• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.1999.tde-20210729-022106
Documento
Autor
Nombre completo
Regina Maria de Aquino
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 1998
Director
Título en portugués
Álgebras de Koszul inclinadas
Palabras clave en portugués
Álgebra
Resumen en portugués
Sejam 'lâmbda' uma k-álgebra de dimensão finita sobre o corpo k, 'tau' um 'lâmbda'-módulo inclinante e 'tau'= 'End IND.'lâmbda'(T), o anel de endomorfismo de 'tau' sobre 'lâmbda'. Através da carcterização dos morfismos, entre os somandos diretosde 'tau' estabelecemos um critério que permite decidir quando a álgebra inclinada graduada 'tau'APROXIMADAMENTE IGUAL A'kQ/i, onde I um ideal graduado, é uma álgebra de Koszul. Seja 'tau' uma álgebra Z-graduada, l-gerada e de decomposiçãobásica. Então, temos que 'tau' é quadrática se e somente se vale que: 'dim IND.k'Hom IND.'lâmbda'('I/ IND.L2', 'tau'/ IND.r') - 'dim IND.k'Hom IND. 'lâmbda'('rP IND.(1)', 'tau'/IND. r')+'dim IND.k'Hom IND.'lâmbda'('r POT.2', 'tau'/ IND.r'= 0, ONDE R É O RADICAL GRADUADO DE jACOBSON DE 'tau', I o ideal de relações e 'P IND.(1)' a cobertura projetiva de 'ômega'('tau'/ IND. r'). Provamos que as álgebras quadráticas de dimensão global 3 e tais que pd 'r POT.2' 'MENOR OU IGUAL' 2pd r/'r POT.2' são álgebras de Koszul se, e somente se, 'r POT.2' é um módulo de Koszul. Seja L('tau' ) a classe dos 'tau'-módulos com apresentação linear e K('tau') a classe dos 'tau'- módulos que sejam módulos de Koszul. Se 'tau' é uma álgebrade Koszul de dimensào global 2, então, temos que, em geral, as classes de módulos L('tau') e K('tau') não coincidem. Seja 'tau'uma álgebra Brenner-Butler inclinada. Então 'tau' é uma álgebra de Koszul e L('tau') = K('tau'). Também, apresentamosuma descrição completa da classe K('tau'), e mostramos que, neste caso, esta classe pode ser infinita
Título en inglés
not available
Resumen en inglés
not available
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
AquinoReginaMaria.pdf (13.56 Mbytes)
Fecha de Publicación
2021-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.