• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2008.tde-21102010-205202
Documento
Autor
Nome completo
Heily Wagner
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Coelho, Flavio Ulhoa (Presidente)
Alvares, Edson Ribeiro
Braga, Clezio Aparecido
Título em português
Extensões cindidas por ideais nilpotentes
Palavras-chave em português
dimensões homológicas
extensões cindidas
representações de álgebras
Resumo em português
Consideremos A e B duas álgebras de Artin tais que é uma extensão cindida de A pelo ideal Q, onde é um ideal nilpotente de B. Estudamos algumas propriedades homológicas das categorias modA e modB, tais como dimensão projetiva e injetiva. A partir disso mostramos que se B pertence a uma das seguintes classes: hereditária, laura, fracamente shod, shod, quase inclinada, colada à esquerda, colada à direita ou disfarçada; então A pertence a mesma classe. Além disso, restringindo nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, comparamos as respectivas aljavas ordinárias, bem como suas apresentações. Finalmente, após caracterizarmos o ideal Q, exibimos alguns exemplos de extensões no contexto de álgebras de caminhos com relações, que mostram que A pode ser de uma das classes citadas sem que B o seja
Título em inglês
split-by-nilpotent extension
Palavras-chave em inglês
algebras representation
homological dimensions
split extensions
Resumo em inglês
Let A and B be two Artin algebras such that B is a split-by-nilpotent extension of A by Q, were Q is a nilpotent ideal of B. We study some homological properties of the categories mod A and mod B such that the projetive and the injetive dimensions of their objects. Using this we show that if B belongs to one of this classes: hereditary, laura, weakly shod, shod, quasi-tilted, left glued, right glued or concealed; then A belongs to same class. Moreover restricting our study to finite dimensional algebras over algebraically closed fields, we compare the ordinary quivers and presentations of the corresponding algebras. Finally, after giving a characterization of ideal Q as above, we exhibit some exemples of split extensions in the context of path algebras bounded by relations, which shows that A can be one of the above cited algebras without B so
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
DissertHeilyWagner.pdf (931.95 Kbytes)
Data de Publicação
2011-05-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.