• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2017.tde-20230727-113558
Documento
Autor
Nombre completo
Stephanie Daniela Pumarino Canete
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Título en portugués
Polinômios de Lee-Yang: caracterização e interpretação física
Palabras clave en portugués
Polinômios
Resumen en portugués
No presente trabalho estudamos a classe de polinômios de Lee-Yang, denotada por LYn, que é composta por polinômios que não se anulam simultaneamente em B(0, 1)n e (C B(0, 1))n . Obtivemos LYn a partir de polinômios multiafins. Assim, em primeiro lugar fizemos um breve estudo sobre eles, definindo e compreendendo conceitos como a contração de Asano e raio interno associado a um polinômio multiafim. Essas ideias embasaram nossa compreensão sobre os polinômios de Lee- Yang. Utilizando o conceito de raio interno, caracterizamos os polinômios 03A8 2208 LYn+1 por meio dos polinômios 03A6 em n variáveis tais que 03A6(z1, ..., zn) 6= 0 quando |z1|, ..., |zn| < 1. O que nos permite compreender melhor os elementos de LYn. Além disso, forneceremos uma primeira interpretação física desses polinômios utilizando-os para representar a função termodinâmica Pressão. Apresen- taremos também o teorema conhecido como Teorema de Lee-Yang, que usaremos para localizar os zeros da função Pressão, permitindo-nos estudar a transição de fase no modelo de Ising ferromagnético. Utilizando a caracterização dos elementos de LYn, apresentamos alguns novos exemplos de polinômios de Lee-yang. Por fim, verificamos que na situação física em que as funções de partição são dependentes da temperatura, aqueles que são polinômios de Lee-Yang em altas temperaturas, por conseguinte, a todas as temperaturas, são precisamente da forma considerada por Lee e Yang.
Título en inglés
Lee-Yang polynomials: characterization and physical interpretation
Resumen en inglés
In the present work, we study the class of Lee-Yang polynomials, denoted by LYn, which is comprised by those that do not vanish simultaneously in B(0, 1)n and (C B(0, 1))n . We are to obtain LYn by means of multiaffine polynomials, thus we firstly provide a brief study about them, defining and comprehending concepts such as the Asano contraction and the inner radius associated with a multiaffine polynomial. These ideas form the foundation to our comprehension of Lee-Yang polynomials. Applying the concept of inner radius, we characterize the polynomials 03A8 2208 LYn+1 by means of the polynomials 03A6 in n variables such that 03A6(z1, ..., zn) 6= 0 when |z1|, ..., |zn| < 1., which enables us to understand better the elements of LYn. Moreover, we shall provide a first physical interpretation of such polynomials, using them to represent the Pressure thermodynamic mapping. We also present the Lee-Yang Theorem, which we shall use in order to examine the zeroes of the Pressure mapping, allowing us to study the phase transition of the Ising model for ferromagnetism. We use the characterization of the elements of LYn to explixitly present new examples of Lee-Yang polynomials. Finally, we find that in the physical situation where the partition functions are temperature dependent, those that are Lee-Yang polynomials at high temperatures, therefore at all temperatures, are precisely in the form considered by Lee and Yang.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2023-07-27
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.