• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.3.2016.tde-04072016-103658
Document
Author
Full name
Humberto Fioravante Ferro
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Lopes, Cassio Guimarães (President)
Burt, Phillip Mark Seymour
Costa, Márcio Holsbach
Panazio, Aline de Oliveira Neves
Silva, Magno Teófilo Madeira da
Title in English
Hybrid convex combinations for IIR system identification.
Keywords in English
Adaptive filters
Energy conservation relation
Filters combinations
Mean square analysis
Systems identification
Abstract in English
The low complexity of IIR adaptive filters (AFs) is specially appealing to realtime applications but some drawbacks have been preventing their widespread use so far. For gradient based IIR AFs, adverse operational conditions cause convergence problems in system identification scenarios: underdamped and clustered poles, undermodelling or non-white input signals lead to error surfaces where the adaptation nearly stops on large plateaus or get stuck at sub-optimal local minima that can not be identified as such a priori. Furthermore, the non-stationarity in the input regressor brought by the filter recursivity and the approximations made by the update rules of the stochastic gradient algorithms constrain the learning step size to small values, causing slow convergence. In this work, we propose IIR performance enhancement strategies based on hybrid combinations of AFs that achieve higher convergence rates than ordinary IIR AFs while keeping the stability.
Title in Portuguese
Combinações convexas híbridas para identificação de sistemas IIR.
Keywords in Portuguese
Análise média quadrática
Combinações de filtros
Conversão de energia elétrica
Filtros elétricos adaptativos
Filtros elétricos digitais
Identificação de sistemas
Abstract in Portuguese
A baixa complexidade dos filtros adaptativos (FAs) IIR é atrativa para aplicações em tempo real, mas certos inconvenientes têm impedido sua ampla utilização até agora. Para os FAs baseados no gradiente descendente, condições operacionais adversas suscitam problemas de convergência em cenários de identificação de sistemas: pólos subamortecidos ou agrupados, submodelagem ou sinais correlacionados originam superfícies de erro onde a adaptação desacelera em grandes planícies ou para em mínimos locais sub-ótimos que não podem ser identificados como tais a priori. Além disso, a não-estacionaridade do regressor de entrada causada pela recursividade do filtro e as aproximações feitas pelas regras de atualização dos algoritmos de gradiente estocástico restringem o passo de aprendizado a valores pequenos, retardando a convergência. Neste trabalho, propomos estratégias de aprimoramento de desempenho baseadas em combinações híbridas e estáveis de FAs que alcançam taxas de convergências mais altas do que FAs IIR comuns.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-07-06
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.