• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.43.1991.tde-26022014-144556
Document
Author
Full name
Jose Carlos Brunelli
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1991
Supervisor
Committee
Gomes, Marcelo Otavio Caminha (President)
Escobar, Bruto Max Pimentel
Franca, Humberto de Menezes
Koberle, Roland
Marino, Eduardo Cantera
Title in Portuguese
Renormalização na quantização estocástica de teorias de campos
Keywords in Portuguese
Física nuclear
Partículas
Abstract in Portuguese
Dentro do esquema de quantização estocástica de Parisi e Wu estudamos aspectos ligados a renormalização da teoria estocástica de certos modelos em teoria de campos. No formalismo funcional para processos estocásticos implementamos a expansão 1/N para o modelo sigma não linear e usando a identidade de Ward, devida a simetria de BRS da ação efetiva dessa formulação, mostramos a renormalizabilidade do modelo. No formalismo de Langevin para processos estocásticos estudamos a renormalizabilidade do modelo de Thirring massivo e mostramos perturbativamente o anulamento da função beta do grupo de renormalização a tempo fictício finito.
Title in English
Renormalization Stochastic Quantization Field Theories
Keywords in English
Nuclear physics
Particles
Abstract in English
In the stochastic quantization scheme of Parisi and Wu we study the renormalization of the stochastic theory of some models in field theory. Following the path integral approach for stochastic process we perform the 1/ N expansion of the nonlinear sigma model and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation, we show the renormalizability of the model. Using the Langevin approach for stochastic process we study the renormalizability of the massive Thirring model showing perturbativaly the vanishing of the renormalization group's beta function at finite fictitious time.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
45381Brunelli.pdf (1.01 Mbytes)
Publishing Date
2014-02-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.