Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2017.tde-20230727-113515
Document
Author
Full name
Raibel de Jesus Arias Cantillo
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Title in Portuguese
Esferas de papel furadas dinamicamente determinadas
Keywords in Portuguese
Sistemas Dinâmicos
Abstract in Portuguese
Um problema central da matematica é entender e descrever homeomorfismos e difeomorfismos em variedades. Em dimensao dois, o Teorema de Nielsen-Thurston em [7] é quiça o resultado principal nesta area de conhecimento. Este Teorema que generaliza o problema da classificaçao dos automorfismos torais a qualquer superficie fechada orientavel de genero g 2265 2, propoe que toda classe de isotopia de um automorfismo de superficie contem apenas um representante entre os tres seguintes tipos: ordem finita, redutivel ou pseudo-Anosov. Nesta tese estudamos esferas de papel furadas e dinamicamente determinadas pelas aplicaçoes unimodias introduzidas por A. de Carvalho e Toby Hall em [1]. Em especifico, nos nos concentramos na esfera de papel: a ferradura justa que é a esfera complexa de definiçao do exemplo mais simples, embora nao trivial de um pseudo-Anosov generalizado em [2]. Este tipo de automorfismos, generalizam os de Thurston. A ferradura é tambem um modelo justo (em [5]) da ferradura de Smale em [8]. Sao resolvidas nesta tese duas questoes de convergencia que tem a ver com a densidade de Poincare e um modelo Fuchsiano associados à ferradura justa furada, que é uma superficie de Riemann hiperbolica de tipo topologico infinito, especificamente, a esfera de Riemann menos infinitos furos.
Title in English
not available
Abstract in English
Understanding homeomorphisms and diffeomorphisms of manifolds is a central problem of mathematics. In the 2-dimensional case, the Thurston 2019s classification of surface homeomorphisms [7] can be the principal result in this topic. This theorem, that generalize the classification of homeomorphisms of the torus, states that every isotopy class of surface homeomorphisms contain a representative of one of three types: finite order|reducible|or pseudo- Anosov. In these thesis, we study spheres paper with punctures and dynamically determined for the applications unimodals introduced for Andre de Carvalho and Toby Hall em [1]. Especifically, we concentrate in the sphere 2019s paper: the horseshoe tight, that is the 2-sphere complex of definition of the most simple example, however not trivial, of a generalized pseudo-Anosov in [2]. This type of homeomorphisms generalizem the Thurston 2019s homeomorphisms. The Horshoe tight is a model 'tight ' the Smale horshoe in [8]. We resolve two questions about the convergence for the density hyperbolic and a model fuchsian associated with the horseshoe tight punctured. This is a Riemann 2019s surfaces hyperbolic with topological type finite, specifically, the Riemann 2019 sphere minus a set infinite of points.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2023-07-27