• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.12.1999.tde-08032005-004652
Documento
Autor
Nombre completo
José de Oliveira Siqueira
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 1999
Director
Tribunal
Yu, Abraham Sin Oih (Presidente)
Costa, Max Henrique Machado
Saito, Richard
Securato, Jose Roberto
Yoshino, Joe Akira
Título en portugués
Determinação entrópica do preço racional da opção européia simples ordinária sobre ação e bond: uma aplicação da teoria da informação em finanças em condição de incerteza
Palabras clave en portugués
Densidade neutralizadora do preço da incerteza
Derivativo
Entropia
Opção
Preço racional
Teoria da Informação
Resumen en portugués
Esta tese promove uma integração entre Finanças e Teoria de Informação para criação de um ambiente alternativo para a determinação do preço racional da opção européia simples ordinária sobre ação e ativo de renda fixa (bond). Uma das características deste novo ambiente de determinação de preço racional é poder continuar utilizando o cálculo newtoniano em vez do estocástico. Cria uma notação matemática precisa e completa para a Teoria da Informação e a integra com a teoria de Finanças em condições de incerteza. Integra as abordagens entrópicas de determinação do preço racional da opção européia simples ordinária de Gulko (1998 e 1998a) e de Yang (1997). Define precisamente o mundo com preço da incerteza neutralizado (risk-neutral world), o mundo martingale, o mundo informacionalmente eficiente e o mundo entrópico e suas implicações para a Ciência do Investimento e, mais especificamente, para a determinação do preço racional de ativos básicos e derivativos. Demonstra detalhadamente a fórmula do preço racional da opção européia simples ordinária de Black-Scholes-Merton, melhorando a notação matemática, simplificando (eliminando a abordagem martingale) e complementando a demonstração feita por Baxter & Rennie (1998). Interrompe uma sucessão de trabalhos que estabelecem uma forma equivocada de calcular o preço da opção européia simples ordinária. Esse erro teve sua origem, muito provavelmente, numa edição de Brealey & Myers, que equivocadamente utilizou um resultado de Cox & Rubinstein (1985); esse resultado facilitava o cálculo do preço racional da opção européia simples ordinária por meio de uma tabela que evita o uso direto da fórmula de Black-Scholes-Merton. Brealey & Myers (desde a quarta edição de 1991), Luehrman (nos seus dois artigos da HBR de 1998 e um caso de 1995 pela HBS) e Edleson (caso publicado em 1994 pela HBS) ensinam que o valor percentual encontrado nessa tabela deve ser multiplicado pelo preço do valor mobiliário, quando deveria ser multiplicado pelo valor presente do preço de exercício. Os resultados mais importantes desta tese para Finanças são: (i) desenvolvimento de um método alternativo, robusto e parcimonioso, baseado no princípio da máxima entropia da Teoria da Informação e do Sistema de Distribuições de Pearson para obtenção de uma única medida de probabilidade neutralizadora do preço da incerteza (risk-neutral probability), (ii) obtenção de fórmula prática para a determinação do preço racional da opção européia simples ordinária para ação, (iii) validação da fórmula de Black-Scholes-Merton para ação, (iv) obtenção de uma fórmula adequada para a determinação do preço racional da opção européia simples ordinária sobre um título de renda fixa (bond), (v) estimação da volatilidade implícita entrópica do preço do valor mobiliário e (vi) definição e estimação do valor em risco (value at risk) entrópico. Há ainda dois resultados importantes para a Teoria da Informação e Economia: (i) distinção mais precisa entre incerteza e risco e (ii) desenvolvimento da medida de ganho informacional da previsão aprimorando o resultado de Theil (1967) e Benish (1999) pela utilização do conceito de divergência de Kullback-Leibler.
Título en inglés
Entropic approach to rational pricing of the simple ordinary option of european-type over stock and bond: an application of information theory in finance under uncertainty
Palabras clave en inglés
Derivative
Entropy
Information Theory
OPtion
Rational price
risk-neutral density funtion
Resumen en inglés
This thesis integrates Finance and Information Theory in order to create an alternative environment to the calculation of the rational price of the simple ordinary European option over stocks and bonds. One of the features of this new environment is to allow us to continue using the Newtonian calculus instead of the stochastic one. It creates a precise and complete mathematical notation for the Information Theory and integrates it with the Finance Theory under uncertainty conditions. It integrates Gulko’s (1998 and 1998a) and Yang’s (1997) entropic approaches to the calculation of the rational price of the simple ordinary European option. It precisely defines the uncertainty-price-neutral world (risk-neutral world), the martingale world, the informationally efficient world and the entropic world and their implications to the Investment Science and, more specifically, to the calculation of the rational price of ordinary assets and derivatives. It demonstrates with details the Black-Scholes-Merton formula of the rational price of the simple ordinary European option, improves the mathematical notation, simplifies it (by eliminating the martingale approach) and completes the demonstration done by Baxter & Rennie (1998). It breaks a succession of works that established a mistaken way to calculate the price of the simple ordinary European option. This mistake had its origin, much probably, in an edition of Brealey & Myers, who erroneously used a result from Cox & Rubinstein (1985). This result facilitates the calculation of the rational price of the simple ordinary European option by using a table that avoids the direct usage of the Black-Scholes-Merton formula. Brealey & Myers (since the 1991 fourth edition), Luehrman (in his two 1998 articles in HBR and in a 1995 case in HBS) and Edleson (1994 case published in HBS) teach that the percentage value found in this table must be multiplied by the price of the asset, when in reality it should have been multiplied by the present value of the strike price. The most important results of this thesis for Finance are: (i) development of a robust and economic alternative method, based on the maximum-entropy principle of the Information Theory and on Pearson’s Distribution System, to the calculation of a unique uncertainty-price-neutral probability measure (risk-neutral probability), (ii) achievement of a practical formula to the calculation of the rational price of the simple ordinary European option on stocks, (iii) validation of the Black-Scholes-Merton formula on stocks, (iv) achievement of an adequate formula to the calculation of the rational price of the simple ordinary European option on bonds, (v) estimation of the implied entropic volatility of the price of an asset and (vi) definition and estimation of the entropic value-at-risk. There are still two important results to the Information Theory and to Economics: (i) a more precise distinction between uncertainty and risk and (ii) development of the forecast informational gain, an enhancement of the result of Theil (1967) and Benish (1999) by using the Kullback-Leibler divergence concept.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
TeseSiqueira.PDF (2.82 Mbytes)
Fecha de Publicación
2005-03-17
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.