• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Master's Dissertation
Full name
Elio Paulo Zonta
Knowledge Area
Date of Defense
Piracicaba, 1980
Title in Portuguese
Um método de confundimento nos experimentos fatoriais
Keywords in Portuguese
Abstract in Portuguese
O presente trabalho estabelece um processo de confundimento para os fatoriais da série 2n e, através de duas propriedades deste, torna possível o confundimento de fatoriais com qualquer número de níveis e de fatores. Foram estudados os fatoriais com dois e três níveis, ou sejam, as séries 2n, 3n, 3 x 2n, 32 x 2n e 33 x 2n. Para cada fatorial da série 2n foram construídos conjuntos balanceados até o fatorial 25, com a sub-divisão das repetições em dois blocos, até a formação de blocos de duas unidades, sem o confundimento de efeitos principais. Na série 3n, foram construídos conjuntos balanceados para os fatoriais 32, 33 e 34, dividindo-se as repetições em três blocos, no fatorial 32, blocos de nove e de três unidades no fatorial 33 e, no fatorial 34, blocos de vinte e sete, de nove e de três unidades. Nas séries mistas, foram estudados os fatoriais 3 x 2, 3 x 22 e 3 x 23, da série 3 x 2n ; os fatoriais 32 x 2 e 32 x 22, da série 32 x 2n e, finalmente, o fatorial 33 x 2, da série 33 x 2n. Além do método de confundimento é dado o processo de obtenção da informação relativa através da teoria dos blocos incompletos e o método geral de análise da variância.
Title in English
Not available
Abstract in English
A confounding procedure for factorials of size 2n is presented. Two properties of this procedure allow the confounding of factorials of any number of factors and levels. Factorials with two and three levels (the series 2n, 3n, 3 x 2n, 32 x 2n and 33 x 2n) were studied. For each factorial of the 2n series, up to 25, balanced sets were constructed dividing the replicates into two blocks, up to blocks of two units each one, without confounding the main effects. Balanced sets were constructed for the 3n series (32, 33 and 34) with a division of the replicates into three blocks for 32, blocks of nine and three units for 33 and blocks of twenty seven, nine and three units for 34. Factorials 3 x 2, 3 x 22 and 3 x 23, of the 3 x 2n series, 32 x 2 and 32 x 22 of the 32 x 2n series and 33 x 2 of the 33 x 2n series were studied under the general term of "mixed series". A process for obtaining relative information based on the theory of incomplete blocks and the general theory of analysis of variance is also presented.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
ZontaElioPaulo.pdf (19.62 Mbytes)
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.