Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2015.tde-20230727-113454
Document
Author
Full name
Paulo Gomes Staaks
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Title in Portuguese
Jogos de perseguição: introdução a capturabilidade
Keywords in Portuguese
Controle Ótimo
Jogos Diferenciais
Teoria Dos Jogos
Abstract in Portuguese
A Teoria dos Jogos Diferenciais (TJD) teve origem em meados de 1950 com a pesquisa de Rufus Philip Isaacs, um pesquisador da RAND Corporation. Os pesquisadores que tinham contato com essa teoria logo descobriram que o tra- balho de John Von Neumann e Oskar Morgenstern [9] não era suciente para resolver tais problemas. Os estudos relacionados a TJD caram ligados direta- mente ao estudo de sistemas dinâmicos. Sendo assim, assuntos ligados a Teoria de Controle Ótimo começaram a tomar a frente nas pesquisas sobre TJD. O Jogo do Motorista Assassino (JMA), se tornou um JP padrão no estudo em TJD. A solução de JDs está ligada a existência de controles ótimos. O PrincÃpio da Programação Dinâmica e o PrincÃpio do MÃnimo, propostos por Richard Ernst Bellman e Lev Semyonovitch Pontryagin, respectivamente, se tornam condições para a determinação de estratégias (controles) ótimas. A existência é garantida por um teorema proposto por Aleksei Fyodorovich Filipov. Os JDs serão apresentados de maneira formal, junto com a função de Payo. Daremos especial atenção aos JPs. Os JPs são JDs de Dois Jogadores com Soma Zero, conceito bastante difundido em TJD. No caso dos JPs, teremos dois jogadores: um Perseguidor e um Evasor. A função de Payo será estudada de acordo com a sua convergência a Funçao de Valores de um JD. A continuidade da função de valores será provada, utilizando a Equação de Hamilton-Jacobi- Isaacs (EHJI). Um estudo qualitativo será feito sobre as condições de capturabilidade do Evasor pelo Perseguidor. Utilizaremos o PrincÃpio do MÃnimo como ferramenta princi- pal para determinarmos a Barreira S, que determina a região de capturabilidade do Evasor pelo Perseguidor.
Title in English
not available
Abstract in English
The Dierential Game Theory (DGT) originated in the mid 1950s with the research Rufus Philip Isaacs, a researcher at the RAND Corporation. Researchers who had contact with this theory soon discovered that the work of John von Neumann and Oskar Morgenstern [9] was not enough to solve such problems. Studies related to DGT were directly linked to the study of dynamical systems. Therefore, issues related to Optimal Control Theory began to take the lead in research on DGT. The Homicidal Chaueur Game (HCG) has become a standard PG of study in DGT. The DGs solution is attached to the existence of optimal controls. The Dynamic Programming Principle and The Minimum Principle proposed by Richard Ernst Bellman and Lev Semyonovitch Pontryagin, respectively, become condi- tions for determining optimal strategies (controls). The existence is guaranteed by a theorem proposed by Aleksei Fyodorovich Filipov. The DGs will be presented formally, along with the Payo function. We will give special attention to DGs. The PGs are Two Player Zero-Sum DG, a concept widespread in DGT. In the case of PGs, we have two players: a Pursuer and an Evader. The Payo Function will be studied according to their convergence to the Value Function of a DG. The continuity of the Value Function will be tested, using the Hamilton-Jacobi-Isaacs Equation (HJIE). A qualitative study will be done about the conditions of capturability of Evader by the Pursuer. We will use the Minimum Principle as the main tool to deter- mine the Barrier S, which determines the capturability region of Evader by the Pursuer.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2023-07-27