zl, u) Z fndext.. (zl, u) and 7} is a maximum spanning
tree in Gf . []

In what follows we use f/zde=rf (u, u) to denote frdexb (u, u)

LEMMAIO. Fix an] triangle A. ofG. For alt i l , /, gi (A) $ gi.t(A)

PROOF. We use notation flom the definition of the gain of a Uiangle A :: .[)lz. We have
f/zdexf-i(x, y) = fndaf-i (x, z) = w(ei) and i/zdexl-i(y, z) = w(ez) Z w(ei). Then

gf .i (A) w(A) -- fndexi-i (x, y) -- £/zdexi-t (y, z)

w(A) minlindexi-i (x, y), fndexi-t(x, z), f/zdexl.i (y, z)}

max(fndexr-i (I, y) , llzdai-t (x, Z), i/zdexi.i (y, Z)}

In other words, to obtain the gain of a triangle we subtract from the weight of the triangle
the highest and lowest indices between two vertices of the triangle(the two lowest indices
being equal). Since the index function cannot decrease as f increases (Lemma 9), the
gain of a triangle cannot increase as i increases. []

LKMMAll For any tdangte A, there is some ic {0, .f} such f/zaf gf (A) $ 0

PROOF. This is certainly true if at the moment A was considered during the evaluation
phase, gi(A) $ O, or in other words, A was ignored and not used for an augmentation.
So in the following, assume A = D;z was used during the ith augmentation. In other
words, A = Ai. Therefore gl-i(A) > 0; and in this case, we prove that gf(A) <
0. One can easily verify that Ni= {e{, e;}, the set of artificial edges added during
the f th augm;entation, is the only set of two edges of 7} with the property that their
deletion pairwise disconnects it, y, and z. Then, because in calculating the gain we
subtract the weight of two edges whose deletion pairwise disconnects x, y, and z, and
because only the pair {e;, e;) has this property, gi(A) = w(A) -- w(e;) -- w(e;)
w(A) -- (w(ei) + gi-l(A)) -- (w(e2) + gi-i(A)) = --gi-i(A) < 0, since gi.i(A)
w(A) -- w(ei) -- lo (e2).

The following [emma is an ana]ogue of Lemme 3.10 ofIBR]

LEMMA12 No triangle of the original graph G has positive gain with respect to Tf

PROOP. The previous two lemmas prove that for all A, g/(A) $ 0. D
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Let P = (y, EP) be any planar subgraph of G = (y, f). Define a weight function
w' on the edges of P by w'(ry) = i/zdex/(x, y) for all edges xy c EP. (Recall that
flzdex/(x, y) is the weight of the lightest edge in the unique x-y path in T/ .)

If we refer to a specific triangle A of P, we denote by a(A) Z b(A) Z c(A) the
weights, with respect to w, of the edges of the triangle. Similarly, a'(A) Z b'(A) Z c'(A)
are the weights of the edges with respect to w ' (where the edge of weight a(A) need not
be the one of weight a'(A), etc.).

LEMMA13 The weightfunction w' on the edges ofP has thefotlowing threeproperties

1. Horany edge e € EP, W(e) Z w(e).
2. Mora/zy frfangle A ofP, a'(A) +b'(A) Z a(A) +b(A) +c(A)..Also c'(A) = b'(A)
3. W(A) -- w(A) =]a'(A) +b'(A)+ c'(A)] --]a(A) +b(A) +c(A)] Z b(A).

PROOF. Let e = xy c EP S f g E(GJ). Since T/ is a maximum spanning treein G/,
we have w(e) $ index/(I, y) = W(e).

Fix a triangle A = ayz of P. That d(A) = b'(A) follows immediately from the prop-
erties of the index function (see the proof of Lemma 1 0). Also, we know (by Lemma 12)
that A has nonpositive gain with respect to T/ . By the method of computing the gain using
the index function (again see the proof of Lemma 10), we have 0 Z g/ (A) = w(A) --
maxlindex/ (it, y), index/ (x, z), I/zdm/ (y, z)} -- min(index/ (it, y), f/zdex/ (x, z), fPzdex/
(y, z)} = w(A) --maxim'(O,), W(xz), W(yz)}--minow(i7), W(xz), W(yz)} = w(A) --
a'(A) -- c'(A) = w(A) -- a'(A) -- b'(A), and it follows that a'(A) + b'(A) Z w(A.) =
a(A) + b(A) + c(A).

The third statement is obvious. []

LKMMA14. The waif/zr w(T/) Z !W(P)

PROOF. Consider the multigraph .f7 = (y. EP U T/), where we assign weight w'(e) if
e c ZP and w(e) if e c r/; note that if e € Zp n 7/ and e has endpoints x and y, then
W(e) = in(kx/(x, y) because e c rp, and f/zdex/(x, y) = w(e), because e € 7/.

We prove that T/ is a maximum spanning tree in multigraph H. Consider any edge e
in H with endpoints, say, x and y. If e c fp, we have w'(e) = Imam.f (x, y). If e c T/,
we clearly have w(e) = f/zdex/(f, y). So in either case, the weight of an edge with
endpoints x, y is at most Index/(I, y); this makes r/ a maximum spanning tree in H.

Since P is a subgraph of H and 7/ is a maximum spanning tree of H, the weight
of T/ is at least the weight of a maximum spanning tree in P(with weights given by
w'). Since Corollary 7 implies that any maximum spanning tree in P has weight at least
!w'(P), we have w(r/) Z {W(P).[]

3.6. 7U,o lower Buzz/zds. All graphs considered in this section are simple. We prove
two bounds in this section. Both rely on the concept of a "good '' set of triangles in the
original graph G. The first bound, w(T/) Z {w(P) + i]E:a.s b(A)] for any good set
.S of triangles in P (Corollary 16), is easy and follows directly from the definition of a

good set of triangles. The second, w(Zo) Z {w(P) -- ;]]]:a.s b(A)] (Corollary 20),
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is more difficult to prove and only holds for a carefully chosen good set .S of triangles
in P

DEnNITI;ON 3.

line segments
A sfrafg/zf-/f/ze p/a/ze graph is a plane graph whose edges are drawn as

DEFINITION 4. We call a set .S of triangles of a straight-line plane graph P a good
/ami/y if every edge of P participates in at most two triangles of .S on each side of the
line containingthe edge.

3.6.1. The (Easy) Lower Boz nd on w(T/). We need the following lemma. Recall that
P is a planar subgraph of G, and w'(DI) = f/zdex/ (x, y) for all edges DI c E(P).

1.,E;biIMA 15. Let S be any goodjamily of triangles in the straight-line plane graph P
Then W(P) Z u'(P) + }]}.]a.s b(A)].

PROOF. Let m (e) be the number of triangles of -S in which e participates. Because -S is
good, we have m(e) $ 2 . 2 = 4 for all e in G. Using Lemma 13, we have

:: b(A)
A€.S

$ )1.(w'(A)
A€.S

w(A)) }: }l:(w'@
.A€.S ec.A

w (e))

(w'(e)
e€E(P)
E w(e))m(e) $ }1.1 4(w'(e)

e€£(P)
w(e))

4(to'(P) w(P)) D

CaKottPax 'L6. Let 8 be an) goodfamily of triangles in a straight-line plane graph
P which is a subgraph ofG :: GO. Then

w(T/)z w(p)+81 :. z,(©l
La.cs J

PROOF. Combine Lemmas 14 and 15 D

3.6.2. T%e (Z)€Pculr) I,over Bazfnd o/z w(ZO)
whose proof uses an idea from]KH].

We will need the following lemma

LEMME 11. Let P be a triarlgle-free planar graph with a nonnegative weight.function
c de$ned on its edges, such that edges xz and )z, in P bane weight lela. Then there is a
spanningforest F in P such that c(.F) >- \c(~P) and such that x, y, and z are in three
di#erent components ofF

PRooF. We use the greedy algorithm to construct F, first sorting the edges of P into
nonincreasing order by weight, with edges xz and yz at the end. Let .Ei be the set of the
first I edges in this ordering, I $ 1 $ m, m = IZ(P)I. By ci we denote the weight of
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the ith edge in this ordering. Starting with F = g, the greedy algorithm scans the edges
in the given order and adds an edge to F as long as it satisfies the following conditions:

1. 1tdoes notcreate any cycles.
2. It does not create a path connecting any two of x, y, and z

Let F be the set of edges chosen by the greedy algorithm and let E Ein F.Then

c(F)
m 2

>l:lal('i cl+l),
£-l

c(P)

Note that the index only goes to m -- 2. It is therefore enough to show that IZI I $ 21 Fil
for 1 < f < m -- 2.

Choose an i$ m -- 2. We assume that the components of /: have pi, PZ, . . - , pt
vertices, where each of it, y, and z belongs to one of the first three components. Of
course, lal = }1.1}.:(PJ -- I).

We call the set of vertices in the first three components s perrompo/lent 123. Note
that no edge of EI can have one endpoint in a component J > 3 and the other endpoint in
another component ./' > 3, since some such edge would have been selected by the greedy
algorithm, thus merging two components. Similarly, no edge of Er can have exactly one
endpoint in the supercomponent 123. We associate each edge of .Ej with the component
J > 3 or with the supercomponent 123 containing both endpoints of the edge.

The edges of Ei associated with a component ./ > 3 are a subset of the edges of the
graph induced in P by the vertices of the component. Thus, for J > 3, the number of
edges associated with the component is at most 2(PJ -- 1), because the induced graph is
a triangle-&ee planar graph.(For all/ Z 2, the number of edges in a triangle-free planar
graph with / vertices is at most 2(J -- 1); the number of edges is at most 2/ -- 4 ifJ Z 3
[B, Theorem 12, p. 18].

The number of edges in EI associated with supercomponent 123(which has at least
three vertices) is bounded by [2(pi + p2 + p3) -- 4] -- 2. The "--2'' appears because
the edges xz and yz are not in Ei since i$ m -- 2. Indeed, the graph induced in P
by the vertices of supercomponent 123 is planar, triangle-free, and includes the edges
xz and yz. It follows that the number of edges in Ei associated with supercomponent
123 is at most 2(pi + PZ + PS) -- 6 = 2[(pi -- ]) + (p2 -- 1) + (p3 -- 1)]. Therefore,
Eil$ }1:;.i 2(Pj- 1) + EJ.4 2(P/ - 1) = 2181. D

We continue with a straight-line plane subgraph P of a weighted graph G. We say a
triangle iWZ is f/zsfde frfang/e .WW(or x)/w co/zfa i/zs Dpz) if z is embedded in the bounded
plane face defined by OW. If Dlz and :WW are two triangles with z and w on the same
side of the line containing .D/, w # z, then one of the triangles has to be inside the other.

We will use the following topological fact, given without proof.

FACT \8. Let xsz be a triangle containing a triangle )=yz (with s:P y). Then there is no
triangle xyw (with lo:i z) which coyitains xyz.
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For a triangle A, we denote the median weight of the edges of the triangle by b(A)
as above.

DEnNITloN 5. In a stmight-line plane graph, a separarl/zg rrfang/e is a triangle A:; .D/z
such that some neighbor of x, y, or z is embedded inside A, and some neighbor of x, y,
or z is embedded outside A. (I'his is slightly diHerent from the standard definition of a
separatingtriangle.)

Wb now prove the key result needed for the lower bound

LEMME 19. Let P be a straight-!ine weightedplane graph
T in P and a goodjamit) 8 such that

There is a spanningforest

w(f) + { }l: Z'(A) Z {w(P)
A€.S

PROOF. By induction on the number of separating triangles in P
If P has no separating triangle, we choose S to be the set of all triangles in P. Now .S

is good, for if it were not, choose an edge .DI with three triangles .Wa, .Wb, and xyc of S
on the same side of the line containing DJ. Relabel a, b, and c, if necessary, so that a is
inside A = x)lb and c is outside. Then a is a neighbor of x embedded inside A and c is
a neighbor of it embedded outside A, so that A is a separating triangle, a contradiction.

We set P = }:a:s b(A). Removing the median weight edge in each t].iangle of P
leaves us with a triangle-free graph, whose weight is at least w(P) -- P. Let T be a
maximum spanning forest in the resulting triangle-free graph. Then

w(F) Z !(w(P) -- P)

by a result similar [o Corollary 7 for triang]e-free p]anar graphs, using the same upper
bound on the number of edges in triangle-free simple planar graphs as in the proof of
Lemma17.

For the inductive step, assume that P has a separating triangle. Choose a separating
triangle, say Dlz, of minimum area; there is no separating triangle inside it. Let Pin be
the subgraph of P induced by the vertices x, y, z and the vertices inside the triangle
X7Z. Pin has no separating triangle. Each edge of .D,z is in at most one triangle in Pin
other than Dpz. Consider the weight function wi. on the edges of Pi. defined as follows:
wi.(e) = w(e) for all e € P.., except that wi«(x}) = wi.(yz) = wi.(a) = 0. Let P...
be the subgraph of P induced by the vertices x, y, z and the vertices outside the triangle
xyz. Now

w(P) = w(Po.t) + wi.(P..)

Our goal is to find a spanning forest F in Pm which does not connect any two of x, y,
and z, and a spanning forest in P..t. Together, they will fetID the desired spanning forest

Since every separating triangle in Po.t is also a separating triangle in P, and since the
separating triangle xyz of P is not separating in Po.t, Pout has fewer separating triangles

Tina
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U

Fig. 1. xyz is a triangular face(nothing embedded inside) of the straight-line plane graph I'mt. If y is in the
interior of Uiangle xa, z cannot be in the interior of some triangle D,v of Pa«t. Also, a triangle like x},g cannot
exist. In other words, on the side containing z of the line containing edge xy, there can be only ane Uiangle
.D,w for some w, namely, D/z.

than P; by induction, we have a spanning forest Zo.t in Po.t and a good family Sa.t of
triangles of Po.t such that

waa.D+{ }ll:
Ac.S.

b(A) Z 4w(P.«t)

Since Pin has no separating triangles, we know, where .Si. is the set of a// triangles of
Pin, that -Sf is good for Pin. IJnfortunately, however, we cannot guarantee that .Sf U SQ..
is a good family for P. We will construct a slightly diHerent good S for P

In the following we assume that, in P..t, on the side containing y of the line con-
taining edge xz, there is only one triangle of the form xzw, namely, x4y, and on the side
containing x of the line containing edge yz, there is only one triangle of the fomt yzw,
namely, yw.

We now justify this assumption. If the assumption is not true, then, in P..t, either
(1) on the side containing y of the line containing edge xz, there are at least two triangles
containing edge xz, or(2) on the side containing x of the line containing edge yz, there are
at least two triangles containing yz. The two cases are symmetiic, for we can interchange

x and y. So we only argue about the former, in which, in Po«t, on the side containing y of
the line containing edge xz, there are at least two triangles. One of them is triangle .D/z and
the other is triangle xzs (containing y in its interior). For intuition, we refer to Figure 1.
However, in this case Fact 18 ensures that in Pa.t, on the side containing z of the line
containing edge .W, there is only one triangle of the form .D/w for some w, namely, the
facial triangle x)?z of P.«t.(There is no triangle such as x)/v or.Dpg in Figure 1.) Similarly,
on the side containing x of the line containing edge yz, the only triangle wyz for some
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Fig. 2. Since the triangles .x)?z and )Wq have been excluded from Sln, on the side containing z of the line
containing x and y there are at most two triangles in 8, those flom S..t(one of them being ,WW in this picture)
On the side containing x of the line containing yz, there can be only the triangles iyz(hom SU.) and iWZ(which
might be in S.ut). No other triangle of this type can exist in -Sort because of the assumption.

w is the facial triangle D/z of Po«t. Since x, y, and z are symmetric, we can satisfy the
assumption by interchanging y and z.

If possible, let q, r, and s be vertices, not necessarily distinct, (strictly) inside the
triangle x)lz, such that Dlq, xzr, and yzi are facial triangles. Let Si. be the set of Uiangles
of Rin, excluding .Dlz and ©,q (if D/q exists). Clearly, .$n iS good for Pm. We will show
that .S :; Sin U bout is a good family for P. For intuition, we refer to Figure 2. Indeed,
(1) any edge e # D/,yz,xz participates in at most two triangles of S on each side
of the line containing e (because .$. and S..t are good and the only edges shared by
both are .W, yz, and xz).(2) On the side containing z of the line containing x)I, in Si.
there is no triangle containing x and y. Ttlis is true since in Pln there is no separating
triangle, and the triangles D,z and .Wq have been excluded from Sin. The other side
clearly contains no triangle of .$.. In .So«t, on each of the corresponding sides of the
line containing D/, there are at most two Uiangles containing )r and y. (3) On the side
containing x of the line containing the edge yz, there is at most one triangle of Si.
containing z and y, namely, syz, since .D-z has been excluded from Si.. By assumption,
in Po.t, on the side containing x of the edge yz, there is only one triangle containing
z and y, namely, .\)/z. On the side not containing x of the line containing the edge yz,
there is no triangle of .$n and there are at most two of S..t.(4) For the edge xz, the
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reasoning is similar to that for yz. This completes the proof that S = .$. U Sa«t is
good.

Let Pin = }'A€S. bin(A), where bin, the value of the median edge, is computed
according tO Win. Teen, using the fact that Win $ W,

>ll: b(A) Z Pin
Ac.Si,.

If we remove the median edge(according tO Win) from each triangle in 8n, never choosing
xz or yz as a median-weight edge(so we remove xy from .f%.), we get a triangle-free
graph Pil. still having edges xz and )/z of weight Win :: 0. By Lemma 17, there is a
spanning forest Fin in Pil. not connecting any two of x, y, and z and having weight

w(&.) Wi.(En) Z {wi«(P.I,) Z ;(wi-(P-) Pin)

Then

w(Fl-) + ! >ll: b(A) Z !wi. (P-- )

Putting together To.t and /q.. to get a forest 7 in P, we conclude with

w(F) + { :.I b(A) [w(E«) + w(Zo-.)] + { )l: b(A) + ! }: b(A)
Ac.Sh AcS..t

>

>

wU + Eb )l+lwao«J+! Ez, )I
;(Wi-(P-n) + W(P.-t))

;w(P). n

CARO\J.,XKX 2n. There exists a goodfamit) S in P such ttmt

w(To)z w(p)-$1 }1'b(a)I.
L.AcS J

PKOOP.

{w(P)
Choose.S, 7 asinLemma 19. Since w(ZO) Z w(7),wehave w(TO) Z w(7) 2:

lIEd.s Z,(A)]. []

33. A BouYld on the Pe#ormance Ratio in the General Case

'lhEOKEM 21 Ttw pedonnance ratio of the algorithm is at !east 1. /3 -F 'L f'7'Z

PROOF. Let P be a straight-line embedding of a maximum weight planar subgraph of
G and let /' be a maximum spanning forest in P. We know from Corollaries 2 and 4 that
the algorithm produces a triangular structure So of weight

w(So) Z {]w(Zo) + w(T/)]
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Now w(Zo) Z w(F) Z !w(P) (Corollary 7). By Corollary 20, there is a good family S
in P such that w(Zo) Z {w(P) -- {P, where P = )1:a.S b(A). Therefore

w(To) z maxllw(P), !w(P)

(it is important that we are not using only the trivial first bound here.) Corollary 16
implies the bound

w(T/) Z 4w(P) + 4P
for the same .S. We therefore have

w(SO) z {Emaxllw(P), {w(P) !P} + ({"'(p) + iP)t
A simple balancing argument shows that this lower bound is minimized when #
!w(P), so that we obtain

w(So) Z ({ + #)u'(P). D

3.8. .4n t/pref Bound o/z //ze Ppzjo/nance Raffo ofr/ze A/garfr/zm. On the other hand,
the performance ratio of the algorithm is at most 5/12. In fact, we will exhibit p/a/zar
graphs for which the weight of a maximum weight triangular structure is at most g +o(1)
of the total weight. Running the algorithm on any of these planar graphs will result in
a triangular structure and therefore the weight of the planar subgraph found by our
algorithm is at most g + o(1) of the optimal weight. obese planar gmphs are obtained
from arbitrary triangulated plane graphs through a construction we describe below.

Let P be any triangulated (simple) plane graph with n Z 3 vertices. By Euler's
fomlula, P has 3n -- 6 edges; let the weight of each edge of P be two. In each of the
2n -- 4 faces of P add a new vertex, and add three edges adjacent to this new vertex
and the three vertices of P which define the face. These new edges have weight one. We
denote by G the plane graph obtained this way. G has 3/z -- 4 vertices, is triangulated,
and has total weight 2 . [3n -- 6] + 1 . [3(2n -- 4)] = 12n -- 24. (See Figure 3.) We wi]]
prove that a maximum weight Uiangular structure in G has weight at most g + o(1) of
the weight of G. To do so, we need a lemma(which will also be used later).

1..ElvIMA. 22. Let G = (V, E) be any graph and let T be a set (possibly intersectirlg
E) ofedges on V. Let w be a nonnegative weightfhnction on E \J T. Assume that T is
a maximum spanning tree in the multigraph G U T = (V, E U T). For every triangle
A :: .Dlz in G, /ef

g(A) w(A.) maxlfndexr(x, y), !ndexr(x, z), Indexr(y, Z)}

mintindexr(x, y), jnd'xr(x, z), fndexr(y, z) }

lfg(.A) $ Qfor evil'ytriangte N in G, then w (T) >- w(.A)for every tdangutar structure
Ai/zG

PROOF. Let A be an arbitrary triangular structure in G. We iteratively define edge set
Ef, graph Gt = (V, Ei), and triangular structure Ai in Gf. To start, let Eo = E, Go = G,
Ao :: A, and i :: O.
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Fig. 3. An example of graph G. The sand edges show graph P. Each of them has weight twa. The dotted part
shows the extra vertices and edges in G. The dotted edges have weight one

Let A be a triangle in Ai. Label the vertices of A as x, y, z so that indexr(x, y) $
fndexr(x, z) S f/deer(y, z). We modify .4i by removing the edges of A and adding
two new edges el and e2 to get Af+i. The endpoints of ei are x and y and w(ei) =
[/zdexr(x, y). The endpoints of e2 are y and z and w(e2) = !ndexr(y, z). We set Ei+i =
EiU {ei, ez} and Gi+i=(y, Ef+l).

Since g(A) $ 0, w(A) $ f/zdexr(x,y) + i/zdexr(y,z) = w(ei) + w(e2). So
w(Af+l) Z w(Ai). Also, Aiki is a triangular structure in Gill all of whose triangles are
in G, having fewer triangles than Ai.

We iterate this process for all g triangles of A. At the end we have a triangular
structure Av in a graph Gq, with w(.4q) Z w(.4). .4q has no Uiangles so it is a forest
in Ge. We know that T is a maximum spanning tree in G U 7'. Each additional edge
(with endpoints, say, z{ and u) we add has weight at most (in fact, exactly) f/zdexr(u, u).
This guarantees that the one tree r is a maximum spanning tree in each Gf U 7 and in
particular in Gq U r. Since Aq is a forest in Gq, w(T) Z w(Aq). So we conclude that
w(T) z w(Aq) z w(A). []

Now we are ready [o prove that a maximum weight triangu]ar structure in G has
weight at most f + o(1) of the weight of G. Let 4 be a set of new weight-three edges
forming any spanning tree on V '(/'), the vortex set of P

Let B be a subset of the edges of G : for each of the 2n -- 4 vertices inserted in the faces
of P, choose exactly one edge of G incident to it. Then we know that 7' = (y (G), 4 U B)
is a spanning tree of the graph G U 7'

In fact, it is easy to verify that 7' is a maximum spanning tree in G U 7'. Consider an
edge e of G. If e has weight one, the path in 7 between e's endpoints obviously cannot
contain an edge of weight smaller than one. If e has weight two, then e is an edge of P

Let H and u be the endpoints of e; then u, t; c y(P). The set of edges A is a spanning
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tree on y(P). As there is a path in A from u to u, the unique path in 7 flom u to u is
contained in A and therefore the weight of any edge on the unique path in 7' from H to
u is three.

Also, no triangle of G has positive gain with respect to 7, for the following reason.
Consider a triangle A in G. Label the vertices of A as x, y, z so that fndexr(x, y) S
f/zdexr(x, Z) $ 1/zdar(y, Z). If all the edges in A have weight two, then A is a triangle
in P and the path in T between any pair of its vertices contains only edges of weight
three. Thus we have w(A) = 6, fndexr(x, y) = 3 = indexr(y, z). This makes g(A) =
w(A) -- f/zdexT (x, y) -- fndexr6', z) = 0. If A contains at least one edge of weight one,
then it contains exactly two edges of weight one and one edge of weight two. This means
w(A) = 4. Since fade.rr(x, y) $ index (x, z) S f/zdmr(y, z), we have flzdexr(x, y) =
I and indexr6', Z) = 3. Thus again g(A) = w(A) -- f/zdexr(x, y) -- fndexr(y, Z) = 0.

Therefore, we can apply Lemma 22 and conclude that w(T) Z w(S) for any triangular
structure S in G. hl conclusion, if S is a triangular structure in G,

«''' '«'',-"'"'*«'"'-;'« - :'*: ':« --' -'«-,-(; * ;L) «'',.

In fact, we conjecture that w(.SoPt) Z 4w(P), where S.Pt is a heaviest triangular
structure in planar graph P, for any weight function.

3.9. T%e ZrfangZe /neq a/ily. The next theorem gives a better perfomiance ratio for the
algorithm if the input graph is a weighted clique whose edge weights satisfy the triangle
inequality.

THEOREM 23. Suppose that the edge weights in a weighted clique G satisD the triangle
alequality. Theft w(.SQ) Z. \w(.P), where P is a heaviest planar subgraph ofG.

PROOF. Let P be a straight-line embedding of a heaviest planar subgraph of G. Wb
assume, without loss of generality, that P is triangulated. By the triangle inequality, we
have b(A) Z {a(A) for any (facial) triangle A of P. Recall (from Section 3.5, p. 190)
that W(xy) = index/(x, y) for all edges .W c E(P). Using Lemma 13, it follows that
for a triangle A of P we have

w'(A) a'(A) + b'(A) + c'(A) Z a(a.) + b(A) + c(A) + b(A)

Using b(A) Z c(a.) and a(A) $ b(A) + c(A), we can deduce that

b(A) Z 1]a(A) + c(A)]

andhence

w'(A) Z i]a(A) + b(A) + c(A)]

Therefore

w'(A) Z ;w(A)
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Then, because P is triangulated

w'(P) ! }.I w'(NZ$ >: ;wa)
facial triangles A of P facial triangles A of P

iw(P)

This bound and w(T/) Z I W(P) (Lemma 14) imply that w(r/) Z ;w(P) and hence:
using Corollaries 4 and 7,

W(SO) Z {(w(Zo) + w(T/)) Z !({ + g)w(P) ;w(P). D

3.10. Oz£rerpZanar Szzbgnzp/zs.. Consider the MAXIMUM WEIGHT OUTERPLANAR SUB-

GRAPH problem: given an edge-weighted graph G, find an outerplanar subgraph of G of
maximum weight. This problem is known to be NP-hard [GJ, p. 197].

We know of no published research on the problem. The naive approximation ratio is
1/2, which is obtained by any algorithm that produces a maximum spanning tree Zo of
G (assuming G is connected). To prove this, we need the following lemma.

LEnoX 24. Let P be an outerplanar graph with nonnegative weight.function w on the

edges. Then a maximum spanningforest F ofP satisfies w(.F) ). \w(.P).

PRooF. Any subgraph of an outerplanar graph is outerplanar, and, by Euler's fomlula,
E(H)[ $ 2(1 y(H)] -- ]) for any outerp]anar graph H [HI, Coro]]ary 1 1.9]. Thus, it is

enough to apply Lemma 6 with c :; 2 to the fami]y of a]] outerp]anar graphs. []

Let P be any outerplanar subgraph of G. By Lemma 24, we deduce that w(ZO) Z
!w(P), and the performance ratio of 1/2 follows.

A triangular structure is an outerplanar graph. In the unweighted case, a maximum
triangular structure in a graph G (one with the maximum number of edges) has at
least two-thirds as many edges as a maximum outerplanar subgraph of G [CFFK].
We will show that a maximum weft/zf triangular structure in a weighted graph G has
weight at least two-thirds of the weight of a maximum weight outerplanar subgraph
of G. Unfortunately, we do not know how, in polynomial time, to find a maximum
weight triangular structure in a given weighted graph. The algorithm presented in this
chapter produces a heavy triangular structure in a given weighted graph. We will prove
that the algorithm improves the best known performance ratio for MAXIMUM WEIGHT
OUTERPLANAR SUBGRAPn to 7/12 > 0.583.

The proof of the next key lemma takes a few pages.

LEMME 25. In any maximal outerplanar graph P, there are at most three (no! neces-
sahl) distinct) triangular structures in P such that each edge of P appears in exactly
h'nlo ofthem.

PROOF. If P has fewer than three vertices, then P and the empty graph are triangular
structures. Assume P has at least three vertices. Embed P in the plane as a triangulation of
a polygon. (Every maximal outerplanar graph with at least three vertices is a triangulation
of a polygon. That is, the boundary of the exterior face of P is a Hamiltonian cycle //
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Fig. 4. An outeiplanar graph(solid lines) and the tree D'(filled vertices and dotted lines) obtained hom its
dual

and each interior face is triangularIH], p. 106].) Let E be the edge set of P, let b be the
exterior face of P, and let F be the set of faces of P other than b.

Let Z) be the dual multigraph of P. We call the vertices of Z)(which are faces of P)
rzodei, and the edges of D, circa. All nodes of D but b have degree three. Also, the edges
in the Hamiltonian cycle .17 correspond to the arcs incident to b in D.

Let Zy be the graph obtained from Z) by subdividing each arc incident to b, and then
removing &. See Figure 4 for an example.

LEMMA26 D' is a tree al! ofwhose internalnodes have degree three

PRooF. First, we prove that Zy has no cycle. It is enough to show that any cycle in
Z) contains b. A cycle in D conesponds to a cut in P [BM, p. 143, Exercise 9.2.3].
Because .f7 is a Hamiltonian cycle, any cut in P contains at least two edges of fl, which
correspond to arcs incident to b. Therefore, any cycle in D contains at least two arcs
incidentto b,soitcontains b.

Second, we prove that Zy is connected. If Zy were not connected, there would be two
nodes z{ and u in di#erent components of Zy. Wb argue that we can choose H and D to be
nodes in V (Z)). If H were not a node in y(Z)), then it would be a node which originated
from the subdivision of an arc incident to b, and thus it would have degree one in Zy
Change H to its unique neighbor in ly. Do the same for u. Note that the new u and u
must still be in different components of D ', since they are in the same component as
the initials and u, respectively. So we can assume z{ and u are nodes of D. Because D
is connected, there is a path in D between u and u. For this path not to exist in D ', it
has to go through node b. However, this implies that b would be a cut vortex in I). If
b were a cut vortex in Z), then there would be a minima/ cut in D containing exactly a
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proper subset of the arcs incident to b(consider the set of edges going from b to one of
the components of Z) after the removal of b). A minimal cut in Z) corresponds to a cycle
in P [BM, p. 143, Exercise 9.2.3]. This implies that there wou]d be a cyc]e in P whose
edges are a proper subset of the edges of H, a contradiction (a proper subset of the edges

of any cycle induces an acyclic graph, since it is enough to remove one edge of a cycle
to be left with a path, which is acyclic).

Therefore D ' is, in fact, a tree. Recall that all nodes of D but b have degree three.
Before removing b, we subdivided all of the arcs incident to b. The new nodes have
degree one in Zy, and all others have the same degree as in D, i.e., three. []

A specie/ 3-co/aPIng of D ' is a partition of the set of nodes of Zy into three sets
(XI , X2, X3) (each set referred to as a color c/asl) such that

1. adjacent nodes have different colors, and

2. for i = 1, 2, 3, if we remove all nodes of color 1, in the resulting graph there is a path
from any node to a leaf in Zy

LEMMA 27 There is a special 3-coloring ofD'

PRooF. Root Zy at one of its leaves. In the rooted D ', all intemal nodes except the root
have two children. Color the root and its unique child with distinct colors. Now, start at
level I = 1. If there are nodes in level 1 + 1, for each node in level f with children, give
its children distinct colors which diner from its own color. Proceed to levels + I.

Clearly, adjacent nodes get distinct colors.

Suppose we remove a]] nodes of co]or i, for some f; ]et .f and k be the two remaining
colors. Consider a remaining node. Either it is a leaf in D ', and there is nothing to prove,
or it is an intemal node of the rooted tree Zy different from the root(since the root is a
leaf of Zy). Any intemal node colored ./ which is not the root has a child of color t, and
vice versa. This means that there is a path from any node to a ]eaf in Zy. []

Given a special 3-coloring (XI, XZ, X3) of D ', we now describe three triangular
structures Si, S2, and S3 as required by Lemma 25. Establish the natural one-to-one
correspondence between edges of P and arcs of Zy: each edge of P conesponds to the
unique arc of D ' which "crosses" it.

Let Si be the set of edges in P whose conesponding arc in Zy has an endpoint of
color i(i.e., in Xi). (An arc has either one or zero endpoints of a given color.)

LEMMA 28 Si is a triangular structure in P

PRooF. Suppose that there is a cycle C in SI which is not a triangle. C partitions the
set of faces of P into two sets Eo 3 b (outside C) and Fi S F ' (inside C), F being the
setoffaces ofZ) otherthan b.

Because C is not a triangle, I/'t I Z 2. (if I Fi I ::: 1, then C would be the boundary of

the unique face in Fi g F, which is a triangle.)
A cycle in P conesponds to a minimal cut in Z) [BM, p. 143, Exercise 9.2.3]. So Fi

must induce a connected subgraph of Z). Since fy differs from Z) only in arcs incident
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to b, FI induces the same connected subgraph in D '. Also, /'i consists only of intemal
nodes of Z)/

Thus /'i induces a connected subgraph of D ' with at least two nodes. Hence, in the
given special 3-coloring of D ', not all nodes of /'l can be of color f; there is a node
d € ri of color ./ # f.

All leaves of Zy are outside C. Since C is in Si, each edge of C corresponds to an arc
in ly with one endpoint of color i . Removing the nodes of Zy of color f hence eliminates
all arcs with one endpoint inside C and one outside. Hence, after removing from Zy the
nodes (faces of P) of color i, there can be no path from node d to a leaf of Zy. This is a
contradiction to the fact that we have a specia] 3-co]oring. []

Clearly, Si, S2, and S3 satisfy the statement of Lemma 25: each edge of P appears in
exactly two of them. []

THEOREM 29. Let G be a graph with a norlrtegative weightlbnction lo on the edges
and let S.Pt be a maximum weight triangular structure in G. Then w(S.Pt) Z 3w(.P)jor
an) outerptanar subgraph P afG.

PRooF. By adding edges possibly not in G, extend P to a maximal outerplanar graph
P. For any edge e in P but not in G, let w(e) = 0. Clearly, w(P) Z w(P).

Let St , SZ, S3 be three triangular structures in P as given by Lemma 25. Each edge
of P appears in exactly two of these triangular structures.

Then w(SI) + w(S2) + w(S3) = 2w(P) Z 2w(P). Moreover, w(S..t) Z w(Si),
f = 1, 2, 3. Therefore 2w(P) $ 3w(SoPt), imp]ying that w(S.Pt) Z 2w(Pj. []

COROCtlOX 3Q. The algorithm described in Section 2 has performance ratio at !east
7/12jor MAXIMUM WEIGHT OUTERPLANAR SUBGRAPH.

PROOF. Lemme 9 tells us that T/ is a maximum spanning tree in G/; because G is a
subgraph of G/, r/ is a maximum spanning tree in G U r/. By Lemma 12 we know that
every triangle of G has nonpositive gain with respect to T/. Thus, by Lemma 22, we
infer that w(T/) Z w(SoPt), where S.Pt is a maximum weight triangular structure in G.

Together with Corollary 4, this means that the algorithm produces a triangular struc-
ture Sosuchthat

w(So)Z (Zo) ow(&pt),

where Zo is a maximum spanning tree of G. So far, everything we have said applies to
MAXIMUM WEIGHT PLANAR SUBGRAPH .

Let P be any maximum weight outerplanar subgraph of G. We know, by Lemma 24,
that w(Zo) Z 4w(P). From Theorem 29, we have w(SoPt) Z {w(P). Hence

w(So) Z (Zo) + "'(S.p.) Z {"(P) + {w(P) n
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Primal-Dual Algorithms for QoS Multimedia Multicast
G. Calinescu* C.G. Fernandest 1.1. Mandoiu+ A. Olshevsky! K.Yangl A. Zelikovskylr

Abstract-- The QoS Steiner 'hee Problem asks for the
most cost-efficient way to multicast multimedia to a hetero-
geneous collection of users with different consumption rates.
We assume that the cost of using a link is not constant but
rather depends on the maximum bandwidth routed through
the link. Formally, given a graph with costs on the edges,
a source node and a set of terminal nodes, each one with
a bandwidth requirement, the goal is to find a Steiner tree
containing the source, and the cheapest assignment oll band-
width to each of its edges so that each source-to-terminal
path in the tree has bandwidth at least as large as the band-
width required by the terminal. Our main contributions are:
(1) new covering-type integer linear program formulations
for the problem; (2) two new heuristics based on the primal-
dual framework; (3) a primal-dual constant-factor approx-
imation algorithm; (4) an extensive experimental study of
the new heuristics and of several previously proposed algo-
rithms.

no doubt integrate such algorithms into basic operational
performance [3].

Several versions of the QoS multicast problem have
been studied in the literature. These versions seek rout-

ing tree cost minimization subject to (1) end-to-end de-
lay, (2) delay variation, and/or (3) minimum bandwidth
constraints (see, e.g., [3], [11], [7]). ]n this paper, we
consider the case of minimum bandwidth constraints. that
is, the problem of finding an optimal multicast tree when
each terminal possesses a different rate of receiving infor-
mation. This problem is a generalization of the classical
Steiner tree problem and known to be NP-hard [4]. For-
mally, given a graph G = (y. .E), a source s, a set of
terminals S, and two functions: /engf/z : E -+ ]R+ rep-
resenting the length of each edge and rare : S -..} IR+
representing the rate of each node, a mz{/ficasf free T is

a tree in G spanning s and S. The rare rare(e, 7') of an
edge e in a multicast tree T is the maximum rate of a ter-
minal in the connected component of T -- e which does
not contain s. The Golf of a multicast tree T is defined as

1. 1NTROOUCTiON

Recent progress in audio, video, and data storage tech-
niques has given rise to a host of high-bandwidth real-
time applications such as video conferencing. Quality of
Service (QoS) requirements for these applications must
be provided by the underlying networks. In light of this,
multicast routing algorithms which manage network re-
sources efficiently and satisfy the QoS requirements have
come under increased scrutiny in recent years. As appli-
cations such as video conferencing gain popularity, the
focus on multimedia data transfer capability in networks
will grow [12].

Multimedia distribution is usually done via multicast
trees. There are two reasons for basing efficient multicast
routes on trees: the data can be transmitted concurrently
to destinations along the branches of the tree and only
a minimum number of copies of the data is transmitted
since information needs to be replicated only at forks in
the tree [14]. The bandwidth savings obtained from the
use of multicast trees can be maximized by using optimal
or nearly optimal tree algorithms. Future networks will

.o.t(r) >l: /'«g/h(e) mr'(e)
e€7'

QUALITY OF SERVICE STEINER TREE PROBLEM

(QoSST): Given a network G = (y,.E,/engrh,rare)
with a source s in y and a set of terminals S C V. find a
minimum cost multicast tree in G.

This formulation assumes that each link in the network
has maximum possible rate, that is, has the maximum
possible bandwidth. This is somewhat unrealistic due to
di#erent cables and trafhc influence. A more sophisti-
cated version of this problem would include a maximum
possible rate function maura/e : .E --} l©+ . Moreover.
in practice the rates are rarely constant; another possible
generalization would consider the case of dynamic rates.

The rest of the paper is organized as follows. In the
next section we give a short summary of the algorithms
proposed by [7], [4], and [6] and show that the approxi-
mation ratio of the algorithm from [7] is unbounded. ]n
Section 111, we consider an integer linear program for-
mulation (ILP) and describe two heuristics based on the

primal-dual framework. Then we prove that a primal-
dual algorithm based on an enhanced ILP has an approx-
imation ratio 4.31 1. Finally, in Section IV we conclude
with an experimental comparison of our two primal-dual
heuristics with algorithms from [7], [4].
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Input: A graph G =(y. E, /engr/i, rczfe) with a source s in V and
a collection of tenninals S C y.

Output: A QoS Steiner tree spanning the source and the temlinals.

doubles the cost of an optimal solution). In its second
step, Steiner trees are computed separately for each rate
(within some approximation ratio a). The union of these
treesisthefinalsolution.

Replace each edge of rate 2' by edges of the rate
2o, 2i, . . . , 2i'i , 2f, respectively. In the new network, all
edges of a specific rate form a Steiner tree. Since the op-
timal cost in this new network is no more than twice the

cost of the rounded up instance, taking the union of all the
computed Steiner trees introduces another factor of two
to the approximation ratio. Thus the final approximation
factor is 2,- a . 2 = 4a.

Using a randomization technique, Charikar, Nair, and
Schieber [4] reduce the approximation ratio to ea H 4.21,
where e H 2.71 is the Eller constant and a H 1.55 is

the currently best approximation ratio for the Steiner Tree

problem. The approximation factor has been further im-
proved to 3.802 by Karpinski et a]. [6].

(1)
(2)

(3)

(4)

Initialize the cunent tree to {s}
Find a non-reached terminal t of highest rate with the shortest
distance to the cunent tree.
Add t to the cunent tree along with a shortest path connecting it
to the cunent tree.
Repeat until all terminals are spanned.

Fig. 1 Maxemchuk's Algorithm for the QoS Steiner Tree Problem.

Fig. 2. A bad example for Maxemchuk's algorithm, with k :: 4 rates
[n [he figure, f :: 1/22k-i. The rate of each node is given above
the node. The edge lengths are given on the thin curved arcs, while
on the solid horizontal line each segment has length 1/2k'i + c. The
optimum,of totalcost1+2k lc = 1+2k i(1/22k'i) = 1+1/2k
uses the solid horizontal line at rate 1 . Maxemchuk's algorithm picks the
thin curved arcs at a cost of 1 + (1/2)(1 -- f) + 2(1/4)(1 2c) +
4(1/8)(1 3c) 2((t+i)/2)(1 - 1/2*)

C. Atgorithms for Two or Three Rates

In practice, it is often the case that only few distinct
rates are requested by the terminals. This is why the QoS
problem with two or three rates has a long history, having
been considered in]1],[2],[8], and]15]. The previous]y-
best resu]ts of[8] and]15] have produced a]gorithms with
approximation factor equal to 2.667 (provided that the
MST heuristic is used to compute Steiner trees). Karpin-
ski et a]. [6] improved this ratio to 2.414 and showed that
it can be further improved to 1.96 if more sophisticated
time consuming Steiner tree algorithms are used.

II. PREVIOUS WORK

A. Maxemchuk'sApproach

Maxemchuk [7] proposed a heuristic algorithm for the
QoS Steiner Tree Problem. His algorithm is a modifi-
cation of the MST heuristic for Steiner Trees [13] (see
Figure 1).

The extensive experiments given in]7] demonstrate
that this method works well in practice. Nevertheless,

the following example shows that the method may pro-
duce arbitrarily large error (linear in the number of rates)
compared with the optimal tree. Consider the natural gen-
eralization of the example in Figure 2 with an arbitrary
number k of distinct rates. lts optimal solution has a cost
of about 1, whereas Maxemchuk's method returns a solu-
tion of cost about(k+ 1)/2. As there are 2k'i+ Inodes,
this cost can also be written as I + I logo(n 1), where
n is the number of nodes in the graph. We conclude that
the approximation ratio of Maxemchuk's algorithm is at
least linear in the number of rates and at least logarithmic
in the number of nodes in the graph.

111 PRIMAL-DUAL. MOTIVATED AI,GORITnMS

The problem can be formulated as an integer program
as follows. Consider a network G = (y, .E, /e/zgrh, rare)
with a source node s and a set of terminal nodes. Let

ri < rz < ' :. < rk be all rate values assigned to the ter-
minals. It simplifies notation to assume that every node
has a rate by considering an extra rate ro = 0 (assign
rate to to each non-terminal node). Also, we may as-
sume that s has the highest rate. Construct a new net-
work G ' = (y, -E ', coin, rare) by replacing each edge e
of G with k edges(e,ri),(e, r2),. . .,(e, rE) and setting
cosi((e, ri)) = ri . /e«grh(e)

Let z(.,r) be a boolean variable denoting whether edge
e is used at rate r in an optimum tree. The QoS Steiner
tree problem can be formulated as

B. The Charikar-Nair-Schieber Algorithm
The Charikar-Naor-Schieber a]gorithm [4] is the first

constant-factor approximation algorithm given for the
QoS Steiner tree problem. In its first step, all rates
are rounded to the closest power of two to produce the
rounded up instance of this problem (clearly, this at most

min E
(e,,)€E '

>l. z>.0 ? 1,
( e , ,' ). € 6(C )

r2:ra

"@,,) ' ' /'«gfh(e) (m.I)

(m.2)s.t. va £ }' \ {.}

a;(.,,) C {0, 1} (m.3)



where J(O) denotes the set of edges with exactly one end-
point in C ' and rc denotes the maximum rate of a node

in C '. Note that (111.1) gives the cost of an optimal so-
lution, while (111.2) guarantees that each terminal is con-

nected to the source through a collection of edges of rate
no less than its rate.

We relax the integrality constraints (111.3) and con-
sider the dual linear program. For each (e, r), we define
a'(e,r) = {C ' c y \ {s} : (e,r) c .5(0),r ? rC}.
In words, C* (e, 7') is the set of subsets C of y \ {s} such
that (e, r) has at least one endpoint in C ' and r is at least as
large as rc. Using this definition, the dual is as follows:

(a)

Fig. 4. The Restarting Primal-Dual avoids the mistake of the Naive
Primal-Dual. Pan(a) shows duplication of the edges. Pan(b) shows the
components growing along the respective edges.

Input: A Graph G ' = (y. E, cost, rate) with source s, and a
collection of terminals S

Output: A QoS Steiner Tree spanning the source and the temiinal

(1)

(2)

13)

(4)

(5)

Grow each active C,. with speed I'i along incident edges(e, rj),
for j$ i, picking edges which become tight.
Continue this process until there is no active component of rate

Remove all edges which are not necessary for maintaining con-
nectivity of nodes of rate rh

Accept (keep.in the solution) and contract all edges of O,. (i.e.,
set their length/cost to 0) "
Restart the algorithm with the new graph

rkmax

$ r . Jengf/z(e), V(e,r)

A. The Naive Primal-Dual X4ethod

The primal-dual framework applied to network design
problems usually grows uniformly the dual variables as-
sociated to the "active '' components of the current for-
est [5]. This approach fai]s to take into account the dif-
ferent rates of different nodes in the QoS problem. In
Figure 3 we give a modification, referred to as the ''Naive
Primal-Dual" algorithm. Our modification takes into ac-
count the different rates by varying the speed at which
each component grows. While the simulations in the en-
suing sections show that this is a good method in practice,
the solution it produces on some graphs may be very large
compared to the optimal solution, as shown by the follow-
ing example.

Fig. 5. The Restarting Primal-Dual algorithm for the QoS Steiner Tree
Proble

The Naive Primal-Dual applied to this graph connects
the rate-c nodes first, since { < gi. So, the algorithm con-
nects the rate-l nodes via the rate-c nodes. and not via
the direct edge connecting them. Thus, the Naive Primal-
Dual can make arbitrarily large errors (just take an arbi-
trarily long chain).

B. Restarting Primal-Dual Algorithm

An improved algorithm is given in Figure 5. One
can easily see that this is a primal-dual algorithm. In-
deed, each addition of an edge to the current solution
is the result of growing dual variables. Moreover, since

the feasibility requirement for edge a is E.ca(o)yc $
r . Jengrh(a), this addition preserves the feasibility of the
dual solution. The algorithm maintains forests F'i given
by the edges picked at rate ri, and the connected compo-
nents of .F'i , seen as sets of vertices, are denoted in the
algorithm by C,. . Such a component is active if rc.. = ri
and O,; is diqoint from components of higher rate.'

The Restarting Primal-Dual avoids the mistake made
by the Naive Primal:Dual on the frame example in Figure
4(a). Then, at time 4 the rate-c nodes become connected.
This means that J(I €) of each rate-l edge between the
e-rate nodes is not covered. Meanwhile, the rate- I nodes
are growing on the respective edges as shown in Figure

Let us assume that the Restarting Primal-Dual uses the
chain of rate-c nodes to connect the two rate-l nodes in-
stead of the direct edge. This would imply that it takes
less time to cover the chain, i.e., !8(1 -- c)n $ ! ;,
where n is the number of rate-c nodes. With e small. Ge
obtain nd $ 1, so if the Restarting Primal-Dual uses the
chain then it is correct to do so.

4(b)

Input: A graph G =(y. .D, lelzgr/z, rare) with a source s in y and
a collection of terminals S C y

Output: A QoS Steiner tree spanning the source and the terminals.

(1)
(2)

(3)

(4)
(5)
(6)

Start from the spanning forest of (? with no edges
Grow 3/a with speed rO for each "active" component C of the
cunent forest.(A component (; is fnacffve if it contains s and all
vertices of rate ro .)

Stop growing once the dual inequality for a pair(e, r) becomes
tight, with e connecting two distinct components of the forest
Add e to the forest, collapsing the two components.
Terminate when there is no active component left.
Keep an edge of the resulting tree at the minimum needed rate.

Fig. 3.
Problem.

The Naive Primal-Dual algorithm for the QoS Steiner Tree

The Frame Example. Consider two nodes of rate I con-
nected by an edge of length I (see Figure 4). There is an
arc between these two nodes, and on this arc there is a
chain of nodes of rate c. Each two consecutive nodes in
the chain are at a distance t5 from each other, where (5 < 1.
Each extreme node in the chain is at a distance (i/2 of its
neighboringrate-l node.
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C. Primal-Dual 4.311-Approximation Algorithm

A primal-dual constant-factor approximation algorithm
can be obtained based on the enhanced integer linear pro-
gramming formulation below. It takes into account the
fact that if a set C ' C y \ {s} is connected to the source
with edges of rate r ' > rO, then there should be at least
two edges of rate r ' with exactly one endpoint in a. The
integer program is

final solution because of the reverse delete step.) A com
ponent a of /T ' is called an r-comporzen/ if ra = r.

Using Constraint (111.4), it follows by induction on f
that, for an edge e and a rate a'r+j, we have

£ / . \ .j

c :'cJ(c) .j=o
ro <a''r +j

$ /.«xrh(')'''pj5f:T

>l, g/c $ /engf (e)a'+j >1: £)

min }: z(..,) '''/'ngrh(e)
(e,r)€E '

s-t. )l: Z(e,r) + 5 }, Z(e,,) ? 1, VO f y\ {S}
.€J(o).CJ(a)r=rar>ra

£(.,,) c {0, 1}

For an edge picked by the algorithm at rate r, Constraint
(111.4) is tight and therefore

: cZ/«grh(');:
C :.€6(C)
rC$ a'r +j

.2.,-'-j. (m.5)

The corresponding dual of the LP relaxation is Exact[y as in [5], we have that the number of edges
of rate r in the final solution which cross the active r-

components at some moment (an edge being counted
twice if it crosses two r-components) is at most twice the
number of active r-components. Using Equation (111.5)

and exactly the same argument as in Theorem 4.2 of
[5], we obtain that the cost of the solution of the a]-
gorithm is bounded by (2(2a -- 1)/(2a 2)) >:g/o $
((2a -- I)/(a 1)) opt, as any feasible solution for the
dual linear program has value at most the value of any
feasible solution of the primal.

The same argument as in [4] shows that the approxi-
mation ratio of the algorithm above is (2a 1)/ in a. Nu
merically picking the best value for a, we obtain:

Theorem ///./. The output cost of the algorithm on
Figure 6 is at most 4.31 I times the optimum cost.

m,* >1: y.
ag I'\{ . }

s.t >1: z/.+; >, 3/.
C :eC (C) C :e€a(C)

rC =:T Ta <r

> 0

length(.e) (m.4)

The core of the algorithm is presented in Figure 6. Be-
fore that, we do a random bucketing of rates fo]]owing]4] .
Let a be a real(to be picked later) and ' be a real picked
uniformly at random from the interval 10 . . 11. Every node
of rate r is replaced by a node of rate a'r+j, where J is the
integer satisfying a'r+j't < r $ a'r+j.

The primal-dual part follows the classical frame-
work [5], and works in stages starting from the ]ower
rate to the highest. During the execution of the algorithm,
edges are picked at a certain rate (in other words, z(c,r)
is set to 1) one by one. Before executing step 3 at rate r
for the fth time, the set of edges picked at rate r by the
algorithm forms a forest Ffr. (An edge can be picked at
several rates, but it is kept in at most one such rate in the

IV. EXPERIMEN'rAL STUDY

All algorithms except the very recent 4.311-
approximation Primal-Dual were implemented in
C++. The heuristics were compiled using gpp with -02
optimization, and run on a Sun workstation Ultra-60. The
experiments were run on randomly generated testcases.

Table I gives a comparison of the performance of of
the aforementioned algorithms. The experiments were
conducted in the presence of no Steiner nodes, respec-
tively 50% Steiner nodes. Moreover, both arithmetic and
geometric distributions of rates were tested.

Table I gives the results of a multitude of experiments;
however, the results are fairly uniform throughout. It can
be observed that the Naive Primal-Dual and the Charikar-

Naor-Schieber algorithms most often produce compara-
ble results which are slight improvements over the results
produced by Maxemchuk's algorithm. The Restarting
Primal-Dual typically produces the best result, which is
typically 0.25 -- 6 percent better than the result produced
by Maxemchuk's algorithm; this, however, occurs at the
expense of greater CPU time. It can also be observed

Input: A graph G =(y. E, long/h, rare) with source s in y and
a collection of terminals S C V.

Output: A QoS Steiner tree spanning the source and the terminal.

(1)
(2)
(3)

(4)

(5)
(6)
(7)

For each r :: ri , r2, . . . , rk, execute steps 2-6.
Start from the spanning forest F ' of G with no edges.
Grow 3/n. uniformly for each r-component (;' of the cunent forest

Stop growing once the dual inequality for a pair(e, r) becomes
tight, with e connecting two distinct components of FP .
Add(e, r) to Fr , collapsing ovo of its components
Terminate when there is no r-component of Fr left.
Traversing the list of picked edges in reverse order, remove an
edge (e, r) from F ' if after (e, rys removal the set of edges
picked form a feasible tree.

.Fr

Fig.6. The 4.311-approximation algorithm for QoS Steiner Tree.
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COST IMPROVEMENT OVER MAXEMCHUCK'S ALGORITHM(%)
AND CPU SECONDS FOR CHARIKAR-NAOR-SCHIEBER AND

TABLEI

-x- charikar-nair-whieber
O. naive primal-dua
Q restarting primal dual

PRIMAL-DUAL AI.GORiTHus(AVERAGES ovER 1 0 TESTCASES) +
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Fig. 8. The gain of several algorithms versus Maxemchuk's algorithm:
0% Steiner nodes
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Abstract. The Mui.recut problem is defined as follows: given a graph
G and a collection of pairs of distinct vertices (si, tf) of G, find a smallest
set of edges of G whose removal disconnects each si from the corre-
sponding ti. Our main result is a polynomial-time approximation scheme
for MuLTicuT in unweighted graphs with bounded degree and bounded
tree-width: for any c > 0, we presented a polynomial-time algorithm
with performance ratio at most 1 + c. In the particular case when the
input is a bounded-degree tree, we have a linear-time implementation of
the algorithm. We also provided some hardness results. We proved that
Mui,Ticuv is still NP-hard for binary trees and that, unless P = ATP,
no polynomial-time approximation scheme exists if we drop any of the
the three conditions: unweighted, bounded-degree, bounded-tree-width.
Some of these results extend to the vertex version of MuLricuv.

I Introduction

Multicommodity Flow problems have been intensely studied for decades [7, 11, 9,
13, 15, 171 because of their practical applications and also of the appealing hard-
ness of several of their versions. The fractional version of a Multicut problem is
the dual of a Multicommodity Flow problem and, therefore, Multicut is of similar
interest l3,9,10,13,20).

The WnrGnTno MuLTicuT is the following problem: given an undirected
graph G, a weight function w on the edges of G, and a collection of k pairs of
distinct vertices (si, ti) of G, find a minimum weight set of edges of G whose
removal disconnects each si from the corresponding ti.

* Research supported in part by NSF grant CCR-9319106.

** Research partially supported by NSF grant CCR-9319106 and by FAPESP (Proc.
96/04505 2)

* * ' Research supported in part by ProNEx (MCT/FINEP) (Proj. 107/97) and FAPESP
(Proc. 96/12111 4)



The particular case in which k = lis characterized by the famous .i/az-Flom
JI/£n-Ozft Theorem l61, and is solvable in strongly polynomial time l41. For k = 2, a
variant of the Max-Flow Min-Clue Theorem holds j11, 121 and Multicut is solvable
in polynomial time. For k Z 3, the problem is NP-hard l3j.

Since many variants of the Weighted Multicut are known to be NP-hard,
we search for efhcient approximation algorithms. The perlformance ratio o/ an
approzfmatfon algorithm .4 for a minimization problem is the supremum, over
all possible instances /, of the ratio between the weight of the output of .4 when
running on / and the weight of an optimal solution for .r. We say ..4 is an a-
approrfmatfon aZgorfthm if its performance ratio is at most a. The smaller the
performance ratio, the better.

The best known performance ratio for Weighted Multicut in geiJeral graphs is
O(log k) j101. Important research has been done for improving the performance
ratio when the input graph G belongs to special classes of graphs. For planar
graphs, Tardos and Vazirani 1201, see also j131, give an approximate Max-Flow
Min-Clut theorem and an algorithm with a constant performance ratio.

The case when the input graph is restricted to a tree has been studied in
l91. Unweighted Multicut problem (in which w(e) = I for all edges e of G)
restricted to stars (trees of height one) is equivalent (including performance ratio)
to Minimum Vertex Cover, by Proposition I in l91. It follows that Unweighted
Multicut restricted to stars is NP-hard and Max SNP-hard. In fact, getting a
performance ratio better than two seems very hard, since getting a performance
ratio better than two for Minimum Vertex Cover remains a challenging open
problem j16]. Garb, Vazirani and Yannakakis give an algorithm in l91 with a
performance ratio of two for the Weighted Multicut problem in trees. Note that
the integral unweighted Multicommodity Flow problem in trees is solvable in
polynomial time l91.

We find useful two variations of the Multicut problem. The Venn'nx MuL-
TicuT problem is: given an undirected graph G and a collection of k pairs of
distinct nonadjacent vertices (s{, ti) of G called terminals, find a minimum set
of nonterminal vertices whose removal disconnects each si from the correspond-
ing ti. The I.JNRnsTRlcTnD VERTEX MuLTlcuT problem is: given an undirected
graph G and a collection of k pairs of vertices (si, tf) of (; called terminals, find
a minimum set of vertices whose removal disconnects each s{ from the corre-
sponding ti. (Note that in this variation, terminals might be removed.) Observe
that Vertex Multicut is at least as hard as Unrestricted Vertex Multicut. F\:om
an instance of Unrestricted Vertex Multicut we can obtain an instance of Vertex
Multicut by adding, for each si, a new vertex s; adjacent only to si, and, for
each ti, a new vertex t; adjacent only to ti. Each pair (s{, tf) is substituted by
the new pair (si,ti). Solving Vertex Multicut in this instance is equivalent to
solving Unrestricted Vertex Multicut in the original instance.

Both Vertex Multicut and Unrestricted Vertex Multicut might be of interest
on their own. Garg, Vazirani and Yannakakis considered the weighted version of
Vertex Multicut and proved that their algorithm in j101 achieves a performance
ratio of O(log k) for the weighted version of Vertex Multicut in general graphs.



never remove vertices from S. At the end of the algorithm, no pair in C is active.
meaning that S is a solution for the problem. For the minimality of S, note that
the paths joining si to tf in T for all marked pairs (si, ti) form a pairwise disjoint
collection of paths. Any solution should contain at least one vertex in each of
these paths. But there are l$1 marked paths, meaning that any solution has at
least ISI vertices. This implies that ISI is a minimum-size solution. Besides. it is
not hard to see that the algorithm can be implemented in polynomial time.

2.1 Bounded-'lYee-'Width Graphs

Next we present a PTAS for Unrestricted Vertex Multicut in graphs with
bounded tree-width. A PTAS consists of, for each c > 0, a polynomial-time
algorithm for the problem with a performance ratio of at most 1 + c. Let us
describe such an algorithm.

The input of our algorithm is a graph G = (y.E), a tree decomposition
O = (T, (X«)«CV(r)) of G, and a set C of pairs of vertices of G.

Given a subgraph G ' of G, denote by C(G ') the set of pairs in C whose two
vertices are in G ', and by G\G ' the subgraph of G induced by y(G) \ y(G '). For
the description of the algorithm, all the instances we mention are on a subgraph
(;' of G and the set of pairs to be disconnected is C(G '). So we will drop C(G ')
of the notation and refer to an instance only by the graph G '. Denote by opt(G ')
the size (i.e., the number of vertices) of an optimal solution for G '

Root the tree 7' (of the given tree decomposition) at a vertex r and consider
an arbitrary ordering of the children of each vertex of T. For a vertex u of T. let
T(u) be the subtree of T rooted at u. Let G(u) be the subgraph of G induced by
the union of all X«, w e y(T(u)). Let t = [(tw(G) + I)/c].

Here is a general description of the algorithm: label the vertices of T in pos-
torder. Find the lowest labeled vertex u such that an optimal solution for G(u)
has at least t vertices. If there is no such vertex, let u be the root. Find an ap-
pro"imate solution S« for G(u) such that IS«I $ (1 + c)opt(G(u)) and X. g; S..
If u is the root of T, then output S«. Otherwise, let G ' = G \ G(u) and let

= (T ', (X ' )wCy(7',)) be the tree decomposition of G ' where T ' ;: 'T \ T(u)
and Xf = X« \ y(G(u)), for all w € y(T '). Recursively get a solution S' to. &''.
Output S ::S'U S..

Next we present a detailed description of the algorithm. It works in iterations.
Iteration f starts with a subgraph G{'i of G, a tree decomposition Oi'i =
(T '': , (X=':)«cv(r:-')) of Gi ': with Ti ': rooted at r, and a set S£-i of vertices
of.G. Initially, GO = G, Oo = O, .So = 0 and { = 1. The algorithm halts when
Gi-i := a. When Gi'i is nonempty, the algorithm starts calling a procedure
Get (u, '4), which returns a vertex u of T{'t and a solution A for G:':(u) such
that 1.41 $ (1 + c)opt(G:':(u)) and Xf ': g .4. Then the algorithm starts a new

iteration with G ' = G:'l. \ Gi-:(u), Of =(Ti,(.Xf)«cv(r:)), where Ti= Ti-i \
r:':(u) and Xf = X}': \ y(G'':(u)), for all w c t7(}'), and S: = .s:'l u .al
The formal description of the algorithm appears in Figure 2.1.



Algorithm

Go +.- G;
0o +- 0.
s' +.- a;

while G{': # @ do
Gef(ui,,4');/* 1.4'l $(1 +.)opt(G:''(ui))
Gi +-- G:': \ G:': (ui);
r: +-. r:-: \ r:': (u:);
Xi, +..- Xf": \ y(G:':(ui)), for each w C }'(T;);
Si +-.Si-i U.4{

£ +- £ + l;
endwhile;
/ +-- £ -= 1;
output S/

and X:': g .4: */

Fig. 1. The algorithm for Unrestricted Vertex Multicut in bounded-tree-width graphs

We will postpone the description of (;et (u, .A) and, for now, assume that it
works correctly and in polynomial time. The next lemme states a property of
tree decompositions that we will use later.

Lem"ia 1. (cons der a graph G and a tree decomf'osftfon 6) = (T, (X«)«cv(r))
ofG. Let u be a uerte= ofT, z be a uerte= ojG(tl) avid IJ be a uertez ofG \G(u)
Then nny path in G hom = to y contains Q uedez ofX..

Next we prove that the output of the algorithm is in fact a solution

Lemma 2. S/ is a so/utfon /or (;

Proof. Let (s,t) be a pair in C and P be a path in G from s to t. We need
to show that there is a vertex of P in S/. Note that the vertex sets y(Gi'i (u{))
define a partition of y(G).

Let f be such that s is in G:'i (u{). If all vertices of P lie in G:': (ui) then, in
particular, both s and t are in G:':(ui), which means (s, t) C C(G:':(ui)). Since
S/ contains a solution for G:': (ui), S/ must contain a vertex of P

If not all vertices of P lie in Gi'i (ui), let 3/ be the first vertex of P that does
not lie in Gi'i (ui). If y is in Gi't \Gi-i(u{) then, by Lemme 1, there is a vertex
of X;j:l in the segment of P from s to g. Since Xf:i g S/, there is a vertex of
P in S/. If y is not in G{'i \ Gi-i (ui), then g is not in Gi'i . This means y is in
Gj-:(uj), for some .j < f. Moreover, s is in GJ ': \ GJ ': (uj) (because this is a

supergraph of Gf'l). Again by Lemme 1, there is a vertex of Xf:i g .S/ in P
concluding the proof of the lemme. H

The next lemme proves that the performance ratio of the algorithm is at
most 1 + €.

I,emma 3 S/I $ (1 + c)OPt(G)



From now on, we refer to Multicut as EoGE Mut.TicuT, to avoid confusion.
Let us mention some results we obtained for Vertex Multicut and I.Jnrestricted
Vertex Multicut. We have a proof that Vertex Multicut is NP-hard in bounded-
degree trees. Unrestricted Vertex Multicut is easier: it is polynomially solvable
in trees, but it becomes NP-hard in bounded-degree series-parallel graphs.

The tree-width notion (first introduced by Robertson and Seymour j191)
seems to often capture a property of the input graph which makes hard problems
easy. Various NP-hard problems, like Clique or Coloring, have a polynomial-time
algorithm (linear time in fact) if the input graph has bounded tree-width (see for
example [2]). We will present the forma] definition of tree-width in Section 2.

Bounded tree-width can also be used to obtain good approximation algo-
rithms for those problems that remain NP-hard even if restricted to graphs of
bounded tree-width. In our case, Unrestricted Vertex Multicut is NP-hard in
graphs of tree-width at most two, since this class of graphs coincides with the
series-parallel graphs (see for example j211). We give a straightforward PTAS
for Unrestricted Vertex Multicut in graphs of bounded tree-width.

We present an approximation-ratio preserving reduction from Edge Multi-
cut to Unrestricted Vertex Multicut. If the Edge Multicut instance graph has
bounded degree and bounded tree-width, the Unrestricted Vertex h/lulticut in-
stance obtained by the reduction has bounded tree-width. Combining the re-
duction with the PTAS for Unrestricted Vertex Multicut in graphs of bounded
tree-width, we obtain a PTAS for Unweighted Edge Multicut in graphs with
bounded degree and bounded tree-width. This is the main result of the paper.
Note that, according to ]8, page 140, Theorem 6.8], a FPTAS cannot exist for
this problem, unless P::NP.

We also have a linear-time implementation of our PDAS for Edge Multicut
in bounded-d?cree trees. The running time of our implementation is O((n +
k) [l/cld'irl/cl+2), where n is the number of vertices of the tree, k is the number
of (si,tf) pairs, d is the maximum degree of the tree and 1 + c is the desired
approximation ratio of the algorithm. The size of the input is O(n + k).

We show that Edge Multicut is still NP-hard for binary (degree bounded by
three) trees. Thus, on the class of graphs of bounded degree and bounded tree-
width, which contains binary trees, Edge Multicut is easier (there is a PTAS) than
on general graphs, yet still NP-hard. Identif3ring this class is the main theoretical
result of this paper.

Hardness results indicate why we cannot eliminate any of the three
restrictions unweighted, bounded degree and bounded tree-width--on the input
graph and still obtain a PDAS. It is known jll that for a Max SNP-hard prob-
lem, unless P=NP, no PTAS exists. We have already seen that Unweighted Edge
Multicut is Max SNP-hard in stars l91, so letting the input graph have unbounded
degree makes the problem harder. We show that Weighted Edge Multicut is Max
SNP-hard in binary trees, therefore letting the input graph be weighted makes
the problem harder. Finally, we show that Unweighted Edge Multicut is Max
SNP-hard if the input graphs are walls. Walls, to be formally defined in Sec-
tion 4, have degree at most three and there are walls with tree-width as large as



we wish. We conclude that letting the input graph have unbounded tree-width
makes the problem significantly harder.

In Section 2 we present the polynomial-time algorithm for Unrestricted Ver-
tex Multicut in trees and the polynomial-time approximation scheme for Unre-
stricted Vertex Multicut in bounded-tree-width graphs. In Section 3, we show the
approximation-preserving reduction from Edge Multicut to Unrestricted Vertex
Multicut. Finally, in Section 4 we present our hardness results.

2 Algorithms for Unrestricted Vertex Multicut

In this section we concentrate on Unrestricted Vertex Multicut. We present a
polynomial-time algorithm for trees and a PTAS for graphs with bounded tree-
width. Let us start defining tree-width.

Let G be a graph and O be a pair (T, (X«)«cv(r)), which consists of a tree
T and a multiset whose elements X., indexed by the vertices of T, are subsets of
y(G). For a vertex u of G, we denote by Fu the subgraph of T induced by those
vertices m of T for which X. contains t;. Then O is called a tree decomposition
a/ G if it satisfies the two conditions below:

(1) For every edge e = z3/ of G, there is a vertex w of T such that {z, g} g X.I
(2) For every vertex u of G, the subgraph Eu of T is a tree.
The width o/ O is the maximum, over all vertices w of T, of IX«I -- 1, and

the tree-width a/ G, denoted by tw(G), is the minimum of the widths of all tree
decompositions of G.

Consider an instance of Unrestricted Vertex Multicut, that is, a graph G =
(y. E) and a set C of pairs (si, t{) of vertices of G. We say a pair (s{, ti) in C is
disconnected by a set S g }'' if si is disconnected from ti in the subgraph of (;
induced by y S. A set S is a solutforz /or G if .S disconnects all pairs (si, ti)
in C. If S has minimum size (i.e., minimum number of vertices), then S is an
Opts'TTLQt SOt\ tian fOr G.

Now, let us describe the polynomial-time algorithm for trees. The input of
the algorithm is a tree T and a set C of pairs (si, ti) of vertices of T

Consider the tree T rooted at an arbitrary vertex and consider also an arbi-
trary ordering of the children of each vertex (so that we can talk about postorder).

Algorithm
Input: a tree T
Start with S = a.
Call a pair (si, ti) in C actfoe if it is not disconnected by .S.
Traverse the tree in postorder.
When visiting vertex u, if u is the least common ancestor of some active
pair (si, ti) in C, then insert u into S and mark (si, ti).
Output .S.

Clearly the following invariant holds: all non-active pairs in C are disconnected
by S. A pair in C that becomes non-active does not go back to active since we



Proof. We have that

>l:(i + ') .pt(G:': (u:))

(I +€)>: .Pt(G:':(ui)) $(1 + .).Pt(G),
£-l
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because the subgraphs Gf'] (ui) are vertex disjoint

Now we proceed with the description of a straightforward polynomial-time
implementation of Get (u, .4).

Search the vertices of the tree Ti-i in postorder. Stop if the vertex u being
visited is either the root or is such that opt(Gi'i(u)) Z t. Let us show how we
check whether opt(Gi'l(u)) 2 t in polynomial time.

If we are searching vertex u, it is because all children of u have been searched
and have an optimal solution with less than t vertices. Compute an optimal
solution for each child u of u. This can be done in O(nt+l) time by brute force:
check all subsets of G(u) of size at most t. The time is polynomial, since t =
[(tw(G) + I)/c] is fixed. Let s be the sum of the sizes of the solutions for the
children of u.

Let us show that the optimum of Gi'l(u) is at most s + tw(G) + 1. We do
this by presenting a solution Z? for Gf':(u) of size at most s + tw(G) + 1. The
set Z? is the union of X« and an optimal solution for Gi'l(u), for each child u
of u. Thus I.al $ 1X«I + s $ tw(G) + 1 + s. Now we must prove that B is in
fact a solution for G:':(u). Let (s,t) be a pair in C(Gi'i(u)) and P be a path
in Gi'l(u) from s to t. We need to show that there is a vertex of P in .B. If
there is a vertex of P in X., then clearly .B contains a vertex of P. If, on the
other hand, P contains no vertex of X., we must have all vertices of P in the
same Gi':(u), for some child o of u, by Lemme 1. But .B contains a solution for
Gi-i (u). Therefore, -B contains a vertex of P. This completes the proof that .B is
a solution for Gi-i (u), and so the optimum of Gi'l(u) is at most s + tw(G) + I.

Now, let us proceed with the description of Get (u,.4). If s < f, then
OPt(G(u)) $ $ + tw(G) + 1 < t + tw(G) + 1, and we can compute in poly-
nomial time an optimal solution Ao for G(u) (by brute force in O(nt+t"(a)+2)
time, which is polynomial since t = [(tw(G) + I)/c]). ]f ].Ao] < t then pro-
ceed to the next vertex in postorder. If Idol ? t, then we output u and the
set .4 = .4o U X«. Note that in fact opt(Gi':(u)) = 1..4ol Z t, X. g ..4 and
ll$ .Pt(G:':(u))+(tw(G) + 1) $ OPt(G:':(u)) + t ' $ '(1 + c).Pt(G:':(u)),
as desired. On the other hand, if s Z t, then t $ s 5; opt(Gi'l(u)) $
s + tw(G) + I $ s + te $ opt(G:':(u)) + opt(G:': (u))c = (1 + c)aPt(G':l(u)).
Thus B (from the previous paragraph) is a solution for Gi'l (u) of size at most
s + tw(G) + I $ (1 + c)opt(G:':(u)) that can be computed in polynomial time.
Moreover, X. g .B. So in this case we output u and .4 = .B. This finishes the
description of Get (u, .4).



3 Edge Multicut

In this section we show that Edge Multicut can be reduced to Unrestricted Vertex
Multicut by a reduction that preserves approximability.

The reduction has the following property. If the instance of Edge Multicut is
a graph with bounded degree and bounded tree-width, then the corresponding
instance of Unrestricted Vertex Multicut has bounded tree-width.

Given a graph G = (y, .E), the Z ne graph o/ G is the graph whose vertex set
is -E and such that two of its vertices (edges of G) are adjacent if they share an
endpoint in G. In other words, the line graph of G is the graph (E, f), where
f = {e/ ; e, .f C .E and e and / have a common endpoints.

Consider an instance of Edge Multicut, that is, a graph G = (V. J?) and a set C
of pairs of distinct vertices of G. Let us describe the corresponding instance of
Unrestricted Vertex Multicut. The input graph for Unrestricted Vertex Multicut
is the line graph of G, denoted by G '. Now let us describe the set of pairs of
vertices of G '. For each pair (s, t) in C, we have in C ' all pairs (e, /) such that e
has s as endpoint and / has t as endpoint.

Clearly G ' can be obtained from G in polynomial time. Note that C ' has at
most kd2 pairs, where k = ICI and .4 is the maximum degree of G. Also C ' can
be obtained from G and C in polynomial time.

The following theorem completes the reduction.

Theorem 1. S is Q solutioTt for Edge MI lticut in G if and only {jS is Q solution
/or Z[/nresfrfcted UeNez ]]/wZtfcut n G/

Proof. Consider a solution $ of Edge Multicut in G, that is, a set S of edges of
G such that any pair in C is disconnected in (V, -E -- S). Note that S g -E(G) =
V(G '). Let us verify that the removal of S from G ' disconnects all pairs in C '
For any pair (e, /) in C ', there are s and t in y(G) such that s is an endpoint
of e, t is an endpoint of / and the pair (s,t) is in C. Moreover, a path P ' in G '
from e to / corresponds to a path P in G from s to t whose edges are a subset of
the vertices in P ' (which are edges of G). Since S is a solution of Edge Multicut
in G, there must be an edge of P in S, which means that there is a vertex of P '
in S. Hence S is a solution for Unrestricted Vertex Multicut in G '

Conversely, let S be a solution for Unrestricted Vertex Multicut in G ', that
is, S is a set of edges of G whose removal from G ' disconnects all pairs of vertices
of G ' in C '. Let (f, t) be a pair in C, and P a path in G from s to t. (Recall that,
by the description of Edge Multicut, s # t.) Let e be the first edge of P and /
the last one (possibly e=f). Clearly s is incident to e, and t to /. Thus (e, /) is
a pair in C '. Corresponding to P, there is a path P ' in G ' from e to / containing
as vertices all edges of P. Since S is a solution for Unrestricted Vertex Multicut
in G ' and (e, /) is in C ', S must contain a vertex of P '. Therefore there is an
edge of P in S, which implies that S is a solution of Edge Multicut in G. H

The next lemme shows the previously mentioned property of this reduction.

Lenxma 4. 1fG has bounded degree and bollnded tree-\oidth, then the livte graph
of G has bounded tree-width.



Proof. Denote by G ' the line graph of G. Let us present a tree decomposition
of G ' whose tree-width is at most (tw(G) + ])a, where z] is the maximum degree

Let O = (T, (Xu)«cy(r)) be a tree decomposition of G of width tw(G). For
each u c y(T), let yu be the set of edges of G incident to some vertex in .X..
First let us prove that O ' = (T, (yu)«CV(r)) is a tree decomposition of G '. For
this, given an edge e of G, denote by Te the subgraph of T induced by those
vertices in T for which yu contains e. We shall prove that (1) any edge h of G '
has both endpoints in yu, for some u in }''(T); and (2) that Tf is a tree for any
edge e of G '

The endpoints of an edge h of G ' are two edges e and / of G with a common
endpoint, say, u. But u C X. for some u C y(T). This implies that both e and
/ belong to yu, proving (1). For (2), let e be a vertex of G ', that is, an edge
e = zy of G. For any u such that e C yu, we must have that either z € X. or
g/ C X.. Therefore Te = Tz U TV ' We know that the subgraphs T= and Tu of T
are subtrees of T. Moreover, Tz and Tv have a vertex in common, because both
r and y belong to the same X«, for some u C y(T). Hence Te is a subtree of T
This completes the proof that O ' is a tree decomposition of G '

To verify that the width of O ' is at most (tto(G) + I).a, just note that IXul 5;
IX«la, for all u C }'(T). n

The next corollary is a consequence of the previous reduction and the PTAS
given in Section 2.1.

G0

Corollary 1. There is a PTHS /or .Edge .A/uZtfcut in Bounded-degree graphs with
bounded tree-width

In fact we know how to implement the PTAS given in Section 2.1, for Edge
Multicut in bounded-degree trees, in time O((n + k) [l/clddrl/cl+2), where n
is the number of vertices of the tree, k is the number of (si, ti) pairs, d is the
maximum degree of the tree and 1 + € is the desired approximation ratio of the
algorithm. The size of the input is O(n + k). We omit the description of this
linear-time implementation in this extended abstract.

4 Complexity Results

In this section, we examine the complexity of Edge, Vertex and Unrestricted
Vertex Multicut. First we prove that Edge and Vertex Multicut are NP-hard in
bounded-degree trees, while (Jnrestricted Vertex Multicut is NP-hard in series-

parallel graphs of bounded degree. Second, we show that the Weighted Edge
Multicut is Max SNP-hard in binary tree. Finally we prove that Edge, Vertex and
Unrestricted Vertex Multicut are Max SNP-hard in walls (defined in Section 4).

Theorem 2 Edge Multicut in binary trees is NP-hard

Proof. The reduction is from 3-SAT, a well-known NP-complete problem l81



Consider an instance @ of 3-SAT, that is, a set of m clauses ai , O2, . . . , (7.
on n variables zi , z2 , . . . , z., each clause with exactly three literals.

Let us construct an instance of Edge Multicut: a binary tree T and a set of
pairs of distinct vertices of T. The tree T is built as follows. For each variable
z{, there is a gadget as depicted in Figure 2 (a). The gadget consists of a binary
tree with three vertices: the root and two leaves, one labeled z{ and the other
labeled 3f. For each clause Cli, there is a gadget as depicted in Figure 2 (b). The
gadget consists of a binary tree with five vertices: the root, one internal vertex
and three leaves, each one labeled by one of the literals in (b.

X/ X/ X2 X2 X3 Xj X/ X2 XJ X

Fig. 2.(a) The gadget for variable fi.(b) The gadget for clause Oj=iri,E2,z3}.(c)
Tree T built for the instance @ =(riVE2Vza)A(EiVr2Vza), that is, Oi= {zi,=2, z3}

and (72 = {Fi, z2, z3}

The tree T is built from these n + m gadgets by arbitrarily connecting them
using new vertices to get a binary tree. See Figure 2 (c) for an example.

Next, we give the set of pairs of vertices of T in our instance. For each variable
zi, there is a pair with the vertices labeled zi and Zi in its gadget. For each clause
Cj, there are two pairs: one formed by the two leaves that are siblings and the
other formed by the last leaf and the internal vertex. Finally, each vertex labeled
fi in the gadget for a clause is paired to the vertex labeled if in the gadget for
the variable z{, where ii€ {zi,Ei}. This ends the construction of the instance
for Edge Multicut. Note that all this can be done in polynomial time in the size

The next lemme completes the proof of Theorem 2. H
of@

Lem.nn 5. q' is satis$able if un only if there is n solution for T of size enucttU
n + 2m. JI/oreouer, we can constr ct in polynomfa/ time such a solution /or T
hom Q truth assigTtment for 4' and Dice versa.

Proof. Assume @ is satisfiable. Let us present a solution ,S for T of size exactly
n + 2m. The edge set .S consists of two types of edges:

1. For each variable zi, S contains the edge in the gadget for zi incident to the
leaf labeled z{ if zi = TRUE? or to the leaf labeled 3f if zi =.IMZ.SE.



2 For each clause (%, S contains two distinct edges in the gadget for O{. These
edges are such that (1) they disconnect the two pairs in the gadget, and (2)
the only leaf that is still connected to the root of the gadget is a leaf with a
label if € Oj such that ai= TRt/E. (The four possible choices for the two
edges are shown in Figure 3.)

Fig. 3. Possible choices of two edges, the dashed edges, in the gadget for a clause that
leave exactly one leaf (the marked leaf u) connected to the root r

Clearly such set $ has exactly n + 2m edges and can be constructed in
polynomial time from $. Let us prove that S is in fact a solution for T. It is
easy to see that S disconnected the pairs for the variables, and the pairs for the
clauses. The remaining pairs consist of two vertices labeled by a literal if, one in
the variable gadget for zi and the other in a clause gadget. If ai= TRt/E, then the
edge in the variable gadget incident to the vertex labeled ii is in S, guaranteeing
that the pair is disconnected. If if =FHZSE, then the vertex labeled fi in the
clause gadget is disconnected from the root of this gadget, and therefore, from
the gadget for zi. Thus .S is a solution for T, and it has exactly n + 2m edges.

Let us prove the inverse implication. Assume there is a solution S for T
with exactly n + 2m edges: one per variable and two per clause (one for each of
the "disjoint" pairs). More specifically, S has exactly one edge in each variable
gadget, and exactly two edges in each clause gadget in one of the configurations
of Figure 3. Set zi = TRUE if the edge of S in the gadget for zi is incident to
the vertex labeled zil set zi =PHLSE otherwise. Clearly, we can determine this
truth assignment in polynomial time.

For each clause (b, there is exactly one leaf u in the gadget for Cj that is
connected to the root r of the gadget. Let fiC {zi,Bi} be the label for this leaf.
There is a pair formed by this leaf ti and the leaf in the gadget for zi whose label
is 3{. In $, there must be &n edge e in the path between these two leaves. Since
leaf u is connected to the root r of the gadget for (yi and all edges in S are either
in a variable gadget or in a clause gadget, this edge e has to be in the variable
gadget. This means e is the edge incident to the leaf labeled if in the gadget
for a;i. Hence ii= TRt/E, and the clause is satisfied. Since this holds for all the
clauses, the given assignment makes @ 7'Rt/E, implying that @ is satisfiable. H



Theorem 3. Uedea JI/z&/tfcut in trees with maximum degree at most /our is .VP
hardr'

We omit the proof. The construction is similar to the one used in Theorem 2

Theorem 4. Unrestricted Merle JI/uZticut in series-parallel graphs with nazi
msm degree CLt most three is NP-hard.

We omit the proof. The construction is similar to the one used in Theorem 2

Theorem 5 Weighted Edge Multicut is Ma= SNP-hard in binary trees

Proof sketch. Let us reduce Edge Multicut in stars to Weighted Edge Multicut
in binary trees. From an instance of the Unweighted Edge Multicut restricted
to stars, we construct an instance of the Weighted Edge Multicut restricted to
binary trees in the following way: for each leaf of the star S, there is a corre-
sponding leaf in the binary tree T. The pairs are the same (we may assume there
is no pair involving the root of the star). We connect the leaves of T arbitrarily
into a binary tree. The edges in T incident to the leaves get weight one and all
other edges of T get weight 2n + 1, where n is the number of leaves in the star
S (which is the same as the number of leaves in the tree T we construct). Any
solution within twice the optimum for the Weighted Edge Multicut instance we
constructed will contain only edges of T incident to the leaves, since any other
edge is too heavy (removing all edges incident to the leaves, we get a solution
of weight n). Then it is easy to see that any optimal solution for the Weighted
Edge Multicut instance we constructed corresponds to an optimal solution for the
original Unweighted Multicut star instance, and Dice versa. Also approximability
is preserved by this reduction. H

A HAJJ o/ height h consists of h + I vertex disjoint paths Ro, . . . , RX, which
we call rows, and h + I vertex disjoint paths .Lo, . . . , .Lh, which we call coZtzmns.
A wall of height six is depicted in Figure 4 (a). The reader should be able to
complete the definition by considering Figure 4 (a). The formal definition is as
follows. Each row is a path of 2h + 2 vertices. Each column, a path with 2/z + 2
vertices. Column r contains the (2r + I)'f and the (2r + 2)"d vertices of all rows,
as well as the edge between them. For f < h and even, each L, contains an edge
between the (2r + 2)"d vertex of R{ and the (2r + 2)"'i vertex of Ri+i . For f < h
and odd, each f, contains an edge between the (2r + I)'t vertex of Ri and the
(2r + I)'* vertex of R£+i. These are all the edges of the wall.

We prove that Edge, Vortex and Unrestricted Vertex Multicut are Max SNP.
hard in walls. This means, by Arora et al. jll, that there is a constant c > 0
such that the existence of a polynomial-time approximation algorithm for any of
the three versions of Multicut with performance ratio at most 1 + c implies that

As in j181, we use the concept of I)-reduction, which is a special kind of
reduction that preserves approximability.

Let .A and B be two optimization problems. We say ,4 f-reduces to B if there
are two polynomial-time algorithms .f and g, and positive constants cl and D,
such that for each instance .r of .,4.

P NP



(b)

X2 X2

Fig. 4. (a) A wall of height six. The dark edges indicate row Ri and column l;,
The three last rows of the wall built from @ = (=1 V E2 V ra)(Ei V zz V zs).

(b)

l Algorithm / produces an instance /' = /(/) of B, such that the optima
of -r and -r ', of costs denoted Opt,.!(/) and Opts(/') respectively, satis&
Opts (.r ') $ a . Opt.4 (/), and
Given any feasible solution of /' with cost c ', algorithm g produces a solution
of / with cost c such that lc - Opt..{(.r)I $ © . lc ' - Opts(/')I.

2

Theorem 6. .Edge, Verde and t/nrestHcfed yertez .A/aZtfcut are .A/az SIVP-hard
{n waits.

Proof sketch. The reduction is from the well-known Max SNP-hard problem
MAX 3-SAT j181. We show the reduction for Unrestricted Vertex Multicut. The
other two reductions are similar.

The first part of the Z,-reduction is the polynomial-time algorithm / and
the constant a. Given any instance @ of MAX 3-SAT, / produces an instance
W,C of Unrestricted Vertex Multicut such that W is a wall. Also, the cost of
the optimum of WI, C in Unrestricted Vortex Multicut, denoted Optma(W ', C),
is at most a times the cost of the optimum of @ in MAX 3-SAT, denoted by
Opts.4r(@), i.e., Optic(}y, C) $ a . Opts..lr(@).

Consider an instance @ of MAX 3-SAT, that is, a collection of m clauses on n
variables zi , . . . , z., each consisting of exactly three literals. Let us describe the
corresponding instance for Unrestricted Vertex Multicut. The wall W is a wall
of height 6m. To describe the collection C of pairs of vertices of W ', consider the
last row of W partitioned into m same length paths, each one associated to one
of the clauses of @. Each path has length 12. Label the 2"a, 6th and Iota vertices
in the Jth path each with one of the literals in the .jth clause. See Figure 4 (b)

                       
              r   :: :: :



for an example. For each pair of vertices u,u in I,r, u labeled zi and u labeled

Ef, include into C the pair u, u. For each clause, include three pairs. The three
pairs formed by each two of the vertices labeled by its three literals. This ends
the description of the instance of Unrestricted Vertex Multicut.

First note that W ' and C can be obtained in polynomial time in the size of @

Lemma 6. Optic(W, C) $ 6 . Opts..{r(@)

Proof sketch. WI, C clearly has a solution of size 3m. Also Opts..lr($) Z m/2

Lemma 7. .14'om a soZutfon to @ a/ size s, 0 $ s $ m, we can obtain a so/utfon
to W, C o/ size 3m -- s arid t;ice versa.

Proof sketch. Given an assignment that satisfies s clauses of @, let .S be the
set of all labeled vertices of W except one labeled vertex per satisfied clause.
Choose to not include in S a vertex labeled by a literal that is assigned TRUE.
One can verify that this set S is a solution for }V, C of size 3m -- s.

Now, consider a solution S for W, C of size 3m s. Since W has height 6m,
there is a row R{ of W which has no vertex of S. Set to TRUE any literal which
appears as a label of a vertex of W that is connected to Rf after the removal of
S. If some variable was not assigned a value by this rule, assign it an arbitrary
value. Note that, since vertices labeled zi are not connected to vertices labeled 3f
after the removal of S, the assignment is well defined; Consider the six columns
of the wall corresponding to the jth clause of @. S should contain at least two
vertices in these columns, otherwise there would be a path connecting at least
two of the labeled vertices in these columns. This means that at least s clauses
have only two vertices removed from their columns of W. Thus one of the labeled
vertices is connected to row Ri, meaning that this clause is satisfied. H

The previous two lemmas can be used in an obvious way to show the reduction
we presented is an L-reduction. n
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A Better Approximation Ratio for the
Minimum A;-edge-connected Spanning Subgraph Problem

Cristina G. Fernandes *

Abstract describe how to get a ratio of 2. Assume we have a
c-edge-connected spanning subgraph # of G, for some
c < h. Observe that if we add to # the edges ofa
maximum forest in G -- .B(#), the resulting spanning
subgraph of G is (c+ I)-edge-connected. Using this fact,
we can easily derive a procedure to construct a k-edge-
connected spanning subgraph of G. Start with S = g,
and repeatedly add to S the edges of a maximum forest
in G S. After k iterations, S has at most k(n-- 1) edges,
where n is the number of vertices in G, and it is the edge
set of a A-edge-connected spanning subgraph of G. Now,
note that any k-edge-connected spanning subgraph of G
must have at least kn/2 edges, since each vertex must
have degree at least k. Thus this procedure leads to a
polynomial-time algorithm with approximation ratio at
most 2. In fact, there are examples which prove that
the performance ratio is exactly 2.

Khuller and Raghavachari]KR95] presented the
first algorithm with a performance ratio smaller than
a constant smaller than 2 for all k. They proved an
upper bound of 1.85 for the performance ratio of their
algorithm. In this paper, we improve their analysis,
proving that the performance ratio of their algorithm is
smaller than 1.7 for large enough k, and that it is at
most 1 .75 for all k.

Previously to ]KR951, Karger ]K94] presented an

algorithm with performance ratio I + O(I/(ligr})/k).
This is smaller than 2 only when k => log n. Also, there
were algorithms with approximation ratio smaller than
2, for some particular values of k. An algorithm for A =
2 with 1.5 ratio was presented in IKV941. As observed
in IKR951, by combining the bicon nectivity algorithm in
IKV94), and the sparse certificate algorithm in [CKT931,
one can easily obtain a ratio of 2 1/X.

The bound on the approximation ratio given in
IKR951 for small values of h is actually better than 1 .85:
it is 1.5 for k = 2, 1.666... for k = 3, 1.75 for k = 4
1.733... for k = 5, etc. To our knowledge, these were the
best known. The bound in [KR95] on the performance
ratio of Khuller and Raghavachari's algorithm is tight
for A = 2 and 3. Our analysis improves their bound for
any fixed k 2 4. In particular, we get 1.65 for h = 4,
and 1.68 for k = 5.

Consider the minimum k-edge-connected spanning subgraph
problem: given a positive integer k and a k-edge-connected
graph G, find a k-edge-connected spanning subgraph of G
u ith minimum number of edges. This problem is known to
be NP-complete. Khuller and Raghavachari presented the
h'st algorithm with a performance ratio smaller than 2 for all
k. They proved an upper bound of 1.85 for the performance
ratio of their algorithm. We improve their analysis, proving
that the performance ratio of their algorithm is smaller than
1.7 for large enough k, and that it is at most 1.75 for all k.
Our analysis improves the best known ratios for any fixed
k 2 4. in particular, for k = 4 from 1.75 to 1.65, and for
k = 5 from 1.733... to 1.68. Last, we show that the minimum
k-edge-connected spanning subgraph problem is MAX SNP-
hard, even for k :; 2.

I Introduction
The study of connectivity in graph theory has impor-
tant applications in the areas of network reliability and
network design. In this paper, we concentrate in the
minimum k-edge-connected spanning subgraph prob-
lem: given a positive integer k and a k-edge-connected
graph G, find a k-edge-connected spanning subgraph of
G with minimum number of edges.

This problem is known to be NP-complete IGJ79],
even for k = 2: if the graph G is Hamiltonian, a 2-
edge-connected spanning subgraph of G with minimum
number of edges must be a Hamiltonian cycle. So the
goal is to look for good polynomial-time approximation
algorithms for the problem.

The quality of an approximation algorithm is mea-
sured by its so called approrfmatforz or per/ormance ra-
tio. For the minimum k-edge-connected spanning sub-
graph problem, the approximation ratio of an algorithm
is the infimum, over all possible inputs, of the ratio be-
tween the number of edges of the output of the algo-
i'ithm and the number of edges of the optimum.

For a long time, 2 was the best approximation ratio
achieved for all k. Just to illustrate, let us quickly

i;iTege of Computing, Georgia Institute of Technology, At-
lanta, GA 30332-0280. E-mail: cris©cc.gatech.edu. Research sup-
ported in part by the CNPq(Brazil), under contract 200975/92-7

l
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Khuller and Vishkin ]KV94] have introduced the
following concept; a tree-carding in a graph G = (y. E)
is a partition of the vertex set y into subsets Vi , . . . , H
with the following properties. Each subset constitutes
a node of a tree I '. For every vertex u in t6, all the
neighbors of u in G belong either to t6 itself or to U,
where U is adjacent to b in the tree I '. They have
used this to prove the 1.5 bound on the ratio of their
algorithm for A = 2. We generalize the concept of tree-
carving, and from this generalization, we derive that
the performance ratio of Khuller and Raghavachari's
algorithm is smaller than 1.7 for large enough k.

Finally, we show that the minimum k-edge-
connected spanning subgraph problem is MAX SNP-
hard. This implies that there is a constant € > 0 such
that the existence of a polynomial-time approximation
algorithm with performance ratio at most 1 + ( would
imply that P = NP IALMSS921

In the next section, we review some results proved
in IKR951, the algorithm, and the analysis. In section
3, we present a better analysis and prove a new upper
bound of 1.75 for all h on the performance ratio of
the algorithm. Section 4 generalizes the concept of
a tree-carving, and shows some properties which are
then used to prove that the performance ratio of the
algorithm is less than 1.7 for large enough k. The proof
of MAX SNP-hardness appears in section 5. Finally,
the conclusions are presented in the last section

contains enact\y one edge of F
Corzsfder a cut in G with (f + 1) edges in S U F
Let e be the edge of F in this cut. The edges of
E -- S in this cut are exactly e plus ally back edge

in E -- S -- F which has e on the unique path in F
bettoeen its endpoints.

3

2.1 Khuller and Raghavachari's algorithm. The
input for Khuller and Raghavachari's algorithm is a
positive integer k and a h-edge-connected graph G =
IV, .B). Their algorithm works in phases. It consists
of it/21 phases, plus an extra final phase when A is
odd. For now, let us assume that k is even. Later we
comment on the final phase for odd k.

After phase f, the algorithm will have selected a
set of edges Sf of G which induces a 2f-edge-connected
spanning subgraph of G. Hence at the end of k/2 iter-
ations, the current set Sk/2 induces a k-edge-connected
spanning subgraph of G which is the output of their
algorithm

How does each phase work? Let So = g. In phase
f ? 1, the algorithm chooses two disjoint edge sets Ff
and B{, both disjoint from Si-t . The set .rq is simply the
edge set of a maximum depth first search spanning forest
in the graph (}'', E Sf-l). For each edge e in Ei, we
call an edge .f in E-- (Si-l U a) a back edge o.fe if e lies
on the unique path in (y, P{) between the two endpoints
of /. (Note that any edge in E -- (Sf-l U a) must have
the two endpoints in the same component of Ff , because
IV, a) is a maximumforest in (y, f-- Si i).) The edge
set -Bi is built as follows: initially ,Bi= g. Then each
edge e in .rq is scanned in post-order. If a minimum
cut in G separating the endpoints of e contains exactly
2f I edges in Si-i U -F: U Bf, then add to Bf a back
edge of e which has the biggest post-order numbered top
endpoint. (Because k ? 2f, and G is h-edge-connected
there must be some edge of G not in Sf-i UFi U.Bf which
is in this minimum cut. And, by 3 of lemme 2.1, this is
a back edge of e.)

Next lemme was proved in IKR95j and is basically
a corollary of lemme 2.1, so we omit the proof. The
correctness of the algorithm is a direct consequence of

LnMMA 2.2. .fbr at/ {, 0 < f $ A/2, Si is a 2f-edge-
connected spar\ming subgraph of G.

We need some extra notation for the analysis. Given
an edge e in Bf, let te be the edge in .rq which made
e to be included in Bf. Let (X.,it.) be the cut in G
containing te with 2{-- I edges in Si-i UFiUBf , where -B{
is Bi just before e was included in Bi by the algorithm
Let P. be the set of edges in (X.,X.) which are in
E -- Si.i . Denote by OPT a h-edge-connected spanning
subgraph of G with minimum number of edges, and by

it

2 Preliminaries

Consider a graph G, a maximum depth first search
forest F in G, and the post-order numbering of the
vertices of G given by F '. For each edge e in G, call
fop ('bottom,) the endpoint of e with biggest (smallest)
post-order number. Recall that any edge of G not in F
is a back edge, that is, its top endpoint is an ancestor in
F of its bottom endpoint.

A cut in a graph G = (V. E) is denoted by (X,X),
where X is a subset of V and X stands for V --X. A cut

IX, X) in G consists of the set of all edges of G which
have one endpoint in X and the other in X.

The following lemme is a restatement of lemmas
3.1, 3.2, 3.3 and 3.7 in IKR951. It permits a better
understanding of the algorithm and thus of our analysis.
We omit its proof (which is not very complicated)

I.EMMA 2.1 £'f k b. « P.;£t£. £"*.g.,, G = (t',-F)
be a k-edge-coTLnected graph, ibe art integer, 0 $ i <
k -- 1. Let S and F be two disjoint subsets of E such
that I.V, S) is arl {-edge-connected spartnzng subgraph of
G and (V, F) is a maximum depth erst search forest in
tV, E -- S). Then the jotloloing hold:

/.(y, S U F ') £;(£ + I)-.dg'-co««..t.d:
2. .4rzy cut zn G with enact/y (f + 1) edges in S U F '
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opt the number of edges in OPT.
Note that, by 3 in lemme 2.1, the cut (X.,X.)

contains exactly 2(f -- 1) edges in Si.i, and the rest
of the edges are in Pe. Because G is h-edge-connected,
G must contain at least k -- 2(i 1) edges in Pe , for all
e C Bf. Next lemma states a key fact, proved in IKR951,
essential for the analysis.

LEMMA 2.3. /for any distinct edges e alza .f in Bi,
the edge sets P. and Pf are disjoint.

Hom this gemma, we get that

l 8 G2

(2.1) (k - 2(£ t))l-eil$ opt, for alla,l$ f$ h/2. edges in Ft

edges in BtWe also have that opf ? nk/2, 11;:1 $ n, and IBi $ n.
From all this, Khuller and Raghavachari's upper bound
on the performance ratio for even k follows:

ratio El:!{ (lal + IB.I)

EZ{ lal + El11<'1 I.B; I + }:j:2h/4l+i Bil

}4P * '£' .2 £=l
. h , [A/41

: *T * '$' -i
In 2

- + < 1.85.

<

l
2(£ - I)

D
<

edges in F2 (only for G3)

This completes the review of Khuller and
Raghavachari's algorithm and analysis for even k. For
odd k, the algorithm runs lk/2J phases, and in the
end, it runs a "half" phase, computing f'rX/2] only (not
BFk/21). The final Sfk/21 is simply Slk/ZJ U F[X/21 . The
analysis for odd k is similar , so we omit it.

For fixed k, the above analysis gives bounds smaller
than 1.85. More specifically, it gives 1.5 for h = 2,
1.666... for k = 3, 1.75 for k = 4 and 1.733... for k = 5.
These bounds are tight for k = 2 and 3.

In figure 1, we present our tight examples for
h = 2 and 3. Our results originated from attempts
of generalizing these examples for h > 3, and we think
they can give some intuition. There are two essentially
di#erent types of examples for k :=. 2: (;i and G2.

Denoting by n the number of vertices in each of these
graphs, we have that in both cases opt = n. Also, if
the algorithm chooses as /'i the dark edges, then the
output of the algorithm will have n + (n -- 1)/2 edges
(in both cases). As n grows, the ratio between the
size of the output and opt approaches 1.5. Note that
both these examples can be extended for large values
of n. Graph Ga is our tight example for k = 3 (only

Figure 1: Graphs (;i,(;2 and G3, with the depth first
search numbering given by /'i.

for even n). In this case, OPT can be the outer cycle
and the chords from each vertex in the outer cycle ta
the opposite vertex in the outer cycle. We have that
opt = 3n/2. Also, assume that the algorithm chooses as
f'i the dark edges. In general, Fi is built as in G2: it is
a path starting at any vertex in the cycle, and passing
by each other vertex in the cycle, until it has visited half
of the vertices. Then the remaining vertices are leaves
of FI. Note that r'i is in fact a depth first search tree.
Consider that all edges from the leaves in F'i to the root
are present in (;3, so that these edges are chosen as -BI.
In our example, the dashed edges would be Bi. Besides
that, the remaining edges of Ga should contain a tree
In our example, all the remaining edges would be F2.
The output of the algorithm will have 2(n -- 1) + n/2
edges. As n grows, the ratio between the size of the
output and opt approaches 5/3 = 1.666... This example
can be extended, as suggested, for any large value of lz
such that n = 2(2t + 1) for some positive integer t.

The intuition we would like to get of these examples
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comes from the following reasoning. For the previous
bound to be tight, opf must be approximately kn/2,
and the initial Bf 's must have approximately opf/(k --
2(f 1)) edges. But, for large k, the only way to expect
that IZ?{ I a opt/(k -- 2(f -- 1)), for the initial Bi 's, is ifa
has many leaves. However, as we will see, this cannot
happen if opt H kn/2.

of &.. Because Pe n P/ = a, all the edges in PJ must
have b. as their top endpoint. Since IP/1 ? 2, there is
at least one edge g in P/ -- {{/}. The bottom endpoint
bg of g is not b/ (otherwise g would have the same two
endpoints of /). Because b/ is a child of b., we must
have that / was inserted in .Bi before e. At the moment
/ was included in -Bf, there could not be other edge h
in Bf such that {x is on the path in lq between the two
endpoints of /. This is true because if, by contradiction,
we assume there is an h in -Bi such that tX is on the path
in F} between the two endpoints of /, we must have that
/ C Px. But / C P/ too, contradicting P/ n PK = a.
So, the child of b/ on the path from b.r to the bottom
endpoint of g is not in .B. H

The lower bound on /f is givers by the following
lemme.

LEMMA 3.2. /i? 2l-Bil-- n, /or army f, l$ f < h/2,
arid, /or et;erz 1, JA/2 ? 3l-BX/21 -- 2n.

P7'00/ Fix f such that I $ f < k/2. Denote by N
the set of be'S in -B which are not leaves in Ff. We will
associate to each b. in N a distinct vertex z. in r -- B.
The association is made in two phases:

3 The 1.75 upped ' bound on the performance
ratio

In this section, we improve the analysis of Khuller and
Raghavachari's algorithm by presenting a better upper
bound on I.ail.

For each e in -Bf, recall that t. is the edge in F}
which made e to be included in Bf. Denote by b. the
bottom endpoint of t.. For each f, I $ f $ [X/2J , let li
be the number of b.'s which are leaves of /}

Our improvement is first based on the following
stronger version of (2.1)

GEMMA 3.1 (k-2(£ I))I-BII+(£-I)Ij $OPt, /Or
«z/ {, I $ £ $ 1k/2J.

Prod/. The number of pairs (u,h), where u is a
vertex of (; and h is an edge of OPT incident to u, is
2opt. Next, we compute a lower bound for this number.

For each edge e in Bi, OPT has at least k -- 2(f -- I)
edges in Pe. So there are at least 2(k -- 2(f 1)) pairs
associated to e: two for each of the k -- 2(f -- 1) edges of
OPTin Pe.

In fact, if b. is a leaf of /e, e can be associated to
(k--2(f--l))-Fk pairs. The first k 2(f 1) pairs would be
the ones mentioned above u,hose first coordinate is not
b.. The remaining h pairs have b. as first coordinate:
since OPT is k-edge-connected, there are k edges of
OPT incident to b.

Let us show that no two edges in -Bf have an
associated pair in common. As said in lemme 2.3, the
sets Pe's are pairwise disjoint, so the pairs coming from
Pe's are certainly distinct. The k pairs corresponding
to b. cannot be repeated also, since the only edges in
P/ 's with b. as endpoint are in Pe

Therefore, we must have /i((k -- 2(f -- 1)) + h) +
llBil -- /i)2(k -- 2(f -- 1)) $ 2opf, which is equivalent to
the statement of the gemma, concluding the proof. H

We will present a lower bound on /i, for 1 5; { $
lk/2J, which will imply an improved upper bound on
nil. Let us fix f such that I $ f $ 1k/2J. For such an
f, IPe1 2 k -- 2(f -- 1) ? 2 for any e in Bi. Denote by l?
the set {6e : e C J3f}. The following fact will be used in
the next lemme.

FACT 3.1. .fbr ang/ e, / C Bf such that b.r is a chf/d
of be, there is a child of bf not in B

Prod/. Consider e,.f C -Bf such that b/ is a child

Phase 1. For each b: in Ar which has a child in V -- .B
Let z. be a child of h. in \'' -- B

Phase 2. For each b: in .V whose children are all in .B

Let h C Bf be such that bh is one of b:'s
children. By fact 3.1, hi has a child not in

Case I
B

bX has two or more children not in B
Let z. be any child of bX not in B and
distinct of zx

Case 2: Zlh has exactly one child not in l?
Note that bh satisfies the statement of
phase 1, which means that zh was as
signed in phase 1. So this child is in fact
zh. But f $ (k -- 1)/2, which implies that
Phl ? k 2(f -- 1) Z 3. This means that

there is at least one edge g in PP. which
has a descendent of zx as bottom end-
point. Let Ze be the child of zh on the
path from zi to the bottom endpoint of
g. Observe that z. cannot be in B, other
wise the edge inserted in Bi by the edge
whose bottom endpoint is z. would forbid
bi to be in B

Let us verify that distinct b.'s are assigned distinct
Ze S. In the first phase, clearly no two distinct be's are
assigned the same z.. Also no two z. 's assigned in phase
2, case 1, coincide. The same for two z.'s assigned in
phase 2, case 2. We explicitly make sure that a z.
assigned in phase 2, case 1, does not coincide with a
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Ze assigned in phase 1. A Ze assigned in phase 2, case 2,
cannot coincide with a z. assigned in phase 1, because
zh g B. Finally, note that in phase 2, case 1, Ze iS

a grandchild of 6., while in phase 2, case 2, z. is a
grandgrandchild of b.. Thus, the only way of phase 2,
case I and phase 2, case 2 select the same z. is if bh in
case 2 had its zh assigned in phase 2, case 1. But, as
we have said, hh had its zh assigned in phase 1. This
completes the proof that we can assign a diferent vertex
in V ' -- .B to each vertex in ]V.

Let Z = {Ze : e C .B{ and be C JV}. We have
that IZI = IXI, and l-al = IBn. Moreover, N g .B and
Z£ }'-B. Thus/f= IB Xl= 1-el-lXl= 1-al-lZ12
Bl-lV -el=1.al-(n I.BI)=2lBl-n=2lnil-n,

completing the proof of the first part of lemme 3.2.
The proof of the second part diners from the above

proof only at phase 2, case 2. For f = A/2 (even k), we
just have IPh 1 2 2. Therefore, zh might not have a child
to be selected as z.. So, instead of associating to each
b. in N a distinct z. in y -- .B, we associate a z. which
might have already been selected, but at most once. In
other words, each z C .Z = {z. : e C .Bf and b. C N} will
correspond to at most tWO be'S in N '. More specifically,
in phase 2, case 2, we select Ze = Zh. This implies
nrl< 2lZI, and we have {1:/2 ;: IBl-- larl> 1-Bl-- 2lzl >
Bl-- 2(n -- IBI) = 3l-Bl-- 2n = 31.Bk/2l-- 2n, completing

the proof of the lemme. n

Now, using lemma 3.2 and n $ 2opf/k in lemme
3.1, follows a new upper bound on I.ej

COROI,I,ARy 3. 1 .

(: * :) *T *£ '*!':':£=l

: + I + (k - 1)(1 - 3)2 ' 2k ' 4k2
3 k2--2k+3 7 2k--3
i+ 4k2 ; i ' '':iii

w*''£''
2 £=l

<

1)

The account is similar for even A

ratio XfZ{ lal + Eflf l-n: I
OPt

; * '£: (; * "#) *2(3k - 4)

: * (; - £) *£ '£:'; - :, *2(3k - 4)

2(3k - 4)

1l... !
2 ' 4 2k ' ' k(3k-2)
7 3A2 -- 6k + 8
4 2X:(3k - 2)

Observe that 2k --3 ? 0 for all k Z 3, 4k2 > 0 for all
positive k, 3k2 6k +8 ? 0 always, and 2k2(3k -- 2) >0
for all positive k. Hence the ratio is in fact always
smaller than 1.75 for all values of k. H(; *aP) .,',

:g].,'.
for \ $ i < kl'Z.

.Bk/21 $ 4 Generalized tree-callings
In this section, we generalize some of the results from
the previous section. In particular, we present stronger
versions of both lemmas 3.1 and 3.2. From these, we
get an even better upper bound on the I.ail's, and,
consequently, on the performance ratio of the algorithm
for large values of k.

We start by introducing a generalization of the tree-
carving concept and of some results given in IKV941.

Consider a positive integer k, a k-edge-connected
graph G = (V, -B), a non-negative integer c < k, and
a subset S of .8 such that (y. S) is a c-edge-connected
spanning subgraph of G.

A c-tree-cartifng in G w th respect to S is a partition
of the vertex set r into subsets Vi, V2, . ., U with the
following properties.

1. Each subset consists of a node of a rooted tree I '
(We will refer to vertices of I ' as nodes, and to its
edges as arcs.)

This bound is not the best we can get using this
technique, as we will show in the next section. But it
implies the better upper bound of 1.75 on the perfor-
mance ratio of the algorithm, as stated below.

THEOREM 3.1: The pe7:formance raffo o/ .l{/zu/{er
and Raghauachari's algorithm is at most 1. 75 for att k.
Moore speci$catly, ft is at nLost

1.75 -- ;:l;iiii:it ' /or ellen X, and
9b . 2

1.75 :=ti!=, /or odd k > 1.

Prod/. For k :; 1, the algorithm is optimum, i.e.
the ratio is 1. For odd k > 1,

Eo'lo/' lal + )ll::*in/: la: I
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2. For every vertex u in t6, all of the neighbors of u in
(y. .B -- S) belong to either q itself or to U , where
U is adj scent to b in the tree I '.

3. Each arc e in I ' defines a partition of V into two
sets X. and X. (the deletion of arc e breaks I ' into
two trees, ]'t and ]'2, where Vi belongs to I'i. The
set X. is defined to be the union of the sets Uu that

belong to I'i). The cut (X., X.) in G must contain
exactly c edges of S. Denote by Pe the set of edges
in (X., X.) not in S.

When c = 0 and S = g, this definition is the same as
the tree-carving definition.

How does this c-tree-carving relate to the algo-
rithm? in fact, the algorithm can be modified so that,
at each phase, a 2(f -- I)-tree-carving of G with respect
to Si-i is computed. This can be done as follows. Each
time an edge / in F} makes an edge e to be included in
Bf, a new set b of the 2(f -- I)-tree-carving is defined.
This set b consists of &/ (the bottom endpoint of /)
and all of its descendents in .rq which do not appear in
previously yV 's defined in this phase. The parent of this
set b will be the set U containing the top endpoint of
.f. At the end of a phase, we define the final Uj , the root,
to be the set of vertices remaining (i.e., which do not ap-
pear in Uv 's defined previously in this phase). Observe
that the tree corresponding to this 2(f -- I)-tree-carving
has exactly IBi arcs.

Consider a c-tree carving Vi, . . . , H of G with re-
spect to S. And let I ', (X.,X.) and Pe be as in the
definition above.

FACT 4.1. .4ng/ k-edge-corzrzected spa?znfng sub-
graph ofG has at \east k - c edges in each P..

Prod/ The arcs e and / can have at most one
common endpoint. Therefore, by fact 4.2, their sets
Pe and P/ cannot intersect. H

Denote by I the number of leaves of I '. The following
result is an extension of lemme 3.1.

LEMMA 4.1. ..4ny k-edge-connected sparznfng sub-
g,aph o/G h«. «t /'..f (k c)(t -- 1) + cl/2 .ages.

Prod/I Let # be a k-edge-connected spanning sub-
graph of G. Let us count the number of pairs (Uy, h),
where h is an edge of # in (Uy, Uy).

For each \G which is not the root of I ', let U be
its parent in I ', and e be the arc (U, b). Recall that
Pe f -F S. By fact 4.1, -1] has at least k -- c edges in
Pe. So there are at least 2(k c) pairs associated to e:
two for each of the k -- c edges of n ' in Pe (one with U
as first coordinate, the other with q)

In fact, if }$ is a leaf of I ', arc e can be associated
with(k--c)+k = 2k--c pairs. The k--c first pairs would
be the ones mentioned above whose first coordinate is
U. The remaining A pairs have \6 as first coordinate:
since -ll is h-edge-connected, there are k edges of .17 in
(u,u).

Let us show that no two arcs have an associated
pair in common. By fact 4.3, the sets Pe's are pairwise
disjoint, so the pairs coming from Pe's are certainly
distinct. The k pairs corresponding to a leaf yi cannot
be repeated also since }) is the endpoint of only one arc

Denoting by m the number of edges in JI, we
can have at most 2m pairs. Therefore, 2(k -- c)(t --
I -- J) + (2h -- c)/ $ 2m, which implies that m >
lk c)(t -- 1) + c//2, completing the proof of the lemma.

in I '

Proc.f Let ]7 be a k-edge-connected spanning sub-
graph of G. For each arc e in I ', there must be at least
h edges of # in (X., X.). Exactly c edges in (X., .X:)
are in S. Hence, there must be at least k -- c edges of
H in (X.,X.) nat in S, that is, in P.. H

The generalization of lemme 3.2 we want to present
gives a lower bound on J. But before stating the
generalization, we need to prove one more fact.

FACT 4.4. Fo, .«.h a,c ' = (U,b) f« r, IUI +
b 1 ? 2v''k - c

Prod/ Consider the cut (X., X.) in G correspond-

ing to e. Since a is A-edge-connected, and (X.,X.)
contains exactly c edges of S, there must be at least
A -- c edges of E -- S in (X.,X.). These edges must
have one endpoint in U and other in b$. The maximum
number of edges with one endpoint in W and the other
in t6 is IHl- lt61. Thus IUI. lt61? h -- c. This implies
that IUI + lbl ? 2vi :i. H

Now we can prove the following lower bound on Z,
the number of leaves of the tree I '

LEMMA 4.2

FACT 4.2. .4«y .dg. in Pe, /o ' ' = (U, b), h«' o«'

endpoint in U alza the other in t3.

Prod.f Since Pe g E S, each of its edges has
endpoints either in the same Uu or in Uu's adjacent in F.
But Pe is a subset of (X., X.), and either yu n x. = a
or UV nX. = 0. So each of its edges cannot have the two
endpoints in the same Vy . By the definition of (X. , X.),
U and yj are the only nodes in I ' which are adjacent
and such that one is a subset of X. and the other of X..
Thus, each edge in Pe must have one endpoint in t4 and
the other in t4. H

FACT 4.3. For any distinct arcs e and ./: in I ', the
edge sets P. and Pf are disjoint. T -i)t - - 2
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Proc/ The proof of this lemma uses basically the
same technique used in lemme 3.2. We will associate
to each H, a set Zf of vertices in y. The sets will be
pairwise disjoint and will contain [2ZF -;]/2 vertices,
if U is not a leaf of I ', and one vertex, if U is a leaf of
I'. The association is done in two phases.

Phase 1. For each U which is a leaf or such that IH1 2
[2dX - c]/2.
Let Zi be a subset of U with [2v[-;]/2
vertices, if U is not a leaf of I ', and with one
vertex, if U is a leaf. (Note that IUI ? I
always . )

Phase 2. For each U which is not a leaf and such that
UI < [2v'k - l;]/2.
Let e = (U,q) be an arc in I ' joining
U to one of its children yj. By fact 4.4,
U1 + 1131 ? 2v/k --c, which implies IUI +
lbl ? [2V'k -- ;i]. Thulyg must have ]T;] ?
[2 b/k -- ;i] -- ]U 1 > [2V'F:i]/2, and so tG had
its set .Zj assigned in phase 1. Choose Zf to
be a subset of U U (Vj -- zj) with [2v'r-;]/2
vertices. (There is such a subset since IU U
lb :4)1 2 1UI + lbl - [2dF-='i]/2 2
[2V'h - c] /2.)

In phase 1, clearly the assigned sets are pairwise
disjoint. It is also clear that a set assigned in phase 2
does not intersect a set assigned in phase 1. By fact
4.4, two sets assigned in phase 2 cannot be associated
to adjacent sets Uy 's. So they are disjoint.

Since the union of the sets Zi's is a subset of V, we
must have (f -- I)f2V'il : Zil/2 + Z $ n. This means

for any I $ f $ j.
Using (4.2), (4.3), and lemme 4.1 for OPT, we

conclude the new upper bounds on I.Bi
COROLLARY 4. 1 .

(4.4) 1.eil $ OPt,

and

l4.S) I.ail $ OPt,

/or any I $ f $ j.
Using these new upper bounds, we derive our final

result.

TunonEM 4.1. The per/ormarzce ratio o.f /{hu//er
cited Raghauachari's algorithm, for large enough k, is at
most !.'l.

Prod/ We will show the proof for even k. The proof
for odd k is similar.

We start by using, for some fixed r, bound (4.4) for
Z?$-,+i , . . . , -BI . For the remaining .Bi's, we use bound
(4.5) with .j = { -- r. Hom this, we obtain that, for
even k,

. Xl:!?(lai + l-n.I)
OPt

. : *i% . .$1:S

.:*.$: £(h(£) - 2) + 4(£ - I)

k((k - (£ - I))(h({) - 2) + 2(£

. xb t(h(J) - 2)+4(i- i)
' £i'A((k(i- i))(X(.j)-2)+2(i- iD

concluding the proof of the lemme. n

As we have said before, from the algorithm, we
can extract at each phase a 2(f -- I)-tree-carving of G
with respect to Si.t with I.eil arcs. Recall that /i is
the number of b.'s which are leaves of .f%. Then note
that this 2(f I)-tree-carving has at least Ji leaves. To
simplify the formulas, consider the function h defined
a.s h(z) = [2V/h--2(f 1)1. Applying the ]emma
above to this 2(f -- I)-tree-carving, we get the following
inequality:

l4.2) h 2 (i + }i(;lE:!)l-eil - };ii;l-:'i «.

Observe that, since n 2 1nil, we also have

(4.3) 1j 2 (i + };i;l!:-5)l-e'l - );(}l=:i ",

Note that j + I $ f $ k/2 and h(z) is decreasing
for a, .j+ l$jz $ k/2. Also, recall that j= k/2 -- r.
Therefore,

: . V: t(i(j+t)-2)+4(k/2-t)
.£:
.i kriri\ -- 2)+4(i-i)

' S'A((k(i-t))(h(j)-2)+2(i-i))
I + ,XX.h(.j t.1:1::0

h(k + 2 + 4.j)

. (-- k(h(}l ?l tll ll
' f5 k((k -(£ - i))(h(j) - 2) + 2(i - i))
] + Z=1:14C{.:E.]1::9 . .

k(k + 2 + 4j) i(i(.f) - 4)

ratio <

<

<
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. h(j)(x(j) - 2) -£ I
' h(j) -4 £r (i(.j) -2)k (h(.j)

2r(k/z(.j + 1) 4) 4.j
h(x + 2 +4j) k(a(.j) - 4)

+ !Call&Q}.:.a ].. -
'(i(.j) -4)' '''(h(j) -2)t-(h(j) -4).j

2r(kh(j + 1) -- 4) 2k -- 4r
3k2 + 2k - 4, h(h(J) - 4)

+ 4£a!!La.=a ]..'(X(.j)-4)' '''h(j)1-2(X(j)-4),'

minimum A-edge-connected spanning subgraph prob-
lem, here denoted by k-MECSS. The reduction comes
from IKRY95j, where a directed version of the 2-MECSS
is proved to be MAX SNP hard.

The first part of the Z;-reduction is a polynomial-
time algorithm / and a constant a. Given any in-
stance G of VO7, / produces an instance .llr of the 2-
MECSS such that the minimum number of edges in a
2-edge-connected spanning subgraph of -17, denoted by
opts WEisS(2,H), is at most a times the minimum
size of a vertex cover in G, denoted by optic,(G). In
other words, opts MECSS(2, H) $ a - optic,(G).

Let us describe algorithm .f. Consider an instance
G of yCZ. G is a graph with maximum degree seven
Here is a procedure to construct an instance # of the
2-MECSS. Similarly to IKR1'951, start with a special
vertex, the root. Each vertex in G will have a "current
vertex", initially the root. For each edge ut;, add a
"cover-testing gadget" to .f7, as illustrated in figure 2.
Specifically, add six new vertices a:i,z2,r3, g/i, y2, y3
Vertex z2 is adjacent only to vertices a;i and a:a
Analogously, vertex y2 is adjacent only to vertices yi
and y3.. There is an edge labeled u between ri and g/3*
and an edge labeled u between g/i and a3. There is one
more edge incident to =i : an edge labeled u+ between al
and the current vertex of ul and one more edge incident
to yt: an edge labeled u+ between yi and the current
vertex of t;. Make y3 the new current vertex of u, and
ra the new current vertex of u. Finally, after all edges
of G have been considered, for each vertex u in G, add
an edge labeled t;+ between its final current vertex and
the root. The gadgets are implicitly numbered in the
order we have added them. Clearly H can be obtained
in polynomial time in the size of G. This completes the
description of /

Next fact will be used in the proof of the existence
of a constant a. Let m be the number of edges in G,
and s be a positive integer.

FxcT 5.1. /y (; /zas a t;enter cot;er with at most
s vertices, then H has a 2-edge-connected spanning
subgraph with at most 6m -+ s edges

4)(£ 1 )

< 1+

Since r is fixed, h(j) = f2v2;::i:21, h(j + I) =
f2v2rl are also fixed And, as k goes to infinity, the
bound on the ratio converges to

mh*$H##:.:"$?.
Now, let us make r goes to infinity, which implies

that h(j) = fUy'2.+ 2] goes to infinity as weU. The
above expression converges to l+log 2 < 1.7. From this,
we finally get that, for large enough k, the performance
ratio of the algorithm is at most 1.7. H

5 The complexity of the problem
In this section, we show that the minimum k-edge
connected spanning subgraph problem is MAX SNP-
hard. This means that there is a constant ( > 0 such
that the existence of a polynomial-time approximation
algorithm with performance ratio at most 1 + c implies
that P = ATP, by results of Arora et al. IALMSS921.

As in IPY911, we use the concept of f-reduction,
which is a special kind of reduction that preserves
approximability. Let .4 and 1? be two optimization
problems. We say .4 Z,-reduces lo B if there are
two polynomial-time algorithms .f and g, and positive
constants a and /7, such that for each instance / of ..4,

1. Algorithm / produces an instance /' = /(/) of
B, such that the optima of / and /', of costs
denoted opt,I(/) and opfB(/') respectively, satisfy
opts(/') $ a . opt,I(/), and

2. Given any feasible solution of /' with cost c ',
algorithm g produces a solution of / with cost c
such that lc -- opt.a(-r) $ # . lc ' opts(.r')I.

THEOREM 5.1. The minimum k-edge-connected
spanning subgraph problem is MAX SNP-hard.

Proo/. Denote by VC7 the vertex cover problem re-
stricted to graphs with maximum degree seven. Pa-
padimitriou and Yannakakis IPY911 showed that yC7 is
N[AX SNP-hard. We prove that VC7 Z,-reduces to the Figure 2: The gadget for edge uu
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Proof Suppose G has a vertex covet S with at most
s vertices. Consider the spanning subgraph llr ' of }7
with all edges incident to vertices of type z2 and 3/2, all
edges labeled u+ for u C S, and all edges labeled u ' for
u g S. Observe that all vertices in #", but the root,
have degree two. Besides, the only possible cycles in
17' are of two types: either they are like zia;2z3yly2y3,
or they include the root. Because .S is a vertex cover.
no cycles of type zlz2zSyty2y3 can occur. This implies
that .# is a collection of cycles intersecting only at the
root, and spanning all vertices. Therefore, H ' is a 2
edge-connected spanning subgraph of J7. To count how
many edges there are in #', just notice that #' has six
edges per gadget plus one extra edge per vertex in S.
Therefore, in total, -Z7' has at most 6m + s edges. H

I,EMMA 5.1. Opts-mEcss(2, H) $ 43 . OPfva,(G).
Proo/ By fact 5.1, opts.wzcss(2,#) $ 6m +

optic,(G). Also, because G has maximum degree
seven, optic,(G) 2 m/7. Putting these together, we
get that

is applied to the lowest numbered gadget, and inside
the gadget, to zi, 3h, z3, g/3, in this order. This proce-
dure takes polynomial time: the modification can be
done in polynomial time in the size of G, and after each
modification the number of edges labeled u ' decreases.
Clearly .Zlr" has at most as many edges as ]l '

FxcT 5.2. ]J" is a 2-edge-conrzected sparznfng sub-
graph of H.

Proc/. First, let us prove that all cycles in #"
contain the root. Consider a cycle (; in it". Assume, by
contradiction, that C ' does not contain the root. This
means that there are gadgets I)i , D2, . . . , 1)g such that
C can be partitioned into paths PI,P2, . . .,Pg, where
Pi is a maximal (non-trivial) path using only edges of
gadget Df.

Since H ' is connected and by the way .fl" is
constructed from .17', for a gadget for an edge uu, we
cannot have both edges labeled u ' and u ' in .ll". This

means (.; must contain vertices of at least two gadgets,
that is, g > 1.

Observe that .r3 must contain exactly one edge
between the two edges labeled u+ and z;+ in I)i. This is
true because all vertices in the gadget have degree two
in J?", and C ' is a cycle in H". Besides, if the first edge
of Pi is labeled u+, for some zz, then, for all f, the first
edge of .f% is labeled u+, for some u. Analogously, if the
last edge of PI is labeled u+, for some u, then, for all f.
the last edge of .f ', is labeled u+, for some u. The two
cases are similar, so let us assume the first one holds. In
this case, the last vertex of each .f?. is a vertex of type
z3 or 3/3 .

Consider two gadgets .D and Z)' such that there is
an edge from zs oj ' g/3 in Z) to zi or yi in .D '. Then D '
has a number higher than D (that is, D ' was added to
# after Z)).

We may assume without loss of generality that Z)I
is the lowest numbered gadget among Di , J)21 ' . . , Z)g-

For I $ f < g, the last vertex of .r3, which is of type
z3 or g/3, is connected to a vertex of type ai or yi in

opts-wrcss(2,n) $ 6m+ optic,(G)
$ (6 . 7 + 1)OPtiC,(G)

43 OPtiC,(G). H

So, we can consider a = 43.
The second part of the f-reduction is the constant P

and algorithm g. We may assume that m ? 1. Note that
llr has 6m + I vertices, therefore any 2-edge-connected
spanning subgraph of .17 must have at least 6m+ I edges.
Clonsider a 2-edge-connected spanning subgraph .ll ' of
J7 with 6m + s edges, where s is some positive integer.
Algorithm g will produce in polynomial time a vertex
cover of size at most s, from #'. From this, and from
fact 5.1, we will have that opts-MECSS(2, n) = 6m +
optic,(G). And then j6m+s opts-m css(2,#)l=
6m+ s -- 6m -- optic,(G)l= is -- optic,(G)I, meaning
that P = I sufHces.

So let us see how algorithm g works. In a first phase,
g produces another 2-edge-connected subgraph -Z7" of
.lr with at most as many edges as Jlr ', and such that in
#" all vertices, but the root, have degree two. To get
.fr/', each gadget is checked for vertices of degree three
(all vertices in H, but the root, have degree at most
three). If a vertex f has degree three in #', then the
edges [abe[ed u+ and u incident to a appear in ]7'
Remove the edge labeled u ' incident to f and add (if
not already there) the edge labeled u+ incident to the
vertex adjacent to a; through the edge labeled u . See
figure 3.

]7" is the graph obtained after applying this mod-
ification while there are vertices, other than the root,
of degree three. We carl make sure the modification

add

:;remove

Figure 3: The modification of the gadget for edge uu
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I)f+l. Therefore, Z)i+l has a number higher than Df
From this, and because g > 1, we conclude that I)q has
a number higher than I)t. But the last vertex of Pa
which is of type r3 or g/3) is connected to a vertex of
type zi or yl in Di, a contradiction. This completes
the proof that any cycle in Jir" contains the root. And
this, plus the fact that all vertices, but the root, have
degree two, implies that #" is a collection of cycles
intersecting only at the root,.and spanning all vertices
of H. Consequently, .Er" is a 2-edge-connected spanning
subgraph of -ll '. H

Since all vertices in #", but the root, have degree
two, for each vertex in (;, either all edges labeled u+
or all edges labeled u ' appear in -lJ '". In a second

phase, a vertex cover of size at most s is computed:
let S be the set of all vertices in -17" whose all edges
labeled u+ appear in .Er". In any gadget, there must be
edges labeled u+ appearing in //", otherwise .17" is not
connected. Thus S is a vertex cover in G. Reca]] that .]]/

had 6m+ s edges. Hence #" has at most 6m + s edges.
But since all vertices but the root have degree two, #"
has 6m + t edges, for t $ s, and t is the number of
vertices in S. This finishes the description of algorithm
g, completing the proof of theorem 5.1. H

on the MAX SNP-hardness proof. I am also grateful
to Gruia Calinescu, Nuveen Gang, lon hlandoiu, and
Robin Thomas for helpful discussions, comments and
suggestions.
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6 Conclusions

In this paper, we have investigated the minimum l-
edge-connected spanning subgraph problem, which is

known to be NP-complete. The goal is to look for
good polynomial-time approximation algorithms. Our
paper has two main contributions: first, the best known
approximation ratio is reduced from 1.85 to 1.751 and
second, the problem is proved to be MAX SNP-hard

The best known ratio was 1.85 IKR951. We present
an improved analysis of Khuller and Raghavachari's
algorithm IKR951, and prove an upper bound of 1.75 on
its performance ratio. We also generalize the concept of
a tree-carving, and use it to prove that the performance
ratio of Khuller and Raghavachari's algorithm is less
than 1.7 for large erlough k. The MAX SNP-hardness
proofguarantees that there is a small ( > 0 such that the
existence of a polynomial-time approximation algorithm
with performance ratio at most 1 + c implies P=NP. We
believe that our analysis significantly contributes for a
better understanding of the structure of the output of
Khuller and Raghavachari's algorithm. We hope that
this will help in the development of new algorithms with
better performance ratios.
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1. 1ntroducdon

Multicommodity Flow problems have been intensely studied for decades[6,9,12,17,18,
20] because of their practical applications and also of the appealing hardness of several
of their versions. The fractional version of a Multicut problem is the dual of a Multi-
commodity Flow problem and, therefore, Multicut is of similar interest[3,9,10,17,24].

The Weighted.4/u/rlcwr is the following problem: given an undirected graph G, a weight
function w on the edges of G, and a collection of k pairs of distinct vertices {sf, fi} of G,
find a minimum weight set of edges of G whose removal disconnects each xi from the
conesponding fi.

The particular case in which k = lis characterized by the famous 44tu-Flow J14fn-Cur

Theorem[5], and is so]vab]e in strong]y polynomial time]4]..: For k = 2, a variant of the
Max-F]ow Min-Cut Theorem ho]ds]12,13] and Multicut is solvable in polynomial time.
For k > 3, the problem is NP-hard]3].

Since many variants of the Weighted Multicut are known to be NP-hard, we search for
efficient approximation algorithms. Thepeljorn nce ratio oran approximarlon aZgorff/zm
A for a minimization problem is the supremum, over all possible instances /, of the ratio
between the weight of the output of A when running on / and the weight of an optimal
sol;ution for /. We say A is an ce-appmxf/zzarlo/z aZgorifhm if its perfomiance ratio is at
most a. The smaller the performance ratio, the better.

The best known performance ratio for Weighted Multicut in general graphs is O(logo)
[8]. ]mportant research has been done for improving the performance ratio when the input
graph G belongs to special classes of graphs. For planar graphs, Tardos and Vazirani]24]
(see also]15]) give an approximate Max-Flow Min-Cut theorem and an algorithm with a
constant perfomiance ratio.

The case when the input graph is restricted to a tree has been studied by Garg et a].[lO].
The Unweighted Multicut problem(in which w(e) = Ifor all edges e of G) restricted to
stars(trees of height one) is equivalent(including performance ratio) to Minimum Vortex
Cover, by Proposition ]in]]O]. It follows that Unweighted Multicut restricted to stars is
NP-hard and Max SNP-hard. In fact, getting a perfomlance ratio better than two seems very
hard, since getting a performance ratio better than two for Minimum Vertex Cover remains
a challenging open prob]em]19]. Gang et a].[10] give an algorithm with a perfonnance
ratio of two for the Weighted Multicut problem in trees. Note that the integral unweighted
Multicommodity Flow problem in trees is solvable in po]ynomia] time]10].

We find useful two variations of the Multicut problem. The ye ex il/ /ffcuf problem is:
given an undirected graph G and a collection of k pairs of distinct nonadjacent vertices
[fi , ri } of G ca]]ed rerminaZs, find a minimum set of nontermina] vertices whose remova]
disconnects each si flom the corresponding fi . Tbe [/nresfrfcfed Ue#ex A/u]ficzzf prob]em
is: given an undirected graph G and a collection of k pairs of vertices {si, fi} of G called
fe?m!/zaps, find a minimum set of vertices whose removal disconnects each ri from the
corresponding fi.(Note that in this variation, temlinals might be removed.) Observe that
Vertex Multicut is at least as hard(including perfonnance ratio) as Unrestricted Vortex
Multicut. From an instance of I.Jnrestricted Vortex Multicut we can obtain an instance
of Vertex Multicut by adding, for each si, a new vortex s{ adjacent only to sj, and, for
each ri, a new vortex f; adjacent only to ri. Each pair (si, /i} is substituted by the new pair
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{s;, f;}. Solving Vertex Multicut in this instance is equivalent to solving Unrestricted Vertex
Multicut in the original instance.

Both Vortex Multicut and Unrestricted Vortex Multicut might be of interest on their
own. Garg, Vazirani, and Yannakakis considered the weighted version of Vertex Multicut,
and proved that their algorithm in]lO] achieves a perfomiance ratio of O(logo) for the
weighted version of Vortex Multicut in general graphs.

!. 1. New results

Fromnow on, we refer to Multicut as Edge A4 Jriczzr, to avon;d confusion. Let us mention
some results we obtained for Vertex Muldcut and Unrestricted Vertex Multicut. We have
a proof that Vortex Multicut is NP-hard in bounded-degree trees. Unrestricted Vortex
Multicut is easier: it is polynomially solvable in trees, but it becomes NP-hard in bounded-
degree series-parallel graphs.

The tree-width notion(h'st introduced by Robertson and Seymour]22,23]) seems to
often capture a property of the input graph which makes hard problems easy. Vblious NP-
hard problems, like Clique or Coloring, have a polynomial-time algorithm(linear-time in
fact) if the input graph has bounded tree-width(see for examp]e]2]). We will present the
fomla] definition of tree-width in Section 2.

Bounded tree-width can also be used to obtain good approximation aigorithms for
those problems that remain NP-hard even if restricted to graphs of bounded tree-width.
In our case, Unrestricted Vertex Multicut is NP-hard in graphs of tree-width at most two,
since this class of graphs coincides with the series-parallel graphs(see for example]25]).
A PDAS consists of, for each € > 0, a polynomial-time algorithm for the problem with a
performance ratio of at most 1+ c. We give a straightforward PTAS for Unrestricted Vortex
Multicut in graphs of bounded tree-width.

We present an approximation-ratio preserving reduction from Edge Multicut to
Umestricted Vertex Multicut. If the Edge Multicut instance graph has bounded degree
and bounded tree-width, the Unrestricted Vertex Multicut instance graph obtained by the
reduction has bounded tree-width. Combining the reduction with the PTAS for Unrestricted
Vortex Multicut in graphs of bounded tree-width, we obtain a PTAS for Unweighted Edge
Multicut in graphs with bounded degree and bounded tree-width. This is the main result
of the paper. Note that, according to]7, Theorem 6.8, p. 140], an FPTAS cannot exist for
this problem, unless P = NP.(An FPTAS consists of, for each c > O, an algorithm for the
problem with a perfomiance ratio of at most 1+ ( and running-time polynomial in the size
of the input and I/(.)

We also have a linear-time implementation of our PDAS for Edge Multicut in bounded-
degree trees. The running time of our implementation is O ((n + k) [l /(] dart/'l+Z), where
rz is the number of vertices of the tree, k is the number of {xi, li} pairs, d is the maximum
degree of the tree and 1+ ( is the desired approximation ratio of the algorithm. The size
of the input is O(n + k).

Most of our results hold also for the following version of multicut in directed graphs
(here ca]]ed dfg/lapis), introduced by Klein et a].[16]. We call Z)idec/ed Edge A4 Zflcaf
the following problem: given a digraph 1) and a collection of k pairs of distinct vertices
(si, fi} of Z), find a minimum set of edges whose removal ensures that none of the strongly
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connected components includes one of the k pairs of vertices. In other words, for alla,
either all paths from si to ff or all paths from fl to ii must be broken.

Klein et a]. [16] present an O(]og2 k)-approximation algorithm for edge-weighted
Directed Edge Multicut in general digraphs. We give a PTAS for Directed Edge Multicut in
unweighted digraphs with bounded degree and bounded tree-width. It is worth mentioning
that we mean here the concept of tree-width in digraphs, introduced by Johnson et a].[14],

which differs from the one in undirected graphs. For example, the class of digraphs of
tree-width zero consists of all acyclic digraphs.

From the hardness point of view, we show that Edge Multicut is still NP-hard for
binary(degree bounded by three) trees. 'Hus on the class of graphs of bounded degree and
bounded tree-width, which contains binary trees, Edge Multicut is easier(there is a PTAS)
than on generalgraphs, yet still NP-hard. Identifying this class is the main theoretical result
ofthis paper.

Also, we show that Directed Edge Multicut is NP-hard in digraphs with tree-width one
and maximum in and out degree three. Other hardness results indicate why we cannot
eliminate any of the three restrictions--unweighted, bounded degree and bounded tree-
width--on the input graph and sti]] obtain a PDAS. ]t is known]]] that for a Max SNP-
hard problem, unless P = NP, no PTAS exists. We already mentioned that Unweighted
Edge Mu[ticut is Max SNP-hard in stars]]O], so ]etting the input graph have unbounded
degree makes the problem harder. We show that Weighted Edge Multicut is Max SNP-hard
in binary trees, therefore letting the input graph be weighted makes the problem harder.
Finally, we show that I.Jnweighted Edge Multicut is Max SNP-hard if the input graphs are
walls. Walls, to be fonnally defined in Section 6, have degree at most three and unbounded
tree-width. We conclude that letting the input graph have unbounded tree-width makes the
problem significantly harder.

In Section 2 we present the polynomial-time algoritlun for Unrestricted Vertex Multicut
in trees and the polynomial-time approximation scheme for Unrestricted Vertex Multicut in
bounded-tree-width graphs. In Section 3, we show the approximation-preserving reduction

flom Edge Multicut to Unrestricted Vertex Multicut. In Section 4 we present the linear-
time implementation of the polynomial-time approximation scheme for bounded-degree
trees. Section 5 treats the directed case. Finally, in Section 6 we present our hardness
reslllts1]

2. Algorithms for unrestricted vertex muldcut

In this section we concentrate on Unrestricted Vertex Multicut. We present a polynomial-
time algorithm for trees and a PDAS for graphs with bounded tree-width. Let us start defin-
ing tree-width.

Let G be a graph and O be a pair (7', (Xw)wcy(r)), which consists of a tree T and
a multiset whose elements X«, indexed by the vertices of T, are subsets of y(G). For a
vortex u of G, we denote by Fu the subgraph of r induced by those vertices w of T for
which X.:/ contains u. Then O is called a free deco/nposfflo/z of G if it satisfies the two
conditions below:
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(1) for every edge e = iry of G, there is a veTteR w of r such that {x, y} g Xw
(2) for every vortex u of G, the subgraph ru of T is a tree.

The wadi/z of O is the maximum, over all vertices w of T, of IXwj-- 1, and the free-
widrh of G, denoted by rw(G), is the minimum of the widths of all tree decompositions

Consider an instance of Unrestricted Vertex Multicut, that is, a graph G =(y, E) and
a set C of pairs {xi, ri} of vertices of G. We say a pair {si, ri} in C is disco/z/zecled by a sel
S g y iffy or ri is in S or sl is disconnected from ri in the subgraph of G induced by V \ S.
A set S is a solufionlor G if S disconnects all pairslxi, ri} in C. If S has minimum size
(i.e., minimum number of vertices), then S is an opflma/ solzlrionlor G.

Now, let us describe the polynomial-time algorithm for trees. The input of the algorithm
is a tree r and a set C of pairs {si, /i} of vertices of T

Consider the tree r rooted at an arbitrary vertex and consider also an arbinary ordering
of the children of each vortex(so that we can talk about postorder). For a set S of vertices,
call a pair {sl , ri} in C acffve if it is not disconnected by S.

ofG

Algorithm UVMulticut-in-trees(T, C)

for each veHex u in T in postorderdo
ifp is the !east common ancestor ofsome active pair in C

fhe/z S := S u {ul;
output S.

Clearly the following invariant holds: all nonactive pairs in C are disconnected by S.
A pair in C that becomes nonactive does not go back to active since we never remove
vertices from S. At the end of the algorithm, no pair in C is active, meaning that S
is a solution for the problem. Besides, it is not hard to see that the algorithm can be
imp[emented to run in po]ynomia] time. The solution produced is optimal. ]ndeed, we
associate to each vortex u included in S an active pah'lfi, ri} having u as least common
ancestor, and the paths connecting these pairs in r are vortex disjoint. So any solution must
contain a vortex in each of these vortex-disjoint paths.

2. 1. Bounded-tree-width graptts

Next we present a PDAS for IJnrestricted Vortex Multicut in graphs with bounded tree-
width. Recall that a PTAS consists of, for each € > 0, a polynomial-time algorithm for the
problem with a perfomiance ratio of at most 1+ €. Lft us describe such an algorithm.

The input of our algorithm is a graph G =(y, E), a tree decomposition 6) =
(r, (Xw)wcv(r)) of G, and a set C of pairs of vertices of G.

Given a subgraph G ' of G, denote by C(G ') the set of pairs in C whose two vertices are
in G ', and by G G ' the subgraph of G induced by y(G) \ y(G '). For the description of
the algorithm, all the instances we mention are on a subgraph G ' of G and the set of pairs
to be disconnected is C(G '). So we drop C(G ') of the notation and refer to an instance only
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by the graph G '. Denote by opt(G ') the size(i.e., the number of vertices) of an optimal
solution for G '

Root the tree 7'(of the given tree decomposition) at a vortex r and consider an arbitrary

ordering of the children of each vortex of T. For a vortex H of T, let r(w) be the subtree
of 7' rooted at H. Let G(u) be the subgraph of G induced by the union of all Xw,
w € v(7(#)). bt f := f(rw(G) + I)/d.

Here is a general description of the algorithm: label the vertices of T in postorder. Find
the lowest labeled vortex zl such that an optimal solution for G(H) has at least f vertices. If
there is no such vortex, let H be the root. Find an approximate solution S# for G(u) such
that IS. I :( (1 + dept(G(zi)) and X« g S« . If H is the root of 7, then output S«. Otherwise,
let G/ := G -- G(zl) and let @' := (r ', (XI.,)«cV(r,)) be the tree decomposition of G ' where
7'' := 7' -- T(24) and XI., := Xw \ y(G(K)), for all w in y(7'). Recursively get a solution
S/ for G '. Output S := S' U S. .

Next we present a detailed description of the algorithm. .It.works .in.iterations. Iteration
i starts with a subgraph Gi'i of G, a tree decomposition (9i'i ::(Ti'l,(Xf'l)«ey(ri'i))
of Gi'i with Ti'i rooted at r, and a sel Si-i of vertices of G. Initially, GO = G, Oo = O,
So = g, and 1 = 1. The algorithm halts when Gi't = g. When Gi'i is nonempty, !he
algorithm starts calling a procedure Get(u, '4), which retums a vertex H of Ti'i and a
solution A for Gi'l(u) such that IXI < (1 + c)opt(Gi'l(ii)) and X:'i g A. Then the

algorithm starts a new iteration with Gi= Gi'i -- Gi'l(24), Oi- (ri, (XI,)we.y(r;)),
where Ti = 7i-i Ti--l(H) and XI., = X£-i \ y(Gi'l(u)), for all w in V(r '), and

We postpone the description of Get(u, A) and, for now. assume that it works correctly
and in po[ynomia[ time. The next ]emma]23] states a property of tree decompositions that
we use later.

IU ASids'

Algorithm UVMulticut-PTAS-in-bd-tree-width-graphs(Gp OPC)

Go:=G;
Oo:= 0.
So := g;

wh£/e Gi'i # g do
Get(ui, Ai);/'k llX'll <(1 +c)opt(G '
Gi := Gi't -- Gi'i (ui);

Ti ::: Ti-t - Ti-i(n);
jor each w fn y(T ') do

XI, := Xh'i \ y(Gi'i(ui));
Si := Si-t U Ai;
i:=i+l;

.f ::= I -- 1;
output Sf

I(zii)) and X:;i g Ai V
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Lemma 1. Consider a graph G and a free decomposlffo/z 6) = (7', (Xw)wcy(r)) of G. lff
u, z alta D be vertices o#T with z on {he paihfpom u to D in T. Let x be a 'oeKex in X. atta
y be a vertex in Xu. Then an)path in G from x to y contains a vortex ofXz.

Next we prove that the output of the algorithm is in fact a solution

Lemma 2. SI ' is a so/union/or G

Proof. Let€s, f} be apair in C and P be a path in G from s to f. We need to show that there
is a vortex of P in S/. Note that the vortex sets y(Gi't(ui)) define a partition of y(G).

Let f be such that s is in Gi'i (Hi) and ./ be such that r is in GI'i (u.f) and assume by
symmetry that f < J. If f = ./, then {s, r} c C(Gi'i(zii)). Since SI ' contains a solution for
Gi'i (ul), we have that S/ must contain a vertex of P

There is an Xu in rl'l (H;) with s in X« and an X« in TJ't (u.f) with r in X,. If i< J,
then ui is on the path from z{ to u in Ti'i. By Lemma 1, any path in G from s to r contains
a vertex of XI.'i, and the algorithm insures that X:TI g S.f, concluding the proof of the
jcmma. []

The next lemme proves that the performance ratio of the algorithm is at most l+ (

Lemma 3. IS/I :€ (1 + 4opt(G)

Proof. We have that

IS/1= :: 1.4; 1< ::(1+ c)OPt(G'':(«i)) =(1+ c) }: OPt(G;
f-l i-l j-l

< (1 + c)opt(T),

because the subgraphs Gi'i (Hi) are disjoint. []

// /

: ("i))

Now we proceed with the description of a straightforward polynomial-time implemen-
tation of Get(u, A).

Search the vertices of the tree 7'i'i in postorder. Stop if the vortex z{ being visited
is either the root or is such that opt(Gi'i (u)) > f. Let us show how we check whether
opt(Gi'i (u)) > r in po]ynomia] time.

If we are searching vertex u, it is because all children of H have been searched and have
an optimal solution with less than f vertices. Compute an optimal solution for each child u
of u. This can be done in O(n'+l) time by brute force: check all subsets of G(u) of size
less than f. The time is polynomial, since f = f(rw(G) + I)/cl is fixed. Let s be the sum
of the sizes of the solutions for the children of u.

Let us show that the optimum of GI'l(u) is at most s + fw(G) + 1. We do this
by presenting a solution B for Gi'l(H) of size at most s + rw(G) + 1. The set B
is the union of X. and an optimal solution for Gi'i(u), for each child u of u. Thus
IBI < IX.I + s I fw(G) + 1 + f. Now we must prove that B is in fact a solution for
Gi-i(u). Let {s, r} be a pair in C(Gi'l(u)) and P be a path in GI'l(H) from s to r. Wb
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need to show that there is a veTteR of P in B. If there is a vertex of P in X., then clearly
B contains a vortex of P. If, on the other hand, P contains no vortex of X., we must have
all vertices of P in the same Gi'i (u), for some child u of u, by Lemme 1. But B contains
a solution for Gi't (u). Therefore, B contains a vertex of P. This completes the proof that
B is a solution for GI't (u), and so the optimum of Gi'i (u) is at most s + rw(G) + I.

Now, let us proceed with the description of Get(u, A). If s < r, then opt(G(u)) <
s + fw(G) + 1 < f + fw(G) + 1, and we can compute in polynomial time an optimal
solution .4' for G (u) (by brute force: in O (n'+'"(G)+2) time, which is polynomial since r =
[(rw(G) + I)/c] ). ]f ]n'] < r then proceed to the next vertex in postorder. ]f ]X'] a: r, then
we output zz and the set A := ,4' U X.. Note that in fact opt(Gi'i (zi)) = IX'l a: r, X. g A,
and I.'il< opt(Gi'l(zi)) +(rw(G)+ 1) < opt(Gi'l(K)) + f( <(1+ c)opt(Gi't(u)), as
desired. On the otherhand, ifs al r, then f < s < opt(Gi'l(i4)) < s + fw(G) + I s +r(
opt(G['] (u)) + opt(Gi'](u))c = (1 + 4opt(Gi'i (u)). Thus B is a solution for Gi'i (u)
of size at most s + fw(G) + 1<(1+ c)opt(Gi'l(u)) that can be computed in polynomial
time. Moreover, X« g B. So in this case we output zl and A := Z?. This &nishes the
d;escription of Get(u, A).

3. Edge multicut

In this section we show that Edge Multicut can be reduced to Unrestricted Vortex
Multicut by a reduction that preserves approximability.

The reduction has the following property. If the instance of Edge Multicut is a
graph with bounded degree and bounded tree-width, then the corresponding instance of
Unrestricted Vertex Multicut has bounded tree-width.

Given a graph G =(V, f), the /f/ze graph of G is the graph whose vertex set is f and
such that two of its vertices(edges of G) are adjacent if they share an endpoint in G. In
other words, the line graph of G is the graph(E, Z,), where Z, := {e.f: e, .f € E and e and
.f have a common endpoints.

Consider an instance of Edge Multicut, that is, a graph G = (V, f) and a set C of pairs
of distinct vertices of G. Let us describe the conesponding instance of Unrestricted Vortex
Multicut. The input graph for Unrestricted Vertex Multicut is the line graph of G, denoted
by G '. Now let us describe the set of pairs of vertices of G '. For each pair {s, r} in C, we
have in C ' all pairs {e, /} such that e has s as endpoint and / has f as endpoint.

Clearly G ' can be obtained from G in polynomial time. Note that C ' has at most kdZ
pairs, where k = ICjand Z is the maximum degree of G. Also C ' can be obtained flom G
and C in polynomial time.

The following theorem completes the reduction.

Theorem 4. S is a solution $or Edge Multicut in G y' and only y' S is a solution jor
Unrestricted VeNex Mutticut in G'

Proof. Consider a solution S of Edge Multicut in G, that is, a set S of edges of G such that
any pair in C is disconnected in (y, E \ S). Note that S g E(G) = V(G '). Let us verify
that the removal of S from G ' disconnects all pairs in C '. For any pair {e, /} in C ', there



G. Cdlinescu e{ ai./Journal ofAl8orithms 48(2(D3) 333-359 341

are s and r in y(G) such that f is an endpoint of e, ris an endpoint of .f and the pair {s, t}
is in C. Moreover, a path P ' in G ' from e to/ corresponds to a path P in G from s to r
whose edges are a subset of the vertices in P'(which are edges of G). Since S is a solution

of Edge Multicut in G, there must be an edge of P in S, which means that there is a vortex
of P ' in S. Hence S is a solution for Unrestricted Vertex Multicut in G '

Conversely, let S be a solution for Umestricted Vertex Multicut in G ', that is, S is a set
of edges of G whose removal from G ' disconnects all pairs of vertices of G ' in C '. Let
(s, r} be a pair in C, and P a path in G from s to r.(Recall that, by the description of Edge
Multicut, i # r.) Let e be the fast edge of P and .f the last one. Clearly s is incident to e,
and r to .f. Thus {e, .f} is a pair in C '. Corresponding to P, there is a path P ' in G ' flom
e to .f containing as vertices all edges of P. Since S is a solution for (Jnrestricted Vertex
Multicut in G ' and {e,/} is in C ', S must contain a vertex of P '. Therefore there is an edge
of P in S, which implies that S is a solution of Edge Multicut in G. D

The next gemma shows the previously mentioned property of this reduction

Leimna S. }fG hm bounded degree and bounded tree-width, then the line graph ofG has
bounded tree- width.

Proof. Denote by G ' the line graph of G. Let us present a tree decomposition of G ' whose
tree-width is at most(fw(G) + I)d, where d is the maximum degree of G.

Let ® := (7', (Xw)«cy(r)) be a tree decomposition of G of width fw(G). For each z+ in
V(7), let yu be the set of edges of G incident to some vertex in X«. First let us prove that
O' = (7', (yu)«cv(r)) is a tree decomposition of G '. For this, given an edge e of G, denote
by Tf the subgraph of 7 induced by those vertices in T for which yu contains e. We shall
prove that (1) any edge h of G ' has both endpoints in yu , for some u in y(7); and (2) that
re is a tree for any edge e of G '

The endpoints of an edge h of G ' are two edges e and .f of G with a common endpoint,
say, u. But u € XH for some u in V(r). Tt)is implies that both e and/ belong to yu,
proving(1). For(2), 1et e be a vortex of G ', that is, an edge e = xy of G. For any n such
that e € yu, we must have that either x c X« or y G X#. Therefore Tf = T= U Ty. We know
that the subgraphs TI and ry of T are subtrees of r. Moreover, Tx and Ty have a vertex in
common, because both x and y belong to the same X«, for some z{ in V(T). Hence Tf is a
subtree of T. This completes the proof that O ' is a tree decomposition of G '

To verify that the width of O ' is at most (fw(G) + 1).4, just note that I yu I < IX. la, for
all zl in V(T). a

The next corollary is a consequence of the previous reduction and the PTAS given in
Section 2.1.

Coronary 6. '!'here is a p'fASfor Edge Multicut in bounded-degree graphs with bounded
tree-width.
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4. Linear-time PTAS for edge multicut in bounded-degree trees

The PTAS for Unrestricted Vertex Multicut in bounded-tree-width graphs can be
modified into a PTAS for Edge Multicut in bounded-degree trees in a straightforward way.
In.this section wc describe this modified PTAS and present a linear-time implementation

Let r := (V, f) be a tree and C be a set of pairs {li, rl} of distinct vertices of T. We say
a pair {li , Q } in C is disco/z/zecfed by a sef S g; E if si is disconnected from ri in (y, E \ S).
A sct S is a so/ rfonlor r if S disconnects all pairs {si, ri} in C. If S has minimum size
(i.e., minimum number of edges), then S is an opfimaJ solurlo/zjor T

Now, for each fixed ( > 0, let us describe the polynomial-time (I + c)-approximation
algorithm for bounded-degree trees. The input of the algorithm is a bounded-degree tree
7' and a set C of pairs {ff, ri} of vertices of 7. Consider the tree 7' rooted at an arbitrary
vortex r and consider also an arbitrary ordering of the children of each vortex(so that we
can talk about postorder and preorder).

As before, given a subtree T ' of T, denote by C(7'') the set of pairs in C whose two
vertices are in r '. For the description of the algorithm, all the instances we mention are on
a tree 7'' and the set of pairs to be disconnected is C(T '), where 7'' is a subtree of r. So we
drop C(T ') of the notation and refer to an instance only by the tree 7''. Denote by opt(7'')
the size(i.e., the number of edges) of an optimal solution for T '. For a vortex 24 Of T, let
7'(24) be the subtree of T rooted at u. Denote by T -- 7'(zl) the subtree of 7 obtained h'om
r after removing all vertices in T(u). Let f := fl/(I .

The algorithm is similar to the one for Unrestricted VeTteR Multicut. It works in
iterations. Iteration f stars with a subtree 7'i't of 7' also rooted at r. and a set Si-t of
edges of T. Initially, ro := T, So := g, and i = 1. '1be algorithm halts when Ti't = g.
When 7l'i is nonempty, the algorithm stars calling a procedure Get(zz, .4), which retums
a vertex H and an optimal solution .4 for ri'l (u) where either u = r or opt(7'i'i (u)) > r.
Unless H is the root (in which case the algorithm outputs Si'i U ..I and temlinates) iteration
i starts with ri := ri-i -- Ti-i (u) and Si := Si-i U A U {uu}, where u is the parent of u.

The proof that this algorithm is a polynomial-time(1+ 4-approximation is analogous
to the proof presented for the PTAS for Unrestricted Vertex Multicut in bounded-tree-width
graphs.

In the following we describe a O((Pt + k)fl/(Iddrl/c1+2) implementation of the
algorithm described above. Recall that n is the number of vertices of the tree, k is the
number of {fi, fi} pairs, d is the maximum degree of the tree and 1+ ( is the desired
approximation ratio of the algorithm. The size of the input is O(n + k)

As in the straightforward implementation of Get(u, A) for Unrestricted Vertex Multicut,
the procedure Get(u, A) finds the first qualified H in postorder. By qualified we mean that
either u = r or opt(ri'i (u)) a: f = [1/c]. A]so, whi]e traversing ri'i in postorder, we
compute opt(Ti't (zi)) for each encountered vertex u.

Tbe main idea to obtain this linear-time implementation is to compute opt(TI'l(u))
faster. Since we compute these values in postorder, it is natural to use the values computed
for the children of a. In fact, we compute a set of "relevant" optimal solutions for r(u)
(the technical definition of relevant appears in the next subsection) using the sets of
relevant optimal solutions for the children of u. Note that the main algorithm works no

font
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matter what optimal solution Get(u, .4) returns. So, in this linear-time implementation,
Get(w, A) returns only relevant optimal solutions. We will prove that the set af relevant
optimal solutions is nonempty and show how to compute it for 7'(u) using the sets of
relevant optimal solutions for the children of zl. We also show that the number of relevant
optimal solutions is small. One can use this idea alone to obtain an O(kn3dari/€1+t)-time
implementation. This time is better than the time for the straightforward implementation
since the degree of the polynomial in /z + k is fixed, that is, does not depend on € or d.
To ftlither decrease the time dependence on n+ k we will show how to avoid recomputing
optimum values and relevant optimal solutions when we switch from Ti't to Ti and how
to check faster if a set of edges is a solution.

4.1. Retwant solutions

We star with some definitions. Let 7 and C be an instance of the Multicut problem. Let
u be a vortex of T and A a subset of edges of 7'(t;). We say that a pairlx, f} in C is open
with respect to u a/zd A if exactly one ofs and fis in T(u) and the unique path in 7 hom
r to f does not contain any edge of A. We denote by O.(A)(r and C will be understood
6.om the context) the set of open pairs with respect to u and A. Let u be a veTteR of T
We say that an edge set 1? is a rPZevanf ortiz zaJ to/zzflo/z/or T(u) if, for any vortex z{ of
T (u), B rl f (T (u)) is an optimal solution for T(#). It is not obvious that a relevant optimal
solution exists. In fact, this follows from the following gemma.

Lemme 7. Let B be an oplimat solutionjor T(lli). Then there is a reliant optima! solufiolt
A/or T(u) sztch fha/ O.(A) g O,(B).

Proof. By induction on the number of vertices in 7(u). If r(u) has only one vortex
(vortex u) then B = g and we can take A := g.

Suppose now that r(u) has more than one vortex and let ul, u2, . . . , u, be the children

of u. Let Bj = B n E(7(uj)), for J = 1, 2, . . ., r. We construct .4 = Uj-i AJ in the
following way: if I BJ I :: opt(T (wj)), by induction, we let A'i be a relevant optimal solution
for r(w.i) such that O«J(Ali) g O«J(B.f). If also UJU c B, we let 41 := Ali U {uju},
otherwise AJ = ali. If IBjl > opt(T(UJ)). let Xli be any relevant optimal solution for
r(u.f). Such a relevant optimal solution exists by induction. Let AJ := A'i U {uju}.

We now show that A is a solution for T(u). Let (f, f} be a pair with both s and rin
r(u). A first case is when there is J in {1, 2, . . . , r} such that both s and f are in 7(uj).
Then, since A '; is a solution for T(UJ), s and f are disconnected by .4.

A second case is when s is in T(a/) and r = u. The case when f is in T(u/) and s = u

is syinmetric. If a.iu € A.f, then s and f are disconnected by 4. The only case in which
K.fu # A.f is when w.fu # Z? and IB.il = opt(T(24j)). Since B is a solution for 7(u) and
UJU # B, there is an edge in Bj disconnecting s from nJ. This means that the pair {f, r} is
not in O-j (B.r), and since we selected A; such that O«j (A ' ) g O«j(Bj), {s, r} is not in

O«j (A ' ). Thus there is an edge in A; disconnecting s from u.f
The third and last case is when s is in T(uj) and r is in T(ut), for some / # .f. In this

case there is an edge in B disconnecting s from u or there is an edge in B disconnecting f
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from u. We may assume without loss of generality that there is an edge in Z? disconnecting
f from u. Using the same reasoning as in the second case, it follows that, because there
is an edge in B disconnecting s from u, there is an edge in 4 disconnecting s from u. In
conclusion, there is an edge in A disconnecting s from r

We note that IXI < IPI. Since B is an optimal solution, we have IXI = IBI. We
now show that A is a relevant optimal solution. Let z{ be a vortex in T(u). If H = u,
A n E(7'(ti)) = A is an optimal solution for T(u). If u # u, let J in {1, 2, . . . , r} be such
that H is a vortex in T(u.i). Then A n E(7'(u)) = A'in £(7'(u)) is an optimal solution for
r(u) since .4'i is a relevant optimal solution for T(uj).

Finally we show that O, (A) g O,(B). Let {f, f} be a pair in O,(A) and assume without
loss of generality that s is a vortex in 7'(u) and fis not a vertex in T(u). If s = u, then,
since B g E(T(u)), the pair {s, r} is in O,(B). Ifx # u, let ./ in {1, 2, . . . , r} be such that
s is a vortex in T(UJ). Then {s, r} is a pair in O«J(A;) (because .4'l = .4 n E(T(uj))).
Since {f, r} is a pair in Ou(A), u.fu # .4 and therefore UJU # A.f. The only case in which
ju # 41 is when z{.fu # B and IB.il = opt(r(u.f)). ]n this case, by the construction

of A, O«J (Aj) g O«J (Bj) and therefore the pair {f, f) is in OKJ (B.f). Using the fact that
UJU # B, we obtain that the pair {f, f} is in O«(B). n

In the following we describe a generali/zg pmcedz re which computes all relevant
optimal solutions for T(u) . If u is a leaf, then we have exactly one relevant optimal solution,
namely the empty set of edges. Otherwise, let zil, u2, . . . , u, be the children of u. We
assume that for all ./, we have all the relevant optimal solutions for r(uj) . The procedure is
as follows: start with / = O. Repeat the following process: try the union of all combinations
of / edges incident to u and relevant optimal solutions for 7'(ui), r(u2), . . , , r(a,). If
some combination is a solution for T(u), then write it down as a relevant optimal solution
for T(u). Obtain all such combinations for this same value of / and then halt. If none of
the combinations leads to a solution for r(t;), we increment J and resume the process.

We now show that the above procedure correctly computes all relevant optimal solutions

for 7'(u) . Any relevant optimal solutions for T(u), if resuicted to T(uj), is a relevant opti-
mal solution for T(u.f). Let A be any relevant optimal solution for r(u). So 4 consists of
a combination of relevant optimal solutions for T(#J), J = 1 , 2, . . . , r, and a set of q edges
incident to u. All relevant optimal solutions have the same number of edges, and since any
two have exactly the same number of edges in E(T(u.f)), for ./ = 1, 2, . . . , r, it follows that
all relevant optimal solutions have the same number of edges, g, incident to u. Also, for
r < q, there cannot be any edge set B, which is the union of a combination of relevant op-
timal solutions for T(ui), T(u2), . . . , T(H,) and J edges incident to u, and such that B is a
solution for T(u), since in this case IP I < 1.al and therefore A would not be an optimal so-

lution. The conectness of the procedure above is now clear, as for J < q the procedure will
try all combinations but will not find any solution, and then, for / = q, it will output all rel-
evant optimal solutions with g edges in;cident to u, and since all relevant optimal solutions
have exactly q edges incident to u, it will output all relevant optimal solutions for T(u).

From the procedure above, it follows by induction on the number of vertices in r(u) that
there are at most dept(r(u)) re]evant optimal solutions for r(u). Indeed, if u is a leaf, there
is only one relevant optimal solution for T(u). If u is not a leaf, using the notation from
the paragraph above, opt(T(u)) = g + opt(r(zft)) + opt(r(242)) + . . . + opt(T(u,)). By
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induction, there are at most dept(r(UJ)) relevant optimal solutions for T(zl.f). In conclusion,
we need to try at most (q) nJ:i opt(r (ziJ)) combinations and, as r < d, this number is at

most dq ll;:i dept(r(UJ)) = doPE(r(u))

We are left with the implementation details on how [o avoid recomputing va]ues and
relevant optimal solutions when we switch flom ri'i to Ti and how to check efficiently
if a combination is a solution.

4. 2. }tnplementatiott details

Wb represent the cunent tree r ' in the following way: we mark all vertices of T
not in ri. So when executing 7i +- Ti-i -- Ti-l(ui) in the algorithm, in fact we
uaverse ri'l(#i) in preorder and mark each veHex. To traverse in preorder 7i'i(Ki),
we in fact traverse in preorder 7(wi), but we stop and return immediately each time we
meet an already marked vortex. The time for the traversal(and marking) of Tf'l(#i) is
proportional to the number of vertices we mark plus the number of already marked vertices

we encounter. Note that whenever we encounter an already marked vortex u during the
traversa] of rj'l (ui), its parent zl was not marked before the traversal of Ti'i (ui), but zl
is marked at the end of the traversal of Ti't (n). So the total number of times, over all i,
we encounter an already marked vertex is O(n). Since we mark a vortex exactly once, the
total time, over alla, for these marking traversals is O(n).

To compute the relevant optimal solutions for vortex u in Ti't, we simply ignore the
children of z/ which are marked. Note that if, for a vortex u in Ti'i, the set of relevant
optimal solutions is computed, and u is in Ti, then, in 7f, u has exactly the same set
of relevant optimal solutions. Indeed, if u's set of relevant optimal solutions is computed
in 7'i'i, none of its descendant in Ti'i has optimum value at least r. In conclusion all
descendants of u in Ti'i, including u itself, appear in 7i and therefore 7'i'i (ii) = Ti(u).
Since the set of relevant optimal solutions depends only on 7'i'l(u) = ri(u), it follows
that, in T ', u has exactly the same set of relevant optimal solutions. Also note that
opt(7i'l(u)) < 1, since u appears in Ti. In conclusion it is unnecessary to recompute
an already computed set of relevant optimal solutions.

Note that, since T ' is a subtree of T, postorder in T ' equals postorder in T resUicted to
the vertices of T '. It remains to show how to find quickly the next vortex of rl in postorder
whose set of relevant optimal solutions is not computed. The first such vortex of ri(unless
of course 7'' = g) is the successor in postorder in T of uf, and in general the next such
vortex of T ' is actually the next vortex of 7 in postorder. This fact--that the next vortex of
7'' in postorder, whose set of relevant optimal solutions is not computed, is simply the next
vertcx of r in postordei--follows from and is used to maintain the following invariant: the
vertices of r for which the set of relevant optimal solutions (in some 7'i ) is computed is
always the set of first jvertices of r in postorder, for some 0 < J < n

4.3. DecidingfeasibUity

In this last subsection of Section 4 we describe how to check if a combination is
a solution, thus finishing the description of the linear-time PTAS for Edge Multicut in
bounded-degree trees. In a preprocessing phase, in O(n)[11], construct a data structure
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which allows us to find in constant time the lowest common ancestor (lca) of any two
vertices H and u in T. Using this data structure, in time O(n + k), construct for each
vortex u, the list oftr, r} pairs such that u = lca(s, f). Let k. be the size of this list.

So, as above, let u be the vortex whose sct of relevant optimal solutions we are now
computing in T '.. Let ul, w2, - . -, u, be the children of u in 7'i. To obtain these children
of u in 7'', we go through the list of the children of u in T and ignore the marked ones.
Wb need to check whether an edge set B is a solution for 7'(u), where B consists of
some edges incident to u and B r) £(7''(aj)) is a relevant optimal solution for r;(#j).
In conclusion, it is enough to check if 2? disconnects those pairslf, r} with both f and f
in T ' and having u as lowest common ancestor(all the other pairs are disconnected by
B n E(T ' (zzJ)), for J = 1, 2, . . . , r). To do this, we go through the list of pairs having u
as lowest conmion ancestor. For each pair {s, f} in the list, we first check if both f and r
are unmarked. If one of them is marked we ignore this pair. Then we check for each edge
of Z? if that edge is on the unique path from s to u. This can be accomplished in constant
time per edge of B in the following way: for an edge of B with a deeper(in 7') endpoint u,
we check if lca(u, i) = u, and if so, we conclude that the edge disconnects s from u and
therefore s flom r. Similarly, we check for each edge of B if that edge is on the unique path
from f to u. If no such edge is found, we conclude that B does not disconnect f #om f.
The total time spent for edge set B is O(IB 1(1 + k.)).

Now let us prove that if the search reaches a vortex u, then opt(Ti'l(zi)) < dl. We
prove this by presenting a solution r for ri'l(u) of size at most dr. The set y is the
union of the set of edges incident to zz in 7'i'i and an optimal solution for ri'l(u), for
each child u of u. More specifically, let yo be the set of edges incident to u in 7i'i,
and let y/ be an optimal solution for Ti'i(uj), where t;.f is the Jth child of u. Because
ri-i has maximum degree at most d, Idol < d and H has at most d children. All of the at

most d children of u were visited before zz(because of the postorder). So for any child uj
of u, lyJ 1 = opt(7'i'l(uj)) < r -- I (otherwise the search would have stopped before it
reach;es u). Thus the set

*-Un
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f -o j-l

1) = dr

Therefore I PI :€ dr, and there are at most da ' combinations we need to check for each /
from the generating procedure described on page 344. Thus, the total time spent computing
the set of relevant optimal solutions for u in 7'i is O((I + ku)dodd'+l). Computing these
sets of relevant optimal solutions dominates the time, so the total time of the algorithm
is O((n + k)alda'+i), since }:.(I + k.) = n + k. Since r = fl/cl, we obtain that the
total time of the algorithm is O ((pt + k) [l/cldafi/c1+2), which is ]inear in the size of the
problem for any fixed ( > 0.
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5. Multicuts in digraphs

Using the same techniques we applied for undirected graphs, we can get a PTAS for
Directed Edge Multicut in digraphs with bounded degree and bounded tree-width. Johnson
et a].[14] presented the following definition of tree-width in digraphs.

An arhonesce/zce is a digraph R such that R has a vortex to, called the root of R, with
the property that for every vortex r in y(R) there is a unique directed path from rO to r
Thus every arborescence arises from a tree by selecting a root and directing all edges away
from the root. If r, r ' € y(R), we write r ' > r if r ' # r and there exists a directed path in
R with initial vortex r and tem)hal vortex r '. If e € E(R), we write r ' > e if either r ' = r
or r ' > r, where r is the head of e. We also write e N r when e is incident with r.

Let Z) be a digraph and let Z g y(1)). The digraph obtained flom D by deleting Z will
be denotedby Z) -- Z. We say that a set S g y(Z)) is Z-n0/77zaZ if there is no directed walk

in Z) -- Z with first and last vertices in S that uses a vortex of Z) --(Z U S). In other words,
any directed path in D -- Z which starts and ends in S is entirely contained in S.

An arboreaJ deco/nposirlo/z of a dlgraph Z) is a triple(R, X, W), where R is an
arborescence, and X = (X. g y(D): e € E(R)) and W = (W. g y(Z)): r c V(R)) satisfy

(1) (Wr: r c V(R)) is a partition of V(Z)), and
(2) if e € f(R), then U{Wr: r € y(R), r > e} is X,-normal

The wfdf/z of (R, X, W) is the least integer w such that I(U.., X.) U IV, 1 < w + I for
all r in y(R). The free-wfdrh o# Z), denoted by dfw(Z)), is the least integer w such that Z)
has an arboreal decomposition of width w. An example of a arboreal decomposition of a
digraphisgivenin Fig.1.

Consider the Z)free/ed UnresfHcfed UeHex il/z{/ficuf problem: given a digraph D and
a collection of k pairs of vertices {si. ri} of 1), called fermi/zaps, find a minimum set of
vertices whose removal ensures that none of the strongly connected components includes
one of the k pairs of vertices.

As in the undirected case, we have an approximation-ratio preserving reduction from
Directed Edge Multicut to Directed Unrestricted Vertex Multicut. If the digraph of the
Directed Edge Multicut instance has bounded degree and bounded tree-width, the digraph
of the Directed I.Jnrestricted Vertex Multicut instance obtained by the reduction has
bounded tree-width. Combining the reduction with a PTAS for Directed Unrestricted

Fig. 1. On the night we have an arboreai decomposition of the digmph on the left. Next to each vortex or arc of
the arborescence we find the sets Wr and Xe, which aU have one element in this decomposition of width one.
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Vertex Multicut in digraphs of bounded tree-width, we obtain a PTAS for Directed
Unweighted Edge Multicut in digraphs with bounded degree and bounded tree-width.

The PDAS for Unrestricted Vertex Multicut in bounded-tree-width graphs can be
modified into a PTAS for Directed Umestricted Vertex Multicut in bounded-tree-width
digraphs in a straightforward way. Using the same notation mo(hfied to the directed setup,
the following is a short description of the modification.

Label the vertices of R in postorder. Find the lowest labeled vortex r such that an optimal

solution for I)(r)--the subdigraph of D induced by the set Z := UltV,,: r ' € y(R),
r' a: rl--has at least / vertices. If there is no such vortex, let r be the root of R. Let e
be the edge of R entering r (if r is the root, let e be undefined). As before, using the
already computed optima] so]utions for the chi]dren of r, find an approximate solution Sr
for Z)(r) such that IS, 1 < (1 + c)opt(1)(r)) and X, U Wr g S,. If r is the root of R, then
output Sr . Otherwise, let D ' := f) -- (Z)(r) U X.) and let O ' := (R ', X ', W ') be the arboreal
decomposition of Zy where R ' := R -- R(r) and X.f := XI ' \ (X. U y(1)(r))), for all .f in
E(R '), and Ws/ := Wf \ X., for all s in y(R '). Recursively get a solution S' for Zy. Output

The set S produced is a solution for the Directed Unrestricted Vertex Multicut in I).
Indeed if C is a directed circuit either entirely in Z)(r) U X, or entirely in D ' and containing
s and r for some {f, r} in C, then y(C) n S # g (C either intersects S, or S'). If C is a
directed circuit with vertices in Z)(r) (that is, in Z) and in Zy, containing s and r for some
{f, f} in C, then C has a vortex in X. g S, g S because Z is X,-normal.

s := s' u s,

5.1. Reducing directed edge mutticut to directed unrestricted vortex muiticuf

In this subsection we proceed to the reduction, which is very di#erent from the
undirected reduction. Consider an instance of Directed Edge Multicut, that is, a digraph
D = (y, E) and a set C of pairs of distinct vertices of 1). Let us describe the corresponding
instance of Directed Unrestricted Vortex Multicut.

'He input graph for Directed Unrestricted Vortex Multicut is the following digraph Zy
(To avoid confusion, we will refer to vertices of D ' as nodes and to edges of Zy as arcs.)
The set of nodes of ly is f plus m copies zil , . . . , z{. of each vortex H in y, where m is
the number of edges in D. There is an arc in D ' flom a copy of zl in V to e in E if H is
the tail of e, and there is an arc in Zy from e in f to a copy of H in y if zl is the head of e.
These are allthe arcs in Zy. Please refer to Fig. 2 for an example. Note that Zy is a bipartite
digraph(edges of Z) in one side and copies of vertices of Z) in the other). Clearly D ' can
be obtained from D in polynomial time.

Now let us describe the set of pairs of vertices of Zy. For each pair (f, f} in C, we have
in C ' pairs {xr , rj ) for all 1 < i, J < m. Note that C ' has km2 pairs (recall that k = ICI). Also
C' can be obtained from Z) and C in po]ynomia] time.

Lemme 8. For an] sottltion S' jor fhe Directed Unrestricted Vortex Multicut itt D' there is
a sc,Zufio,z S i,z Zy much /haf S g f(1)) a,zd ISI < IS'l.

Proof. We may assume S' is a minimal solution for the Directed Unrestricted Vortex
Multicut in Zy. If S' g E(Z)) then we take S := S'. Ifnot, let a in y(Z)) and 1 < f < m be
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Fig. 2. The node ab of .D/ and its incident arcs, constructed from the directed edge ab of graph .D from Fig. 1

such that ui€ S'. Then S' \ {ui} is not a solution in D ', which implies that there is a pair
{r, r} in C ' and a directed circuit Q in Zy -- (S' \ {wi}) containing f and / (because i and r
are in the same strongly connected component). If uj # S' for some 1 < J < m, the circuit
obtained from Q by substituting ui by fz.f is a directed circuit in D ' -- S' and contains a pair
in C ', a contradiction. Thus u.f c S' for all 1 < J < m. In this case, IS'l > m = IZ(Z))I and
we take S := f(Z)). In both cases S is a solution in Zy and ISI < IS'l, which completes the
proof of the lemma. []

Lemma 8 together with the following theorem, whose proof is similar to the proof of
Theorem 4, completes the reduction.

Theorem 9. A set S c. E(.D) is a solutionjor Directed Edge Multicut in D if and only VS
{s a solution.for Directed Unrestricted VeHex Multicut in D' .

The next lemma shows that, if the instance of Directed Edge Multicut is a digraph
with bounded degree and bounded tree-width, then the corresponding instance of Directed
Unrestricted Vortex Multicut has bounded tree-width. For this, we need some notation. For
a vortex u in a digraph D, we denote by 8l;(u) the set of edges in Z) with u as tail. For a
set S of vertices of D, 8;(S) is the set of edges with tail in S and head not in S.

Lemme IQ. iy D has bounded degree and boarded free-width, then D' has bounded tree
width.

Proof. Let us present an arboreal decomposition of Zy whose tree-width is at most
(dfw(Z)) + I)(d + 1), where A is the maximum outdegree of D.

Let O :=(R, X, W) be an arboreal decomposition of Z) of width d/w(Z)). Let F be
the root of R and R ' be an arborescence obtained from R by substituting each edge e in
E(R) flom a vertex r ' to a vortex r in R by a directed path P€ := <u0, . . . . u«> of length m,
starting at wO := r ' and ending at a. := r, where ul , . . . , Um-l are new vertices. Let .f be
the edge in E(P.) flom 24i-l to zli. I < [ <.m. ]f f = 1, then ]et y/ := 8ll(X.), else ]et
y/ := 8;l(X. U W.). For 1 = 1, . . . , m, let W ' g y(ly) be the set containing the lth copy
in Zy of each vortex in Wr . Set Z.. := Wri U 8+(Wr) and, for [ = 2, . . . , m, set Z.. := }W.
For an example, see Fig. 3. In addition, add to R ' a path Proof := <Zll, . . . , H.}, where
UI , . . . , um--l are new vertices, a« := F and let ul be the root of R '. For any edge .f on this
path, let y/ := 8;(W.). Set Z«. := WPi u 8+(Wi) and, for [ = 2, . . . , m, set Z.. := Wl:
Let us prove that O ' := (R ', y, Z) is an arboreal decomposition of D '
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{ab, ac, ba, bc}

{b: , h, h}

{.b, .c, h, h}

{b}

{h}

{ab, ac, ba, h}

{ab. ac, h, h}

Fig. 3. From the arc r'r of the arboreal decomposition of digraph 1) hom Fig. 1, on the left of the picture(with
Wr/ ' {a}, Wr =lb}, and X,/, = {a}), we obtain a path of length 5(the number of edges in 1)) with the sets Z
(ane for each vertex) given on the right of the path and the sets r(one for'each edge) given on the left of he path.

First note that (Zu: H c y(R ')) is a partition of y(Zy). Now let / be an edge of R '
We need to show that Z ' := U(Z«: H c y(R '), H > .f} is y/-nomial. 'Ibis property is
immediate if .f is in Proot, because any edge leaving Zy -- (Z ' U r/) is in y/. Let e in
E(.R) be such that .f € E(Pf). Let x, y in Z ' be such that there is a directed path Q ' in D '
from x to y which uses a node in y(Zy) \ Z '. Choose x, y in Z ' so that Q ' has minimum
length. We need to show that V(Q ') n y/ # g. We analyze two cases.

If x # E(Z)) then let x ' in y(Zy) be the node following it in Q '. Note that x ' c
E(Z)) \ Z ', because of the bipartition of Zy and the choice ofx and y. This implies that .f is
not the first edge of the path /'. . Thus x is a copy of a vertex in W. and x ' c 8;(Wr ) g y/.

Ifx € E(D) then let e be the path in Z) which starts at the tail ofx and visits the vertices

of Z) in the same order in which they(their copies in fact) appear in e '. Let Z g V(1)) be
the set of vertices with at least one copy in Z '. Note that Z = U{Wr: r € y(R). r > e}.
Both endpoints of Q are in Z. Indeed, the tail of any edge of Z) in Z ' is also in Z'(because,
by construction, if a C f(D) n Z« then one copy of its tail is also in Z.) so the erst vortex
of e is in Z. Also the last vortex of g ' is not in E(D)(for the same reason), and this
implies that the last vortex of e is in Z. Thus Q is a path in D between two vertices of Z.
Since 6) is an arboreal decomposition of Z), there is a vertex of X, in Q. But this implies
e' has a node in y/, because y/ 2 8;(X.). TMs completes the proof that 6)' is an arboreal
decomposition of Zy

Now we just need to verify that the width of O ' is at most (dfw(1)) + 1)(d + I).
For that, let r ' € y(R '). If r ' is a vortex of R, then I(U.r-,, r/) U Z,,I < IW.,I +
8B((U..,, X,) U W.,)I < (dfw(1)) + 1)(d + I). If r ' was added when an edge e of

R was substituted by a path between its endpoints, then, with r" being the head of e,
(U/-,, y/) U Z,, l< ltV,., l+ la;(X. U IVr',)l<(drw(Z)) + I)(d + I). If r ' is in P,oot and

r'#F,then I(U/-,,r/)uz,'l < 18B(w.)l+lw.l<(drw(D)+ I)(a+l). []

6. Complexity results

In this section, we examine the complexity of Edge, Vertex and Unrestricted VeTteR

Multicut in graphs and digraphs. First we prove that Edge and Vertex Multicut are NP-hard
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in bounded-degree trees, while Unrestricted Vertex Multicut is NP-hard in series-parallel
graphs of bounded degree. Second, we show similar results for digraphs.

In Section 6.1 we show that the Weighted Edge Multicut is Max SNP-hard in binary
tree and fina]]y we prove that Edge, Vortex, and UnresUicted Vortex Multicut are Max
SNP-hard in walls, defined later on, which have degree at most three and unbounded tree-
width. Thus letting the input graph be weighted or have unbounded tree-width makes Edge
Multicut harder.

'theorem 11. Edge Multicut in hillary trees is NP-hard.

Proof. The reduction is from 3-SAT, a well-known NP-complete problem]7] defined
as follows: given a set of c/azzses--diqunctions of three ZlreraZs(Boolean valuables or
their negations)--decide if there exists a truth assignment for the Boolean variables that
simultaneously satisfies all the clauses.

Consider an instance @ of 3-SA]', that is, a set of m clauses Ci, CZ, . . . , Cm on n
variables xl, x2, . . . , xl,, each clause with exactly three literals. Let us construct an instance

of Edge Multicut: a binary tree T and a set of pairs of distinct vertices of r
The tree T is built as follows. For each variable xi, there is a gadget as depicted in

Fig. 4(a). The gadget consists of a binary tree with three vertices: the root and two leaves,
one labeled xi and the other labeled li. For each clause Cj, there is a gadget as depicted
in Fig. 4(b). The gadget consists of a binary tree with five vertices: the root, one internal
vortex and three leaves, each one labeled by one of the literals in C.f. The tree T is built
from these n+ m gadgets by arbitrarily connecting them using new vertices to get a binary
tree. See Fig. 4(c) for an example.

Next, we give the set of pairs of vertices of T in our instance. For each variable xi,
there is a pair with the vertices labeled xi and li in its gadget. For each clause C.f,
there are two pairs in its gadget: one fanned by the two leaves that are siblings and
the other formed by the third leaf(with no sibling leaf) and its sibling internal vortex.
Finally, each vortex labeled ii in the gadget for a clause is paired to the vertex labeled
fi in the gadget for the variable xi, where flc {x; , li }. This ends the construction of the
instance for Edge Multicut. Note that all this can be done in polynomial time in the size
of©

Xi XI X/ X2

(a) (b)
X/. J/ J2 X2 .X3 X3 X/ X2

(c)

Fig. 4.(a) 'lbe gadget for vaiable xi.(b) The gadget for clause CJ = {ir1, l2, x3}.(c) Tree T built for the instance
O =(xlv l2 vi3) A(llv ir2 v x3), al;at is, Cl=lirl, i2, x3) and CZ = (ll, x2, i3}.
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Fig. 5. Possible choices of two edges, the dashed edges, in the gadget for a clause hat leave exactly one leaf(the
marked leaf u) conlnected to die root r.

Lemme 12. ® is satisjiable +f and only Vthere is a solufionjor T ofsize exactly n + 2m

Proof. Assume @ is satisfiable and that A is a satisfyng assignment. Let us present a
solution S for 7' of size exactly /z + 2m. The edge set S consists of two types of edges:

(1) For each variable xf , S contains the edge in the gadget forxf incident to the leaf labeled
xf if xi ;: TRUE in A or to the leaf labeled li if iris FALSE in .4.

(2) For each clause Cj, S contains two distinct edges in the gadget for Cj. These edges
are such that(1) they disconnect the two pairs in the gadget, and(2) the only leaf that
is still connected to the root of the gadget is a leaf with a label ii in Cj such that
ii= TRUE in A.(The four possible choices for the two edges are shown in Fig. 5.)

Clearly such set S has exactly /z + 2m edges. Let us prove that S is in fact a solution
for 7'. It is easy to see that S disconnects the pairs inside the gadget of every clause and
of every variable. The remaining pairs consist of two vertices labeled by a literal .fi, one
in the variable gadget for xi and the other in a clause gadget. If li= TRUE in A, then the
edge in the variable gadget incident to the vertex labeled ii is in S, guaranteeing that the
pair is disconnected. If ii= FAI.SE in A, then the vertex labeled ii in the clause gadget is
disconnected from the root of this gadget and, therefore, from the gadget for xi. Thus S is
a solution for 7', and it has exactly n + 2m edges.

Let us prove the inverse implication. Assume there is a solution S for T with exactly
rz + 2m edges: one per variable and two per clause(one for each of the "digoint '
pairs). More specifically, S has exactly two edges in each clause gadget in one of the
configurations of Fig. 5. Construct a truth assignment A ' by setting xi:= TRUE if the edge
of S in the gadget for xi is incident to the vortex labeled xf and by setting xi ::: FAI.SE
otherwise.

For each clause Cj , there is exactly one leaf u in the gadget for Cj that is connected to
the root r of the gadget. Let ii in {xf, fi} be the label for this leaf. There is a pair formed
by this leaf u and the leaf in the gadget forxi whose label is .fi. In S, there must be an edge

e in the path between these two leaves. Since leaf u is connected to the root r of the gadget
for C.f and alledges in S are either in a variable gadget or in a clause gadget, this edge e
has to be in the variable gadget. Teas means e is the edge incident to the leaf labeled ii in
the gadget for xf. Hence .fi :: TRUE in .4', and the clause is satisfied. Since this holds for
all the clauses, the truth assignment A ' satisfies @, implying that @ is satisfiable. n
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Fig. 6.(a) The new gadget for variable xi .(b) The new gadget for clause Cj= {xl , £2, l3}. Squares indicate new
vertices. Bidirected curved arcs indicate the pairs of vertices which must be disconnected inside each gadget

Note that any solution for r must have at least n +2m edges(there are /z +2m "diqoint '
pairs: one in each variable gadget and two in each clause gadget). Therefore @ is satisfiable

if and only if the optimal solution for 7' has at most /z +2m edges. This completes the proof
of Theorem 1 1. D

'Theorem 13. VeHex Multicut in trees with maximum degree at mosljour is NP-hard.

Proof. Recall that in Vortex Multicut we are not allowed to remove tem)inals. The
reduction is also from 3-SAT, and very similar to the previous one. We just modify the
variable and clause gadgets as shown in Fig. 6, (a) and (b). Each edge of the gadget is
subdivided, with the new nodes taking the role of edges in the previous reduction. To
prevent the vertices of the "original" gadgets(from the previous reduction) being picked
in a vortex multicut solution, we make them terminals as follows: for each root u of an
original gadget we add two new vertices H and w, the edges uto and wu and the pair {zl. u}.

By similar arguments, the fomlula is satisfiable if and only if there is a solution for the
constructed instance of Vertex Multicut of size at most 2n + 4m.[]

Theorem 14. Unrestricted Vortex Mt41ticut in series-parallel grapFts with malimnm degree
at most three is NP-hard.

Proof. We present a reduction flom 3-SAT to Unrestricted Vertex Multicut. The reduction
is a modification of die previous reduction. Consider an instance d) of 3-SAT, that is, a
set of m clauses Ci , C2, . . . , CP,, on rz variables xl , x2, . . . , Jrn, each clause with exactly
three literals. Let us construct an instance of the Unrestricted Vortex Multicut problem: a
series-parallel graph G and a set of pairs of vertices of G.

The graph G is built as follows. For each variable xi, there is a gadget which consists

of an edge with endpoints one labeled xi, the other ll(see Fig. 7(a)). For each clause Cj,
there is a gadget as depicted in Fig. 7(b), with three vertices labeled by the literals in Cj,
as shown in the picture. The graph G is obtained flom the gadgets by connecting them
in parallel, adding new vertices as necessary, to get a series-parallel graph with maximum
degree at most three. See Fig. 7(c) for an example. Vertices in a gadget are called i/zfemaZ
ve#ices. Let s and f be the extremes of the series-parallel graph G, as in Fig. 7(c).
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(a)

(c)

Fig. 7.(a) The gadget for variable xi.(b) The gadget for clause CJ = {xl,r2,x3}.(c) Graph G built far the
instance a =(xlv12 v x3) X(llvx2 v x)), hat is, Ci= {ir1, l2, x3} and C2 = {fl,x2,x3}.

Next, we give the set of pairs of vertices of G in our instance. For each variable xi, there

is a pair with the vertices labeled irj and li in its gadget. For each clause C.f, there are three
pairs, one for each pair of literals in C.f, formed by the two vertices in the clause gadget
labeled by these two literals. Finally, each vertex labeled .fi in a clause gadget is paired to
the vortex labeled fl in the gadget for the variable xi, where .iic {xi, li}. This ends the
construction of the instance for Unrestricted Vortex Multicut. Note that all this can be done
in polynomial time in the size of ©

Lemme IS. (D is satisliabte ilan onl) f there is a solution for G ofsize aactl) n + 2m

Proof. Assume @ is satisfiable and that A is a satisfying assignment. Let us present a
solution S for G of size exactly n + 2m. The vertex set S consists of two types of vertices:

(1)

(2)

For each variable xi, S contains the vortex in the gadget for xi labeled xl if xi= TRUE
in .4 or the vertex labeled li if xi= FAI,sz in A.

For each clause Cj, S contains two distinct veHices in the gadget for Cj. These vertices
are two of the three labeled vertices in the gadget, chosen so that the one left out has a
label ii such that .ti = TRUE.

Clearly such set S has exactly n + 2m vertices. Let us prove that S is in fact a solution
for G. It is easy to see that S disconnects the pairs for the valuables and the pairs for
the clauses. The remaining pairs consist of two vertices labeled by a literal .fi, one in the
variable gadget for xi and the other in a clause gadget. If ii= TRUE in .4, then the vortex

labeled ii in the valuable gadget is in S, guaranteeing that the pair is disconnected. If
ii= FAI.SE in A, then the vortex labeled fi in the clause gadget is disconnected from i
and r, and therefore, from the gadget for xi. Thus S is a solution for G, and it has exactly
rz + 2m vertices.



G. Cdlinescu ef al./Journal QfAlgorithms 48(2003} 333-359 355

Fig. 8. Possible choices of two vertices, the vertices marked by a square, h the gadget for a clause that leave
exactly one intemal labeled vertex connected to the extremes .9 and r.

Let us prove the inverse implication. Assume there is a solution S for G with exactly
n + 2m vertices: one per variable and two per clause(one for each of the "diqoint" pairs).
More specifically, S has exactly one vortex in each variable gadget, and exactly two vertices
in each clause gadget in one of the configurations of Fig. 8. Construct a truth assignment
.4' by setting irj := TRUE if the vortex of S in the gadget for iri is labeled xi and by setting
xi := FAI,SE otherwise.

For each clause CJ, there is exactly one internal labeled vortex u # S which is connected
in G -- S to both f and r. Let .ti in {;ri, ff} be the label of u, and let H be the vortex in the
gadget for li such that the label of H is also ii. In G -- (S \ {u}), there is a path between
H and either i or fln conclusion, in G --(S \ {a}), there is a path between a and u. As
{u, u} is a pair winch must be disconnected by S, it follows that H € S. Hence .fi = TRUE
in A ', and the clause is satisfied. Since this holds for all the clauses, the truth assignment
,4' satisfies @, implying that @ is satisfiable. O

Again note that any solution for G must have at least lz + 2m vertices(in each variable
gadget, at least one intemal vortex must be removed and, in each clause gadget, at least
two intemal vertices must be removed, for a total of at least /z + 2m vertices). Therefore
O is satisfiable if and only if the optimal solution for G has at most n + 2m vertices. This
completes the proof of Theorem 14. u

A bfdfrecfed free is a digraph which has as underlying graph a tree and two opposite
directed edges for each edge in its underlying graph. Similarly, a bfdfrecfed series'para//e/
digraph has as underlying graph a series-parallel graph, and two opposite directed edges
for each edge in its underlying graph. Bidirected trees have tree-width one and bidirected
series-parallel digraphs have tree-width at most two, by Proposition 2. I in [14]. By a simp]e
modification of the proofs shown above we can prove the following.

Theorem 16. Directed Edge, Vortex, and Ultresfricfed Vortex-Muiticut are NP-ha7xi
respecthe!] in bMirected trees with l?!aximum in and out degree three, bidirecfed frees with
maximum in and out degree four and bidtrected series-parctllel digraphs with maximum in
and out degree three.

The modification consists of using, in each of the reductions, a digraph whose
underlying graph is exactly the one described in the conesponding undirected case.
Besides, the digraph has two opposite directed edges for each edge in its underlying graph.
Note that any directed path in this digraph conesponds to a path in its underlying graph and
vice-versa. For the edge version, we also note that any feasible solution can be converted
in a feasible solution with edges directed away Oom the root, without increasing the size
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of the solution, by simply replacing any edge directed towards the root by the parallel edge
directed away from the root. Thus the reductions work exactly as in the undirected case.

6. }. Ma)c SNP- hardness results

The next theorem, combined with the celebrated result of Arora et al.[1], shows that a
PTAS cannot be obtained for Weighted Edge Multicut in binary trees.

Theorem 17. Weighted Edge Multicut is Max SNP-hard in binary trees.

Proof. Recall that Unweighted Edge Multicut in stars is equivalent, including performance
ratio, to the Max SNP-hard problem Minimum Vertex Cover. Let us reduce Edge Multicut
in stars to Weighted Edge Multicut in binary trees. From an instance of the Unweighted
Edge Multicut restricted to stars, we construct an instance of the Weighted Edge Multicut
restricted to binary trees in the following way: for each leaf of the star S, there is a
corresponding leaf in the binary tree T. The pairs are the same(we may assume there is no
pair involving the root of the star). Wb connect the leaves of T arbitrarily into a binary tree,
giving the edges in r incident to the leaves weight one and all other edges of r weight
2n + 1, wh;ere n is the number of leaves in the star S(which is the same as the number of

leaves in the tree 7 we construct). Any solution within twice the optimum for the Weighted
Edge Multicut instance we constructed will contain only edges of T incident to the leaves,
since any other edge is too heavy. Then it is easy to see that any optimal solution for the
Weighted Edge Multicut instance we constructed corresponds to an optimal solution for
the original Unweighted Multicut star instance, and vice-versa. Also approximability is
preserved by this reduction.[]

A wa// oP hefghr h consists of h + lvertex-diqoint paths Ro, . . . , Rh, which we call
mws, and h + lvertex disjoint paths Zo,. . . , Z,h, which we call co/omni. A wall of height
six is depicted in Fig. 9(a). The formal definition is as follows. Eachrow is a path of 2h +2
vertices. Each column, a path with 2h + lvertices. Column r contains the(2r + I)st and
the(2r + 2)nd vertices of all rows, as well as the edge between them. For i< h and even,
each Z,, contains an edge between the(2r + 2)nd vortex of Ri and the(2r + 2)nd vortex
of Ri+i . For ! < h and odd, each Z,, contains an edge between the(2r+ I)st vortex of Ri
and the(2r + I)st vortex of Rift. These are all the edges of the wall.

We prove that Edge, Vortex, and Umestricted Vortex Multicut are Max SNP-hard in
walls. This means, by Arora et a].[1], that there is a constant ( > 0 such that the existence
of a polynomial-time approximation algorithm for any of the three versions of Multicut
with perfonnance ratio at most 1+ € implies that P = NP.

As in]21], we use the concept of I,-redux/lon, which is a special kind of reduction that
preserves approximability. Let A and 1? be two optimization problems. We say A Z,-reduces
to B if there are two polynomial-time algorithms .f and g, and positive constants ct and P,
such that for each instance / of .4,

(1) algorithm .f produces an instance /' = .f(/) of B, such that the optima of / and /', of
costs denoted opt.4 (/) and opts (/'), respectively, satisfy opts (/') < ce . opts (/), and
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(a)

X2

b)

Fig. 9.(a) A wall of heigllt six. The dark edges indicate row Ri and column I,r.(b) The labels are given according
[o the fonnula @ = (xl v i2 v x3)(il v x2 v i3).

(2) given any feasible solution of /' with cost c ', algorithm g produces a solution of / with
cost c such that lc opts(/)I < P . lc ' -- opts(/')I.

Theorem 18. Edge, Verfex, and Unrestricted VeNex Multicu! are Ajax SNP-hard in walls.

Proof. The reduction is from the well-known Max SNP-hard problem MAX 3-SA:1']21].
We only show the reduction for Unrestricted Vortex Multicut. The other two reductions are
similar.

The first part of the Z,-reduction is the polynomial-time algorithm ./' and the constant ct.
Given any instance @ of MAX 3-SA]', .f produces an instance W, C of Unrestricted Vertex
Multicut such that W is a wall. Also, the cost of the optimum of W.C in Unrestricted
Vertex Multicut, denoted by OPtMC(W, C), is at most cr times the cost of the optimum of @
in MAX 3-SAT, denoted by OPtSAX(©), i.e., OPtMC(W, C) < a . OPtSAX (O).

Consider an instance @ of MAX 3-SA]', that is, a collection of m clauses on /z variables

XI, . . . , Xn, each consisting of exactly three literals. Let us describe Lhe corresponding
instance for Unrestricted Vertex Multicut. The wally is a wall of height 3m. To describe
the collection C of pairs of vertices of W, consider the last row of W partitioned into m
same length paths, each one associated to one of the clauses of @. Each path has length 6.
Label the 2nd, 4th and 6th vertices in the ./th path each with one of the literals in the jth
clause. See Fig. 9(b) for an example. For each pair of vertices u, u in IV, z{ labeled xi and
u labeled li. include into C the pair (u, u}. For each clause, include three pairs: the three
pairs formed by each pair of vertices labeled by its three literals. This ends the description
of the instance of Unrestricted Vertex Multicut.

First note that W and C can be obtained in polynomial time in the size of @

Lemma 19. OPtMC(W, C) < 6 . OPtsaT(@)

Prooll The set S of all labeled vertices of W is clearly a solution of IJnrestricted Vertex
Multicut for W and C. Thus OPtMC(Vlr, (:) < ISI = 3m. On the other hand, optsnr(a) >
m/2 because either an assignment of TRUE for all variables in @ satisfies at least half

Lo L/ 4 Z ',

             
               
             
               
             
?              

                       
                         
                       



358 G. Cdlinescu et ai./Jounla! @Atgorithms 48(2003) 333-359

of the clauses of @ or its negation satisfies at least half of the clauses of @. But then
OPtMC(W,C) € 3m = 6 .m/2 < 6 OPtsAr(@). O

This finishes the erst paH of the Z,-reduction, since we can take cr = 6. The second
part of the I,-reduction is the constant P and the algorithm g. Given a vertex set S of W
with f vertices, g produces in polynomial time a truth assignment for O which satisfies
f clauses, where r is such that lr -- OPtsAr(@)I < Plf OPtMC(W, C)I. We shall see that
# = I suffices.

First note that OPtMC(W, C) < 3m -- OPtSAT(@). To verify this, it is enough to present
a solution S' for W with IS'l = 3m -- OPtsAr(O). Consider an assignment for @ which
satisfies OPtSAT(@) clauses of © . For each satisfied clause, include into S' two of its literals,
leaving out a literal which is TRUE. For each nonsatisfied clause, include into S' its three
literals. Clearly S' is a solution for W and has 3m -- OPtSAT(@)(one less vcHcx per satisfied
clause). Now, note that

I£ -- OPtMC(H ', C) 1 = J -- OPtMC(W, C) a: S -- (3m -- OPtSAT(O))

= (s -- 3m) + OPtSAr(@) = OPtsAr(O) -- (3m -- J).

Let us present an assignment which satisfies at least 3m -- i clauses. If s a: 3m then any
assignment does it. If s < 3m then there is a row RT of W with no vertex in S(because
W contains 3m + lvertex-diqoint rows). Set .h to TRUE if and only if there is a path in
W -- S from a vortex labeled .fi to a vortex in row RT. Such assignment is well-defined
since a vortex labeled xi and a vortex labeled li cannot be both connected to RT in W -- S,
or S would not be a solution(because these two vertices form a pair).

Let us prove that this assignment satishes at least 3m -- s clauses. For this, we need
some notation. Associate to each clause CJ a subgraph IV/ of W induced by all vertices
appearing in columns Z,S.f 3, Z'3j-2, LSj-l . Note that the graphs Wj are vortex diqoint.

In each Wj, we have the three vertices labeled by the literals in Cj. Recall that each two
of these three vertices fomta pair. One can verify that there must be at least two vertices
of S in Wj, just because of these three pairs. Thus there are at least 3m -- i subgraphs
Wj which have exactly two vertices of S. But note that, if WJ has only two vertices of S,
then at least one of the labeled vertices in Wj is connected to RT. 'lllis means there is at

[east one ]itera] in Cj which is assigned TRUE. Therefore this assignment satisfies at ]east
3m -- f clauses and therefore

£ - OPtiC(W, C)I a: r OPtSAT(@) ,

where fis the number of clauses in @ satisfied by the described assignment. This completes
the proof of the second part of the I,-reduction. o
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Abstract

The primal-dual scheme has been used to provide approximation algorithms for many

problems. Goemans and Williamson gave a (2 I )-approximation for the Prize-

Collecting Steiner Tree Problem that runs in O(n3 log n) time--it applies the primal-

dual scheme once for each of the n vertices of the graph. We present a primal-dual

algorithm that runs in O(n2 loan), as it applies this scheme only once, and achieves

the slightly better ratio of (2 -- 2 ). We also present a correct ratio and analysis of an

algorithm by Johnson, Minko# and Phillips that uses the primal-dual scheme only once.

Tight examples are given for each of the algorithms.

Key words
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I Introduction

The Prize-Collecting Steiner Tree Problem is an extension of the Steiner 'Hee Problem where each

vertex left out of the tree pays a penalty. The problem has applications in network design. Also,

algorithms for it have been used for approximating other problems j1, 41.

The best approximation algorithms known for the Prize-Collecting Steiner Tree Problem are

based on the primal-dual scheme. This scheme has been used to provide exact and approximation

algorithms for many problems. Di8erent linear formulation for a problem may lead to diKerent

algorithms. In this paper we present one such formulation for the Prize-Collecting Steiner bee

Problem and use it in the design of a new approximation algorithm.

Consider a graph G = (y. -E), a function c from -E into (QZ and a function a ' from y into (Ql>.

For any subset /' of E and any subset W of y, let c(F) := :'.cp c. and n-(W) := :1'.cw a«. The

Prize-Collecting Steiner Tree Problem (Pest) consists of the following: given G, c, and n,

find a tree T in G such that

c(-Er) + r(y \ Vr) is minimum.

(y# and E# denote the vertex and edge sets of a graph -H respectively.) The rooted variant of the

problem requires T to contain a given root vertex.

Goemans and Williamson l5, 61 used a primal-dual scheme to derive a (2 -- I )-approximation,

where n := IVI, for the rooted Past. 'laying all possible choices for the root, they obtained a

(2 -- I )-approximation for the unrooted Post. The resulting algorithm runs in time O(n3 log n).

Johnson, Minko# and Phillips l71 proposed a modification of the algorithm that permits running

the primal-dual scheme only once, resulting in a running-time of O(n2 log n). They claimed the

modification achieves the same approximation ratio that the original algorithm for the unrooted

PcsT. Unfortunately, their analysis uses a lower bound that does not necessarily hold. The

algorithm has in fact a ratio of 2. The analysis that proves that, shown here, is very tight and is

not a straightforward modification of their analysis. Cole et al. l21 stated the correct approximation

ratio for Johnson, Minkoff and Phillips' algorithm, but did not present a complete proof.

3



This paper contains two results. First, we present a proof that Johnson, Minkoff and Phillips'

algorithm is a 2-approximation and an example which assures that this analysis is tight. Second, we

propose a modification of Goemans and Williamson's algorithm for the Pest based on a somewhat

di#erent linear program. We show that the new algorithm achieves a ratio of 2 -- f. It requires

only one run of the primal-dual scheme, resulting in a running time of O(n2logn). Also, we

present a family of graphs which proves that the analysis is tight. Though the improvement on

the approximation ratio is small, the new algorithm seems interesting and might be useful for the

design of a better algorithm for PcsT. The behavior of the new algorithm is not far from the

behaviour of Johnson, Minko# and Phillips' algorithm. It somehow stops before that one does,

and, for this, achieves a better ratio. The artifact that makes it stop earlier is subtle and is not

obviously polynomially testable.

The paper is organized as follows. The next section introduces some notation and shows some

preliminaries. Section 3 has the description of the new algorithm, while its analysis is given in

Section 4. Section 5 discusses Johnson, MinkoR and Phillips' algorithm and a variant of it for the

rooted Pest. The pruning phase is briefly discussed in Section 6.

2 Notation and preliminaries

For any collection f of subsets of y and any subset X of y, let IX := V\X, Zx := {.L c f : .L f X}

and Zx := {-L C f : .L ] X}. When X = Vr or X = Vr, we write T or T instead. For any e

in -D, let Z(e) := {-L C f : e C 8a.L}, where dc.L stands for the set of edges of G with one end

in -L and the other in -t. For any function Z/ from f into (Qz and any subcollection .A4 of f, let

3/(.M) := EL.m Z/(.L).

We say that y respects a function c defined on .E (relatively to f) if

Z/(f(e)) $ c. for each e in .E. (1)

An edge e is tight for Z/ if equality holds in (1). The inequality in (1) is the usual restriction on

4



edge e: the sum of g/a for all .R in f that e "crosses" does not exceed c.

We say g/ respects a function n defined on V (relatively to f) if

z/(fl) +Z/(fr) 5; «-(.L) foreach Z; in f

and g/(fz;)+Z/(fl) $ ,(It) foreach.Linz.

(2)

(3)

An element .L of f is tight for y if equality holds in (2). If equality holds in (3), we say It is tight

for 3/. The inequality in (2) is slightly di8erent than the usual one for PcsT. The usual one says

that the sum of Z/X for all R in f contained in .L does not exceed the sum of the penalties of all

elements in f. In (2), we include in the sum the Z/a for supersets R of It as well. This has the erect

of making the algorithm stop earlier. The inequality in (3) is the same as in (2) for the complement

of a set in f.

An edge is internal to a partition ? of y if both of its ends are in the same element of P. All

other edges are external to P. For any external edge, there are two elements of P containing its

ends. Wb call these two elements the extremes of the edge in P

A collection f of subsets of V ' is laminar if, for any two elements .LI and -L2 of f, either

.z)I n .L2 :: a or .Lt g .L2 or .Li 2 .L2. The collection of maximal elements of a laminar collection f

will be denoted by f*. So, f* is a disjoint collection.

We say a forest F ' in G is connected in a subset .L of V ' if .FIVE n .LI is connected. For any

laminar collection -S of subsets of y, we say a tree T of G has no bridges in S if 1(5rSI # I

(therefore, either 8rS = © or 1.5rSI ? 2) for all S in .S.

We denote by opt(PcsT(G, c, a)) the minimum value of the expression c(E7.) + r(VT) when 7'

is a tree in G.

The following lower bound serves as motivation for the new algorithm.

I.emma 'Z.L Given cc connected subgraph T of G, Q laminar collection f of subsets of V, and Q

fl fiction U h'om f into Q.z that respects c and n,

g/(f) $ c(-Er) + «'(VT)
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Proof. If rr = a then let .S := V, else let .S be a minimal set in rr. Now, consider the partition

of f into the following three sets: B := {-L C f : dr.L # 0}, C := fS U fS, and Z) := fS\VP. We

havethat

y(B) = Ez.Bz/z $ Ez,:Bl8rflyz = E..Z,y(f(e))

g/(C) = y(£s) + 3/(£s) $ «'(1g) ,

and Z/(D) = EL.D*3/(,CL) $ EZ,;D."(-L) $ «'(S\VT)

c(.Er) ,

The gemma follows from the three inequalities

Corollary 2.2 For anZ/ /aminar coZ/action f o/ subsets o/ }'' and ang/ Junction y y om £ £7zfo (Q>

that respects c and v,

Z/(£) $ OPt(PCST(G, c, «'))

The proposed algorithm relies on Corollary 2.2. The above lower bound on opt(Post(G, c, a-))

can also be obtained from the following linear program; find vectors # and z that

minimize )l:.CZCeZe + : C a-(-L)ZL

subject to >1:.c.iasz. +ll:Laszz. +)l-,Lalzl ? I for each S in 7Z, ,..

Ze 2 0 for each e in E,

z,. ? O for each .L in 7?. ,

where 7Z denotes the collection of all subsets of V '. Given a solution T for PcsT(G, c, n '), set z. := I

if e € .Er and Ze := 0 otherwise. Set zl := I if Z) = y \ Vr and zl := 0 otherwise. The pair (f,z)

is a feasible solution for (4) and its value is c(.E}) + a(y \ VT). Thus this program is a relaxation

of Post(G, c, r). lts dual consists of: find vector Z/ that

maximize Z/(7Z)

subjectto Z/(7Z(e)) $ c. foreacheinE,

Z/(7ZL) + y(7ZE) $ «-(.Z;) for each -L in 7Z,

gs ? 0 for each S in 7?.

IS)
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Corollary 2.2 is stronger in a sense than the tradicional argument that any feasible solution for (5)

gives a lower bound on opt(PcsT(G,c,vr)). Let f and 3/ be as in Corollary 2.2. Set Z/Z := 0 for

each -L in R \ £. One has to prove that such a 3/ is indeed a feasible solution to infer Clorollary 2.2

without Lemma 2.1. (The proof of this fact is indeed very similar to the proof of Lemme 2.1.)

3 Unrooted growth clustering algorithm

Qur algorithm, which we call GW-uNnooTEn-cKowTn, receives G, c, n and returns a tree T in

/'Y ... .I. J.I. . I

c(-Er) + «(i;) $ (2 1}) opt(PCST(G, c, a))

The main di6erence between the new algorithm and Goemans and Williamson's algorithm is that

the complement of a set with nonnull Z/ can become tight. When this happens, the algorithm stops.

During most of the course of the algorithm, it behaves exactly as Johnson, Minkoff and Phillips'

algorithm (though more conditions are being tested). By this, we mean that the dual variables

grow in the same way, except possibly at the end, and the edges that enter the forest are the same,

except for the last one. Indeed, if one looks at the inequalities in (1), (2) and (3), the first one is

the same, in the second one, the second, di#erent term, is zero except at the very end, when there

are only two components left, and the third one is the di6erent one, but once it becomes tight, the

algorithm stops because, after that, there is at most one component which is not contained in a

tight set. Next we describe the algorithm in details.

Each iteration of the algorithm starts with a spanning forest .F in G, a laminar collection f of

subsets of V such that U f = y, a subcollection .S of f, a subcollection .A,4 of f, and a funct

from f into (Qz such that the following invariants hold:

ion Z/

jil) all edges of -F are internal to f;

(i2) F is connected in each element of f;

(i3) y respects c and n- relatively to f;

7



(i4) each edge of /' is tight for g/;

(i5) each element of .S is tight for 3/;

(i6) 1.Xll $ I and, if M € .M, then M is tight for 3/;

(i7) for any tree T in (;, if T is connected in each element of f and has no bri

E..Z, y(f(e))+ g/(fr) + g/(£7') 5;(2 - {)Z/(£)(6)

The first iteration starts with .F = (y. QI), f = {lu} : u C V'}, .S = .M = a, and g/ = 0. Each

iteration consists of the following:

Case l: lf* \ .SI > I and .A,4 = 0.

Let € be the largest number in (Qz such that the function 3/' defined by

, I z/z, +c, if lc f*\ S
g/£

dees in .S,th

otherwiseg/L ,

Gll

Subcase IA: some edge e external to f* is tight for 3/'

Let -Li and .L2 be the extremes of e in f*. Set yf:ul, := 0 and start a new

iteration with F + e, f U {.Lt U .L2}, S, 0, y ' in the roles of F, f, .S, .A,4, g/

respectively.

Subcase IB: some element .L of f* \ S is tight for 3/'

Start a new iteration with .F, f, .S U {-L}, 0, Z/' in

respectively.

Subcase [C: for some M in f, the set ]W is tight for Z/'

Start a new iteration with F, f, .S, {M}, Z/' in the roles of F ', f, .S, .A4, Z/

respectively.

respects c and a-S C

the roles of F ' £ Se



Case 2: lf* \ 8 I or M # 0

If .A4 # 0, let M be the on]y e]ement of .A,4i e]se, ]et ]l/ be the only element of f* \ .S.

In either case, call subalgorithm GW-pnuNiNC with arguments .F n .A/, ZM and .SW

The subalgorithm will return a subcollection Z of .Sm. Return T := (-F n M) -- UZ

and stop.

Subalgorithm GW-PRUNING receives a tree To, a laminar collection f of subsets of Vzo, and a

subcollection S of f. Each iteration begins with a subcollection Z of .S such that T := Zo -- U .Z

is a tree connected in each element of ,C. The first iteration begins with Z = a.

Case A: ldrSI = I for some S in .S.

Start a new iteration with Z U {.S} in place of Z

Case B: l8rSI # I for each S in .S.

Return Z and stop

The subcollection Z of .S that subalgorithm GW-pnuNiNC returns is such that the forest

To -- U Z is a tree, is connected in each element of f, and has no bridges in .S.

4 Analysis of the algorithm

Note that, by the choice of e in Case 1, one of the three subcases apply. At the beginning of each

iteration of the GW-uNKooTzn-cnowTn algorithm, invariants (il) to (i6) hold trivially. Let us

verify that invariant (i7) holds as well. It is clear that it holds at the beginning of the hst iteration,

because g/z, = 0 for all -L in f. Now assume that invariant (i7) holds at the beginning of an iteration

where Subcase IA occurs. Let T be a tree in G, connected in each element of f ' := f U {-Li u .Z;2},

with no bridges in .S. We must show that (6) holds with f ' and Z/' in the roles of f and Z/. Since

yz,:uz,, :: 0, this is equivalent to

E..Z, g/'(f(e)) + g/'(fr) + g/'(fr) $ (2 - {) z/'(,C) . (7)

9



If c = 0 then (7) is true because it is identical to (6). Now suppose E > 0 and let .4 := f* \ S

Since 3/' diners from Z/ only in .4, this is equivalent to

}....z, 1.4(e)1 + 1.4r1 + 1.4r $ (2 (8)

Let Jv ' := {.L C ,C* : dr.L = 0}. Since T is connected, .4P U Hr = ./v n .4. As >:.CEr 1.4(e)

)ll:LC.,4 ldr-LI and (2 -- i) I.XI ? 2 XI -- 2, the inequality (8) will follow from

}'z,c,{ 1(5rl,I + I.v n .xl $ 21.xl 2 (9)

If ,4 f A/, then (9) holds because }:zc,{ ldr-LI + la/ n .XI = 1.XI $ 21.al -- 2, since I.XI > I in Case I.

Now assume X gl .V and consider the graph -H := (f*, -E '), where -B ' is the set of edges of 7' external

to f* and each element of .E ' is incident to its two extremes in f*. Since T is connected in each

element of f, this graph is a forest. It has one nontrivial component and I./V'l trivial components.

Hence, l-E ' :: lf* -- I -- I.Arl and.u

:> E , , . larZI }l: , - ,,. ldr.Z)1 -- }l: , , ,.« .. 1.51«£l

2l-E'l - E , ,,.,«. l8r.LI

2lC* - 2 21.VI EL.c.n.s l8rZI

2lz* - 2 - 2livl - 21(z* n s) \ .vl

21,c*l- 2 21.x/1 - 2lz* n.sl +21./Vns

2lz* \ .sl - 2 - 21.v \ .s

21.xl 2 - 1.v n ,41 ,

<

<

(10)

where (lO) holds because T has no bridges in S. We have thus shown that invariant (i7) remains

valid after an occurrence of Subcase IA. The very same proof applies in Subcases IB and IC.

Having proved invariants (il) to (i7), we are ready to analyze the last iteration. By virtue of

invariant (i4), the tree T produced by the algorithm in Case 2 is such that

c(.Er) E..Z, y(f(e) )

10



If .M # @, let .Y := {li7:} U .Z*; else, let ,Y := (f* n .S) U .Z*. In either case, the collection .Y is

disjoint. Every element of .Y is tight for y, according to invariants (i5) and (i6). Hence

«'(VT) = Ex.,r «-(X)

E.*.. (v(,c") + z/(zx))

Ex.,r 3/(£x) + Ex.,r Z/(£X)

$ 3/(£r) +Ex:,r g/(£R-) (11)

$ 3/(£r)+#(£r). (12)

Inequality (11) holds since every element of ,Y is disjoint from Vr. In order to explain inequality (12),

we reason as follows. First, observe that }} g; X and therefore f.T g; Cr for every X in .Y. Next

fX- n fXr = G] for any two di8erent elements X and X ' of .Y, since ,Y is disjoint.

The tree T is connected in each element f of f. Indeed, for any z and Z/ in -L n vr, the path from

f to g/ in T is the same as in /' and uses only vertices of .L because of invariant (i2). In addition,

subalgorithm GW-pnuNINC makes sure T has no bridges in -S. Hence, invariant (i7) holds for T

and therefore

c(.Er) + n'(:i%) $ )11:..Z, y(f(e)) + Z/(fF) + 3/(fr) $ (2 - i) 3/(f)

Finally, by virtue of invariant (i3) and Corollary 2.2,

c(ET) + «'(:i$) $ (2 - i) OPt(PCST(G, c, «'))

(in fact, as in Goemans and Williamson's analysis, one can easily prove the stronger statement

c(-Er) + 2 a(VT) $ (2 -- 2 ) opt(PcsT(G, c, n)).) This completes the proof of the following theorem:

Theorem 4.1 .4Zgor thm GW-uNnooTnD-GKowTn {s a (2 -- ;i)-approzfmaf on /or PcsT(G, c, a ').

The approximation ratio stated in Theorem 4.1 is tight, as the example in Figure I shows. For

the graph in this example, the algorithm increases yl to I for each singleton set .L. At this point,

all the dark edges in Figure 1(a) become tight and enter the forest F ' one by one (in an arbitrary

order). When all of them enter F ', the algorithm stops (the GW-pKUNiNC algorithm does nothing

11



in this example) and outputs the tree induced by the dark edges. The optimal tree, on the other

hand, consists only of the dark edge depicted in Figure 1(b). The ratio between the costs of these

two solutions approaches 2 -- f as c tends to zero.

Figure 1: (a) The dark edges indicate the solution produced by the GW-uNnooTZD-aKowTn

algorithm, a solution of cost 2(n -- I). (b) The only dark edge indicates the optimal solution, whose

cost is n + e.

Algorithm GW-uNnooTnD-GnowTn can be implemented to run in O(n2 logo) time. The

details of such implementation are analogous to those of Goemans and Williamson's algorithm for

the rooted PcsT. There are a few diaerences, though, that are worth mentioning. One should

carry, for each set f in f, two values that we call At(.L) and A.2(.L), defined as

At(.L) := n(L) g/(fz) --Z/(,Cr) and A2(-t) := n(It) - y(fz ') Z/(fl).

In other words, each set .L in f keeps the current slack in inequalities (2) and (3). During the

algorithm, one has to keep such values up-dated. Using the notation in the algorithm, in each

iteration, if Subcase IA occurs, one has to decrease Ai(-L) by c, for every maximal active set .L

in f, and one has to decrease A2(-Z;) by tc, where t is the number of maximal active sets in the

iteration, ror every f in f. Additionally, one has to set Ai(.Lt U -L2) and A2(.[i U -L2). Rough]y,

Ai(Zi U .L2) := Ai(-Li) + Ai(-L2) and AU(.Li U -L2) := (A2(-Li) + A2(-L2) -- Ai(Zi) At(-L2))/2.

A few adjustments are needed in Ai(-Lt U -L2) when the current forest has few (two or three)

compontents. The overall time required for these calculations is O(n) per iteration, since f has

O(n) sets. Therefore, it is indeed possib]e to get an O(n2 ]ogn) imp]ementation, as in the original

Goemans and Williamson's algorithm.

12



Also, the ideas proposed by Klein l81 and by Gabow, Goemans and Williamson l31 can be used,

resulting in implementations with running time O(nviE ]og n) and O(n(n+va]6ii)) , respectively,

where m := 1.E . Finally, using the technique of Cole et al. l21, one can get a (2 -- 2 + I )-

approximation that runs in O((n + m) logo n)-time.

5 Previous unrooted growth clustering algorithms

Johnson, Minkofj ' and Phillips l71 suggested a modification of Goemans and Williamson's algorithm,

which diners from the one presented above only at the definition of "g/ respects n '". For their

algorithm, which we call JMP, (2) and (3) are replaced by

g/(fl) $ «-(Z) for each -L in f. (13)

Set f is said to be tight if equality holds in (13). Of course, JMP has no Subcase IC and no set .M

Algorithm JMP is based on the following LP: find vectors z and z that

minimize >:.CE Cef. + )I'Z,CR a'(.L)zZ

subject to >1:.€JCSZe + >-.Z,;2SzZ 2 I for each S in 7Z

Ze ? 0 for each e in .E,

zl 2 0 for each f in R

where, remember, IZ denotes the collection of all subsets of y. The dual of this

find vector y that

linear program is

(14)

maximize y(7Z)

subject to Z/(7Z(e)) $ c. for each e in .E,

3/('RZ) $ r(.[) for each .L in 7Z,

Z/s ? 0 for each .S in 7Z .

Unfortunately, (14) is not a relaxation of PcsT, so its optimal value cannot be used as a lower bound

for opt(Post(G, c, n ')). Algorithm JMP finds a feasible solution for (15) (see Minkoff's thesis l91

for the analysis). But the value of this feasible solution might be larger than opt(Post(G, c, n))

(15)
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as the example in Figure 2 shows. Indeed this example shows that the approximation ratio of the

JMP algorithm can be arbitrarily close to 2, independent of the size of the graph. This contradicts

Theorem 3.2 in l71.

0) (c) ,.e

ol

0
l+cl+c

Figure 2: (a) An instance of the Post. (b) The solution produced by the JMP algorithm when

c > 0. lts cost is 4. (c) The optimal solution, consisting of only vertex u, has cost 2 + f. (d) A

similar instance of arbitrary size.

MinkoR [9] proposed a modification of the JMP algorithm, which we denote by MINKOF'F, for

the rooted POST. The resulting algorithm is a 2-approximation, and not a (2 -- I )-approximation

as claimed. The example in Figure 2 with u as root contradicts Theorem 2.6 in l91.

In fact, the analysis which shows that these two algorithms are 2-approximations is not straight-

forward: there are some non-trivial technical details. See the appendix for a precise description

and a sketch of the analysis of the JMP algorithm.

6 Strong pruning

A dynamic programming approach can solve the Past on trees in polynomial time. The GW-

PRUNiNG algorithm can be replaced by this dynamic programming, which is usually called "strong

pruning" . Johnson, Minkoff and Phillips l71 and Minkoff l91 have already suggested this procedure.

Consider the modified JMP and MINKOFF algorithms that use strong pruning. It is easy to

see that these are 2-approximations for the uprooted and rooted PcsT: they produce trees at least

as good as the ones produced by their variants with the ordinary pruning. However, the example

14



shown in Figure 2 does not apply for these modified algorithms. The worst example we have for

them is depicted in Figure I and the ratio achieved is 2 -- i. We conjecture that the JMP and

MINKOFF algorithms with strong pruning achieve a ratio better than 2. The approximation ratio of

the GW-upRooTED-GRowTh algorithm does not improve by using strong pruning, as the example

in Figure I shows.
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A Johnson, Minkoff and Phillips' algorithm

We describe the JMP algorithm and show that it is a 2-approximation for the PcsT. The algorithm

receives G, c, r and returns a tree T in G such that c(ET) + a(VT) $ 2opt(PcsT(G, c, a-)). Each

iteration starts with a spanning forest /' in G, a laminar collection f of subsets of y with U f = V ',

a subcollection .S of f, and a function Z/ from f into Qz such that invariants (il) up to (i5) hold,

(i6) does not apply, and, in the place of (i7), we have the following:

(i7') for any vertex u and any tree T in G, if T is connected in each -L in f and has no bridges

in 8',then

E..Z, g/(f(e)) + Z/(£7') $ 2Z/(f \ f«) . (16)

(We write f« and f" instead of ,C{.} and ft"} respectively.) The first iteration starts with F '

(y. g), f = {lu} : u C V'}, .S = a, and Z/ = 0. Each iteration consists of the following

Case l: If ' \ -SI > I

Let f be the largest number in (Qz such that the function 3/' defined by

vl ., .I yz+e: if -LcZ'\.S
1 3/L , otherwise

16



respects c and a

Subcase IA: some edge e external to f* is tight for 3/'

Let Z)I and .Z;2 be the extremes of e in f*. Set 3/z,:uz,, := 0 and start a new

iteration with .F+e, fU {Li U.L2}, -S, y ' in the roles of .F, f, .S, Z/ respectively.

Subcase IB: some element f of f* \ S is tight for y '

Start a new iteration with .F, f, .S U {.L}, g/' in the roles of F ', f, .S, Z/

respectively.

Case 2: lf* \ .SI = I

Let M be the only element of f* \ S. Call subalgorithm GW-pnuNiNC with arguments

F n M, ,Cm, and .Sm. The subalgorithm returns a subcollection Z of .Sm. Return

r := (/' n M) U .Z and stop.

The following lemme and its corollary establish the correct lower bound on opt(PcsT(G, c, n ')).

gemma A.I Gruen a connected subgraph T o/ G, a laminar colZecffon ,C o/ subsets o/ V ' and a

/unctfon g/ .Pom f ilzfo (Q that respects c and a, z/(f \ rr) $ c(.Er) + n(i;)

Proof. The proof is analogous to the proof of Lemme 2.1, so we omit it. H

Corollary A.2 For anZ/ optima/ solution T* o/ PcsT(G, c, a '), y(f \ rr-) $ opt(PEST(G, c, n '))

The analysis of JMP diners from the one for the GW-uNRooTED-GRowTh algorithm in two

points. First, while for the GW-uNnooTEn-GnowTn we had to prove (8), for the JMP algorithm

we have to prove

E:..Z,1.4(e)l+l.4r $ 2la\.&l $ 2lXI -21.hl. (i7)

17



But, since

E..r, 1,4(e)I + laPI $ F.;Z, 1.4(e)I + I.X71 + 1.4rl

$ FIJI -2

5; #l.41 -21.x.I,

to show (17), it is enough to prove (9). Second, at the end .of Case 2, c(Er) $ }1:..Z, 3/(f(e)),

n-(VT) $ Z/(£7) and, if T* is an arbitrary optimjLI solution of Pcsv(G, c, a ') and u is an arbitrary

vertex in 7'*, then

c(ET) + ''(i;) $ 1.cz,. g/(f(e)) + 3/(fF)

$ 21/(z\r«)

$ 21/(z\z7'.)

$ 2bpt(Past(G,c,r))

This concludes the proof of the following theoreih.

Theorem A.3 The JMP aZgorffhm is a 2-apprjlzfmaf an /or the Post

In the analysis of the aw-uNnooTno-allow'fn algorithm, the --2 in (9) corresponds to the --f

in the approximation ratio. In the analysis of the IJMP algorithm, the --2 corresponds to the --21.4u

term in (17).

A similar theorem holds for the MiNKOFP algorithm l01.

Theorem. A.4 The MiNKOFF aZgorfthm is a 2-bpproa;fmatfon /or the rooted PcsT.

IS



JOURNAL. OF ALCORnHMS 28, 105-124 (1998)
AnnCLE NO. AL980931

A Better Approximation Ratio for the Minimum Size
k-Edge-Connected Spanning Subgraph Problem*

Cristina G. Fernandest

Department of Computer Science, Uniuersidade de Sao Paulo, Rua do Mateo, 1010,
05508-900 Sao Paulo, Brazil

Received October 29, 1996; revised January 30, 1998

Consider the minimum size k-edge-connected spanning subgraph problem: given
a positive integer k and a k-edge-connected graph G, find a k-edge-connected
spanning subgraph of G with the minimum number of edges. This problem is
known to be NP-complete. Khuller and Raghavachari presented the first algorithm
which, for all k, achieves a performance ratio smaller than a constant which is less
than two. They proved an upper bound of 1.85 for the performance ratio of their
algorithm. Currently, the best known performance ratio for the problem is I +
2/(k + 1), achieved by a slower algorithm of Cheriyan and Thurimella. In this
article, we improve Khuller and Raghavachari's analysis, proving that the perfor-
mance ratio of their algorithm is smaller than 1.7 for large enough k, and that it is
at most 1.75 for all k. Second, we show that the minimum size 2-edge-connected
spanning subgraph problem is MAXI SNP-hard. © 1998 Academic Press

1.INTRODUCTION

The study of connectivity in graph theory has important applications in
the areas of network reliability and network design. Several approximation
algorithms were developed for the problem of finding subgraphs satisfying
certain connectivity requirements [2, 4, 6, 7, 8, 9, 12, 13, 16, 18]. ]n this
article, we concentrate on the minimum size k-edge-connected spanning
subgraph problem: given a positive integer k and given a k-edge-
connected graph G, find a k-edge-connected spanning subgraph of G with
the minimum number of edges.

*A preliminary version of this article appeared in the Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 1997.
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This prob[em is known to be NP-comp]ete [5], even for k = 2: if the
graph G is Hamiltonian, a 2-edge-connected spanning subgraph of G with
the minimum number of edges must be a Hamiltonian cycle. So the goal
is to look for good polynomial-time approximation algorithms for the
problem.

A quality of an approximation algorithm is frequently measured by its
approxfmaffo/z or .pe/gormcz/zce ratio. For the minimum size k-edge-
connected spanning subgraph problem, the approximation ratio of an
algorithm is the infimum, over all possible inputs, of the ratio between the
number of edges in the output of the algorithm and the number of edges
in an optimal solution.

For a long time, two was the best approximation ratio achieved for all k.
This comes from the fact that every minimal k-edge-connected spanning
subgraph has at most k/z edges [14, 15] and that every k-edge-connected
graph has minimum degree at least k.

Khu[[er and Raghavachari]10] presented the first a]gorithm which, for
all k, achieves a performance ratio smaller than a constant which is less
than two. They proved an upper bound of 1.85 for the performance ratio of
their algorithm. In this article, we improve their analysis, proving that the
performance ratio of their algorithm is smaller than 1.7 for large enough
k. and that it is at most 1.75 for all k.

Karger [9] presented an a]gorithm with performance ratio ] +
O(V(log n)/k). This is smaller than 2 only when k ]> log /z. Also, there
were algorithms with approximation ratio smaller than 2 for some particu-
lar values of k. An algorithm for k = 2 with a ratio of 1.5 was presented by
Khu[[er and Vishkin [13]. As observed in [10], by combining the biconnec-
tivity a]gorithm in [13] and the sparse certificate a]gorithm in [2], one can
easily obtain a ratio of 2 -- 1/k.

The currently best known performance ratio for the minimum size
k-edge-connected spanning subgraph problem is 1 + 2/(k + I). It is
achieved by a new a]gorithm deve]oped by Cheriyan and Thurime]]a [3]
concurrently with the research presented in this article. Let G
the input graph. In a first step, Cheriyan and Thurimella's algorithm finds
an edge set M f .E of minimum cardinality such that every vertex in }'' is
incident to at least k edges of M. In a second step, their algorithm finds a
minimal edge set F f .E \M such that (}', M U F), the output of their
algorithm, is k-edge-connected. The running time of Cheriyan and
Thurimella's algorithm is O(k3lPlz + I.Eli5(logjP'l)2), while the running
time of Khuller and Raghavachari's algorithm is O(kell''lz), which is
better. The reader is referred to [3] for more detai]s.

The bound on the approximation ratio of Khuller and Raghavachari's
algorithm given in [10] is actua]]y better than 1.85 for sma]] va]ues of k: it
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is 1.5 for k = 2, 1.666 . . . for k = 3, 1.75 for k = 4, 1.733 . . . for k = 5, etc.

In addition, these bounds are tight for k 2 and 3. Our analysis improves
Khuller and Raghavachari's bound for any fixed k 2: 4. In particular, we
get 1.65 for k = 4, and we get 1.68 for k = 5.

Khu[[er and Vishkin [13] introduced the fo]]owing concept: a free-kami/zg
f/z a gap/z G -E) is a partition of the vertex set }' into subsets
rl, . . . , I)/a with the following properties. Each subset constitutes a node of
a tree I '. For every vertex o in E, all the neighbors of o in G belong
either to q itself or to K, where q is adjacent to K in the tree I '. They
used this to prove the 1.5 bound on the ratio of their algorithm for k = 2.
We generalize the concept of tree-carving and, from this generalization,
we prove that the performance ratio of Khuller and Raghavachari's algo-
rithm is smaller than 1.7 for large enough k.

Finally, we show that the minimum size 2-edge-connected spanning
subgraph problem is MAX SNP-hard. This implies that there is a constant
f > 0 such that the existence of a polynomial-time approximation algo-
rithm with performance ratio at most 1 + 8 would imply that P

In the next section, we review Khuller and Raghavachari's algorithm. In
Section 3, we-present a better analysis and we prove a new upper bound of
1.75 for all k on the performance ratio of the algorithm. Section 4
generalizes the concept of a tree-carving, and shows some properties which
are then used to prove that the performance ratio of the algorithm is less
than 1.7 for large enough k. The proof of MAX SNP-hardness appears in
Section 5.

2 KHULLER AND RAGHAVACHARI'S ALGORITHM

Let us start with some notation. Consider a graph G, a depth-first
search (DFS) forest -F in G, and the corresponding DFS numbering of the
vertices of G. For each edge e in G, call fop (bor/om) the endpoint of e
with smaller (bigger) DFS number. It is known that any edge of G which is
not in .F is a back edge. In fact, this means that its top endpoint is an
ancestor in .F of its bottom endpoint. For each edge f in .F, we call an
edge e of G which is not in F a back edge off if f lies on the unique path
in (}', F ') between the two endpoints of e. (See Fig. 1.)

The input for Khuller and Raghavachari's algorithm is a positive integer
k and a k-edge-connected graph G = (P, -E). Their algorithm works in
phases. It consists of lk/2j phases, plus an extra final phase when k is odd.
For now, let us assume that k is even. Later we comment on the final
phase for odd k.

During phase f, the algorithm selects a set Sf of edges of G which
induces a 2i-edge-connected spanning subgraph of G. Hence at the end of
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root

top of e

bottom of e

FIG.I A DFS forest F, plus an edge e which is a back edge of the edge r in F '

k/2 iterations, the current set Sx:./z induces a k-edge-connected spanning
subgraph of G which is the output of their algorithm.

How does each phase work? Let .So := !a. In phase £ 2 1, the algorithm
chooses two diqoint edge sets Ff and Bi, both diqoint from SI.t. The set
e is simply the edge set of a DFS forest in the graph (}'', .E -- Sj. .). The
edge set .Bf is built as follows. Initially .Bf = Q3. Then the edges in .C are
scanned in the reverse of the DFS order (i.e., in the reverse of the order
they were included in &). When edge r c -R is scanned, the algorithm
finds a minimum cut between the endpoints of edge r in the graph
(P,Sf.i U F. U -Bf). Denoting by X one of the sides of this minimum
cut, let. (X, X) be the corresponding cut in G, that is, (X, X)
h has exactly one endpoint in X}. If the cut (X,X) in G contains
exactly 2(i- 1) + 1 2f - I edges in Si.i u-E U.Bf, then let ..4 :=
(.E -- (Sj. I U .e U .B.)) n (X, X). The algorithm adds to .Bf an edge e c .4
which has the smallest DFS-numbered top endpoint and sets r. := r. Set
Si:= Sf. I U rf U -BI at the end of phase f. This concludes the definition of
the algorithm for even k. For odd k, the algorithm runs lk/21 phases, and
in the end, it runs a ''half '' phase, computing -Frk,/zt only (not ,Blx:,/ZI). The
final .Sfk/21 is simply .S]x/21 U -Fft/z]

The reader is referred to [10], where Khu]]er and Raghavachari give the
proof of the correctness of this algorithm, as well as the upper bound of
1.85 on its performance ratio. In fact, for fixed k, Khuller and
Raghavachari's ana]ysis gives bounds sma]]er than 1.85 [10]. More specifi-
cally, it gives 1.5 for k = 2, 1.666... for k = 3, 1.75 for k = 4, and
1.733 . . . for k = 5. These bounds are tight for k = 2 and 3.



A BETTER APPROXIMATION RATIO 109

F/ edge in 8/ edge in Fb(only for G?)

FIG. 2. Graphs Gi, GZ, and G3, with the depth-first search numbering given by .h.

In Fig. 2, we present our tight examples for k = 2 and 3. Our results
originated from attempts at generalizing these examples for k > 3, and we
think they can give some intuition. Let us denote by OPT an optimal
solution and by opt the size of OPT. We give two essentially different types
of examples for k = 2: Gt and Gz. In both cases, opt - n, where /z is the
number of vertices in the graph. Also, if the algorithm chooses as .h the
dark edges, then the output of the algorithm will have n + (/z -- 1)/2
edges (in both cases). As /z grows, the ratio between the size of the output
and opt approaches 1.5. Note that both these examples can be extended
for large values of n. Graph G3 is our tight example for k = 3 (only for
even /z). In this case, OPT can be the outer cycle and the chords from each
vertex in the outer cycle to the opposite vertex in the outer cycle. We have
that opt = 3/z/2. Also, assume that the algorithm chooses as -Fi the dark
edges. In general, .Ft is built as in Gz: it is a path starting at any vertex in
the cycle, and passing by each other vertex in the cycle until it has visited
half of the vertices. Then the remaining vertices are leaves of F'l. Note that
F'. is in fact a DFS tree. Consider that all edges from the leaves in .Fi to
the root are present in G3, so that these edges are chosen as .Bi. In our
example, the dashed edges would be -Bi. Besides that, the remaining edges
of G3 should contain a tree. All the remaining edges would be -Fz. The
output of the algorithm will have 2(/z -- I) + /z/2 edges. As /z grows, the
ratio between the size of the output and opt approaches 5/3
This example can be extended, as suggested, for any large value of /z such
that /z 2(2f + 1) for some positive integer f.

The intuition that we would like to get from these examples comes from
the following reasoning. For Khuller and Raghavachari's bound to be tight,
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opt must be approximately k/z/2, and the first [k/41.af must have approxi-
mately opt/(k -- 2(i -- 1)) edges. However, as we will see, for large k, the
only way to expect that IBi = opt/(k -- 2(i -- 1)) for the initial .Bfs is if .8
has many leaves. But, this cannot happen if opt = k/z/2.

3.THE 1.75 UPPER BOUND ON THE
PERFORMANCERATIO

In this section, we improve the analysis of Khuller and Raghavachari's
algorithm by presenting a better upper bound on I.Bil.

The following definition is critical to understanding the improved analy-
sis. For each e in .Bi, recall that f, is the edge in & which made e to be
included in .B:

DEFINITION 3.1. be iS the bottom endpoint of f.
For each f, I K i K it/2J, let /f be the number of b. which are leaves of

Our improvement is first based on the following stronger version of
Lemma 3.6 in [101:

F

LEMMA 3.2. (k -- 2(£
lk/2J.

t))l-B;l + (£ 1)/[ g opt, Jor a// f, I K f K

Pro(# The number of pairs (zl, h), where u is a vertex of G and /z is an
edge of OPT incident to zz, is 2 opt. Next, we compute a lower bound for
this number.

For each edge e in -Bi, OPT has at least k -- 2(f -- 1) edges in .P. ([10,
p. 442]). So there are at least 2(k -- 2(f -- 1)) pairs associated to e: two for
each of the k -- 2(f -- 1) edges of OPT in Pf. If b. is a leaf of Fi, e can be
associated to (k -- 2(i -- 1)) + k pairs. The first k -- 2(i -- 1) pairs would
be the ones mentioned previously whose first coordinate is not b.. The
remaining k pairs have h. as first coordinate: because OPT is k-edge-
connected, there are k edges of OPT incident to b.

Let us show that no two edges in .BI have an associated pair in common.
Khuller and Raghavachari proved that the sets /'. are pairwise diqoint
([10, p. 442]), so the pairs coming from Pf are certain]y distinct. The k
pairs corresponding to b. cannot be repeated also, because the only edges
in Pr with b. as endpoint are in Pe

Therefore, we must have /;((k -- 2(f -- 1)) + k) + (I.a.1 -- /.)2(k --
2(i - 1)) K 2opt, which is equivalent to the statement of the lemma,
concluding the proof. I
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We will present a lower bound on /I, for I K f g [k/2J, which wi]] imp]y
an improved upper bound on IBfl. Let us 6u f such that I K is [t/2J. For
such an f,

IP.lz k - 2(j - 1) 2 2 ( 1)

for any e in -Bi. Denote by .B the set {Z).: e c .B.}. The following fact will be
used in the next lemma.

:Pact 33. For an] e, f e Bi such that bi is a child ofb., there k a child of
bt not in B.

Proof Consider e, .f c .Bf such that bJ is a child of b.. Because .I '. n
P/ - £13, all the edges in P/ must have b. as their top endpoint. By (1),
P/1 2: 2. Thus there is at least one edge g in P/ -- {f/}. The bottom
endpoint of g is not b/ (otherwise g would have the sami two endpoints
of ./'). Because b/ is a child of b., we must have that ./: was inserted in .Bf
before e. At the moment .f was included in .Bi, there could not be another
edge /z in Bf such that rh is on the path in .E between the two endpoints
of g. This is true because if, by contradiction, we assume there is an /z in
.B. such that rX is on the path in Fi between the two endpoints of g, we
must have that g c Pa. But g c P/ too, contradicting P/ n Ph = £13. So, the
child of b/ on the path from bJ to the bottom endpoint of g is not in .B. I

The lower bound on /f is given by the following lemma.

LEMUA 3.4. /i 2 21.eil -- /z, jor any i, I K f < k/2, zz/zd, jor Coen k,

/t./z 2: 31.Bt/,z1 -- 2n.

Proof Fix f such that I K i < k/2. Denote by N the set of h. in .B
which are not leaves in .q. We will associate to each b. in .M a distinct
vertex z. in P -- .B. The association is made in two phases:

Phase 1. For each b, in N which has a child in P ' -- .B, let z. be a
child of b, in r -- .B.

Phase 2. For each b, in N whose children are all in ,B. let h e .B; be
such that bX is one of b.'s children. By Fact 3.3. bh has a child not in .B.

Case 1. bx has two or more children not in -B. Let z. be any child of bh
not in .B and distinct of zx

Case 2. bh has exactly one child not in .B. Note that bh satisfies the
statement of Phase 1, which means that zh was assigned in Phase 1. So
this child is in fact zx. But f K (k -- 1)/2, which implies that IPhl > k --
2(f -- 1) 2: 3. This means that there is at least one edge g in Ph which has
a descendant of zh as its bottom endpoint. Let z. be the child of zh on the
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path from zi to the bottom endpoint of g. Observe that z, cannot be in
.B, otherwise the edge inserted in .Bf by the edge whose bottom endpoint is
z. would forbid bh to be in -B. (See Fig. 3.)

Let us verify that distinct b. are assigned distinct z,. In the first phase,

clearly no two distinct b. are assigned the same z.. Also no two z.
assigned in Phase 2, Case I coincide. The same for two z. assigned in
Phase 2, Case 2. We explicitly make sure that a z, assigned in Phase 2,
Case I does not coincide with a z. assigned in Phase 1. A z. assigned in
Phase 2, Case 2 cannot coincide with a z. assigned in Phase 1, because
z. a .B. Finally, note that, in Phase 2, Case 1, z, is a grandchild of b.,
while in Phase 2, Case 2 z, is a great-grandchild of b.. Thus, the only way
of Phase 2, Case I and Phase 2, Case 2 select the same z, is if bh in Case 2
had its zx assigned in Phase 2, Case 1. But, as we have said, bi had its zh
assigned in Phase 1. This completes the proof that we can assign a
different vertex in P -- .B to each vertex in .N.

Let Z : e c .Bf and b. c .V}.Wehavethat IZI = IWI, and I.BI .e.I.
Moreover, .V f .B and Z f P -- .B. Thus /f = 1.n -- .VI = 1.al -- IWI = 1.BI --
IZI 2: 1.el -- ll ' -- .al -- I.B1) 21.BI -- n -- n, completing
the proof of the first part of Lemma 3.4.

The proof of the second part differs from the foregoing proof only at
Phase 2, Case 2. For f = k/2 (even k), wejust have Ical 2: 2. Therefore, zi
might not have a child to be selected as z.. So, instead of associating to
each b. in N a dfs/f/zcr z. in P -- -B, we associate a z, which might have
already been selected, but at most once. In other words, each z c Z = {z.
e e .Bf and b. c .M} will correspond to at most two b. in .M. More
specifically, in Phase 2, Case 2, we select z. = zx. This implies I.V1 < 2jZI.
and we have /x,/z = 1.BI -- IWI 2: 1.a1 -- 2lZI 2: 1.e1 -- 2(/z -- l-a1) = 31,B
2/z = 31.Bk,/z1 --- 2/z, completing the proof of the lemma. I

(a) (b)

1'

FIG. 3. (a) Situation in Phase I. (b) Situation in Phase 2, Case I. (c) Situation in Phase 2
Case 2. (d) Situation in the new Phase 2, Case 2 (used later).
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Now, using Lemma 3.4 and /z K 2opt/k in Lemma 3.2
bound on l-Bil follows.

a new upper

COROI.CARY 3.5. Me /zane

,. : (; * WP).-.,
k

for an] i such that \ <

I.Bx;,/ZI g 'EtjjF:-:ToPt.

This bound is not the best we can get using this technique, as we will
show in the next section. But it implies the better upper bound of 1.75 on
the performance ratio of Khuller and Raghavachari's algorithm, as stated
in the following theorem.

Tt\xoPEm '3.6. The performance ratio of Khuller and Raghauachari's
algorithm is at most \.15 for alt k. More speci$catb, it is at most

3kz -- 6k + 8

2k:(3k - 2)
1.75 for eden k. and, \..15

2k 3
4kz foroddk> L

,f)roof For k = 1, the algorithm is optimum, i.e., the ratio is 1. For odd
k > 1, we have (the inequality holding because IFil < n and by Corollary
3.5)

ISa+ 0,/ZI Ea .0./ZI.EI + Ea-i 0''21.B.I

OPt OPt

: a=F * '*£': (; * !P)
: * ;) *g *;''£':': 1)

; ... :; ... g 1)(k
4kz

3)

3 kz -- 2k+ 3

2 4kz

7

4

2k 3
4kz

Observe that 2k 3 > 0 for all k 2: 3 and 4kz > 0 for all positive k
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The accounting is similar for even k. Hence

I.Sk,: I El;:Z'?i.Ci + El;:Z'fl.a;l

OPt OPt

:= * *£ :(; * B?)

: * (; - ;) *£'£:'; - :, * 8 4)

2)

3 kz
- +
2

10k + 8 2(3k

4kz ' k(3k

4)

2)

3 1
- + -2 4

5k - 4 2(3k - 4)

2kz ' 4;(3k - 2)

7

4

3kz -- 6k + 8

2k:(3k - 2)

In this case, 3kz -- 6k + 8 > 0 always, and 2kz(3k -- 2) > 0 for all posi-
tive k. Hlence the ratio is in fact always smaller than 1.75 for all values
of k. I

4.GENERALIZED TREE-CARVINGS

In this section, we generalize some of the results from the previous
section. In particular, we present stronger versions of both Lemmas 3.2
and 3.4. From these, we get an even better upper bound on the I.eil, and,
consequently, on the performance ratio of Khuller and Raghavachari's
algorithm for large values of k.

We start by introducing a generalization of the tree-carving concept and
by giving a generalization of some resu]ts given in [13].

Consider a positive integer k, a k-edge-connected graph G = (P, .E), a
nonnegative integer c < k, and a subset .S of -E such that (}'',S) is a
c-edge-connected spanning subgraph of G.

A c-bee-came/zg i/z G wffh respect /o S is a partition of the vertex set P
into subsets ri , rz , - ' ' , I '; with the following properties.

(1) Each subset consists of a node of a roofed#oresr I '

(2) For every edge e (r, .E -- S), the unique x and y such
that u c }l and u c K, satisfy either x = y or I '; is adjacent to K, in I '

(3) For each arc e in I ', there is a cut (X,t) I ' such that,
for .X. Ulq: q € X}, the cut (X., .X.) iq.G contains exactly c edges
of S. Denote by Pf the set of edges in (Xe, .X.) not in S.
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When c = 0, .S = fZ and I ' is a tree, this definition is the same as the
tree-carving definition.

Khuller and Raghavachari's algorithm can be modified so that, at each
phase, a 2(i -- I)-tree-carving in G with respect to S.. : is computed. This
is done as follows. At the end of phase i, let 7} e c .B.}. Note that
t fFf and ltl = 1.B,I. Let r. be the rooted forest obtained from .8 by
contracting all the edges of F. -- t. Clearly, E has exactly ltl = 1-B.I arcs.
Each node of f corresponds to a subset of the original graph G
that was collapsed into this node. So, the nodes of ]] are subsets
ri, r2 ' ' , I'l of I '' which define a partition of P for some a g /z, where /z
is the number of vertices of G. Observe that this in fact defines a
2(f -- I)-tree-carving with exactly l-B.I arcs.

Consider a c-tree-carving r], . . . , K. of G with respect to S, and let I '.
(.X., X.), and P. be as in the preceding definition.

FPLcT A..\. .Any k-edge-connected spanning subgraph of G has at least
k -- c edges in each P.

Prod/I Let .17 be a k-edge-connected spanning subgraph of G. For
each arc e in I ', there must be at least k edges of .H in (.X., .X.). Exactly c
edges in (.X., .X.) are in S. Hence, there must be at least k -- c edges of .H
in (.X., .X.) not in S, that is, in Pe. I

Fp-cx 4..'Z. For an) distinct arcs e andfin T
Pf G E(G) are disjoint.

the edge sets P. f E(.G) and

Proof Lets q)and./' K)betwoarcsinl'.Supposethat
.P. n P/ :# £13. Let us prove that e Let h c .P. n P/. By the definition of
.P. iq (3), h has one endpoint in .X. and the other endpoint in .X. and
(X,il'e) - {(q,q)}. So, by (2), h has one endpoint in q and the
other endpoint in q. Also, for the same reason, /z has one endpoint in K:
and the other endpoint in K,. But, by the unicity mentioned in (2), we must
have(K ando K,)or(K q Inbothcases,e
l

Denote by f the number of nonroot nodes of I ' and denote by / the
number of nonroot leaves of I '. (Note that f I')I.) The following
result is an extension of Lemma 3.2.

Lxmma. 4.3. Any k-edge-connected spanning subgraph of G has at least
(k -- c)f + c//2 edges.

Proof Let H be a k-edge-connected spanning subgraph of G. Let us
count the number of pairs (K, /z), where /z is an edge of .H in (q,, K).
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For each nonroot K of I ', let q be its parent in I ', and let e be the
arc (q,K). Recall that .P. f-E -- .S. By Fact 4.1, .H has at least k -- c
edges in 'Pe ' So there are at least 2(k -- c) pairs associated to e: two for
each of the k -- c edges of .H in Pe (one with K as first coordinate, the
other one with K).

In fact, if K if a leaf of I ', arc e can be associated with (k -- c) + k
2k -- c pairs. The k -- c first pairs would be the ones mentioned previ-
ously whose first coordinate is q. The remaining k pairs have q as first
coordinate: because .H is k-edge-connected, there are k edges of .H in

Let us show that no two arcs have an associated pair in common. By
Fact 4.2, the sets P. are pairwise diqoint, so the pairs coming from .f '. are
certainly distinct. The k pairs corresponding to a leaf q cannot be
repeated also because q is the endpoint of only one arc in I '

Denoting by m the number of edges in .H, we can have at most 2m
pairs. Therefore, 2(k -- c)(f -- /) + (2k -- c)/ K 2m, which implies that
m 2 (k -- c)f + c//2, completing the proof of the lemma. I

(K,K)

The generalization of Lemma 3.4 we want to present gives a lower
bound on /. But before stating the generalization, we need to prove one
more fact.

FACT 4.4. .1br each arc e (q, q) I/z I ', IKI + IBI z: zv'F C

Proof Consider the cut (.X., X.) in G corresponding to e. Because G
is k-edge-connected, and (Xe, Xe) contains exactly c edges of S, there
must be at least k -- c edges of .E -- S in (Xe, Xf). These edges must have
one endpoint in K and the other endpoint in H. The maximum number of
edges with one endpoint in K and the other endpoint in q is IEI ' lql.

Thus lql ' lql 2: k -- c. This implies, that lql + lql 2 2Vt -- c . I

Now we can prove the following lower bound on /, the number of leaves
of the forest I '

LEMMA 4.5. / 2 (1 + 1/(LV[':T] i))f - (i/(IVF':TJ 1))n

Proof The proof of this lemma uses basically the same technique used
in Lemma 3.4. We will associate a set Z. of vertices of }'' with each

nonroot K, where Zf f E U q for some q which is adjacent to K in I '
The sets Z; will be pairwise diqoint and will contain exactly IVt - cJ
vertices if q is not a leaf of I ', and will contain exactly one vertex if q is a
leaf of I '. The association is done in two phases. (Phase I is executed
before Phase 2.)
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Phase 1. For each nonroot K which is a leaf of I ' or such that
IKI 2: IVt -- c J: Let Z. be a subset of q with exactly l\@':iJ vertices if
K is not a leaf of I ', and with one vertex if K is a leaf. (Note that IKI 2: 1
always.)

Phase 2. For each nonroot K which is not a leaf of I ' and such that
KI < lv/k -- c J: Let e q) be an alQgf I ' joining K to one of its
chi deen 6. By Face.4A IKI + lql 2: 27k -- c . Thus we must have IKI a:
2/k -- c -- IKI 2 Vk -- c , and so lql 2: IVk -- cJ, which implies that K
had its set ZJ assigned previouljy.in Phase 1. Choose Zf to be a subset oi '
K U (q -- Z/) with exactly lv/k -- c J ve111111g$ (The11g...$ such a subset
because lq u (q -- Z;)I - IKI + lqi -- IVk -- c J 2: 17k -- aJ.)

In Phase 1, clearly the assigned sets are pairwise diqoint. It is also clear
that a set assigned in Phase 2 does not intersect a set assigned in Phase I.
By Fact 4.4, two sets assigned in Phase 2 cannot be associated with
adjacent sets K,. So they are digoint.

Because the union of the sets Z, is a subset of r, we must have
(f -- /)17X -- c J + / K n, where, as before, f is the number of nonroot
nodes of I '. This means

l

la '

:).
l

(I #':'; I D"
concluding the proof of the lemma. I

We showed how to modify the algorithm so that it outputs at each phase
a 2(i -- I)-tree-carving, denoted simply by 1], of G with respect to S;..
and having I.afl arcs. Recall that /f is the number of b. which are leaves of
e. Recall that 6, is the bottom endpoint of f, € t. If b. is a leaf of .E
then f. is the only edge of .8 incident to b., which means that {b.} is the
vertex set of a connected component of (}', € -- t). In other words, there
is an x such that J)/x = {b.}. Finally, note that }l is a nonroot leaf of 11. All
this implies that E has at least /I nonroot leaves.

Applying Lemma 4.5 to B, we get the following inequality.

/.z li + I'fk - zu - UJ - il ;l-
because r r.)I
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We also have, for I g f g ./,

/: a: 1 1 + T

Using (2), (3), and Lemma 4.3
bounds on I.nil.

'k - 2(} - 1)j - I
for OPT, we conclude the new upper

CoKoi.i.AKV 4.6. Me hale

I.a,I s
kilt't - 2(i -

*la- o- ll@
and, for an] \ <. i <. j,

.a;l g kllv't - 2(} -

*l@ - a - ullR

D'l - il + 2(i - 0
- 2(i - i) I -il'opt, (4)

D'l - il + 2(j - I)
2(/ - i) 1 - tl + (£ -ijJopt. (5)

Using these new upper bounds, we derive our final result.

t'EtxoPsm A..I. The performance ratio of Khulter and Raghauachari's
algorithm, for large enough k, is at most \.I.

Proof We will give the proof for even k. The proof for odd k is
similar.

We start by using, for some fixed r > 2, bound (4) for .Bt,,z.,+ 1 , . . . , Bt,/z-
For the remaining sets Bf, we use bound (5) with ./ k/2 -- r. From this,
we infer, for even k, that

ISx;/:l El;Zf(l£l+l.B.I) .. g. I.B.I xg2 1.B.

OPt OPt l:;'+i OPt

:.* v
' ' ' .-H: klK G - Ull#i:'iG":'QI - il -; t; - il}

*([
kl(k - (£

'k - 2(} - i) 1 - il + 2(i - i)
i))lift - 2(j - i) 1 - tl + (i q

k/2 k17$'1 - 2

o- wll * :a- ol -- o- ol
*([

tl(t
z(' + 1) 1 - il + 2(i - i)
i))llv/z(' + 1) 1 - il + (£ N
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V 2(tl#$'1 - 2)

:;.: k(k - 2')
K I +

(£

'2(' + 1) 1 - il + 2(i - I)
i))llv/z(, + i) I - ll + (j H

Denoting [#2(/ -F ]) J by C,, just to simp]ify the formulas, we have

2(kl#HI - z)

k(C, - 1) + 2(£ - I)

(i - I))(c, - I) + (£k((k

2j

k(c,
(i

- 1) + 2(£ - I)
1))(c, - I) + (£ ,«1k((k

*!i£UeL:a..
k(k - 2,) k(C, - 2)

*?!?(-«
.4
q' -

' ' k(k - 2,)
k -- 2r

k(C, - 2)

* 3E# (:« ,
where q ' C, -- I)/(C, -- 2))k and 8 > 0. (For the last equality, we
used that ./ -- r.) Note that C, is a function solely of r so, as k goes
to infinity, the bound on the ratio converges to

I C,(C, - I) . (C, - I)/(C, - 2)

C)-2 +'(C -2)(C,-l)/(C,-2)-1/2

Z *VH««
2(C, - I)

c,
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Now, let us make r goes to infinity, which implies that C, goes to infinity
as well. The foregoing expression converges to 1 + in 2 < 1.7. From this,
we finally conclude that, for large enough k, the performance ratio of the
algorithm is at most 1.7. 1

5. THE COMPLEXITY OF THE PROBLEM

In this section, we show that the minimum size 2-edge-connected span-
ning subgraph problem is MAX SNP-hard. This means that there is a
constant 8 > 0 such that the existence of a polynomial-time approximation
algorithm with performance ratio at most 1 + 8 implies that P = NP, by
resu[ts of Arora e/ a/. [1].

As in [17], we use the concept of Z,-reduction, which is a specia] kind of
reduction that preserves approximability. Let .4 and .B be two optimiza-
tion problems. We say .H .L-redz4ces to .B if there are two polynomial-time
algorithms .f and g, and positive constants cr and /3, such that for each
instance / of .4,

1. Algorithm ./' produces an instance /' = .f(/) of ,8, such that the
optima of .r and .r ', of costs denoted opt..{(/) and opts(/'), respectively.
satisfy opts(/') K a ' opt.4(/), and

2. Given any feasible solution of /' with cost c ', algorithm g pro-
duces a solution of .r with cost c such that lc -- opt..4(.r)I K /3.1c ' --
Opts(/')I.

T'LlxoPEm 5.L. The minimum size 2-edge-connected spanning subgraph
problem is M.AX SNP-hard.

Prod/I Denote by }'C7 the vertex cover problem restricted to graphs
with maximum degree 7. Papadimitriou and Yannakakis [17] showed that
1,/C7 is MAX SNP-hard. We prove that }'Cz .L-reduces to the minimum
size 2-edge-connected spanning subgraph problem, here denoted by 2-
MECSS. The reduction comes from [11], where a directed version of the
2-MECSS is proved to be MAX SNP-hard.

The first part of the .L-reduction is a polynomial-time algorithm .f and a
constant a. Given any instance G of }zC7, .f produces an instance H ' of
the 2-MECSS such that the minimum number of edges in a 2-edge-
connected spanning subgraph of .H, denoted by opts.UEcss(H), is at most
a times the minimum size of a vertex cover in G, denoted by optic,(G). In
other words, opts.UKcss(H) g a ' optic,(G).

Let us describe algorithm .f. Consider an instance G of l;/Cz. G is a
graph with maximum degree 7. Here is a procedure to construct an
instance .H of the 2-MECSS. Simi]ar]y to [11], start with a specia] vertex,
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the root. Each vertex in G will have a ''current vertex,'' initially the root.
For each edge uo, add a ''cover-testing gadget '' to .H, as illustrated in Fig
4(a). Specifically, add six new vertices xi, xz, x3,.yt,y2,y3. Vertex xz is
adjacent only to vertices xi and x3. Analogously, vertex yz is adjacent only
to vertices yi and y3. There is an edge labeled zz ' between xi and y3, and
an edge labeled u ' between yi and x3. There is one more edge incident
to xi: an edge labeled zz+ between xi and the current vertex of zl; and one
more edge incident to yi: an edge labeled z;+ between y: and the current
vertex of u. Make y3 the new current vertex of zl, and make .r; the new
current vertex of u. Finally, after all edges of G have been considered, for
each vertex u in G, add an edge labeled u+ between its final current
vertex and the root. The gadgets are implicitly numbered in the order we
have added them. Clearly -H can be obtained in polynomial time in the size
of G. This completes the description of ./'.

The next fact will be used in the proof of the existence of a constant cv.
Let m be the number of edges in G, and let s be a positive integer.

FP.cx 5.'Z. If G has a uertex coder with at most s vertices, then H has a
2.-edge-connected spanning subgraph with at most Sm -F s edges.

Proof Suppose G has a vertex cover S with at most s vertices.
Consider the spanning subgraph H ' of -H with all edges incident to
vertices of type xz and yz, all edges labeled u+ for H c S, and all edges
labeled u ' for z{ a S. Observe that all vertices in .H ', but the root. have
degree 2. Besides, the only possible cycles in .H ' are of two types: either
they are like xixzx3.yiyzy3, or they include the root. Because S is a vertex
cover, no cycles of type .ri.rzx3yi.y2y3 can occur. This implies that H is a
collection of cycles intersecting only at the root, and spanning all vertices.
Therefore, H ' is a 2-edge-connected spanning subgraph of H. To count
how many edges there are in .H ', just notice that .H ' has six edges per
gadget plus one extra edge per vertex in S. Therefore, in total, H ' has at
most 6m + s edges. I

FIG.4. (a) The gadget for edge uo. (b) The modification of the gadget for edge uu
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LEMMA 5.3. opt2.MECSS(.H) K 43 . optic,(G).

Prod/I By Fact 5.2, opts-uKcss(.H) g 6m + optic,(G). Also, because G
has maximum degree 7, optic,(G) 2: m/7. Putting these together, we get
that

Opts-MECSS(.H) K 6m + optic,(G) K (6 ' 7 + 1)optic,(G)

43 ' Optic,(G)
l

So, we can consider a = 43.
The second part of the Z,-reduction is the constant /3 and the algorithm

g We may assume that m 2: 1. Note that .H has 6m + I vertices,
therefore any 2-edge-connected spanning subgraph of H must have at
least 6m + I edges. Consider a 2-edge-connected spanning subgraph -H '
of .H with 6m + s edges, where s is some positive integer. Algorithm g
will produce in polynomial time a vertex cover of size at most s, from -H '
From this, and from Fact 5.2, we will have that opts.MECSS(H) = 6m +
optic,(G). In addition, then 16m + s -- OPt2-MECSS(.H)1 - 16m + s --
6m -- optic,(G)I -- optic,(G)I, meaning that /3 I suffices.

So let us see how algorithm g works. In a first phase, g produces
another 2-edge-connected subgraph -H" of H with at most as many edges
as H ', and such that in -H" all vertices, but the root, have degree 2. To get
,H", each gadget is Checked for vertices of degree 3 (all vertices in .H, but
the root, have degree at most 3). If a vertex x has degree 3 in .H ', then the
edges labeled u+ and zz+' incident to x appear in .H '. Remove the edge
labeled u ' incident to .r and add (if not already there) the edge labeled
u+ incident to the vertex adjacent to x through the edge labeled u '. See
Fig. 4{b)

H" is the graph obtained after applying this modification while there are
vertices, other than the root, of degree 3. We can make sure the modifica-
tion is applied to the lowest numbered gadget, and inside the gadget, to
xi,yi, x3,y3, in this order. This procedure takes polynomial time: the
modification can be done in polynomial time in the size of G, and after
each modification the number of edges labeled zz ' decreases. Clearly .H"
has at most as many edges as H '

The following fact can be verified by the reader.

Fp.cx 5.A.. H" is a 'Z-edge-connected spanningsubgraph ofH.

Because all vertices in -H", but the root, have degree 2, for each vertex
in G, either all edges labeled u+ or all edges labeled u ' appear in H". In
a second phase, a vertex cover of size at most s is computed: let S be the
set of all vertices in /7" whose all edges labeled u+ appear in H". In any
gadget, there must be edges labeled u+ appearing in -H", otherwise -H" is
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not connected. Thus S is a vertex cover in G. Recall that H ' had 6m + s
edges. Hence .r/" has at most 6m + s edges. But because all vertices but
the root have degree 2, .H" has 6m + f edges, for f g s, and f is the
number of vertices in S. This finishes the description of algorithm g, and
the proof of Theorem 5.1. 1
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whether some ideals of the free monoid are finitely generated. Those ideals will be
described starting with an ideal in a free commutative monoid.

Let X be a finite alphabet (of /efrers). Denote by IXI the free commutative monoid
on .r and by .y* the free monoid on XI we call the members of I.rl monomiaZs, and
the members of X* words. When convenient, we assume .X. = {xl,x2, ... ,x«], so a

monomial can be written multiplicatively as xiixl? ...xl. We denote by n the
canonical monoid epimorphism .r* --, IXI .

The most natura] re]ation between ideals of IXI and .r* is given by the canonical
map, so the first question is:

Problem 1. Given an ideal / of IXI, is n'l(.r) finitely-generated?

This first question, while quite natural, seems to be of limited interest, as ideals are
not such big players in the structure theory of monoids.

The next questions were motivated by the study of noncommutative presentations
of afbne algebras and their Gr6bner bases. In fact, the problems studied in this paper
were motivated by a question posed by Bernd Sturmfels on the finite generation of
monomial ideals. We postpone the discussion until Section 2, as the questions can be
completely understood within the context of monoids.

For each ordering -< of the letters, we define a section a< of n as follows. We say
that a word is Jarred if its letters occur in it in increasing order; if xl <x2 < .-' < xn,

such a word can be uniquely written as xtxl? . . .x9 . Let a< : IXI --> .Y* be the function
mapping each monomial m to the unique sorted word in 7t'l(m). So, za< is the
identity map on IXI, and we define the sorfflzg map S< on .y* by S.< = a<n. The
subscript < will be omitted when implicitly understood.

We will mainly be concerned with ideals of form J-< (/) = < a< (/) > , that is, the
ideal generated by sorted words corresponding to a commutative ideal.

Problem 2. Given an ideal / of IXI and an ordering < of X, is J<(/) finitely
generated?

While it is convenient to assume an ordering on the letters so that one can write
monomials, that ordering is not part of IXI. So, we also consider

Problem 3. Given an ideal / of IXI, is there an ordering < of .y so that J-< (/) is
finitely generated?

These problems are very loosely posed, as it is not specified how each ideal is
given. We are interested in specification by finite data, so that it makes sense to look
for an algorithmic answer to each of the problems. We consider three forms of
specifying an ideal of IXl: by a finite generating set, as the inverse image of an ideal
under a morphism from IXI , and as the initial ideal of a polynomial ideal given by its
generators. The latter is explained in Section 2; our main results relate to the other
two
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Most of this paper will be concerned with a finite set of monomials and the ideal it
generates. Let us denote by <M> the monoid ideal generated by a set M. So,
<M> = WIKI if WslXI, and <M> = X*M.Y ' if Ms.y*. From now on, except
where explicitly stated, in each of the problems above, g/oen an idea/ / is
reinterpreted as gfoe/z a./infra sef M of monomlaZs, /e/ / = <M>. That is the first
of the three foils mentioned above.

It is not clear a priori that either problem is even decidable. Section 3 shows that
standard methods of Automata Theory sufHce to decide each instance of the
problems, when the ideal is given by generators. However, this is unsatisfying both
mathematically and computationally. From a purely mathematical viewpoint, the
automata decision process is so far removed from the initial data that one learns very
little about the underlying structure. From the computational viewpoint, what goes
wrong is the exponential complexity of the algorithms thus obtained. We heed the
fact that a monomial can be given as a vector of exponents, so the run-time of
algorithms for the corresponding decision problems should be measured relative to
the bit size of the exponents. With that in mind, we summarize the main results:

Problem I is solved completely in Section 7. The characterization we obtain yields
a polynomial algorithm.

Problem 2 is the central one here, and also has a definite answer. To describe
it we need more notation. We suppose an ordering of .r is given. For w in IXI,
say that a ]etter is exfrema/ in w if it is the sma]]est or the largest letter with a
positive exponent there and say that a letter is i/zfer/za/ to w if it lies strictly
between the extrema] ]etters. Notice that an interna] letter is not required to occur in
w; for instance, using the ordering implied by the indices, the internal letters of
x:x3=lgx7 are x3,x4,x5, and x6. Also denote by w\x the monomial resulting of
evaluating x to I in the monomial n,. In particular, x"\x = 1. A collection of
monomials is an an/fc/iain if no one divides another; clearly, the (unique) minimal
generating set of an ideal of I.rl is an antichain. Dickson's Lemma, quoted earlier, is
equivalent to the statement that every antichain of monomials is finite. For
convenience, we will shorten J(<-M>) to ./(M) when .M is an arbitrary set of
monomials.

Theorem I. .fe/ .M be 'zn antic/za//z fn I.rl . Then, J(M) is./infra/y generated g'.znd on/y
if, lfor every w in M and x in X, there exists s in M such that x is extremal in s and i\x
dioides w.

A proof is found in Section 4. The above result immediately yields a
polynomial-time decision algorithm for Problem 2. It also implies that Problem 3
ish NP

When M is square free, Problem 3 can be decided in polynomial time. And that is
the end of good news. Problem 3 is shown in Section 6 to be NP-complete even when
M consists only of quadratic monomials. So, while the automata-theoretic
algorithms where unacceptable for Problems I and 2 because of high exponents in
the data, NP-completeness of Problem 3 is not related to the possibility of writing
numbers succinctly.
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In Section 8, using a slightly homological flavor, we turn to another way of
presenting an ideal of IXl: fix a homomorphism from I.X"l to another free
commutative monoid, and an ideal / in the target, and take the pre-image of that
ideal. The homomorphism can be described by a matrix, and when / is given by its
minimal generators the ideal of I.rl is described as a finite union of integer polyhedra,
each one of them an ideal. The theory developed for handling generators is enough
to show that Problems I and 2 become coNP-complete with this data, while Problem
3 is shown to be NP-hard.

2. Connections with Gr6bner bases

Problems 2 and 3 stem from a connection between the commutative and
noncommutative Gr6bner bases theories. Let K denote a field, .KI.rl the
commutative polynomial ring on the finite set X, and .K<1 X> the free associative
algebra on the same set (we adhere to the terminology of the first section, and talk
about /ef/ers instead of variables). The linear extension of the monoid morphism n is
a ring morphism .K<X> -->.KIKI, still denoted by z; its kernel is generated by the
commutation relations '# = {xy -- yx I x,yeX}. Also, given an ordering of .r, the
linear extension of the maps a and S will be denoted by the same symbols.

Throughout this section, / is an ideal of KI.rl and / = z'i(/). It is occasionally
useful to lift a commutative ring presentation KI.rl// to a noncommutative
presentation .K< .Y > // through n. This has been used in [1,2,10,15] for homo]ogica]
computations.

Proposition 2. Z,er .4 s < X> be a set of/zo/zcommzz/ariz;e po/y/zomia/s. Thelo//owing
are equiuatent.

(i) '#u,4 ge/zerares /.
(ii) n(..4) genera/es .r.

(3itb For some ordering < ofX. (gush QX) generates J
(lx) For any ordering < o.fX. 'gu S.((.A) generates J.

In particular, .for any ordering <. of X, Vu a < ti) generates J

Proof. Suppose that '#u.4 generates /. Then, <n(.4)> = <z('#u..4)>
7t<'#u.d> = 7t(/) =/. Conversely, suppose that z(.4) generates /. Since

kerzg <'#u.4 > gn'i(/) and n<'#u.4 > = /, it follows that <'#u.4> = /.
The equivalence of conditions (iii) and (iv) to the previous ones follows from

the observation that nS-<(.4) = 7t(,4). The last; observation is immediate, as
za-< (/) = ]. U

In many applications, one wants to describe a Gr6bner basis for /, preferably
related to a Gr6bner basis for /. Let us recall quickly what those bases are (see [9,13]
for an introduction to the subject). We will say farm to mean either ''word '' or
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''monomial '', so we can treat commutative and noncommutative polynomials
simultaneously.

A necessary ingredient for a Gr6bner bases theory is to fix a farm order: a total
order on the terms, compatible with multiplication and with I as minimum, and with
no infinite descending chains. In this case, every polynomial has an flz!/fa/ berm, the
maximum terri in its support, and to every ideal / one associates its f/ziffa/ fdecz/

Zn(/), the set of all initial terms of polynomials in /. The initial ideal is an ideal of the
monoid of terms. A Grdbner Z)axis for / is a subset .B of / such that the initial terms of
the members of -B generate in(/).

Eisenbud, et a]. [5] took the fo]]owing approach to re]ate Gr6bner bases for
commutative polynomial ideals and their pre-images in the free algebra. Start with a
term order < on I.rl, and define its /exfcograp/zfc exrensio/z, still denoted here by <,
to .Y* by: u<zp if z(u)<z(z;) or z(u) = n(u) and u precedes t; lexicographically,
according to the < ordering on .y

Proposition 3. The initial ideal in(J) is gelterated by

{xy I x,y.X, x>-ylu.(£n(/))

Proof. Since the noncommutative order extends the commutative one, if p cKIXI,
the initial term of a(p) is a(m), where m is the initial term of .p. Also, from the
lexicography, if x>y are letters, xy is the initial term of xy -- yx. The result now
fo[[ows from Proposition 2. []

[t fo[[ows from Dickson's Theorem that every ideal of IXI is finite]y generated,
hence every ideal of -KIKI has a finite Gr6bner basis. In contrast, not every ideal of
X' is finitely generated, so it is generally interesting to detect whether a given ideal of
K<X> has a finite Grdbner basis. The preceding proposition implies that J has a
finite Gr6bner basis with respect to > if and only if J(/n(/)) is finitely generated.
This gives rise to Problem 2.

A word in an ideal of X* is a minimal generator of that ideal if and only if the
words obtained by erasing either the first or the last letter are not in the ideal.
Combining it with Proposition 2, we get the next result; it is Theorem 2.1 of [5],
stripped of the ring theoretic context (which is handled by Proposition 3):

Theorem 4.

./(M ') j.
ifM is an antichain olf monomials, then the minimal generating set of

{a(mu)lmc M, uc I.rl is generated by /e//ers i/z/er/za/ /o m,

and is such that. for each letter x extremal to mux'l + (M)\
There seems to be no immediate characterization from the above for when / has a

finite Gr6bner basis. A sufHcient condition is provided in [5], and then the question is
finessed: it is shown that, if .K is infinite, then, for any / and -< , / will have a finite
Gr6bner basis after a generic change of variables.
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This is of limited computational use if high degree polynomials are being handled,
since the supports can grow explosively after generic changes. So, it is still of some
interest to detect whether 7t'l (/) has a finite Gr6bner basis when / is still expressed in
the given coordinates.

If / is generated by a set M of monomials (this is called a mo/zomla/ Idea/ of .KI.rl),
then in(/) = < M> , irrespective of the term order < . It follows from Proposition 3
that

Proposition 5. .Ler .44s I.rl a/zd /e/ .r be f/ze mo/zomfa/ idea/ fr ge/zerares. T%e/z / has cz
unite Grdbner basis with respect to the lexicographic extension ofa term order olf \X\ U
and only if, for the same ordering of X. JQUI) is $nitely generated.

This gives rise to Problem 3.
A similar looking question is, in the notation above, what conditions must M

satisfy, so that / has a finite Gr6bner basis with respect to the lexicographic
extension of any term order of IXl? Proposition 5 translates it to a problem of
monomials and words, and the answer is in Section 5, Theorem 16.

As a final note, we point out that within this context another way of specifying an
ideal of IXI is relevant to Problems 2 and 3. Namely, suppose a term order is given
on I.rl; given a finite set .M of polynomials, consider the initial ideal .r of the
polynomial ideal generated by .A/. That is the actual motivation for those problems,
after a]]] The usual process of going from M to / is Buchberger's algorithm and its
variants. These are all of high complexity, so the question remains whether Problem
2 can be solved efficiently from this data.

3. Using automata

It is not clear from the outset that either of the problems mentioned in the
introduction is decidable. This can be shown to be the case by means of the
traditional machinery of automata theory (we follow the notation and terminology
of [12]). We do it here, most]y for comp]eteness and to underline some of the
complexity issues. This section can be skipped, with no loss in understanding of the
remaining text.

Suppose J is an ideal of the free monoid X* ; then its unique minimal generating set
is 7 = .&(X/u/X). Hence, if / is a regular language, so is 7'. The problem of
deciding whether 7' is finite, given a regular expression for /, can be whimsically,
although not very accurately, related to two well-known Unix utility programs: given
a pattern for a prep search, decide whether the same search can be made by fgrep.

Problems I and 2 refer to ideals that are regular languages. Consider Problem I . It
is a well-known (although nonconstructive) consequence of Higman's Theorem [1 1]
that, for every subset A of IXI, n'i (.4) is regular. For 7t'i < -M> , one can construct a
deterministic automaton directly: have n parallel counters, one for each letter and
counting up to its maximum degree in M. Each state of the automaton corresponds
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to an n-tuple of values for the counters, and processing a word x leads to a state
whose counters correspond to the exponent vector of 7t(x). The final states are those
that show that 7t(x) c < M > , and they can be colluded into a single state that is never
left after being reached.

For Problem 2, we can write a simple regular expression for 7t'i <M>. If w =
*i'*g . . .xl;:\*):lXI, th '" ./(w) xlx; . .«l;:\*; .*l;X: a«d ./(M)
so /(M) is a regular language. A deterministic automaton recognizing .g(.W) can
also be constructed using parallel bounded counters, although the description would
be more complicated than the previous one.

[n both cases, there is only one final state, from which no transition leaves. This
makes it easy to construct a deterministic automaton for the minimal generating set
of each ideal, with direct products of three very similar automata. Then finiteness can
be easily checked by a graph search. This approach shows now that Problem 2 is
decidable.

From a complexity viewpoint, this does not work. Even though we have
scrupulously avoided using nondeterministic automata, there remains a source of
exponential complexity: in either case, the automaton described for each ideal has a
number of states that is roughly the product .N of the maximum degrees of letters in
.A/. This is too large; since a monomial can be represented as a vector of exponents, a
reasonab[e encoding for M wou]d have only O(12 ]og .V) bits, where /z = 1.X"l. So, the
automaton for the minimal generating set has exponentially many states, and the
graph search is linear in the number of states.

The solutions we present in the following sections could perhaps be retro-fitted
into an automata-theoretical framework. Actually, thinking of automata helped in
the discovery of those results: the Pumping Lemma (see [12, Section 2.4]) was a
starting point.

There is a rich literature on ideals of the free monoid, from the viewpoint of
language theory, with a twist. Instead of concentrating on the ideal, the focus is on
its complement. The complement of an ideal is said to be a /acrorfa/ /angzzage, and
the minimal generators of the ideal appear as /orbfdden szz6words in this context.
There are many algorithms for problems involving factorial languages (see [3,4]), but
they usually take a detemiinistic automaton like the large ones we described as input,
so they are of no use here.

4. When ./(M) is finitely generated

We assume a fixed ordering < on the alphabet X. The sapporo of a monomial w,
denoted u ', is the set of letters with nonzero exponent in w. So, min(W) and max(y)
are the exfrema/ letters of w, while the letters x such that min(U ') <x<max(W) are
flzrer/za/ to w. We will use the notation ulo meaning zz dfufdes u, both in IXI and X*

So, for monomials u = x.i ...xl, u = Vi ' ...xl, zz I z; means that /i <./i, ... , /.<.h; for
words u, zi, u I D means that there exist words w, z such that D = wuz.
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Example 1. Take X = {a,b,c, ...} with the usual ordering. Then, for w
min(w) = b, max(w) =./', and the internal letters are c, d, and e.

Lemma 6. /r and o are Jarred words suc/z //zaf z{ I t}, /hen Jor a/zy x i/z .r, ei//zer

« I S(,x) «, S'(«x) I S(«x).

Proof. The first case occurs ifx :amin(y) or x>max(y), and the second case occurs if
min(y)<x<max(y). []

I.emma 1. Let T be a set o/sorted words. if, lfor ellery t in T and x in X, Sktx] has a
factor in T, then there exists an ideal I of \X\ such that T=a(.1) and ( T ) = .g(.1).

Proof. Let M = 7t(r) and / = <M>; clearly 79a(/), and we will show that

Since <r>SJ(/) is clear, it is enough to show that a(/)s<7>.
Since any monomial in / can be written as szz, with seM, uclXI, we
will show that a(su) has a factor in r (so, it is in <1 r>) by induction in the total
degree of u.

There is nothing to prove if the degree is zero. So, we can write zz = ox, with
oc IXI, xc.r. By the induction hypothesis, r ia(so) for some fc r. By hypothesis,
S(rx) has a factor yc 7. Noticing that S(a(su)x) = a(fox) = a(szl), Lemma 6 implies
that either r I a(su), or S(rx)la(su), in which case, y I a(su). In either case, the result
fo[[ows. []

From this, it easily follows

CatoUaxy 8. Let M be a set oJ mortomiats. A sufbcient condition for a set T oJ words
to be such that (T) -- JtM) is that atM)c c and.for ellery t in T ando in
X. S(tx) has a factor in T.

We restate Theorem I with some additional precision, in order to prove it. First,
we recall and introduce some notation.

If w is a monomial and xc.y, w\x denotes the monomial obtained from
w by erasing the occurrences of x. We denote by I(w) the set of internal letters
of w, and by axw the degree of x in n '. Given a set M of monomials, let r*(M)
denote the maximum degree x occurs with as an extremal letter in M. To
avoid misunderstandings, li(w)I is simply the submonoid of IXI generated
by I(w)

Example 2. Continuing the earlier example, w\b
{c3, a2c5/2, c/sg, a2b2c2}, then rc(M) = 3 and r/(M)

af and wV
a

b2d. If M

Theorem 9. .Lef ]l/ be a/z anffc/lain I/z IXI. The/o//owing are eguioa/e/zr

(D .gtMb is $nitely generated.
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Ctxb For ellery w in M and x in t (w), there exists s in M such that x is extremal in s, and
sNx divides w.

(in) ./(.M) i ' g'«',«r .(U..«{«'wl,(w)ll vx: ,(w), a*«<,,(M)}).

Proof. Let T be the minimal generating set of J(M), and suppose it is finite. We
shall prove condition (ii). Note that a(M) g r. Indeed, if w E M, a(w) has a factor in
r, and this has the finn a(xu), for some scJW and uc IXI. So, a(su)la(w), and this
clearly implies su I w. So, slw and, since M is an antichain and sc.M, it follows that
s = w, zz = 1, hence a(w) c 7

Let wc M and let x be an internal letter to w. We can uniquely write a(w) = ux't},
with zz, o sorted, max(y) <x< min(y). Hence, all words ux"o, with /z> r, are in J(-M),
so each has a factor in T; it follows that some rc r is a factor of infinitely many such
words. If x is not in the support of /, it must happen that f is a factor of H or of z;,
hence a proper factor of a(w), but a(w) € 7, so this cannot occur. Therefore, x is in
the support of f, and necessarily is extremal. Without loss of generality, let us assume

that x = min(f); so r = xkz with x<min(Z), and note that z is a factor of a(w), so
7t(z)lw. Now, r = a(O ') for some scM and y€ IXI. If xea, we would have s 1 7t(z),
hence s I w, a contradiction. Hence x = min(f), so s\x is a factor of w.

Now, suppose that condition (ii) holds and let us prove (iii). Call r the generating
set in that statement. Clearly a(M) g 7 a < M> . Now, let f€ r and xe.r, and let us
find a factor of S(rx) in 7 as required by Corollary 8. Write r = a(wz), with wcM
and ze [z(w)I.

If x# i(w) = i(z(r)), it follows immediately that f I S(rx). There remains the case
where xc I(w) and S(fx) # r (since the case S(rx) c 7 is trivial).

Now, a(wz) c r, but a(wzx) # T, hence a*wz = r.(M) -- 1 . We can write uniquely
wz - zzr*(M)-lz}, with max(y) <x<min(y). By hypothesis, there exists ie.M, with x
extremal in s (without loss, x = max(a)) such that s\x divides w. Since a*s<r,(M),
slwzx, and by maximality of x in f, s I ux''(M) . Let p result from raising the degree of
each internal letter of s to its exponent in u. Then, p cali(s)I and its internal letters
have small degree, so a(p) c r, and it is the factor of S(rx) we sought after.

C[ear[y (iii) implies (i), and the theorem is proved. []

Example 3. Clonsider the set -M :=lab2c,a36}. The ordering a<b-<c
does not satisfy the conditions above, since 6 is internal to ab2c, and
extremal only in aSb, but a3b\b = as does not divide ab2c; indeed, a< .M > comprises
all words al b/+2d and a1+3W with i,./,k>0, and the set {ab/+2c 1./>0} cannot be
generated as multiples of finitely many of those. Similarly, a<c<b fails, since c
is internal to cz3b, and extremal in none. However, b a c is good: a is internal
to b2ac only, and ba3\a = b divides b2ac. In this case, J(M) is generated by
rz.2 .. z.2 .2 . z..31{b'ac,b'a*c,ba'}.

Condition (iii) above is a fairly precise description of the minimal generating
set of ./(.A4). One gets a quick and dirty estimate for its size by forgetting most
parameters:
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Corollary 10. Z,ef .M be a ./i/zfre se/ ofmonomiafs in IXI
generated, it can be generated by a set of at most

Then, ifJ(M) is .Rnitely

.w'l ll ,*(.w)+lwl
x € 1(M)

w'l

elements, where M' {wc.MI.(w) #:0} ««d I(.M) u... .(«)

Even though it is a rough estimate, the result above is best possible. To see this,
suppose X - {xi,x2, ...,x.}, ordered according to the indices. Choose positive
integers m,r2,r3, .--,rn.I, and let .M ' = {xf-t<z-f]0<i<m].u]xf']f = 2, ...,/z -- l]..
Then, the minimal generating set for /(M) is precisely that described in Theorem
9(iii) and has size m ]ll rf + n -- 2.

If we are given M as a collection of integer vectors, divisibility is just
componentwise comparison, so it can be tested rapidly. A naive check of the con-

dition on Theorem I would need at most I.Ml2lXI such comparisons, so Problem 2
can be solved by a polynomial-time algorithm.

We end this section with some constructions that will be useful later and some
unexpected consequences of the theorem.

Given a collection M of monomials and an integer k, .A/X will denote the subset of
M consisting of monomials whose support has size at most k.

Proposition ll. /y czn anfichaf/z M of mo/zomfaZs is suc/z

generated, so is /(.Mlk) Jor each integer k.
that JQM) is .finitely

Proof. Let us show that Mt satisfies condition (ii) of Theorem 9. If weMX, and x is
internal to w, we know, since J(.M) is finitely generated, that for some monomial
u c .A/, x is extremal in u and u\x is a factor of w. Since x is internal to w and extremal
in u, the support of zz\x is a proper subset of the support of w, so lyl <k; that is,
neMk n

Proposition 12.
that.

Let w-+ Q be a byection between sets M and M of monomiats, such

(b For every w in M, w and ® hate the same extremal letters.
Qtxb For ellery u. D in M and x in X. ifE).u<na*u, then a*{2<na.{5.

lfM is alt antichain, and JtM) is.finitely generated, then so is /Mi.

Proof. First notice that, from condition (ii), z/lo implies z2ltJ, so M is an
antichain. Thus, it must satisfy Theorem 9 (ii). Let Oc-@, and xcX be
internal to ©. From condition (i), x is internal to w, so there exists ucM such that
x is extremal in u and zl\xlw. Again from (i), x is extremal in z2, and from condition
(ii). uAx]©. []
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5. Cool orderings

Given an antichain M of monomials in IXI, we say that an ordering of X is coo/
for M if, for every w in M and letter x internal to w, there exists s in M such that x is
extremal in s and s\x divides w.

As we will see in the next section, no good algorithm is forthcoming to decide
whether a cool ordering exists. Before giving substance to this, we try to get a better
understanding of such orderings. We begin with an immediate consequence of
Propositions ll and 12.

Proposition 13. .Lef .M be a/z anfichain ofmo/zomia/s
also a cool ordering lfor.

men, any coot orderinglfor M is

L. MK. Jor any iYtteger k.

2. Any M, obtainedfrom M by changing each w to '&, so that

(jab w and '6 hate the same support, and
(bb For ellery u, D in M and x in X, U' a*u<xa.D, then a*ti<na*6

This gives some necessary conditions for existence of cool orderings. We also get a
kind of equivalence between sets of monomials:

Proposition 14. Z..e/ w +- # be a bgecrlo/z berwee/z se/ M a/zd M of monomfaZs, szlc/z
that

(i) Xor eoery w i/z M, W = .@, a/zd
CUb For ellery u, D in M and x in X. a«u<a*u U' and only y' axa<a.6

Then, an ordering ofX is cool .for M U and only U it is so for M.

Proof. It is easily checked that zz I u if and only if d I zJ. So, the bjjection maps minimal
monomia[s to minimal monomia]s, antichains to antichains, and so on. ]t is just a
matter of app]ying part 2 of Proposition 13 in both directions. []

From now to the end of the article, an ordering of the letters will not be given at
the outset, and the following concept will be useful for the search of cool orderings.
A monomial w is said to /ze@ a monomial m w{/h the letter x if xev, w\x I m and
w\xSm\x.

If < is a cool ordering for a set M and, for some y c X, every monomial in M has

support included in y or diqoint from y, then < is a cool ordering for those
monomials with support included in y. This can be extended to the following easily
verified fact:

Ptopo<lUon 'lS. A cool ordering lfor M is also cool j'or any Nc such that alt
members on M that help some member ofN twits some !fatter) are in N.
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Next section will consider the problem of finding a cool ordering, given .M. We
close the section considering a question that is a sort of opposite of that: how must
M look like if emery ordering of .r is cool? The answer is surprisingly simple.

Theorem 16. Let M be an antichain olfmonomials auer X. Then, ellery ordering oJ' X is
coollfor M ifand only if, lfor ellery m in M and x in X such that \lynx \ >p 2., there exists a

u i/z .A42 such //za/ zz\x I m.

Proof. Suppose that every ordering of .r is cool for M. Let m and x be given as in
the statement. Then, there exists an ordering < on X such that x is internal to m.
Since < is cool, there is a zz in -M that helps m with x: Choose u with minimal
support, and let us show that y has size at most 2. If lul > 2, there is another ordering
of .X that makes x internal to u. Again by Theorem 9, there exists a o in M that helps
u with x; clearly, o also helps m with x. Since xc yn p, it follows that ps;u, so we have
contradicted the minimality of y.

Conversely, suppose the divisibility condition holds, and consider an arbitrary
ordering of X. Pick an meM and let xcz(m). Choose u in M2 such that zz\x I m;
c[ear[y x is extrema] in u. ]t fo]]ows that the ordering is cook. []

6. Finding cool orders is hard

Monoids generated by square-free monomials appear frequently in algebraic
combinatorics (related to Stanley--Reisner rings of simplicial complexes), and have
been studied in the current context by Peeva and Sturmfels, together with Eisenbud
[5] and Reiner [15]. Propositions 18 and 20 te]] the same as [5, Proposition 3.2] and
[15, Lemma 3.1], although the different jargon may obscure this. After that we move
to another direction.

Ptopo \ion 11. Suppose that M is an antichain and the degree of the letter x in weM
ts the largest degree it has in alt mottomials in M. Then, in any coot orderinglor M. x
cannot be internal to w.

Proof. If there is a cool ordering for .M where x is internal to w, there exists a rcM
such that r\xlw. But since axw>axf, it follows that / I w, a contradiction, as M is an
antichain. []

The following is an immediate corollary

Ptoyosi+ian \8. If M consists only o/ square-free monomiats and ctflords cl cool
ordering, then its monomiats bade total degree at most 2.

Degree ] monomials are trivially handled here, so the square-free sets .A/ of
interest consist only of quadratic monomials. Polynomial ideals whose initial ideals
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are generated by quadratic monomials (mostly square-free) were extensively
studied in [151.

We leave now the square-free condition, and consider the case when M consists
exclusively of quadratic monomials, that is, we allow monomials of form i?. This
seemingly trivial extension has deep consequences:

Ptoyasitlon 19. The problem of deciding, given a set of quadratic monomials M,
whether there exists a coot ordering for M is'.

(ab Sol able in polynomial time, ifM is squclre-free
I)ob NP-complete, in general.

Proof. Part (a) follows from Proposition 20 and part (b) from Proposition 21 D

With quadratic monomia]s, irrespective of the order of the letters, each
letter is extremal in each monomial it occurs, so, an ordering < on X is
cool for M if and only if whenever x<y<z and xz is in .M, then at least one of
y:, xy,yz is in M.

At this point, it becomes convenient to encode the data and the problem
by means of graphs, and it turns out to be convenient to use the complement
of what comes naturally. The graph G(.A/) will have the letters as vertices,
xy is an edge if xy is not in M. Let 7w denote the set of letters whose square
is /zor in M.

An orientation of a graph is said to be /ra/zs//ioe at a vortex y if, whenever oriented
edges x-->y and y---z exist, then the edge x-->z must also exist. A graph is a
co/nparabf/ffy graf;z if it admits an orientation that is transitive at all its vertices; such
an orientation is always acyclic. Comparability graphs have been widely studied, and
can be recognized efficiently [6] (or [14]), [8,16].

Ptopoglion 2Q. A set M of quadratic monomials admits a cool order U and only if
GtM) admits an acyclic orientation that is transitive at all vertices of TM. In
particular, U M is square-free, it admits a cool order q and only if GtMb is a
comparability graph.

Proof. Suppose M has a cool ordering. Direct all edges of G(M) from the smallest
to the largest vortex. This orientation is trivially acyclic. If yc TM, and edges x-->y
and y--,z exist, then the monomials y2, xy and .yz are not in M. By coolness, xze M,
so the edge xz is in G(]W), and is correctly oriented.

Conversely, suppose that G(.ZI/) admits an acyclic orientation that is transitive at
all vertices of rw. With a ''topological sort '' order its vertices so that all directed
edges point from the smaller to the bigger end. One readily verifies that this ordering
is cool for M.

When .M is square-free, 7'W comprises all vertices, so an acyclic orientation that is
transitive at a]] vertices of 7m says that G(-M) is a comparability graph. []
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We refer the reader to the already classic text [7] as a general reference for NP-
completeness, good algorithms and satisfiability. Since good algorithms for
recognition of comparability graphs are known, one would expect that testing the
condition of Proposition 20 would also be feasible.

Proposition 21. Zhe prob/em

given a graph G and a set 7E p'G, is there an acyclic orientation of G that is
transitive at all vertices in 7?

is NP-complete

Proof. Let us shorten ''orientation transitive at T '' to r-arie/zfa//o/z. The proof will
be by a reduction from NOT-AI.L-EQUAL-3SAT [17]. The basic gadget is the graph in
Fig. 1, where the vertices in r are black (and labeled a, a, c).

Fact 1. The orieYttatiott a--+ a olf the edge ad can be extended to a unique T-orientation
of this graph. In this orientation, a b a source, a is a sink, and the bottom edge is
dbected from r to I.

To see this, notice that since the edge sd does not exist, sa must be oriented as
a--,s, because of transitivity at a. By a similar argument we check that all edges with
an end in r can have only one orientation. Finally, since the orientations r--,c and
c-->/ are forced, r--,/ is forced by transitivity at c.

Now we construct the main gadget by gluing three copies of the top hat,
identifying cyclically each r with the next s and each r with the next /. The result is in
Fig. 2, where only important vertices are labeled.

Fact 'Z. Consider an orientation of the edges atat, aZa2 and asap. It extends to an
acyctic T-orientation of the gadget U and only U they are not all directed the same way
along the external cycle.

Indeed, by looking at the top hats we see that any orientation of these edges extends
uniquely to a r-orientation of the gadget. If they are all oriented the same way, the
inner triangle becomes a directed cycle. Conversely, if they are not all the same way
(by symmetry, there is only one case to check), the orientation of the gadget is
acyclicC C

S a a £

Fig. 1. The top hat
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al

cz3a2
Fig. 2. The gadget.

Now we proceed to the reduction. A typical instance of NOT-AU,-EQUAL-3sAT
consists of a set X of variables and a set C of clauses over ..r, where each clause has
three literals, each of form x or X, for some xc.r. The question is whether there
exists a truth assignment to .y, so that for each clause one literal gets value frz£e and
one gets value/a/se.

For each clause, take a copy of the gadget and replace the labels ai , a2 and a3 by
the literals, and at , aZ and a3 by the complements of the literals in the clause. Add to
that a vortex o, for each variable x, and join it to all vertices labeled x. Call the
resulting graph G, and let r be formed by all u* together with the union of all black
vertices from the gadgets.

We will show a 1-1 correspondence between truth assignments for }' that solve C
and acyclic r-orientations of G. Start with a truth assignment. For each edge labeled
xX, orient it from x if x is assigned /rue and towards x otherwise. Consider a clause
and its respective gadget. The three literals in the clause are not all true and not all
daZse, so the three special edges are not all directed the same way. It follows from
Fact 2 that one can orient (uniquely) all gadgets extending these orientations. In this
orientation, a]] vertices ]abe]ed with the same literal are sources in their gadgets if
that literal is true, and sinks otherwise. This 7-orientation can now be extended to
the whole G, directing all edges incident to o, towards it if x is /rue and the opposite
otherwise.

Conversely, suppose a 7-orientation of G is given. Since all neighbors
of u* are pairwise nonadjacent, u, is either a source or a sink. Assign x
frye if o* is a sink, /a/se otherwise. The fact that each gadget is acyclically 7-
oriented shows that in the corresponding clause the not-all-equal condition is
satisfied. []
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Since simple powers have originated the problem in Proposition 19, we tried to
look at another extension of its first part, namely, allow only monomials with
support size exactly 2. This was short lived, though:

Proposition 22. T%e prob/em

given a collection M of monomials, each with support of size 2, does there exist a
cool ordering for .M?

is NP-complete

Proof. We reduce the quadratic case to this. Suppose that M is a collection of

quadratic monomials, and let .M ' = {xy ] xycM]. u {x2y I x2 cM and xy#M}. It is
easy to check that M and M ' have precise]y the same cool orderings. []

There is a lot of leeway in the reduction in the proof of Proposition 21. For
instance, the oi could be eliminated, and similarly labeled vertices could be merged.
One could add irrelevant vertices of both types and show that existence of acyclic r-
orientations is NP-complete even if lrl = ; loCI (any constant between 0 and I
would do). On the extremes, the problem can be solved:

When. 7' = rG, that is recognition of comparability graphs. When r induces a
bipartite graph, any acyclic orientation in which one side of r consists only of
sources and the other (if it exists) only of sinks is a r-orientation. This takes care of
lrl<2; actually, for any fixed k, if lrl<k, one can restrict the search for a 7-
orientation to a polynomial number of acyclic orientations that can be systematically
enumerated.

7. LifHng the ideal

Here we present the solution to Problem I

Theorem 23. aloe/z a/z a/zffchain of monomia/s .A/ g IXI , /he jo//owi/zg are egufzia/e/zr

iD l-l <.M ) is a $nitely generated ideal ofX*
(tl) For ellery m in M and any letters x # z:P y such that xy\m , there exists a monomial

w in M such that w\z divides either mx'l or my'X . (Note that x -- y is includedl)
(}tib For ellery m in M and any letter z such that na power of it is in M, if mNz facts

degree >P2, there exists a monomial z't in M2, such that teW.

l$v) l-\ (M) is generated by the inverse images of the monomiats me (M) such
that, .for every letter x, axm <n max.deMI axu.

Proof. (i) implies (ii): Given m, x, y, and z, choose u = xz'oycz i(m), where r>0.
Now, for every s> r, xz'uy c z-i < Wl> , and since n'i < M > is finitely generated, some
minimal generator g divides infinitely many of these. This is only possible if g divides
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some xz '' or some z'uy. So, z(g)\z divides either my'i or mx'i . The result follows by
taking any w in M that divides 7t(g).

(ii) implies (iii): Given m and z, choose letters x and y such that xy I m\z. Let w be
given by condition (ii), with minimal support. Since M is an antichain, zeW.
Suppose, by contradiction, that w\z has degree >2. We apply condition (ii) to w,
obtaining a W; that new monomial could also play the role of w with respect to m, so,
by minimality of w, it cannot exist. Since no power of z is in M, w = z'f for some
letter r#z. As w\z divides either mx'i or my i, it follows that fcW.

(iii) implies (iv): Let W ' be the set claimed to generate 7t-i <.M>. If this is false,
then < W>Sz't<M>, since l;l'g7t'l<M>. So, there must exist a wcn't<M>, of
minimum length, with no factor in l;l ''. So, for some letter z, a;z(w)>r=
max..M, azu.

Suppose that z'cM. Clearly w has a proper factor u such that z ' in(u), so
uc7t-i<M>. By minimality of w, z/ has a factor in I'r; then, so does w, a
contradiction. So, z ' # M, and by the choice of r and as M is an antichain, no power
of z lies in M. Now, let mcM be such that m I n(w). By (iii), there exists a z'fc.M
such that rcw. Since s<r, n ' has a proper factor zl such that z'f I z(u). We get a
contradiction again, that finishes the proof.

(iv) imp[ies (i): We deserve the rest. []

We briefly relate this result to the preceding ones. It is easy to check from the
definitions that if z'i < M > is finitely generated, then every ordering of .r is cool for
M. This can also be seen from the fact that if M satisfies the condition in Theorem
23(iii), then it also satisfies the condition of Theorem 16. The converse is not true; the
simplest example is .A4 = {a2, bcl--here, every ordering is cool, but z'i < .A4> is not
finitely generated. Actually, if one starts with any M for which every ordering is cool
and substitutes each letter for its square, this property is preserved. But now,
z-i < M> is not finitely generated.

The similarity between Theorems 23 and 9 may suggest that perhaps a restricted
form of 9(ii) involving .A/2 would hold. That is not likely, as suggested by M =
{xix3, xlx2x:, xlx2x3 x4) - - . }; the natural ordering of xl , x2, . . . , xn is cool for M, for
any /z, even though M2 is quite skimpy.

8. Commutative ideals given by inequalities

Another way of giving an ideal of IXI is as the pre-image of an ideal under a
morphism from IXI to another commutative monoid. This is useful only if there is a
nice way of describing the morphisms and the ideals of the target. We will consider
morphisms between free commutative monoids and lift ideals given by generators.

In this setting, it will be convenient to switch to an additive notation for I.rl. We
number the letters of X as xi , x2, . . . , x. , and identify I.rl with N" by the isomorphism

given by xi'x? .:q nx = (ft,l2, ...,f.). In this notation, a set /s N" is an ideal if
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xa:yc/ implies xc/ (as usual, x>y means xi a:yf for every f). Other terms require
translation: monomials become vectors, letters become indices or coordinates of
vectors, and so on.

Consider a morphism @ : I.rl --- lrl, where an isomorphism lrl--, N" is already
fixed. If p(xj) = lli pfP, then p is the linear map N"--- N" given by the matrix
'4 - (aP), where each ag is a nonnegative integer. If J is an ideal of N", then
/ = {x c N"l.4xc/} is an ideal of IXli moreover, ifJ is generated by the finite set }r,
then that same ideal / can be described as:

.r(.4, w ') {xc N" 1 .4x>w for some we W}

When w is a vector in N" , we write /(.4, w) for /(.4, {w}) . Also, we stress that we only
consider /(.4, w) when .,4 is nonnegative.

Given a generating set M of an ideal of IXI, one can write down a description
<M> = .r(/n,M), simply using y = X and the identity morphism as g. From the
complexity viewpoint, we notice that the new description has size bounded by a
polynomial on the size of M; one interesting feature of the new type of description is
that it can be much more compact. Just to give a trivial example, consider, for each k
in N, the idea] {xc N2lxi + x22:k}. The size of this description is O(]ogk), while
clearly it has k + I minimal generators.

Clearly, /(.d, w) = U.: w /(.4, w) , and this suggests the following definition: we say
that an ideal of IXI is co/zoex if it is of form .r(.d, w) for some integer matrix ,4 and
vector w. The name is motivated by the following fact, that follows from standard
results in the theory of polyhedra (see [1 8] for terminology and facts about po]yhedra
that we use).

Proposition 24. Z,er /
are egufua/enf:

< M> be a/z idea/ of I.rl N" , with M$nite. The .following

(i) / is co/zuex.
(ii) / fs //ze I/z/ersec/!o/z of N" wf//z a co/zoex sef in R"

(iii) / = N" n (conv(M) + ml) (conv(.A/) fs //ze co/zuex /zu// of M)

So, /(H , w) is a union of convex ideals. It turns out that any union of convex ideals
can be expressed as an /(.4, w). As we see below, this can be done without wasting
much space, so we can switch descriptions without penalty in the coarse complexity
of the problems we will talk about.

Lemma 25. .Lef /i = /(.d(1), w(i)), /2 = /(.4(2), w(2)), ...,1, - /(.4('), w(')) be ideals o/
\X\. Then there exist a matrix A and a set W ofuectors, with total size polynomial in
the total size olf the descriptions IQXth . w\b ), such that \li li -- I(.A, w).

Proof. Let .4 result from piling up the matrices .4(i) on top of each other. For each f,
let wi result from extending w(f) with null entries corresponding to the inequalities of

the other systems; so, /(.4, wf) = /i. Finally, let W = {wi , w2, ... , w'}.
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For those of a more categorical persuasion, the proof is simply the substitution of
a fami[y of morphisms by its direct product. []

Now we consider what happens to the three guiding problems of the introduction
when / is given in the form /(.4, w). Problem 3 is sort of hopeless, since a description
< M > can be converted into a description /(,4, w) of size polynomial in the size of M,
and Problem 3 is NP-complete when M is the given data. It follows that this problem
with / given as /(.4, w) is NP-hard; to make things worse, we cannot even assert that
it is in NP. At this point, we refer the reader again to [7] for a refresher on NP-
completeness concepts, and, in particular, to the satisfiability problem, that will play
an important role in the remainder of this section.

For the other two problems, our results are similarly bad and more definite. They
will be shown to be coNP-complete. Indeed, we will add a new problem to the pack,
that is comp]ete]y trivial if the ideal is given by generators:

Problem 4. Given an ideal / of I.X"l, is it generated by monomials with support of size
at most 2? That is, is there a set .M such that M = .A42 and <-M> = /? []

We register two basic algorithms pertaining to these problems

Lemme 26. Given an ideal I -- I(.A,wb and a vector x. it can be decided in polynomial
time whether xe I and whether x is a minimal generator ofl.

Proof. Computing ,4x and comparing the result with each member of W, we quickly
decide membership in /. To decide whether an x € / is minimal, it is enough to verify that
each vector obtained from x by subtracting ] from a positive coordinate is not in /.[]

In what follows, the proofs will be a bit sketchy, with some bare statements; filling
in the details is routine handiwork.

Recall that a decision problem is in coNP if. the problem obtained by reversing the
answer is in NP; in other words, no-instances have short certificates.

Proposition 27. -Prob/ems 1, 2 and 4 are fn co.NP, w/zen fhe idea/ fs g/z?en as /(,4, w)

Proof. For each problem, when the answer to an instance is no, we will present a
short certificate, verifiable in polynomial time. That will be a minimal generator of
the ideal, and some additional information. Notice that any minimal generator has
coordinates bounded by the maximum of all coordinates in members of }r, so it can
be part of a short certificate.

For Problem 4, a certi6cate is simply a minimal generator with support of size at least 3.
For Problem 1, a certificate is a minimal generator m and an index z such that item

(iii) of Theorem 23 is violated. That amounts to the following:

e There is no vector in / whose support is {z} (no power of z is in M). This happens
if and only if. for each wc W, there is an index f such that wi >0 and al, = 0.
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e }.I,., mi a:2 (m\z has degree >2).
e There is no xc/ and index r#z such that m£>0, x, = I and xf = 0 for every

f# f, z. This is true, for each candidate r, if and only if for every w c W there exists
an i such that wl>afr and af, = 0.

For Problem 2, we assume, without loss of generality, that the ordering on the
letters is that of the indexing. Now, a certificate consists of a minimal generator m
and an index x, interior to m satisfying the condition: there is no minimal generator s
whose first or last positive entry is in position x, and such that if s' results from s' by
turning the x-component to 0, then s' < m. This condition can be checked as follows.
Let m. (m. ) result from m by changing to zero all components with index bigger
(smaller) than x. Let also ..4', W ' result from eliminating all rows isuch that al, > 0.
Then, x satisfies the required condition if and only if neither m. nor m. is
in ](.4', w ' ).

Proposition 28
.r(.4 , w) .

Problems \, 2 and 4- are comp-complete, when the ideal is given as

Proof. We will reduce directly from SAT to the negative of each problem. The
reductions will have a lot in common. From each instance of SAT, we will produce a
family of convex ideals &, like in Lemme 25; instead of presenting them in matrix
form, we write them as systems of linear inequalities.

Given an instance .S of SAT on variables xi,x2, ...,x«, (we assume /z>3) our
inequalities will involve the variables xi , Xi , x2, .t2 . . . , x., .t., in obvious correspon-
dence to the literals. For each clause, the corresponding c/az/se f/zegz./a//fy is

sum of the literals in the clause >l

Let Zo be defined by the clause inequalities, together with the boo/ean Inegua/fries
xf + fia: I for f = 1 , 2, . . . , n. The specific use of lo is the following: x is a so/uffon arlo
in nonnegatiue integers such that each boolean inequality is satisfed as equality U ctnd
only ifx is a boolean assignment satisfying S.

We also define, for each 1 = 1,2, ...,/z, the ideal /i given by the single inequality
xf + £i>2. Notice that /I has three minimal generators: two with single support
(xf = 2 or Xi= 2), the other with two-element support (xi = Xr = 1).

Reducflo/z to Prob/em 4: The instance /' of Problem 4 consists precisely of the
systems lo , .rt , . . . , in.

Suppose that S is satisfiable, and let x be a boolean assignment satisfying S. Since
for each f, exactly one of xf or Xi equals 1, the support of x has size n > 3, and x is not
in any /i, f> 1 . On the other hand, clearly x is in Zo. Also, x is minimal, since zeroing
any variable would violate the corresponding boolean inequality. So, P has a
negative answer if .S is satisfiable.

Conversely, suppose .P has a negative answer, that is, the corresponding ideal has a
minimal generator x whose support has size > 3. Clearly it cannot be in any 4 with
f> 1, so it is in lo, and xi + Xi = I for each f. Hence, S is satisfiable.
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Reducflo/z to Prob/em 2: We introduce two new variables, y and z, besides the ones
we already have. The instance P of Problem 2 consists of the systems /I, ...,in,
together with 4, which is lo with the addition of the inequality y > 1 . The variables of
P will be ordered increasingly as y, z, xl , fl , x2, £2, . . . , x., Xn.

Suppose that S is satisfiable, define x as before, and extend it by setting y = I and
z = 0. Then this is a minimal generator and is only in .q. Now, z is internal to this
vector, but no minimal generator of the ideal has z in its support (let alone, as an
extreme entry), so condition (ii) of Theorem 9 is violated, and P has a negative
answer.

Conversely, if P has a negative answer, there exists a minimal generator and an
internal variable such that condition (ii) of Theorem 9 is violated. This minimal
generator cannot be in any of the &, /> 1, since those have no internal letters. So it is
in 4, and must have y = 1, z = 0, and the other variables must be a boolean
assignment that satisfies S. The problematic internal variable must be z, but who

.Reducrfom /o Prob/em 1 : We use just one new variable y. The instance P of Problem
I consists of lo, a new system /*, with the single inequality y>2, systems 4, each
obtained from & by the addition of the inequality y> 1. By arguments similar to the
preceding ones and the help of Theorem 23(iii), it can be shown that S is satisfiable if
and only if P has a negative answer.

cares?res

Proposition 24(iii) says that a convex ideal is the set of integer points of a b/acai/zg
po/y/zedron. Such polyhedra, and mostly their integer points, have been the subject of
a lot of attention in the context of combinatorial and integer programming. This,
and perhaps sheer curiosity, justify asking what happens to Problems 1--4 if one
restricts the questions to convex ideals (given in the foia /(,4, w)). No one of the
definite results we presented so far applies to convex ideals; in particular, the proof of
Theorem 19 constructs ideals that are not convex, so even Problem 3's status is
undecided.
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Abstract

Let .A/ = (y. -E, .4) be a mixed graph with vertex set y, edge set .E and arc set ,4. A cycle
cover of .A/ is a family C = {CI , . . . , Ok} of cycles of M such that each edge/arc of M belongs to

at least one cycle in C. The weight of C is )l:f::l I(;fl. The minimum cycle coder problem is the

following: given a strongly connected mixed graph .n4 without bridges, find a cycle cover of .A/

with weight as small as possible. The (Hfnese postman problem is: given a strongly connected

mixed graph .A/, find a minimum length closed walk using all edges and arcs of M. These

problems are NP-hard. We show that they can be solved in polynomial time if .A/ has bounded
tree-width.

Keg/words; tree-width, polynomial algorithms, cycle cover, Chinese postman problem, mixed graphs

I Introduction

Mixed graphs generalize the notion of digraphs and graphs in the sense that they may contain

(undirected) edges as well as (directed) arcs. A mixed graph is a triple M = (y. E, .A) where V '
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is a finite set of vertices, -E is a finite set of edges and .A is a finite set of &rcs. When -D = G] we say

that ]W is a digraph, and when ..4 = 0 we say that M is a graph. Note that these consist of sump/e

mixed graphs, that is, loops and parallel arcs/edges are not allowed.

A cycle cover of a mixed graph M = (V. .F, .A) is a family C: = {OI, . . . , Ot} of cycles of M

such that each edge or arc of M belongs to at least one cycle in C. We define the weight of C as

the sum of the lengths of the cycles in C, that is, )ll:f::i IOi

The MiNiMUM CYCLE covER PROBLEM (MCCP) consists of the following: given a bridgeless

strongly connected mixed graph M, find a cycle cover of M of minimum weight.

This problem is NP-hard if M is an arbitrary planar mixed graph j131. It is well-studied when

M is a graph: Thomassen j161 showed that this case is NP-hard. Also, this case is related to the

well-known cycle double cover conjecture j121 and the Chinese postman problem l91.

Let M be a strongly connected mixed graph. A postman walk in .?W is a closed walk that

contains a]] edges and arcs of ]W. Any cycle cover of weight k can be converted into a postman

walk of length k, but the converse is not true. (See Figure 1.)

Figure 1: The numbers denote the number of times each edge/arc is used on a postman walk. This

walk cannot be decomposed into a cycle cover of same weight. This postman walk has minimum

length, while the weight of a minimum cycle cover is 9.

The cnlNESE POSTMAN PROBLEM (cpp) in mixed graphs is a variant of MCCP: given a strongly

connected mixed graph .A/, find a postman walk in M of minimum length.

We know that cpp can be solved in polynomial time in graphs l91 and in digraphs li01. On the

other hand, Papadimitriou j141 proved that cpp is NP-hard on planar mixed graphs.

In this paper, we study the complexity of MCCP and cpp on mixed graphs with a certain

structural parameter--tree-width--bounded by a constant. The tree-width of a graph G can be

defined using the notion of a tree-decomposition of G. The study of tree-decompositions started in

the eighties and had several consequences in two areas: graph theory and design of algorithms. In

the first, tree-decompositions were fundamental in the proof of Robertson and Seymour's result on
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graph mmors: in every infinite sequence of graphs, there are two graphs such that one is a minor

of the other. In the second, this concept were successfully explored in the design of polynomial-

time algorithms for several NP-hard problems on graphs with bounded tree-width. We show a

polynomial-time algorithm for MCCP and for cpp on mixed graphs with bounded tree-width. Many

of the polynomial-time algorithms for graphs with bounded tree-width follow a straightforward

dynamic programming approach. Although our algorithm is not an exception, it is not obvious.

Specifically, we prove the following theorems.

Theorem. 1.1 cpP is so/uabZe in poZ3/nomfaJ time on mined graphs ffh bounded tree-width.

Theorem. 1.2 MCCP is soZuab/e in po/3/nom aZ time on mfzed graphs with bounded free-ufdfh.

The paper is organized as follows. Next we introduce some notation and give some definitions.

In Section 2 we prove Theorem 1.1 and in Section 3 we prove Theorem 1.2.

1.1 Definitions and notation

Most of the concepts defined for graphs and digraphs (see l61) can be extended in a natural way to

mixed graphs. We assume the reader is familiar with them. We present here just a few concepts,
to establish the notation.

A walk in a mixed graph is a sequence W :=(ul,ZI, . . - ,uh I,Zk-l,uk), where each oi is a vertex

and either Zf = ui-iui is an edge or Jf = (oi-i,ui) is an arc. Sometimes W is denoted simply by

(ui, . . . , uk). The length of W is k -- 1. We say that W ' is a walk from t;i to uk or that W starts

at ui and ends at uk. Also, we say that ui and ux: are the ends of W. If a walk starts and ends at

the same vertex, we say it is closed. A cycle is a closed walk (ui, . . . ,ux;), where ui # oj, for all

l$f <J < k. A path is a walk(ui,...,uh), where ui # uj, for alll${ <j$ k.

A mixed graph is strongly connected if for any ordered pair of vertices (u, t;), there is a path
from u to u.

Given a mixed graph .iW, the underlying undirected graph of M is the graph obtained from

M by rep]acing every arc in ]V by an edge with the same ends.

Let G be a graph and O := (T, (Wt)tcv(r)) be a pair consisting of a tree 7' and a multiset whose

elements Wt, indexed by the vertices of 7', are subsets of y(G). For a vertex u of G, we denote by

Fu the subgraph of T induced by those vertices f of T for which Wt contains u. Then O is called a

tree-decomposition of G if the following two conditions hold:

(1) For every edge e = zg/ of G, there is a vertex t of T such that {z, y} g; Wt;

(2) For every vertex u of G, the subgraph Fu of 7' is a tree.
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The width of O is the maximum, over all vertices t of T, of IWtl 1; and the tree-width

of G is the least width of any tree-decomposition of G. We refer to l8, 151 for properties and other

results on tree-decompositions .

Wb may assume that the tree 7' in any tree-decomposition is binary. If this is not the case,

one can modify T, introducing new vertices in such a way that the modified tree-decomposition

preserves the width of the original one.

For a mixed graph ]14, the concept of tree-decomposition refers to the tree-decomposition of its

underlying undirected graph G. Let O := (T, (Wt)tcv(r)) be a tree-decomposition of G. For each

vertex t of T, choose a set -D(Wt) of edges of M and a set .4(Wt) of arcs of M such that all edges

and arcs in -E(Wt) and .A(Wt) have their two ends in Wt and every edge or arc in M appears in

exactly one of these sets. These sets form a partition of -E(M) U.A(M), which we call an associated

partition of O. (Note that it is not unique.)

Given a mixed graph M = (y. -E, .A) and a subset X of V ', we denote by J(X) the set of edges

of M with exactly one end in X. We denote by d+(X) the set of arcs of M starting at a vertex in

X and ending at a vertex not in X. Also,'let d'(X) := J+(V '' \ X). A bridge in M is an edge e

of M such that d(X) U 8+(X) U 8'(X) = {e}, for some subset X of y. We say M is Eulerian if

ld(x)I -- lla+(x)I -- I.S (X)ll is an even non-negative number, for any subset X of y. The following

theorem l4, 11l generalizes the results known for graphs and digraphs.

Theorem 1.3 .4ng/ -Eu/arian m£zed graf/z can be partitioned into a set o/ edge and arc disjoint

cyc/es. n

2 The Chinese postman problem

In this section, we prove Theorem 1.1, that is, we present a polynomial-time algorithm for cpp on

mixed graphs with bounded tree-width. To simplify the description of the algorithm, we represent

a solution of cpp for a mixed graph M = (y. .D, .A) in an unusual form. Let P be a postman walk

in M. Consider the supergraph -H = (yX,-Ex,..'!X) of M for which yx := y and, for each edge

(arc) e of M, if e appears f times in P, then there are t copies of e in -E# (-AX). Clearly H is

an Eu[erian mixed graph. Therefore, by Theorem 1.3, ]T can be written as a union of edge and

arc disjoint cycles, say, Ot, . . . , Oq ' Note that some of these cycles might not correspond to cycles

in M. This happens exactly when a cycle Ci consists of two copies of the same edge of M. In this

case, we say (7f is a pseudocycle in M. On the other hand, if Ot, . . . , ag is a collection of cycles

and pseudocycles of .M whose union contains all edges and arcs of M, then the mixed graph given

by U::i Of is Eulerian and corresponds to a postman walk in M.
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Define the weight of a collection Oi, . . . , Oq of cycles and pseudocycles as )I'f:t 1011. We can

formulate cpp as the problem of finding a minimum-weight collection of cycles and pseudocycles

containing all edges and arcs of -M. From now on, we consider this new formulation of cpp

Let m := ID U ..41. Observe that, if Oi,.. . ,ae is an optimal solution for cpp then q $ m.

Indeed, suppose ai, . . . ,Oq is an optimal solution for CPP. In each Ct, there exists an edge or

arc that appears in no other (pseudo)cycle Cj (otherwise, by removing (Z we would get a better

solution). As a consequence, no edge or arc of M appears in more than m (pseudo)cycles.

Before describing the algorithm, we need some additional notation. Let S be a subset of y

An .S-configuration is a function d : S --} {--m, . . . ,m} such that )l:.cs d(u) = 0. Let M ' be a

subgraph of M and d be an S-configuration, for some set .S of vertices of .M '. If P is a collection

of paths in M ' with ends in S and C is a collection of (pseudo)cycles of M ', then the pair (P ', C) is
a d-realization in M ' if

8 for each u in S, the number of paths in P that start at u minus the number of paths in ?
that end at u is exactly d(t;);

. each edge or arc of M ' belongs to some path in ? or to some (pseudo)cycle in C.

We define the weight of a d-realization (7), C) as the quantity given by )l:Pc? IPI + }'ccc 1(-;1. We

say a d-realization in a graph is optimal if it has the smallest possible weight.

When M ' is a digraph with n ' vertices and m ' arcs, an optimal d-realization can be found in

O((m ' loan')(m ' + n ' log n ')) time using a minimum cost flow algorithm jl, ?l.

Let (T, (Wt)tev(r)) be a tree-decomposition of (the underlying undirected graph of) M with

tree-width k. Let (E(Wt))tcv(r) and (.4(Wt))tcV(r) be an associated partition of O. Note that

each set in this partition has size bounded by a function which depends only on k.

Root the tree T at an arbitrary vertex r in T. For each vertex t of T, denote by .A/t the subgraph

of M such that y(Mt), E(.A/t) and .A(Mt) are the union, over all descendents D of t in T, of the sets

W., .8(W«) and .A(W«) respectively. Note that the restriction of an optimal solution C* of cpp to Mt

corresponds to a collection P of paths and a collection C of (pseudo)cycles in Mt. It is not difficult

to see that (P,C) corresponds to an optimal d-realization in Mt, for some Wt-configuration d.
Moreover, if (P ', C ') is an optimal d-realization in M;, one can get an optimal solution of cpp in

M by combining (p '', C ') with the restriction of C* to the graph M (-E(Mt) U ..4(Mt)).

The algorithm for cpp is based on the following strategy. For each vertex f of T and each

Wt-configuration d, find an optima] d-rea]ization in ]Wt. The algorithm solves this initially for the

leaves of T and goes up in T until it reaches its root r. Note that in the particular case of the root,

a d-realization for d = 0 is a collection of (pseudo)cycles covering a]] arcs and edges of ]l/, that is,
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it is a feasible solution for CPP. Hence, solving CPP is equivalent to finding an optimal d-realization

in ]W for the W,-configuration d = 0.

2.1 Description of the algorithm

thom now on, let us assume that M has tree-width at most k, where k is a fixed constant. Also,

let (T, (Wt)tcv(r)) be a tree-decomposition of M of width at most k, with T binary. Clearly, as k

is a constant, l-E(Wt)I and I.a(wt)I are bounded by a constant, for all f.

For each vertex t of 7', the algorithm builds a list of partial solutions consisting of triples

(d,P(d),C(d)) where d is a Wt-configuration and (P(d),C(d)) is an optimal d-realization in Mt.

Since IWtl $1 k + 1, there are at most (2m + I)k+l diKerent Wt-conHgurations for each f.

The algorithm starts building these lists for the leaves of T. This can be done in polynomial

time, because, as IWtl $ k + 1, one can find an optimal d-realization by enumeration, for each

Wt-configuration d. Going up the tree, the algorithm uses the lists of the children of a vertex to

build the list for this vertex. This process is repeated and halts only when it reaches the root of
the tree T

Let us describe how the list for a vertex is obtained from the lists of its children. Let t be a

vertex of the tree T and d be a Wt-configuration. Let tt and f2 be the two children of t (the case

where t has only one child is similar) and let Zi and r2 be the lists of partial solutions for ti and f2,

respectively. Let n ' := (df,P(df),C(df)) be a partial solution in ri, for f = 1, 2. A d-extension for

the pair (ni, n2) is a d-realization (P,C) in Mt whose restriction to the subgraph Mt: corresponds

to the partial solution (?(df),C(df)), for f = 1,2. If, for each pair (rl,n-2), we can compute an

optimal d-extension for (n-i,r2) (if one exists), then an optimal d-realization in Mf is simply an

optimal d-extension for a pair that gives the smallest possible weight (considering all such pairs).

But how can we compute an optimal d-extension for a specific pair (ai, a'2)? Each df is defined

on Wt:. A d-extension for the pair (n-i, r2) exists only if the support of both di and d2 is contained

in Wt. Extend di and d2 so that they are defined on Wt. Let do := d -- (dl + d2) and let

H := (Wt, .E(Mt), .A(Wt)). Thus, to compute an optimal d-extension it sufHces to find an optimal

do-realization in .H.

Let (P,C) be an optimal do-realization in -H. For each e = uu in -E(Wt), exactly one of the

following holds:

(a) every element in P ' U C containing e traverses e from u to u;

(b) every element in ? U C containing e traverses e from u to u;

6



(c) there are exactly two elements in 7) U C containing e, one of them traverses e from u to o,
and the other traverses e from u to u.

In order to compute an optimal do-realization in -H, we consider all digraphs obtained from .H by

replacing each edge e = uu of .H by either (a) an arc (u,u), or (b) an arc (u,u), or (c) two arcs

(u,u) and (o, u). For each one of these digraphs, we compute an optimal do-realization (using a

minimum cost flow algorithm), and we select a do-realization with minimum weight. Note that
the number of digraphs considered is 31E(Wt)1 5; 3k(t+i)/2. So the total time used to find an

optimal d-extension of a pair (ai, a-2) is 0(3k(k+i)/2(l-B(Wf) U .4(Wt)I log IWfl)(l-E(Wt) U .4(Wt)I +
IWtjlog IWtl)) = 0(3k(e+t)/2k4 logo).

We conclude that, given d and the lists Zi and Z2 of partial solutions for ti and t2, one can

find an optimal d-extension in Mt in time O( fill£2l3k(X+i)/2k4 logo). The length of each list ff

is at most the number of Wt:-configurations, which is at most (2m + I)t+l. Thus, one can find an

optimal d-realization in .A4f in polynomial time. Furthermore, one can build in polynomial time the

list of all partial solutions for a vertex t from the lists for its children.

H'om the above, cpP in mixed graphs with tree-width bounded by k can be solved in polynomial

time, completing the proof of Theorem 1. 1. Unfortunately, due to its time complexity, the algorithm

is only useful in practice for small values of k. One can make the algorithm a bit faster by including

in the list of partial solutions for a vertex t only the partial solutions with support in WP n wt,

where p is the parent of t in the tree T, but this does not reduce the complexity of the algorithm.

It is known that any graph problem that can be expressed as a formula in (extend) monadic

second order logic can be solved in linear time on graphs with bounded tree-width l2, 7j. Many

well-known graph problems can be formulated as such formulas: MAXIMUM CLIQUE, MAXIMUM

iNI)zpnNDEmT snT, ChROMATic NUMBER, and so on. However, it is still open whether there is a

linear-time algorithm for cpp (and MCCP) on mixed graphs with bounded tree-width.

3 The minimum cycle cover problem

In this section, we prove Theorem 1.2. The algorithm ior MCCP follows the same lines of the algo-

rithm described above. The di#erence lies in how we define a partial solution for MCCP. Partial

solutions for cpP include pseudocycles and these are not allowed in a solution for MCCP. Unfortu-

nately, it is not enough simply to omit the pseudocycles from the partial solutions, because they

appear natura]]y when we put together two partial solutions. The change has to be more radical.

More information is needed so that we can put two partial solutions together without forming
pseudocycles.
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For the MCCP, an S-configuration is a function d : {--1, 0, 11S -.> {0, . . . , m}. A path-family

in M is a set of pairwise vertex-disjoint paths in ]l/. Let F ' := {Pi , . . . , Pt} be a path-family in M,

and assume that, for each f = 1, . . . ,t, .r% is a path from ui to ui. For z in {--1,0, 11s, we say -F

covers z if {s C S : z(s) = 1} = {ui,... , ut}, and {s C S : z(s) = --1} = {ui,...,ut}.
Let d be an S-configuration, where .S is a set of vertices of a subgraph ]V ' of M. If .F is a

collection of path-families in M ' (with their paths having ends in S) and C is a collection of cycles

in M ', we say (.F, C) is a d-realization in .A4' if

8 there exists a partition .F := U,Cl-i,o,tls Fz such that Fz consists of exactly d(z) path-families

in M ' that cover zl

B each edge or arc of .M '' belongs to a path in some path-family in /' or to some cycle in C

The weight of a d-realization (/, C) is defined as the quantity given by )l:PC/. }l'Pcr ' IPl+)I'occ IC71.

A d-realization in a graph is optimal if it has the smallest possible weight.

Note that the restriction of a path-family to a subgraph Mt is also a path-family and the
restriction of a cycle to .A/t is either a cycle or a path-family. Moreover, if f is an arbitrary vertex

of T, then the restriction of an optimal solution C* for MCCP to the subgraph Mt corresponds to a

collection /' of path-families in .A4t together with a collection C of cycles in .A/t. It is not difficult to

see that (/, C) corresponds to a]] optimal d-realization for some Wt-configuration d. Also, if (/', C ')

is another optimal d-realization in Mt, then the restriction of C* to the graph M -- (E(Mt) U ..4(Mf))

combined with (/', C ') results in another optimal solution for MCCP in M. Note that, when f = r

and d = 0, a d-realization in Mt (= .A4) is a collection of cycles covering all arcs and edges of M,

that is, it is a feasible solution of MCCP. Thus, solving MCCP is equivalent to finding an optimal

d-realization in M for the W,-configuration d = 0.

The algorithm works as the previous one. Given a tree-decomposition (T, (Wt)tcV(r)) of M,

with width at most k, where T is a binary tree, it builds, for each vertex t of 7', a list of partial

solutions for the MCCP in Mt. Each partial solution consists of a triple (d, .F(d),C(d)), where d is

a Wt-configuration and (/'(d),C(d)) is an optimal d-realization. Since IWtl $ k + 1, there are at

most (m + I)a'+: di#erent Wt-configurations, for each t. For the leaves of T, the lists are built

directly by brute force. For each internal vertex f, let ti and t2 be its two children. (The case

where f has only one child is similar.) Let us describe how the list for t is obtained from the lists

for tt and t2. More specifically, let us show how to extend a pair of partial solutions (ri, r2), with

a'i := (df,/(d{),C(df)) for f = 1, 2, to obtain a d-rea]ization (.F,C) in ]\4t. Such a d-realization is

called a d-extension of (ri,r2) and is such that its restriction to Mt: is exactly n-i for f = 1,2.

Specifically,(/, C) satisfies
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. C(di) UC(d2) g C;

e the set of arcs and edges of each path-family in / and each cycle in C \ ((:(di) U C(d2)) can be

decomposed into .Z), Fi and F2, where L is a path-family in the graph (Wt,-D(Wt) U -A(Wt))

and, for d = 1, 2, either Ff = © or Ff C /'(df);

B each path-family of .7'(df), d = 1, 2, appears in the decomposition of exactly either one path.

family in /' or one cycle in C? \ (C(di) U C(d2)).

For f = 1, 2, let z{ in {--1, 0, 11wf be such that df(zf) > 0, and let Ff be a path-family in .F(df)

that covers zi. Let -L be a path-family in (Wt, E(Wt), .A(Wt)). Then .L, Fi and F2 determine, besides

possibly some cycles, a path-family in Mt covering some z in {--1,0, lIMe. Note that z depends

only on the choice of f, zi and z2. (Here we used the fact that the paths in the path-families are

disjoint and -Fi and F2 are contained in Mt: and .A4t,, respectively.) So we say simply that Z, zi

and z2 (instead of f, Fi and F2) determine a path-family in Mt and we call the triple (Z, zi, z2) a

candidate path-family in Mt. Similarly, for each z in {--1, 0, lImE such that df(z) > 0, for d = I

or 2, we can do the same with only .L and z, and we also say (.L, z) is an candidate path-family in

.A4t. A candidate path-family in Mt covers z if it determines a path-family in .A/t that covers z.

We can do the same with a cycle (instead of a path-family) in Mt. In this case, we say (-L, zi,z2)

(or (.L, z)) is a candidate cycle in .A4t. Each candidate path-family (cycle) represents several

path-families (cycles) in -A/t .

We reduce the problem of finding an optimal d-extension of (nl,n2) to the problem of enu-

merating all feasible solutions of an integer linear program of constant size. We use candidate

path-families (cycles) to avoid enumerating all possible path-families and cycles in Mt. In this way,

we need only to consider triples or pairs of subsets of a bounded-size set.

Let us describe the above mentioned integer linear program.

Let Z)i and .D2 be two disjoint copies of 'l--1, 0, lIMe . Let P be a matrix with rows indexed by

R := .B(Wt)U.4(Wt)U-Dt U-D2, whose columns are the incidence vectors of candidate path-families in

]Wt. Analogously, let C be a matrix with rows indexed by -R, whose columns are the candidate cycles

in Mt. For z in .R, denote by P, (respectively C,) the row of P (respectively C) corresponding to

z. Note that the size ofR is l-D(Wt)l+l.A(Wt)l+2(31wtl) $ k(k+1)/2+k(k+1)+2(3k+i). Also, the

number of columns of these two matrices is bounded by 21E(Wt)UA(Wt)I l-Di I l-D2 1 $ 23k(k+i)/2+32(k+t)

So, P and C have constant size.

For z in {--1,0, 1JWt, denote by K:(z) the set of candidate path-families in .A/t that cover z.

Consider pairs (z, g/), where z is a non-negative integer vector indexed by candidate path-families

in Mt and 3/ is a non-negative integer vector indexed by candidate cycles in Mt, satisfying the
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following conditions:

)l-.F'€x:(.)£F ' d(z) Vz c {--1,0,11w ';
P.:"+C.y 2 I Ve€.D(Wz)U..4(Wt);

P,z + C,y = dl(z) Vz c Di;

P.£ + C,Z/ = d2 (z) Vz € D2

Let us show that there is a correspondence between integer solutions (z, Z/) and extensions of

(a-i, n2). Clearly, an extension of (ri, n2) corresponds to an integer solution (n, Z/). Now, suppose

that (z, y) is an integer vector satisfying the integer linear program above. Let .F be the collection

of candidate path-families in Mt, with each candidate path-family F appearing exactly zp times,

and let C be the collection of candidate cycles in Mf, with each candidate cycle a appearing exactly

g/c times. Recall that the pair (/(df), C(df)) is a di-realization in Mt:, for f = 1, 2. The pair (z, y)

forces the occurrence in / U C of exactly df(z) candidate path-families covering z in -D{. Replacing

these candidate path-families in F,C by path-families in .F(di) U /'(d2) for each z, we obtain a

collection of path-families and cycles in Mt, which we call .7 and C respectively. It is easy to see

that (/', C U C(dt) U C(d2)) is a d-realization in Mt.

Thus, to find an optimal extension, it is enough to find a pair (z, y) satisfying the system above

and that minimizes the weight of the corresponding realization. Clearly, we may assume that the

comporJents of z and 3/ lie in {0, . . . , m}. So, an upper bound for the number of feasible solutions of

the system is (m + I)g(k), where g(h) = 0(23t(k+t)/2 + 32(k+i)) is the sum of the number of columns
of P and C.

Therefore, given d and a'i := (df,F(df),C(d{)), f = 1, 2, one can find an optimal d-realization

(ni, a2) in time O(g(k) + mP(k)). Given d and the lists Zi,Z2 of partial solutions for ti,t2, one can

compute an optimal d-realization in Mt in time lfi ll£2lO(g(k) + mS(k)). The length of each list ff

is the number of Wt:-configurations, which is at most (m + 1)3'+' . Hence, one can find an optimal

d-realization in Mt in polynomial time. Furthermore, one can build in polynomial time a list of

partial solutions for a vertex f from the lists for its children repeating the process for all possible

Wt-configurations. This concludes the proof of Theorem 1.2.

4 Concluding remarks

We hope the approach we described in this paper may help in the design of algorithms for other

problems on graphs with bounded tree-width. We observe that the series-parallel graphs have tree-

width at most 2. Although they constitute a very simple class of graphs it is not always immediate

how to design polynomial-time algorithms for problems on these graphs. Viewing them as graphs
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with bounded tree-width may be a good strategy to deal algorithmically with them
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Abstract. The UPS Problem consists of the following: given a vertex
set y, vertex probabilities (p.,).cv, and distances 1 : y2 -+ R+ that sat-
isfy the triangle inequality, find a Hamilton cycle such that the expected
length of the shortcut that skips each vertex u with probability I -- p.
(independently of the others) is minimum. This problem appears in the
following context. Drivers of delivery companies visit customers daily to
deliver packages. For the company, the shorter the distance traversed,
the better. For a driver, routes that change dramatically from one day to
the other are inconvenient; it is better if one only has to shortcut a fixed
route. The UPS problem, whose objective captures these two points of
view, is at least a$ hard to approximate as the Metric TSP. Given that one
of the vertices has probability one, we show that the performance ratio
of a TSP tour for the UPS problem is I/p«i«, where p«in := min.Cvp,.
We also show that this is tight. Consequently, Christofides' algorithm
for the TSP has a performance ratio of 3/(2p«i«) for the UPS problem
and the approximation threshold for the UPS problem is at most I/p«i.
times the one for the TSP

I Introduction

1.1 Motivation

Package delivery companies, like the Z./effed Parcel $eruice rt/PS), have
to deliver packages daily to several of their customers. The order of de-
livery is chosen so that to minimize the distance traversed by the drivers.
Each delivery concerns only a subset of the customers. Therefore each
delivery could be optimized individually. It is, however, easier for a driver
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to shortcut a fixed route than to travel each time a completely di#er-
ent route. In this paper we study a variation of the 7Faue/fng Sa/aswan
Problem raSP) which captures the issue described above.

The delivery company has the information on how often each customer
receives a package. Hom this information one can estimate the probabil-
ity that a customer receives a package per day. Roughly speaking, the
here called UPS Problem consists of the following: find an ordering of
all customers that minimizes the expected length of the route that starts
and ends at a company location and visits in this ordering a randomly
chosen (according to the customer's estimated probabilities) subset of the
customers. The problem, as well as the described application, was pro-
posed by l81. Also according to l81, even the special case where customers
are divided into two clusters--the customers who receive packages often
and the ones who receive packages not so often--is of interest. The setup
is conceivable in other delivery systems as well. We therefore expect the
study of this problem to have several applications.

1.2 Notation and Problem Statement

Let G = (y.E) be the complete graph on n vertices. A path is a se-
quence <u0,ul, . . . ,t;x;> of distinct vertices of G. A cycle is a sequence
<uo,t;i}. . - ,uk> of vertices of G, where uo,tii,. . - ,uk.i are distinct and
uh = uo. For a path (cycle) P = <uo,ui, . . . ,uJ;>, we denote by }'(P) the
set {uo,ui, . . . , ux;} and we say that P is a path (cycle) on y(P). A tour
(or a Hamilton cg/cZe) is a cycle on y

We denote the set {(uo, ui),(ui, u2), . . . ,(uk-l, uk)} by E(P). The length
o/ P mita respect to a /unctfon 1 : y2 -+ R+ is denoted by i(P), and is
given by

Z(P) : >: 1(e).
eCE(P)

The lr+aueZing Salesman Problem raSP,) is the following: given a com-
plete graph G = (y.E) and a function i: V2 --> n+, find a tour of
minimum length. We refer to such a tour as a TSP tour.

Unless specified otherwise, we consider in the following only functions
i: V'2 -+ R+ that satisfy the frfang e fnequalftg/: for any z,g/,z in y
Z(z, y) $ Z(z, z) + i(z, g/). Under this condition, TSP is called .h/efrfc T.SP.

Note that Z may be given partially. Then the length of an edge is
considered to be the infimum of the lengths of all paths between its end
vertices. This closure satisfies the triangle inequality.



Given a path P and a subset S of y(P), the shortcut o/ P nduced bg/
S, denoted by scs(P), is the path on $ given by the subsequence of P
containing exactly the vertices of S. Similarly we can define the s/zortcut
o/ a cycle C ' induced bg/ a szzbset S o/ y(C) and denote it by scs((7).

Assume each vertex u in y has an associated probability p. and let
p :' (pu)uCy . These probabilities induce a probability distribution on the
subsets of V: for each .S f V,

p"lsl:- llp«ll(i
z,€S ugS

P«)

Let p and q be two sets of vertex probabilities. We say that p dominates
q if p. ? q. for all u C y

Given a cycle C ', denote by ZscP(C ') the expected value of the length
of the shortcut of O induced by a vertex subset which is randomly chosen
according to p:

Zsc.(0) : ISI/('cs(a)).
scv

Now we are ready to state the UPS problem

Definition 1. Gruen the complete graph G = (y. .E), a @nctfon / : }''' -->
R't satisfying the triangle inequality, and probabilities p = (p.,)u€v, the
UPS problem asks /or a four a that minimizes lscP((;).

The performance ratio of a tour a for the UPS problem is the ratio
Zscp(O)/opt, where opt denotes the optimal value of the (JPS problem,
that is, opt = /scP((yu's) for some optimal tour (.;ups of the UPS problem.

Throughout the paper, we consider the UPS problem under the ad-
ditional assumption that p. = I for at least one vertex u (representing,
say, a UPS location).

1.3 Results

We start studying a restricted class of vertex probabilities for the UPS
problem. Let G, Z, and p* be the input of the UPS problem, where we
assume that, for some 0 $ p $ 1, p;l C {p, 1} for all u. Our first result is
a lower bound on the objective function for this particular case in terms
of the TSP optimum.

Theorem 1. Zef O be a four and OrsP be a T.SP tour. Theft iscP-(a) 2
P z(a"').



The assumption that the vertex probabilities only attain the values p
and I can be removed with the help of the following proposition.

Proposition I. .Lef p and q be fwo sets o/ uertez probabilities, where p
dowd,'"t.; q. The« Z.c.(a) $ Z.c.(a) /o, ««g/ f.«, C.

The performance ratio of Cusp as a solution for the general UPS problem
follows from Theorem 1, using Proposition l:

Corollary 1. Zef C'rsP be a 7'S.f) four, Zef (jluPS be an opfzn7 aZ soZutzon o/
the UPS problem, and tet p«i. =- mtn.€Vpu. Denote by opt the optimal
uaiue /scP((7"s). Then

Z'c.(0"') < ..L
OPt ' amin

Our second result is that this bound is tight

Theorem 2. For ellery € > 0 there is an instance /e to the t/P.S probZern
such that there are fwo TSP fours Oi and O2 with ZscP(O2) $ (p«i« +
')Z;'. (al) .

The tightness then follows from opt $ {scp((;2).
When studying approximations for a computational problem, it is

certainly necessary to explore the complexity theoretical limitations of
that approach. We prove the following hardness of approximation result.

Theorem 3. The approzimatfon threshold of the UPS problem with any
constantly bounded probability set is not tess than the approacfmn,tian thresh.
old of the Metric TSP.

The proof of Theorem I will be given in Section 2. In Section 3 we will
sketch the proof of Proposition I and give more details on Corollary I.
Theorems 2 and 3 will be proved in Sections 4 and 5, respectively.

1.4 Conclusions and Open Problems

The UPS problem extends the TSP in that not only the length of the
tour, but also the lengths of the subtours determine its objective value.
As one might expect, the tradeoff depends on the vertex probabilities. We
give matching upper and lower bounds on the rate in Theorems I and 2.

This result, being interesting in its own right, has several consequences

for the approximation properties of the UPS problem. The currently best
known approximation algorithm for the Metric TSP, Clhristofides' algo..
rithm l31, has a performance ratio of g. As a consequence of Corollary I,
the same algorithm has a performance ratio of !;;3-- for the UPS problem.



Similarly, every other approximation algorithm for the Metric TSP
can be applied to the UPS problem, while the performance ratio is mul-
tiplied by a factor of ;;-L-. Thus, the approximation threshold of the UPS

problem is at most o , where f? is the approximation threshold for the
Metric TSP (for th& definition of the approximation threshold and re-
lated notions see, e.g., Chapter 13 in ISI). This fact is complemented by
Theorem 3, which states that it is at least 0.

One of the first questions that one might ask in this context concerns
the influence of di#erent probabilities. The factor of ;;-l-- might seem too
pessimistic, if there were only few vertices with probability p.i. and lots
of vertices with much larger probabilities. However, the tight examples
given in the proof of Theorem 2 can be modified so as to show that the
bound given in Theorem I is very accurate.

The situation is less clear in the case of approximation algorithms.
Here it is conceivable that an algorithm takes into account the distances
given by Z and combines them with the individual vertex probabilities in a
clever way. The non-approximability result in Theorem 3 does not set any
limit for that, however it is not less conceivable that the hardness result
could be improved to show that the approximation threshold is actually

The same consideration applies to the important special case of Eu-
clidean instances. An instance of the TSP is called Euclidean if there is a
point in the plane for every vertex such that the distance given by J is the
Euclidean distance between the points. For this special case, there exist
polynomial-time approximation schemes (PTAS) l2, 41 for TSP. (A PTAS
consists of a polynomial-time algorithm for the problem with a perfor-
mance ratio of at most 1 + c, for each f > 0.) Thus, for each c > 0, by
Theorem I there exists a polynomial time algorithm for the UPS problem
with Euclidean instances with a performance ratio of at most -!=t£. On
the other hand, it is conceivable both that there is a PTAS and 'that the
approximation threshold is up to J

amin

lll I l]

2 The UPS Problem with Probabilities I or p

The aim of this section is to prove Theorem 1. Recall that there is a
u C y with p:l = I and that, for that theorem, the vertex probabilities
are restricted to values of p and I.

Let ('TSP be a TSP tour and C be a tour. To bound !scP-(a) in
terms of Z(OTSP) we first need another formulation for the corresponding
expectation. To this end we introduce some more notation.



Let U be the set of vertices of probability 1, U := y \ U, and let t be
the number of vertices in U. If t = 0 then t/ = V and JscP ' (a) = Z(C ').
Since Z(O) ? Z(C'TS'), the theorem clearly holds in this case. So we may
assume t > 1.

For every u,u C U, let Pu. be the subsequence of O beginning at u
and ending at u (circularly). Let 8t., be the shortcut of Pu. induced by
{u, u} U U. Note that REID denotes a cycle--the shortcut of O induced by
] 'u F U L/

Denote by uo, ui, . . . , ut.i the vertices of U in the order given by C7.

For f = 0,...,t f- 1, set Cf := {.1)I j +: : 0 $ .7 < t}, where indices
are taken modulo t, and Z(Cf) := )1:Pcc Z(P). Each Cf is a collection of
paths (cycles if f = t 1) in G whose concatenation results in an Eulerian
subgraph of G. Because U # © and each vertex in [7 appears in some path
(cycle if f = t -- 1) in Cf, each of these Eulerian subgraphs is connected
and spanning. Therefore, for each f,

Z(C£) 2 Z(0'") (1)

Using the notation above we can give the following characterization
of Z'c.* (C ') :

Lemme I
pyz(c£ ) .

Zsc.. (0) (l-PYZ(scu(0)) +P(l-PF':Z(Ct-l)+E£:g P'(I

Prod/. By definition, iscP* (a) = >:ucscv Pr ISI Z(scs(O)). Note that the
summands where I.S \ UI $ I contritiuG with (I -- pyZ(scu(C ')) + p(I --
PP':Z(Ct i) to Zscp ' (0).

Let S := {S : U f S f y. IS \ UI ? 2} be the collection of the other
vertex subsets. For any S C .S, let -Es := -E(scs\u(a)). Then, adding
indices modulo t.

>l: p" lsl z("s (c '))
s€s

- >ll:p"]s] >1:
SCS (ui ,uj)CES

Z(Pul. ., )

t I t I
- >ll: E z(q«)

i=o J=o,j#i scs
(ui ,UJ )€Es

E
t 2 t I

1: : /(4,.,...:...: )p ' I(«j, «j+i+i) € .Esl
i=o .j=o
t 2

= >ll: i(ci)p'(i:: p):
£:o



and the lemme holds D

Putting (1) and Lemme I together, we have that

Zsc.-(a) 2 P(I P)*':Z(C '") + >1:P'(i P):/(C ''")
£-o

r 'L-'Z

) I p(i - p)*': + >1:p'(i - p):
\ £-o

2t

Straightforward calculation shows that the right hand side is equal to
f(C'rs')p, concluding the proof of Theorem 1. n

3 Arbitrary Probabilities

Our result on the UPS problem with arbitrary probabilities, i.e. Corol-
lary 1, is a consequence of Proposition 1. The proof of Proposition I is
based on the FKG-Inequality jl, p. 7SI and we only sketch it here.

Let p and q be two sets of vertex probabilities and assume that p
dominates q. Let C be any tour. For S f }', let .f(S) := /(scS((;)) and

g(S) :- ]]«cs(p«/q.) . ll.es(I p«)/(I -- q.). Observe that S -> Prq ISI is
log-supermodular, that / is increasing because of the triangle inequality,
and that g is increasing because p dominates q. Thus, the requirements
of the FKG inequality are met and we have

>l: /(S)P,qjSI
scy

:: g(S)Pr. ISI $ >11: /(S)g(S)Prq ISI
scy scy >l: P'qjSI

scy

Since Prp ISI = Prn I.SI g(S), this implies Proposition ]. []
Corollary I follows by sandwiching p between two appropriate sets of

vertex probabilities. More precisely, let

ifpu < 1,
otherwise

Then p* is dominated by p, which in turn is dominated by the all-ones
probability set. The corollary follows from

OPt Zsc.(a"s) 2 Zsc..(a"s) ? P«i« Z(C ''") 2 P«i« Z''.(0'"),
where the first and the last inequality are implied by Proposition I and
the second inequality by Theorem 1, applied to C ' = (;ups



4 Tight Examples

Assume that p < I and let c > 0. In this section we give the construction
of an instance /. of the UPS problem with probabilities p and I. It has
two TSP tours (7i and O2 and (3) states that their UPS values diner by
a factor of at least 1 . This implies Theorem 2.

We assume w.I.o.g. that c < I -- p. Let k be a positive integer, large
enough so that k + loci.p(8k2) 2 1ogi.Pc. Let n be a prime such that
2k2 < n < 4k2. Then

2n(I - p)k $ 8k2(1 - p)k $ c.

Let y := {0,...,n 1} andlet -H:=(y.-E), where

(2)

.D := {fj : J - f (mod n) $ k}

That is, -H = Of is a cycle on n vertices plus all chords of length at most
k. Let i(e) = I for all e € E. Then two TSP tours for -H and Z are (indices
are taken modulo n, as usual)

Oi := <0, k, . . . ,fk, . . . , nk> and

02 := <0, 1, . . . , £, . . . , n>.

Note that ai is a tour because of the primality of n.
Let po := I and pf := p for £ 2 1. Then /E consists of (the closure of)

.l?, Z, and p. In the rest of this section we shall prove that

Z'c.(02) $ (P + ')i.c.(ai) (3)

Let S be a randomly chosen subset of y. Call S dense /or (;i if S
intersects any set of k consecutive vertices of Ct. The probability of that
event is at most n(I -- p)k, where n(I -- p)X; $ €/2 by (2). The event that
S is dense /or O2 is defined analogously, and its probability is the same.

Assume that S is dense for ai and let dk and .jk > fk be two subse-
quent vertices of scS((;1). Then j -- f $ k because S is dense for Ot. But
then .jA -- fk $ k2 < n/2, and by the choice of .H the distance between fk

and jk is .j -- f. Assume that scS(CI) = <fik, . . . ,flslX;> and let io := flsl-
Then

sl

>l: i(ij k, iJ-:k)ij-l (mod n)) Z(scs(0i)) ,



and therefore

iscP(Ot) 2 nPr IS is dense for Oi1 2 (1 '/2)n. (4)

If .g is dense for (72, then there is a chord between any two subsequent
vertices of scS(C'2) and thus Z(scs(O2)) = SI. This implies that

ZscP(C2) $ nPr l$ is not dense for C21 + >1: 1.SjPr ISI $ (P + c/2)n. (5)
scy

As a consequence of (4) and (5),

lscp(02) , P + c/2

iiiilaJ -: i-l/e '

which implies (3), using c < I P D

5 Hardness of Approximation

The Metric TSP is APX-complete l71 and the currently best lower bound
on the approximation threshold is }f in the asymmetric case and 1lgg in
the symmetric case l61. It is trivial that the UPS problem has the same
lower bounds, because the objective functions coincide for the all-ones
probability set p. = 1. It might, however, be interesting to verify that the
same holds for the probability set p, = p, where 0 < p < 1. This, together
with Proposition 1, proves Theorem 3.

Next we present a reduction from Metric TSP to the UPS problem
in instances with probability set p. = p for each € > 0. The reduction
preserves the approximation ratio up to a factor of I c.

Let y be a vertex set and let 1 : V''2 --> R+ be an instance of the Metric
TSP on V. The corresponding instance of the UPS problem consists of
the following. Add cp,.(n) copies of every vertex to get y ' and let Z ' be the
extension of Z to V ' such that all copies of the same vertex have distance
0 to each other and copies of different vertices have the same distance as

the original vertices. Here cp,.(n) = O(log..L n) is chosen large enough

that (I -- (I p)'p '("))" ? I -- c. Note that this can be done in polynomial

Any tour on y ' whose performance ratio (for the UPS instance) is at
most 77 can be converted into a tour on V ' whose performance ratio (for
the original TSP instance) is at most q/(I €). Indeed, let C ' be a tour on
V'' whose performance ratio is at most 77 for the UPS problem. We may

time



assume w.I.o.g. that all copies of each original vertex occur subsequently
in O '. Then Z(scs(O '')) = Z((7') as long as .S contains at least one copy
of each original vortex. Since the probability for that event is at least
I -- c, we have that Zsc.(C7') ? (1 -- €)Z'(C") = (1 -- €)Z((7), where C ' is
the ordering of y induced by O '. Now let CTSP be a TSP tour on y
If we extend it to a tour on V ' by visiting all copies of every vertex
subsequently, we know that ZscP((;'") $ Z'(O '") = i(O ''"). Therefore
the optimal UPS solution has length at most Z(O '"). Thus (I -- c)Z((7) $
ZscP(a) 5; 77JscP(a '") 5; v7Z(a '"). This completes the analysis of the
reduction, and, together with Proposition ], the proof of Theorem 3. []
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Abstract

We give a simpler proof of Seymour's Theorem on edge-coloring series-parallel multigraphs
and derive a linear-time algorithm to check whether a given series-parallel multigraph can be
colored with a given number of colors.

I Introduction

All graphs in this paper are finite, may have parallel edges, but no loops. Let k 2: 0 be an integer.
A graph G is k-edge-coZorabZe if there exists a map K : E(G) --> {1, . . . , k}, called a k-edge-coloring,
such that H(e) #: K(/) for any two distinct edges e, .f of G that share at least one end. The chromatic

fndez X'(G) is the minimum k ? 0 such that G is k-edge-colorable. Clearly X'(G) 2 A(G), where
A(G) is the maximum degree of G, but there is another lower bound. Let

r(a) - m'x {Zi:illillflU : U g I''(G), IUI ? 3 «d IUI i; odds

If U is as above, then every matching in alum, the subgraph induced by U, has size at most I I IUIJ.
Consequently, X'(G) 2 1'(G). If G is the Petersen graph, or the Petersen graph with one vertex
deleted, then X'(G) > maxtA(G), [l'(a)] }. However, Seymour conjectures that equality holds for
planar graphs:

Conjecture I.I .V G f. « p/"""« g««ph, then X'(G) = max]A(G), [l'(G)]}.
Conjecture 1.1 most likely does not have an easy proof, because it implies the Four-Color

Theorem. However, Seymour l51 proved that his conjecture holds for series-parallel graphs (a
graph is series-paras/ef if it has no subgraph isomorphic to a subdivision of K4):

Theorem 1.2 .V G is a series-pa,aiZeJ graf/z, «nd k is an integer «,ffh k 2 maxlA(G), I'(G)} then
] is k- edge- cotorctbte.

It should be noted that Theorem 1.2 is fairly easy for simple graphsl the difhculty lies in the
presence of parallel edges. Seymour's proof is elegant and interesting, but the induction step requires
the verification of a large number of inequalities. We give a simpler proof, based on a structural

*Research supported in part by CINPq (Brazil) Proc. No. 301174/97-0, FAPESP (Brazil) Proc. No. 98/14329
and 96/04505-2 and ProNEx (Brazil) 107/97 MCIT/FINEP

tResearch supported in part by NSA under Grant No. MDA904-98-1-0517.
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lemme about series-parallel graphs, which in turn is an easy consequence of the well-known fact
that every simple series-parallel graph has a vertex of degree at most two. Our work was motivated
by the list edge-coloring conjecture of jll (see also l3, Problem 12.201):

Conjecture 1.3 -Duerg/ graf/z is X'(G)-edge-chaos«ble.

At present there seems to be no credible approach for proving the conjecture in full generality.
We were trying to gain some insight by studying it for series-parallel graphs. The conjecture has
been verified for sfmpZe series-parallel graphs in l41, but it is open for series-parallel graphs with
parallel edges. Our efforts only resulted in a simpler proof of Theorem 1.2 and in a linear-time
algorithm for checking whether or not a series-parallel graph can be colored with a given number
of colors.

2 Three lemmas

For our proof of Theorem 1.2 we need three lemmas. The first two are easy, and the third appeared
in l41. Let G be a graph, and let u, u be adjacent vertices of G. We use uu to denote the unique
edge with ends u and u in the underlying simple graph of G. If G has m edges with ends u and
o, then we say that uu has muZffpZfc£f3/ m. If u and u are not adjacent, then we say that uu has
multiplicity zero. Let G be a graph, let K be a k-edge-coloring of a subgraph .H of G, let u C V(G),
and let f C {1, 2, 1 . . , k}. We say that u sees f and that f is seen by u if K(/) = f for some edge / of
.H incident with u.

Lemma 2.1 fet G 6e a graph, /ef uo C y(G), ief ul,u2 be distinct neighbors o/ uo, Zet H 6e
the graph obtained bom G by deleting atl edges with one end uo and the other end ul or uz, and
let n be Q k-edge-coloring of H. For i-- L,'2 let rl\i be the multiplicity of uoui in G, and for
f ;= 0,1,2 /et S 6e the sef o/ co/ors seen bg/ u{. /y7nt + ISo U Sil < k, vn2 + So U S21 < k and
ml + m2 + ISo u (SI n S2)1 $ k, then H can Z)e ezfended to a k-edge-coZorfng o/ G.

Proof. Since ml + ISo U Sil $ k, the edges with ends uo and ul can be colored using colors not in
So U Si. We do that, using as many colors in S2 as possible. If the uoui edges can be colored using
colors in S2 only, then there are at least k -- ISo US21 ? m2 colors left to color the edges with ends uO
and u2, and so K can be extended to a k-edge-coloring of G, as desired. Otherwise, the uoui edges of
G will be colored using IS2 -- (joUSt) I colors from S2, and ml -- IS2 (SoUSa)I other colors. Thus the
number of colors available to color the uou2 edges of G is at least k ISoUS2l--(mi IS2-- (SoUSa)I) =
k ml ISo U (SI n S2)1 2 m2, and so the coloring can be completed to a X;-edge-coloring of G, as
desired. H

Lemma 2.2 fet k be an integer, and /ef G be a graph with A(G) $ k. Then I'(G) $ k d znd onZ/
V2l-E(CIUI)I $ k(IUI - I) .h, e«e,3/ ;et U g I'(G) .«.h fh.f IUI f . ««d .t Ze«.f fh,.e, ««d fh '
graph CIUI has no uertfces o/ degree at most one.

Proof. The "only if" part is clear. To prove the "if" part we must show that 2l-D(Girl)I $ t(IUl-- I)
for every set C/ f V'(G) such that IUI is odd and at least three. We proceed by induction on IUI. We
may assume that Girl has a vertex u of degree at most one, for otherwise the conclusion follows
from the hypothesis. If u has degree one in alt/I, then let u be its unique neighbor; otherwise
let u c U\tu} be arbitrary. Let U ' = t/\lu,u}. Then 2l-E(dUI)I $ 2A(G) + 2l-E(CIZ./'l)I $
2k + k(IU'l -- 1) $ k(IUI -- 1) by the induction hypothesis if IUI > 3 and trivially otherwise, as
desired. H

The third lemma appeared in l41. For the sake of completeness we include its short proof
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Lemme 2.3 Every non-null simple series-parallel graph G has one olf the folloloing:

la) a aierte= of degree at most one,

lb) two distinct liertices of degree two loittl the same neighbors,

r.) t«,. df;tf«.f «.,ff"; u,« «nd t«,. n.* n"e.. ,fJ df.ff"'t «e«tf.e; «,,, c }''(G)\lu,«} ;«.h
.hat the neighbors ofu are ' and w, and euerU neighbor ofu is equal to u, w, or z, or

(d) $ue distinct vertices ul,ua,ul,uz,w such that the neighbors ojw are ul,u2,ul,u2, and jor
i -- L,2 the neighbors ojai are w and ui.

Proof. We proceed by induction on the number of vertices. Let G be a non-null simple series-
parallel graph, and assume that the result holds for all graphs on fewer vertices. We may assume
that G does not satisfy (a), (b), or (c). Thus G has no two adjacent vertices of degree two. By
suppressing all vertices of degree two (that is, contracting one of the incident edges) we obtain a
series-parallel graph without vertices of degree two or less. Therefore, by a well-known property of
series-parallel graphs l21, this graph is not simple. Since G does not satisfy (b), this implies that
G has a vertex of degree two that belongs to a cycle of length three. Let G ' be obtained from G
by deleting all vertices of degree two that belong to a cycle of length three. First notice that if G '
has a vertex of degree less than two, then the result holds for (7 (cases (a), (b), or case (c) with
m = z). Similarly, if G ' has a vertex of degree two that does not have degree two in G, then the
result holds (one of the cases (b)--(d) occurs). Thus we may assume that G ' has minimum degree
at least two, and every vertex of degree two in G ' has degree two in G. By induction, (b), (c), or
(d) holds for G ', but it is easy to see that then one of (b), (c), or (d) holds for G. H ' ' '

3 Proof of Theorem 1.2

We proceed by induction on I.E(a)I, and, subject to that, by induction on IV(C)I. The theorem
clearly holds for graphs with no edges, so we assume that G has at least one edge, and that the
theorem holds for graphs with fewer edges or the same number of edges but fewer vertices. Let .S
be the underlying simple graph of G. We apply Lemma 2.3 to S, and distinguish the corresponding

If case (a) holds, let G ' be the graph obtained from (.; by removing a vertex of degree at most
one in S. The rest is straightforward: k 2 maxlA(G'),I'(G')} and so, by induction, there is a
k-edge-coloring of G '. H'om this k-edge-coloring, it is easy to obtain a k-edge-coloring for G.

If case (b) holds, let u and u be two distinct vertices of degree two in S with the same neigh-
bors. Let the common neighbors be z and y. Let a,b, c,d be the multiplicities of uz, u3/, uz)UZ/,
respectively. See Figure 1(a). loom the symmetry we may assume that a ? d. Let G ' be obtained

cases

(b)G
a-tl ,/ '\. b+.cl

y

Figure 1 : Configurations referring to Case (b)
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from G\u by deleting d edges with ends u and z, and adding d edges with ends u and y. See
Figure 1(b). Then clearly A(G ') $ k, and it follows from Lemme 2.2 that I'(G ') $ k. By the
induction hypothesis the graph G ' has a k-edge-coloring K '. Let .A be a set of colors of size d used
by a subset of the edges of G ' with ends u and y, chosen so that as few as possible of these colors
are seen by z. By deleting those edges we obtain a coloring of G\u, where d edges with ends u
and a; are uncolored. Next we color those d uncolored edges, first using colors in .A not seen by z,
and then using arbitrary colors not seen by z or u. This can be done: if at least one color in -4
is seen by z, then once we exhaust colors of .A not seen by f, the choice of .A implies that every
color seen by u is seen by a, and so the coloring can be completed, because z has degree at most
k. This results in a k-edge-coloring of G\u with the property that at least d of the colors seen by
z (namely the colors in A) are not seen by Z/. Thus the number of colors seen by both z and y is
at most k -- c -- d (u sees no colors), and clearly the number of colors seen by z is at most k -- c
and the number of colors seen by Z/ is at most k -- d. By Lemme 2.1 this coloring can be extended
to a k-edge-coloring of G, as desired.

We now assume a special case of (c) of Lemme 2.3. Let u,u,m,z be as in that lemme, with
w = z. Then clearly A(G\u) $ k and I'(G\u) $ k, and so G\u has a k-edge-coloring. This k-edge-
coloring can be extended to a k-edge-coloring of G by first coloring the edges with ends w and u
(this can be done because the degree of w is at most k), and then coloring the edges with ends u
and u (there are enough colors for this because IE(Girl)I $ k for U = {u, u,m}).

Finally we assume that case (d) of Lemme 2.3 holds and we will show that our analysis includes

the remainder of case (c) as a special case. Let t;i,u2,ui,u2 and w be as in the statement of
Lemme 2.3, and let a,b,c,d,e and / be the multiplicities of MIDI,uiw,uim,z;2w,u2w and u2u2,
respectively, as in Figure 2(a). In order to include case (c) we will not be assuming that a, b, c, d, e
and / are nonzero; we only assume that c+d > 0. (This is why the primary induction is on I.E(a)I.)
If a + b + c + d + e + / $ k, then a k-edge-coloring of G\w can be extended to a k-edge-coloring of
G, and so we may assume that k < a + b + c + d + e + /. Since w has degree at most h we have
b+c+d+e $ k, and by considering the sets U:: {ui,ul,w} and U =lu2, u2,w} we deduce that
a+b+c$kandd+e+/ $k. Letzl ;;maxl0,a+b+c+e k},zZ:;max'l0,b+d-t-e+/--k}
and s = k --(b+c+d+e). Thus zl$ e, z2 $ b, s ? 0 and

-,ti;!i:;'
if zi > 0 and z2 > 0
if zi = 0 and z2 > 0
if zl > 0 and z2 = 0
if zi ;: z2 :: 0.

(*) a + / -- zl Z2

We claim that there exist nonnegative integers si and s2 such that s = si + s2, sl $ a -- zi and
s2 $ /--z2. To prove this claim it sufhces to check that a--zi 2 0, /--z2 > 0 and a zi +/ --z2 ? s.

We have a zl 2 minla,k (b+c+e)} ? minla,d} ? 0, and by symmetry / z2 ? 0. The third
inequality follows from (+). This proves the existence of si and s2.

Let G ' be obtained from G by removing the vertices ui, o2, w, adding two new vertices, z and
g/, and adding a -- zi -- si edges with ends z and ui, / -- z2 -- s2 edges with ends z and u2, b -- z2
edges with ends 3/ and ui, e -- zi edges with ends Z/ and u2, and zi + z2 edges with ends ui and up
See Figure 2(b). Thus I.E(a')I < 1-E(C)I.

It follows from (+) that z has degree at most k. Since all other vertices of G ' clearly have
degree at most h, we see that k 2 A(G '). We claim that k 2 1'(G '). By Lemme 2.2 we must
show that 21.E(a'lX'l)I $ k(IX'l -- 1) for every set X ' f y(G ') such that IX'l is odd, IX'1 2 3 and
C/IX'l has no vertices of degree at most one. If lx ' n {ui, u2ll $ 1, then (.;lX'l :: a'jX'l, and the
result follows. Thus we may assume that ui,u2 C X '. We need to distinguish several cases. If
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(a) 0)

Figure 2: Configurations referring to Case (d)

f,y C X ', then let X = X ' \ {z,Z/}. We have 2l-B(a'jX'1)1 = 2l-D(aiKI)1 + 2(a zl -- sl + / --

z2 -- s2 + zi + z2 + b z2 + e -- zl) $ k(jX'l -- 1), using the induction hypothesis and the relations

sl+s2 = k--(b+c+d+e), zi2 a+b+c+e--k and z2 ? b+d+e+/--k. Ifz C X ' and y gl X ' we put

X = X ' \ {z} U {w, ui, u2}, and if f g X ' and Z/ € X ' we put X :; X ' \ {Z/} U {w}. In either of these
two cases the counting is straightforward. Finally, we assume that z, 3/ gl X '. If zi = z2 = 0, then
CIX'l :: a'jX'l, and so the conclusion holds. If zi > 0 and z2 > 0, then let X = X ' \ {ul, u2}. We

h'T.21.D(a'jX'l)IS 2l-E(GJXI)l+2(k-('+b)+k-(e+/)+,i+,2) :g k(IXl- 1)+2(b-ic+.i -l:e) $
k(IX'l -- 1), where the second inequality follows from the induction hypothesis (or is trivial if
XI = 1) and the definition of zi and z2. Finally, from the symmetry between zl and z2 it
sufhces to consider the case zi :: 0 and z2 > 0. In that case we put X :: X ' U {w,u2}. Then
2l-D(a'lx'1)1 = 2l-E(Gill)1 + 2(zl + z2 -- (b + d + e + /)) 5; k(IX'l -- 1), using 'the induction
hypothesis and the definition of zl and z2. This completes the proof that k 2 1'(G ').

By induction there exists a k-edge-coloring H ' of G '. Let Zi U Z2 be the colors used on the
zi + z2 edges of E(G ') -- -E(G) with ends ul and u2, so that IZll = zi and IZ21 = z2. Let G" be
the graph obtained from G by deleting all edges with one end w and the other end ul or u2. We
first construct a suitable k-edge-coloring K" of G". To do so we start with the restriction of K ' to
.E(G") n -E(G '), and then use Zi and the colors of the zui edges of G ' to color a subset of the Midi
edges of G, we use Z2 and the colors of the Z/ui edges of G ' to color all of the wul edges of G, and
symmetrically we use ZI and the colors of the u2g/ edges of G ' to color all the mu2 edges of G, and
we use Z2 and all the colors of the au2 edges of G ' to color a subset of the u2u2 edges of G. We
color the si uncolored ulul edges and the s2 uncolored u2u2 edges arbitrarily. That can be done,
because ui is the only neighbor of u{ in G". This completes the definition of H". Now the number
of colors seen byui or w is at most a--zi si+zi+z2+b--z2+e--zi+st :: a+b+e--zi g k--c,
and similarly the number of colors seen by u2 or w is at most k -- d. The number of colors seen by
w, orbybothui andu2 isat mostb z2+e--zl+zl+z2+s $k--(c+d). BYLemma2.1 the
k-edge-coloring H" can be extended to a k-edge-coloring of G, as desired.

4 A linear-time algorithm

In this section we present a linear-time algorithm to decide whether X'(G) $ k, where the series-
parallel graph G and the integer k are part of the input instance. The idea of the algorithm is
very simple we repeatedly find vertices of the underlying simple graph satisfying one of (a)--(d) of
Lemma 2.3, construct the graph G ' as in the proof of Theorem 1.2, apply the algorithm recursively
to G ' to check whether X'(G ') $ k, and from that knowledge we deduce whether X'(G) $ k. The
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construction of G ' is straightforward, and the decision whether X'(G) $ k is easy: suppose, for
instance, that we find vertices ui, u2, ui, u2, m as in Lemme 2.3(d), and let a, b, c, d, e, / be as in the
proof of Theorem 1.2. If a + b + c + d + e + / 2 k, then construct G ' as in the proofs we have
X'(G) $ k if and only if X'(G ') $ k and a+b+c$ k and d+e+/ $ k. If a+b+c+d+e+/ $ k,
then /(G) $ k if and only if X'(G\w) $ k. Thus it remains to describe how to find the vertices
as in Lemme 2.3. That can be done by a slight modification of a linear-time recognition algorithm
for series-parallel graphs. We need a few definitions in order to describe the algorithm.

Let -H be a graph, and let A be a function assigning to each edge e c .E(-H) a set A(e) disjoint
from V(.H) in such a way that A(e) n A(e ') = a for distinct edges e, e ' € -E(-H). Let -HX be the graph
obtained from -H by adding, for each edge e C .E(-H) and each z € X(e), a vertex z of degree two,
adjacent to the two ends of e. Then Hx is unique up to isomorphism, and so we can speak of the
graph .ax. Now let p : .B(-HX) -+ Zo be a function, and let Xfl be the graph obtained from HX by
replacing each edge e C -E(-Hx) by /z(e) parallel edges with the same ends. In those circumstances
we say that (.Er, A, p) is an encoding, and that it is an encoding of -HJI

For a graph -H and u C }'''(.H) we let deux(o) denote the number of edges incident to u in -H
and vaIN(t;) denote the number of distinct neighbors of u in -17. Thus vaIN(u) $ degX(u) with
equality if and only if u is incident with no parallel edges. We say that a function a : y(-E{) --} Zo
is a cou7zfer for a graph -H if degX(t;) -- vale(u) $ a(t;) for every vertex u C }''(-H). We say that a
vertex u C y(-H) is' active if either deEN(u) $ 2 or degX(u) $ 30(u).

The following lemme guarantees that if there are no active vertices, then the graph is null.

Lemme 4.1 Let H be a non-null series-parallel graph, and let C be a counter .for H. Then there
ea;fats an actfue uerfea;.

Proof. As noted in the proof of Lemme 2.3, the underlying simple graph of -H has a vertex of
degree at most two. Thus -H has a vertex u with vaIN(u) $ 2. If deEN(t;) > 3a(u), then

deg(t,) 2 $ deEN(u) «alX(u) $ O(u) < deEM(u)/3,

which implies deux(u) $ 2. Thus u is active, as desired

4.1 The algorithm

The input for the algorithm is a series-parallel graph G and a non-negative integer k, where the
graph G is presented by means of its underlying undirected graph and a function -E(G) -+ Z+ that
describes the multiplicity of each edge.

The algorithm starts by checking whether degC(u) $ k for all u C }''(G). If not, it outputs
"no, X/(G) $ k" and terminates. Otherwise let -H be the underlying undirected graph of G, let
A(e) := © for every edge e € -E(.ZI), let p(e) be the multiplicity of e in G, and let C'(t;) := 0 for every
u C y(.H). Then (.H, X, p) is an encoding of G and C ' is a counter for -H. The algorithm computes
the list of all active vertices of H. It does not matter how .L is implemented as long as elements
can be deleted and added in constant time.

After this, the algorithm is iterative. Each iteration starts with an encoding (-H, A,p) of the
current series-parallel graph G, a counter C for -ll and a list -L which includes all active vertices

Each iteration consists of the following. If .Z) = a, then we output "yes, X'(G) $ k" and
terminate, else we let t; be a vertex in -L. If u # y(n) or u is not active, then we remove u from L
and move to the next iteration. If u C y(-H) and u is active, then there are three possible cases.

of.H '
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If degX(u) > 2, then degX(u) $ 3(7(u), because t; is active. We rearrange the adjacency list
of u, removing all but one edge from each class of parallel edges incident with u, adjusting A and p
so that (-H, A, p) is still an encoding of G. We set C(t;) := 0, include in Z all vertices whose degree
decreased and move to the next iteration.

If degX(u) = vaIN(u) = 2 and A(uf) = A(UZ/) = 0, where z and Z/ are the two distinct neighbors
of u, then we remove u from H and add a new edge / = z3/ to -H. We set p(/) := 0, A(/) := {u},
increase both C'(z) and O(3/) by one, add z and y to .L and move to the next iteration.

If degX(u) $ 2 but the previous case does not apply, then we have located vertices of G satisfying
one of (a) to (d) of Lemme 2.3. We check if the local conditions are satisfied or not (for example,
in case(d), if a+b+c+d+e+/ 2 k, we check whether a+b+c $ k and d+e+/ $ k); if they
are not, we output "no, X'(G) ZI k" and terminate. Otherwise, we modify the encoding (n, A,p)
to get an encoding of the graph G ' described in the proof of Theorem 1.2. This involves deleting
vertices from -H and adding edges to -H. Every time an edge of .H incident with a vertex z c V'(-H)
is deleted or added we increase C'(z) by one and add z to -L. We move to the next iteration.

The correctness of the algorithm follows from Lemme 4.1 and from the proof of Theorem 1.2.
To analyze the running-time, let n denote the number of vertices of the input graph G. The

initial steps of the algorithm can be done in O(n) time. Each iteration takes time proportional to
the decrease in the quantity

2K'.lT''(-a)l+-K ' >1: x(')+lLl+4- >ll: a(«),
e€.E(H)u€1'"(H)

where K is a suihciently large constant. Thus the running-time of the algorithm is O(n)
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I Introduction

The well-known single pair shortest path problem consists of: given a digraph -D, a non-negative function
Z on the arcs of .Z) and two vertices s and f, find a path P from s to t that minimizes /(P), where Z(P)
denotes the sum of Z(e) over all arcs e in P: This problem is solvable in polynomial time. We address the
following generalization of the single pair shortest path problem, which we call k-snonTnsT PAThs;

gruen a digraph Z) = (y. .4);
a pair (s, f) of vertices of .D;

non-negative functions /i, . . . , Zk on the arcs of .D;
k internally vertex-disjoint paths Pi, . . . , PX from s to t such that

Zi(PI ) + - . . + Jk(Px)

is as small as possible

For Zi :: . . . :; Zx; the k-SHORTEST Pains reduces to the min-cost flow problem and, therefore, can be solved
in polynomial time.

We consider first the problem on acyclic digraphs. Algorithms for finding arc-disjoint paths in acyclic
digraphs have applications on scheduling problems jll and aircraft assignment problems l71. We reformulate
the k-SHORTEST Pains in acyclic digraphs in terms of finding a shortest path in a (large) acyclic digraph.
This is a known reformulation due to Perl and Shiloach l61 for finding two vertex-disjoint paths in an acyclic
digraph. Later this was extended by Fortune, Hopcroft and Wyllie l31 in order to derive a polynomial-time
algorithm for the k vertex-disjoint paths problem in acyclic digraphs (see also Schrijver l71). From this
reformulation, we derive the theorem below.

Theorem 1.1 For each .#zed k, there ezfsts a po/ynonr al-time afgorffhn7z /or fhe k-SHORTEST PATHS re-
stricted to ucUclic digraphs.

We also prove the following inapproximability result, which shows that the problem becomes much
harder on general digraphs, even if k :: 2.

Theorem 1.2 For each constant c, there fs no pong/nomfa/-time nc-appro fmaf£on algorithm /or fhe 2-
SHORTEST PATHS unless P :: NP, where n is fhe number o/ vertices o/ fhe gruen dfgraph.

With respect to the intractability and inapproximabity of the problem in acyclic digraphs, we show the
following theorem.

Theorem 1.3 For each constant c, there fs no pong/nomfaJ-time nc-approffmaf£on algorithm /or fhe k-
SnORTnsT PATHS restricted to acg/cZfc dfgraphs unless P :: NP, where n ds the number o/ vertices o.f the
given digraph.

Theorems 1.2 and 1.3 show that the result in Theorem 1.1 is tight in the sense that it does not hold.

unless P = NP, if we drop either the restriction on k being fixed or on .D being acyclic. Surprisingly, the
problem becomes much harder if we drop any of these restrictions. ' ' "'

We consider also a variant of the problem in undirected graphs, with multiple pairs of terminals. For
this variant, we present a polynomial-time algorithm for the case where all length functions are the same.
the given graph is planar and the terminals lie on the boundary of the same face in an adequate order.

2



2 Disjoint paths in acyclic digraphs

In order to prove Theorem 1.1, we consider the following disjoint paths problem:

gruen a directed graph .D = (y. ..4);
pairs(si, fl), .. . ,(sk, ft) of vertices of .D;
subsets .Ai , . . . , .4k of .A;

a set .H of pairs {f,J} from {l,.. . ,kll
paths Pi, . . . , Pk in .D such that:

(f) -R is an si-ti-path in -OI.ail (d = 1, . . . , k);
(ff) a and Pj are vertex-disjoint for {f,J} in #.

(1)

Fortune, Hopcroft and Willie l31 showed that this disjoint paths problem is NP-hard even for k = 2.
.Ai = .42 = .4 and -H = {l1, 2l}. According to Even, hai and Shamir l21, problem (1) is also NP-hard for
acyclic digraphs. In fact, problem (1) is NP-hard even for a fixed acyclic digraph, as noted by Alexander
Schrijver. At the end of this section, we include the proof of this unpublished and surprising result.

We prove in the next theorem that problem (1) is polynomially solvable for instances satisfying the
following condition:

There exists no directed CUcte C -. Pj. . Pj. . . . . ' P3. in D such that:
(f) PJ. is a path .Pom ui to uf.FI fi .OI.aj:l, u # tj: (f = 0,...,t), ,.~

where ut+i :: u0; \zJ

(f{) {Jo,.it}, . . . , {jt-l, .jt}, {.it,Jo} belong to .H.

If P and Q are paths then P - C? denotes the path obtained by the concatenation of P and Q. Note that any
acyclic digraph satisfies the condition above. This theorem is a slight generalization of a result by Fortune,
Hopcroft and Wyllie l31. They showed that, for each fixed k, the problem of finding k vertex-disjoint paths
in an acyclic digraph is polynomially solvable.

Theorem 2.1 For each $zed k, there exists Q polynovrtial-time algorithm .for the disjoint paths problem
It) for i«-s*a""ces satisf'ying (2).

Proof. The proof is a minor modification of Schrijver's proof l71 of Fortune, Hopcroft and Wyllie's k
vertex-disjoint paths theorem l3, 81. We include it here for the sake of completeness.

Consider an instance of problem (1), that is, a digraph -D, pairs (sl, tl), . . . , (sk,fh) of vertices of I),
subsets .4i, . . . ,.4k of arcs of -D and a set .ZI of pairs {f,j} from {l, . . . ,k}. Make an auxiliary digraph
D' = (y ', .A ') as follows. The vertex set V ' consists of all k-tuples (ul, . . . ,uX;) of vertices of .D such that
ui # uJ for all {{,.j} in -H. There is an arc in .D ' from(ul,...,uk) to(wi,...,wk) if and only if there exists
an f in {l, . . . , k} such that:

(f) «j = «,j for aH .j # f;
(f{) (ui, t"i) is an arc of Af; (3)

(ffd) if J # d, {{,.j} C -H and uj # fj, there is no path in .OI.a.il from uj to ui.

Note that, as k is fixed, the size of -Zy is polynomially bounded on the size of .D. Moreover, the following
holds:

1) contains paths Pi, . . . , Pk such that Pi is an si-f£-path in n]..ai] (f = 1,
and Pi and .Z% are vertex-disjoint for {f,j} in -H '

if and only if
Zy contains a path P from(sl,... ,sk) to(ti,...,tk).

,k)

(4)

Suppose that PI, . . . ,PX exist. For any f, let Pt follow the vertices u£,0,uf,I, . . ,uf.t:
ui,t: = ff for each f. Choose .ji, . . . ,Jx: such that 0 $ jf $ tf for each f and such that:

So ui,o si and
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(£) O ' contains a path from(sl,...,sk) to(ut,J:,--.,t,e,j.), and

(fi) it + . . . + jJ; is as large as possible.

Let / := {f I Jf < tf}. Let us prove by contradiction that / = a. Suppose .r # a. By the definition of
.Zy and the maximality of .it + . . + Jk, for each f in /, there exists an f ' # f such that there is a path in
Z)I.ai,I from ui,,j:, to ui,j., with ui,,j., # tf, and {f ', f} in -H. So, for f in .r, each vertex ui,j. is an endpoint of
a path in -OI..4i,I starting at another vertex ui,,j., # tj:, , with f ' in / and {f, f'} in .H. This contradicts (2),
so / = a, that is, .jf = ff for all f, in which case we are done.

Conversely, let P be a path from(sl,.. . ,sk) to(ft,....,tx;) in .D '. Let Pfollow the vertices(ui,J, . . .,uk,j)
for .j = 0,. . . ,f. So u£,0 :: si for f = 1, . . . ,k. For each d = 1,. . . , k, let .f){ be the path in -D following ui.j

for .j -: 0, . . . , t, taking repeated vertices only once. So .f% is an si-ti-path in -ol..ail. Moreover, -f% and P3
are vertex-disjoint for each {{,.j} in -H. Indeed, suppose Pi and P2 (say) have a vertex in common, where
{1, 2} belongs to .H, that is, t;i,j - u2,j ' for some j # j '. Without loss of generality, j < j ' and ui,j # ui,j+i-
By the definition of .D ', there is no path in .Z)1.421 from u2,j to ui,j. This however contradicts the fact that
ui,j = u2,j ' and that there exists a path in -DI..421 from u2,j to u2,j '.

Therefore, to solve problem (1), it is enough to find a path in D ' from (si, . . . , sk) to (fi, .'. . , tk), which
can be done in polynomial time. H

The arc-disjoint version of the disjoint paths problem (1) consists f)f replacing (fd) in (1) by:

.f% and .f:) are arc-disjoint for {f, j} in -H. (5)

This arc-disjoint paths problem can be reformulated in terms of the disjoint paths problem (1). Indeed,
let an instance of the arc-disjoint paths problem be given, that is, a digraph -D = (y. ..4), pairs of vertices
(st,ti),;.,. . ,(sk,tt), arc sets ,4i,.. . ,Ak and a set -H of pairs {f,.j} from {l,.I. ,k}. We may assume that
each si is the tail of a unique arc ai of D and that ff is the head of a unique arc bf of -D (f = 1, . . . , k).
We make a digraph .D ' = (y ', .A ') as follows. The vertex set of D ' is the arc set .4 of -D (i.e. y ' := ..'!).
There is an arc in -D ' from a to b if the head of a and the tail of b coincide. For i= 1, . . . , k, we define
.Af := {(a, b) C .A ' I a, b C .Af}. Finally we take H ' := -H.

Finding paths PI). - . ,PX in -D satisfying (5) such that Pf is an sf-tf-path in -OI.ail (f = 1,. . . ,k) is
equivalent to the problem of finding paths PI', . . . , .f% in .D ' satisfying (ff) of (1) such that P.r is an ai-bi-
path in -O'l.a;l (f = 1, . . . ,X;). Hence, the arc-disjoint version of problem (1) is polynomially solvable for
instances satisfying a condition similar to condition (2).

Now, suppose that, for an instance of problem (1), one is given also non-negative functions Zt, . . . , It on
the arcs of -D. Then it is possible to find in polynomial time a solution Pi, . . . , Pk of problem (1) such that
>ll:;l:i Jf(-R) is as small as possible. Just define a length function on the arcs of -D ' (the digraph from the
proof of Theorem 2.1) as follows. The length of an arc of -D ' from (ui, . . . , ux;) to (wi, . . . , wk) satisfying
(3) is Jf(ui, toi). Now, a shortest path from (si, . . . , se) to (tl, . . . , th) in -D ' with this length function on its
arcs gives the desired paths. As the shortest path problem in an acyclic digraph with arbitrary length on
its arcs can be solved in linear time, we have Theorem I.I.

Theorem I.I .Zibr each ./iced k, there ezfsts a polynomial-time aZgor'zfhn7z /or fhe k-snonrnsT PATHS re-
stricted to acyclfc digraphs. n

We conclude this section with the proof of Schrijver's result on the complexity of problem (1).

Theorem 2.2 (A. Schrijver) The disjoint paths problem rlJ restricted to fnsf andes hau£7zg the dfgraph
in /'fgtzre -Z as £7zpuf is NP-hard. H

Proof. Consider the following transformation of Pi.ANAL 3-COLORABIHTY to problem (1) restricted to
instances having the acyclic digraph displayed in Figure I as input. A k-coZorfng of a graph G = (}r, .E)
is a function / from }'' to {l,. .. ,k} such that /(u) # /(u) whenever {u,D} belongs to .B. Graph G is
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k-coZorabZe if G has a X;-coloring. The PLANAR 3-coi,OKABil,ITY problem consists of: gruen; a planar
graph G = (yl .E); qtzest£on. is G 3-colorable? PLANAR 3-col.ORABn,iTY was shown to be NP-complete by
Stockmeyer l91.

Figure 1: Problem (1) is NP-hard for instances having this acyclic digraph as input

Let us be given a planar graph G = (y. -D) with V ' = {ui, - . . , uk} and let .f ' be a 4-coloring of G. This
function /' can be computed in polynomial time (see, for instance, Nishizeki and Chiba l51). We construct
an instance of problem (1) depending on G and /' as follows. Let .17 := {tf,.jl ' I {ui,uj} C .E} and, for
f = 1, . . . ,k, let s := u/'(ui), ff :' w.f'(t,i) and .Af be the set of all arcs of the digraph in Figure 1. We
claim that G is 3-colorable if and only if the constructed instance of problem (1) is feasible. Suppose G is
3-colorable and let / be a 3-coloring of G. For f = 1, . . . , k, let Pz be the path h'om s£ to tf that traverses
c/(ui)' One can check that PI,. .. ,Pk is a solution to the problem (1). Conversely, let Pi,...,Px be a
solution to the disjoint paths problem (1) and define / from V to {1, 2, 3} such that, for f = 1, . . . , k, the
path -R from si to tf traverses the vertex c/(ui)- One can verify that / is a 3-coloring of G. H

3 Inapproximability for the 2-SNORT'EST PATHS

In this section we analyze the complexity of the 2-SHORTEST Pains problem. Specifically, we prove
Theorem 1.2.

Theorem 1.2 For each constant c, there fs no pong/nomfa/-time nc-approzfmatfon aZgorft/zm /or the 2-
SnORTEST Pains unless P = NP, where n is fhe number o/ t;erffces o/ fhe gfuerz dfgraph.

Proof. We may assume c 2 1. Suppose that there is a polynomial-time nc-approximation algorithm ..4
for the 2-SnORt'EST PATna, where n is the number of vertices of the given digraph. Let us show that, if
this is the case, we can solve 3-SAT in polynomial time, which implies that P = NP. For this, consider the
following polynomial-time reduction from 3-SAT to 2-snonTEST Pains.

Let ® be an instance of 3-SAT, that is, a set {Ot, . . . , Ch} of 3-clauses on variables ai, . . . , zh. Let us
describe a digraph -D, two length functions Zi and /2 on the arcs of .D and two vertices s and t.

For each variable ff, denote by df the largest between the number of times zi appears in (D and the
number of times that 3f appears in ®. There is a gadget as in Figure 2(a) for each zi. The number of
undirected four-cycles in the gadget is df + 1. The source vertex in the gadget is called ui and the sink
vertex, wi. The vertices of in-degree one in the gadget are partitioned into two sets: Z)f and -&, as in
Figure 2(a).

For each clause Oj, there is a gadget as in Figure 2(b). The sink and source vertices are called u+ and
Zj respectively. Each of the other vertices has as lobe! one of the literals in clause C'i.

The digraph of the instance of 2-snonTnsT Pains is obtained as follows. First, we connect the gadgets of
all variables and clauses in series, identifying wi and uf+l(f = 1,. . . ,n--l) and uj and Zj+l(j= 1,. . . ,m--l).
Then, we add an arc from s to ui, one from wh to Ji and one from u. to t. The arcs we have up to now
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(c)

zl

Z2

Z3

Figure 2: (a) The gadget for variable ni. One, between zi or Ef, appears three times in ®, while the other
appears at most three times. (b) The gadget for clause O/ = {zi,=2, a3}. (c) Arcs of type I of the digraph
bunt from © =(zlV E2 V z3)(ZtV E2 V F3).

are said to be of type 1. See Figure 2(c). Second, we add three arcs from s: one to f, one to the first vertex
in .Li and another to the first vertex in .Ri. Similarly, we add two arcs to f: one from the last vertex in
Z)X and one from the last vertex in Rh; For each two consecutive vertices in .Lf, we add a path from the
upper one to the lower one, of length one or two. When the path has length two, the middle vertex is one
of the vertices labeled zi in the clause gadgets. The same holds for .l& with 3f in the place of #f. This is
done in such a way that any labeled vertex is in exactly one of these two-length paths. Finally, there are
also arcs from the last vertex in .Li and from the last vertex in .& to both, the first vertex in Z)f+l and the
first vertex in -&+i (f = 1, . . . , n -- 1). The arcs added in this second phase are said to be of type 2. This
finishes the description of the digraph -D and vertices s and t. See Figure 3(a) for a complete example.
Note that the number of vertices in this digraph is at most 4 + 3d + 3h + 4m, where d := >i:ll. df $ 3m.
Also, there are two internally disjoint paths from s to t in .D.

To complete the description of the instance of 2-snonTEST PAinS, it is missing only to describe the
two length functions Zt and J2 on the arcs of .D. In Zi, arcs of type I have length one, while arcs of type 2
have length M := (4 + 3d + 3h + 4m)c+l + I. In Z2, all arcs have length one, but arc st, whose length is M.

Note that the construction of .D, s, f, Zt and J2 takes polynomial time on the size of ©

C\aim 3.1 ® is satisfable f:f and only f.f there are two internally disjoint paths Pt and PZ t'om s to t in
Z) stzch that I(PI) +i2(P2) $ 4+3d+3h+4m.
Proof. Assume a ' is satisfiable and consider an assignment which satisfies ©. Let us describe tWO internally
disjoint paths PI and P2 in -D from s to t such that Zt(Pi) + i2(P2) $ 4 + 3d + 3h + 4m.

Path PI starts with arc st;i, goes from ui to wx using only arcs in the variable gadgets, then uses arc
whZi and goes from Zi to u. using only arcs in the clause gadgets. It ends with arc u.t. Inside the variable
gadget for zi, path Pi goes through all vertices in .Lf if #f is TRUE in the assignment or all vertices in Rf
if zi is FALSE. In the clause gadgets, Pi goes always through a vertex whose label is a TRUE literal in the
assignment. Note that Pi uses only type I arcs. Thus It(PI) = 3 + 2d + 2h + 2m.
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Figure 3: (a) Digraph built from © = (zi V =2 V z3)(Ei V a2 V B3). The dashed arcs have /i equals one,
while the others have Zt equals M. (b) Paths PI and P2 corresponding to the assignment zi = F, z2 - T
and z3 7'

Path P2 uses only type 2 arcs. If zi is TRUE (FALSE), it goes from s to the first vertex in .Li (.Ri).
Hom there, it traverses all vertices in .Lt (.RI) and jumps to Z2 if z2 is TRUE or to .R2 if z2 is FAI,SE and
proceeds in the same way until it gets to the last vertex in .Rh or .Lh. In this traversal, it goes back and
forth to the clause gadgets through some length-two paths, always using a vertex whose label is a literal
set to FAI,SE. Flom the last vertex in .LX or .l?h, it goes directly to f. Note that Pe is indeed internally
disjoint from Pi, as it uses only type 2 arcs. Moreover, Z2(P2) ;; 1 + d + h + 2m.

Therefore Zt(Pi) + Z2(F2) = 4 + 3d + 3h + 4m, as desired. See in Figure 3(b) how Pi and P2 look like
for the example given in Figure 3(a).

Now assume there are two internally disjoint paths Pi and P2 in -D from s to t such that Zt (P1) +/2(Pa) $
4 + 3d+ 3h + 4m. Note that Pi can only use type I arcs, otherwise Zi(Pt) ? M > 4 + 3d+ 3h + 4m
(the last inequality holds as c ? 1). Also, Pe does not use arc st, as J2(st) = M > 4 + 3d + 3h + 4m. As
Pi uses only type I arcs, Pi uses sul, then it goes from ui to wh using only arcs in the variable gadgets,
then it uses wh/I and goes from Zi to u. inside the clause gadgets, finishing with u.f. Path Pi cannot use
vertices both in .Lf and /&, otherwise the only path from s to f in -D internally disjoint from Pi consists of
st. But /2(sf) = M > 4 + 3d + 3h + 4m. Indeed, Pi must pass by all vertices of the variable gadget zi not

in Zf U -1% and by all unlabeled vertices in the clause gadgets. But then, if P2 uses the first vertex in ff, it
has no other way except using all other vertices in -Lf. The same holds for .&.

Now we are ready to describe the assignment. Set ff to TRUE if and only if Pe uses vertices of .Li.
Note that P2 visits all labeled vertices in the clause gadgets whose labels were set to PAI,SE. But path Pi
necessarily uses a labeled vertex in each clause gadget. The label ii of this labeled vertex must then be
TRUE, which means there is a TRUE literal in each clause. That is, Q ' is satisfiable. H
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Now we proceed with the proof of Theorem 1.2. Run algorithm .4 on the constructed instance of 2-
SnORTEST Pains. The algorithm returns two paths, Pi and P2. If It(PI) +Z2(Pa) < M then © is satisfiable,
otherwise © is not satisfiable.

First, note that the above algorithm runs in polynomial-time, as the reduction and ..4 take polynomial-
time. Moreover, it solves 3-SAT. Indeed, assume Zi(PI) + Z2(P2) 2 M. As .A is an n'-approximation and
n = 4 + 3d + 3h + 4m, the value of an optimal solution for this instance of the 2-SnORTnST Pains is
at least M/(4 + 3d + 3h + 4m)c > 4 + 3d + 3h + 4m. By the claim, © is not satisfiable. Now, assume

Zi(Pi) + Z2(P2) < ]1/. This means Pi uses no type 2 arc. Any path from s to f in .D which uses no
type 2 arc uses exactly 3 + 2d + 2h + 2m arcs of type 1, that is, Zi(Pi) = 3 + 2d + 2h + 2m. But then, as
n = 4 + 3d + 3h + 4m, path P2 uses at most 2 + d + h + 2m vertices, that is, Z2(P2) $ 2 + d + h + 2m.
Therefore, by the claim, Q ' is satisfiable. As 3-sAT is solvable in polynomial time only if P = NP, there is
no nc-approximation algorithm for 2-SnORTnS'r Pains unless P = NP. H

In fact, it is easy to modify this theorem to show that, for any polynomial-time computable function
/, there is no polynomial-time /(1/1)-approximation algorithm for 2-SHORTEST PATHS, where / denotes an
arbitrary instance of 2-snoltTEST PAinS.

Consider the undirected edge/vertex-disjoint versions of the k-SHORTEST Pains problem. There are
well-known reductions from the undirected edge-disjoint version to the undirected vertex-disjoint and to
the directed arc/vertex-disjoint versions of the problem. One can modify the proof of the previous theorem
in order to get the following stronger theorem.

Theorem 3.2 For each constant c, there fs no pong/nomfaZ-time nc-approzfmaf on aZgorffhm /or fhe urzdf-

recfed edge-disjoint 2-SHORTEST PATHS unless P = NP, where n is the number o/ vertices o/ f/ze given
gul)hr'a'P

4 Inapproximability for acyclic digraphs

In this section we show that if k is non-fixed then the k-SHORTEST PAThs is hard to approximate, even
restricted to acyclic digraphs. The proof of the theorem below is a modification of the proof of Theorem 1 .2.

Theorem 1.3 For each constant c, there fs no pong/nomfaJ-time nc-appro fmaf£on algorithm /or the k-
SHORI'EST PAThs restricted to acycifc dfgraphs un/ess P :: NP, where n {s the number o.f vertices o/ the
given digraph.

Proof. We may assume c ? 1. Suppose that there is a polynomial-time nc-approximation algorithm ..4
for the k-SHORTEST PAinS on acyclic digraph, where n is the number of vertices of the given digraph.
Consider the following polynomial-time reduction from 3-sAT to k-snoKTnsT PAinS.

Let 'D be an instance of 3-sAT, that is, a set {Oi, . . . , C.} of 3-clauses on variables zi, . i. , zh. Let us
describe an acyclic digraph -D, two vertices s and f and length functiorJS lo, . . . , Zh on the arcs of I).

Digraph D consists of vertices s,uo, . . . , uh, f, arcs st, suo, uhf and, for each variable ff, two internally
disjoint paths, Qf and C?f, from ui-l to u{. Path C?f (Qf) has as many internal vertices as appearances of
zi (Ei). Additionally, for each clause Cb, there are three length-two paths from s to f, each one having as
middle vertex a vertex labeled by one of the literals in Cli. This is done in such a way that no two of these
paths share the middle vertex. See Figure 4 for an example.

Let M :=(3+3m+h)'(2+3m+3hj+l. For each Cli, set Jj(e) := life is one of the arcs in the three
length-two paths added for C) and set Zj(e) := .iW otherwise. Set ZO(e) := I if e = su0 or e = u t or e is
in path Q{ or Qi for some d. Otherwise set ZO(e) := M. This completes the description of the instance of
k-SHORTEST Pains. Observe that Z) is acyclic and that there dro k internally disjoint paths from s to t in
1). Also, observe that D, s, t and lo,. . . , ih can be constructed in polynomial time.

C'lain 4.1 © {s satis$able if auld ant if there are {nterna!!U disjoint paths Po, . . . , Ph from s to t in D

8



Figure 4: (a) Arcs for the variables. (b) Digraph for '} = (zi V E2 y z3)(zi v a2 y a3)

such that lo(Eo)+..+zX(Ph) $2+3m+3h.

Proof. Assume @ is satisfiable and consider an assignment which satisfies @. Let Eo be the path starting
with arc st;0, ending with arc uhf, and using Qf, if zi is FALSE, or C?i, if ff is TRUE, for each f. Note that each

labeled vertex in Eo has as label a literal that is FALSE in the assignment. Moreover, Zo(Ro) $ 2 + 3m + h.
For each clause (&, let Pj be one among the three paths for Oj that use a vertex whose ]abe] is a literal set
to TRUE in the assignment. There is one such path because the assignment satisfies ©. Paths no, . . . , Ph
aresuchthat/o(Eo)+ +Z(Ph) $ 2+3m+3h.

Suppose now that there are internally disjoint paths Ro, . . . , Ph from s to t in -D such that Zo(Po) + - . . +
[x(Px) $ 2 + 3m + 3h. Note that M > 2 + 3m + 3h, because c 2 1. Therefore, Eo,. . . ,Ph use only arcs
whose length is one in their respective length functions. In particular, no uses necessarily arcs su0 and uXf
and passes by vertices ui, . . . ,uh i. To go from ui.i to ui, path no uses either Qf or Qi. Set variable ff
to TRUE if Eo uses (2f and set z{ to FALSE if no uses path (2i. For each aJ, path PJ has to be one of the
length-two paths for OJ. Let Zi be the label of the middle in PJ if Ro uses Qf, then ai= Ef (or PJ and Eo
would not be internally disjoint). If Eo uses Qf, then ff = zi. In both cases, ff is TRUE in the assignment
and therefore this assignment satisfies Oj, for all J. u

To complete the proof of Theorem 1.3, it is enough to describe how to use algorithm ..4 to get a
polynomial-time algorithm for 3-sAT. Just run algorithm ..4 on the constructed instance of k-snoltTnsT
PAThs. It returns paths Eo,...,PX. If Zo(Eo) + . + Z (Ph) < M, then © is satisfiable, otherwise ©
is not satisfiable. The resulting algorithm is clearly polynomial and solves 3-SAT. Indeed, assume that
Zo(no) + . . . + i(Ph) ? M. Algorithm A is an nc-approximation, where n is the number of vertices of .D.
that is, n = 3 + 3m + h. Therefore, the value of an optimal solution for this instance of the k-snonTnsT
Pains is at least M/(3 + 3m + h)c > 2 + 3m + 3h. By the claim, '} is not satisfiable. Now. assume
lo(Eo) + . + / (Ph) < M. This means Eo uses neither st nor arcs in the paths of the clauses. Therefore

no uses arcs su0 and uht and, for each f, uses either Qf or Qi. Thus Zo(no) $ 2 + 3m + h. Also, each
path PJ has to be one of the paths for clause Oj, otherwise Zj(/3) 2 M. Hence Zj(PJ) = 2, for all .j, and
Zo(Ro) +--.+Z(Ph) $ 2+3m+3h. By the claim, © is satisfiable. H

This theorem also holds for any polynomial-time computable function /: there is no polynomial-time
/(l-rl)-approximation algorithm for k-SHORTEST Pains in acyclic digraphs. Here, / denotes an arbitrary
instance of k-snoKTnsv PAinS in acyclic digraphs.
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5 Minimizing sum of lengths

Consider the following shortest disjoint paths problem:

- an undirected p]anar graph G = (T/, -E), embedded in ]R2;
pairs {si, tt], . . . , {s4;, tt} of vertices on the boundary of G;
a non-negative function / on the edges of GI

- pairwise vertex-disjoint paths Pi , . . . , Pk in G where Pf is an si-fi-path,
for each d = 1,...,k, ando(Pi)+. +Z(Px) is as smallas possible.

We denote this problem by SDP(G, {si, ti}, . . . , {sf, tk}), or simply by SDP, when the instance is clear from
the context

If the vertices si,.. . . , sk, tt, . . . , fi occur in this order when following the boundary of G, then SDP can

be seen as a particular case of the min-cost flow problem. Indeed, from G, we construct a digraph D by
splitting each vertex u of G into two vertices u+ and u ', joined by an arc (u',u+) of cost zero. An edge
uw of G becomes arcs (u+, w ') and (w+, u ') of D, both of cost Z(uw). In addition, 1) has vertices s, f and
arcs (s, si ), (ti, t), for f = 1, . . . , k, of cost zero. Solving sop is equivalent to finding a maximum s-t-flow
of minimum cost in 1), with each arc having capacity one. Hence, in this particular case, sop can be solved
in polynomial time.

A graph G = (yU {c}, .E) is called a whee/ if G -- c is a circuit and {u, c} € .B for each u in y. Gr6tschel,
Martin and Weismantel l41 showed that if G = (y U {c}, .D) is a wheel and si, tt, - . . , st,tx; occur in this
order when following the circuit G r c then the edge-disjoint version of snp can be solved in polynomial
time. Moreover, Gr6tschel, Martin and Weismantel gave a complete description of the path packing pong/tape

(the convex hull of incident vectors of sets .B ' f .E, such that al.8'l is a packing of edge-disjoint si-ti-paths

I.Jsing dynamic programming, we show that, also in the following case, snp can be solved in polynomial

in G)

time

gruen

k is fixed and the vertices si,ti, . - . ,sx;,fi; occur in this

order when following the boundary of G.

We assume that SDP is feasible (this can be tested in linear time) and that G is 2-connected.

We shall use the following notation. If P is a path and u, o are vertices in P then P(u, u) is the subpath
of P connecting u to u. We denote by Qf a shortest si-ti-path. Let .1% be the subgraph of G induced by
the vertices in the closed region bounded by the path Qf and the path on the boundary of G from si to
tf containing no other sj or tj (f = 1, . . . , k). Also, let Qi,.j := -1% n -Rj. By shortcut arguments, we may
assume that (2i,j is either a path or empty, for i# .j. Figure 5 illustrates the notation. There, Pi, P2, P3
are paths of an optimal solution.

Let G, {st,tt})... , {sk,tk]. and lbe an instance of snp with the property that si,ft,... ,st,fX occur
in this order when following the boundary of G. Observe that snp has an optimal solution PI , . . . , PX so
that /:i is entirely contained in the region -& (f = 1, . . . , k).

Consider some f and .j with f # .j. Let Qi,j := (uo,ei,ui,. - - ,ed,ua). We call (/,h) a possfbie choice
(for (f,.j)) if / = h = nil or / = up and h = uq for some p,q satisfying 0 $ p $ q $ d. We say that

(/,h,/',h ') is a /easfble choice (for (f,.j)) if (/,h) and (/',h ') are possible choices and if / # nil # /'
implies {/, h} n {/', h'} = ©. For each feasible choice (/, h, /', h '), let

(6)

Gi,j*f,t,,f' ,t-. c;ll''(&) \ (}''(Q£,j) \ v''(Qi,j(/, h)))I

u all''(nj) \ (v'(Qi,J) \ }''(c2£,, (/', h')))I,

where C?i,.j(nil,nil) Finally, we say that a sequence

((/£,J, h{,j, /;,j, hl,j) : I $ f < J $ k)
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Figure 5: Illustration of the definitions

is an accepfaZ)Ze choice provided that (/f,j, h{,j, .C,j, h;,j) is a feasible choice for each (f,.j), for all I $ d <

Our dynamic programming approach is based on the following optimality criterion:

J

Let Pi, . . . , Pk be an optimal solution to SDP and let /f, hf, /I, hJ be the first and last vertices
of (2i,j in Pi and in PJ, respectively, for some f, .j with I $ f < .j $ k. Then .R(/., hf), PJ(.C, h.j)
is an optimal solution to SDP(Gf,j,/.,hi,b,h,, {.fi,Xi}, {/J,h.j}) (see Figure 6). ' ' ' ''

Figure 6: Illustration of the optimality condition for snp

The algorithm consists of first computing, for each (f,.j), with I $ f < .j $ k, and for each feasible

choice (/,h, /', h ') for (f,j), a solution Pi,j,/,h,/',h ', PJ,i,/,X,/',X ' to SDP(Gi,j,/,h,/,,x,, {/, h}, {/', h'}), where,
-f%,j,nN,nil,/',h ' := 0 and PJ.i,/,h,nil,nN := a). Now, we enumerate all acceptable choices

A = ((.fi,j,hi.j,f:,j,hli,j) : {,j 1, , k, £ < .j)

(so, (.fi,.j,.hi,j, .a,j,h;,j) is a feasible choice for all (f,.j) with I $ f < j $ k) and we compute Pi4,
where .f)i''i is a shortest si-f£-path in

,#,

al(}''(-&) \ I'''(C?{,J)) U (U£#ly(-R,j,/..j,h:.i,/!.j,x;,,))I (£ = 1, ,k),

11



if there exists any.

The algorithm returns, for some acceptable choice ..4*, vertex-disjoint paths Pi * , . . . , PXn ' so that,

)ll:Z:l /(-l:r ') = minl>j:Li Z(-rT) I .A is an acceptable choices.

'Theorem 5.1 if st,tt,.. . ,sk,tK occur in this order wheat following the boundary oJ G then, for each
sized k, snp can be solved in polllnomiat time.

Proof. Any solution Pi, . . . , Pk to SDP such that Pi is a subgraph of .f& induces an acceptable choice to

snp. (For each (f,J) with { < .j, we define (/i,j,hi,j,.C,j,X;,j) as the first and last vertices of Qi,j in Pf
and PJ, respectively. If the path Qi,j does not meet, say, -R then /f,j := hf,j := nil.) Since by shortcut
arguments there exists at least one such a solution, it follows that the algorithm generates and returns a
solutionto snp

One sees that SDP(G{,j,/,X,/',X,, [/,h}, {/', h'}) can be solved in polynomial time, as (if / # ni] # /')
/, h, /', h ' are vertices on the boundary of Gi,j,/,X,/,,h,. Thus, in order to show polynomiality, it remains to
verify that the number of acceptable choices is polynomially bounded. Indeed,

{Qf,J I f < J and Qf,j # gll = O(k2)

and there exist O(n4) feasible choices for each (f,j). Hence, there are O(n4k ') acceptable choices. H

Remark. Using similar techniques one can prove that if si, fi , . . . , sk, tt occur in this order when following
the boundary of G then the edge-disjoint version of SDP is polynomially solvable for each fixed k. It can
also be proved that if, in addition, if JI > I implies Qi,j = a, then snp can be solved in polynomial time
(here k does not need to be fixed).
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