Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1998.tde-20210729-021029
Document
Author
Full name
Osmar Francisco Giuliani
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1998
Supervisor
Title in Portuguese
Anéis quadráticos generalizados e álgebras de posto 3
Keywords in Portuguese
Álgebra
Anéis E Álgebras Não Associativos
Abstract in Portuguese
Neste trabalho estudamos uma classe de anéis, os anéis quadrálicos generalizados, definidos por identidades polinomiais que valem para todas as álgebras quadráticas. Inicialmente, apresentamos uma sequência de implicações, de exemplos e contra-exemplos relacionando diversas classes de álgebras: alternativas, alternativas generalizadas, de Jordan não comutativas e quadráticas generalizadas. Em seguida, obtemos condições para que um anel quadrático generalizado seja alternativo, ou de Jordan não comutativo ou associativo. Finalmente, verificamos que um anel quadrático generalizado satisfaz uma condição quadrática. E como conseqüência disto obtemos uma caracterização dos anéis quadráticos generalizados simples, primos ou semiprimos. Consideramos também as álgebras de posto 3 e as álgebras com pseudo-composição. Usando a representação matricial do grupo simétrico, obtivemos para estas classes de álgebras as identidades polinomiais minimais, isto é, de menor grau
Title in English
not available
Abstract in English
In this work we study a class of nonassociative rings, the generalized quadratic rings, defined by polynomial identities which are satisfied by all quadratic algebras. First, we present a sequence of implications, examples and counterexamples relating some class of algebras: alternative, generalized alternative, non-commutative Jordan and generalized quadratic. Next, we obtain conditions under which a quadratic generalized ring is alternative, or non-commutative Jordan or associative. Finally, we verify that a generalized quadratic ring satisfies a quadratic condition. As a consequence we obtain a characterization for the generalized quadratic rings which are simple, prime or semiprime. We consider also the algebras of rank 3 and pseudo-composition algebras. Using the matrix representation of the symmetric group, we obtain for these classes of algebras the polynomial identities of lower degree
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29