• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.1999.tde-20210729-022455
Document
Author
Full name
Regina Célia Nostre Marques
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1999
Supervisor
 
Title in Portuguese
Superfícies de Delaunay no espaço hiperbólico
Keywords in Portuguese
Geometria
Abstract in Portuguese
Em 1841 Delaunay provou que se rolamos uma cônica sobre uma reta num plano e em seguida rotacionamos, em torno deste reta, a curva descrita por um dos focos desta cônica, obtemos uma superfície com curvatura média constante. Nesta dissertaçãoestudamos o mesmo problema no espaço hiperbólico, com base nos trabalhos de [CD],[B],[H],[S] e [CA]
 
Title in English
not available
Abstract in English
In 1841 Delaunay proved that if one rolls a conic section on a line in a plane and then rotates about the line the trace of a focus, one obtains a constant mean curvature surface of revolution in 'R POT.3'. Here we study the same problem in thehyperbolic space based in works due to [CD],[B],[H],[S] and [CA]
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.