• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.1998.tde-20210729-021652
Document
Author
Full name
Adriana Luiza do Prado
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1998
Supervisor
Title in Portuguese
Multimedidas vetoriais: extensão e integração
Keywords in Portuguese
Medida E Integração (Análise Matemática)
Abstract in Portuguese
Este trabalho tem por objetivo estudar multimedidas definidas de álgebras em subconjuntos de um espaço de Banach real X. A primeira pergunta é como podemos estender multimedida de uma álgebra para uma multimedida numa 'omicron'-álgebra. A segundapergunta é qual a relação entre a multimedida e medida vetorial. Mostramos aqui vários resultados apresentados por D.Kandilakis ([9]), assumindo no último caso que X é reflexivo. Finalmente, nós estudamos as funções de conjuntos obtidas pelaintegração de uma função limitada mensurável com respeito a uma multimedida
Title in English
not available
Abstract in English
The main purpose of this work is to study the multimeasure defined on a field in the subsets of the real Banach space X. The first question is how we can extend multimeasure on a field to one on a 'ômicron'-field. The second one is what therelation between multimeasure and vectorial measure is. We show several, results presented by D.Kandilakis ([9]), in the last case of which we assume that X is reflexive. Finally, we study the set functions obtained by integrating a boundedmeasurable fubnction with respect to a multimeasure
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.