• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2011.tde-20220712-125535
Documento
Autor
Nombre completo
Ricardo Ramos Silva
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2010
Director
 
Título en portugués
Família multiplicativa, transformações ádicas e a medida central de Parry
Palabras clave en portugués
Teoria Ergódica
Resumen en portugués
Introduzimos a noção de uma família Anosov, umageneralização de uma aplicação Anosov de uma variedade. Isto é uma sequência de difeomorfismos ao longo de variedades riemannianas compactas tal que o fibrado tangente se decompõe em subespaços expansores e contratores. Desenvolvemos a teoria geral estudando sequência de plicações amenos de isomorfismos e com respeito a uma relação de equivalência gerada por duas operações naturais: agrupamento e dispersão. Então nos concentramos em famílias lineares de Anosov no 2-toro. Estudamos com detalhes uma classe básica de exemplos, as famílias multiplicayivas, e uma dispersão canônica, as famílias aditivas. Um processo de renormalização constrói uma sequência de partições de Markov que consiste em dois retângulos para uma determinada família aditiva. Isto codifica a família pelo subshift não estacionário do tipo finito determinado pela mesma sequência de matrizes. Qualqier família linear positiva de Anosov no toro tem uma dispersão que é uma família aditiva. A codificação aditiva possibilita um modelo combinatorial para a família linear, por telescopar o diagrama aditivo de Bratteli. O resultante espaço combinatorial é então determinado pela mesma sequência de matrizes não negatvas, com um 'edgeshift' não estacionário. Em tal espaçocombinatorial definimos a transformação ádica. Provamos que para um subshift não estacionário do tipo finito, mixing topológico implica minimalidade de qualquer transformação ádica definida no espaço edge, e mostramos que se uma família de aplicações tem a condição autovetor de Perron-Frobenius então temos unicidade ergódica para a transformação édica relacionada. Mostramos a equivalência entre a medida central de Parry, que é uma medida invariante para as ádicas, e a medida de Lebesgue.
 
Título en inglés
not available
Resumen en inglés
not available
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
SilvaRicardoRamos.pdf (25.56 Mbytes)
Fecha de Publicación
2022-07-13
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.