• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Diego Pereira Barboza
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Zanata, Salvador Addas (Presidente)
Carvalho, André Salles de
Cotillas, Begoña Alarcón
Hernádez, Luis Corbato
Tal, Fabio Armando
Título em português
Difeomorfismos do plano com número de rotação de fins primos irracional
Palavras-chave em português
Difeomorfismos planares
Número de rotação
Teoria de fins primos
Resumo em português
O principal objetivo desta tese é estudar o número de rotação de fins primos de homeomorfismos planares que pertencem a uma classe de homeomorfismos H. Tal número de rotação é devido à Carathéordory e semelhante à teoria de Poincaré para homeomorfismos do crculo. Para todo irracional (0, 1), denotando por (h, U ) o número de rotação de fins primos de h H em U , com U a bacia de repulsão do infinito, construiremos um homeomorfismo h H satisfazendo (h, U ) = e que possui uma sela periódica com intersecção homoclnica transversal em U . Além disso, quando h é de classe C 2 e det(Dh| x ) < 1 em todo ponto, mostraremos que existe ponto periódico acessvel em U se, e somente se, (h, U ) é racional. Também será provado que, quando h é uma ferradura de Smale, o número de rotação (h, U ) é racional. Finalizando, provaremos que se for possvel a existência de um difeomorfismo C r , r 1, em um conjunto genérico a ser definido, com U = W u (p) para p uma sela homoclnica com intersecção transversal e tal que o número de rotação (h, U ) é irracional, necessariamente, h deve satisfazer uma propriedade que não é válida para ferraduras de Smale.
Título em inglês
Diffeomorphisms of the plane with irrational prime ends rotation number
Palavras-chave em inglês
Planar diffeomorphisms
Prime ends theory
Rotation number
Resumo em inglês
The main objective of this thesis is to study the prime ends rotation number of planar homeomorphisms belonging to a class of homeomorphisms H. Such rotation number is due to Carathéordory and similar to the Poincarés theory of homeomorphisms of the circle. For all irrational (0, 1), denoting by (h, U ) the prime end rotation number of h H in U , with U the infinity repulsion basin, we will construct a homeomorphism h H satisfying (h, U ) = and having a homoclinic saddle with transverse intersection in U . Also, when h is class C 2 and det (Dh| x ) < 1 at every point, we will show that there is accessible periodic point in U if, and only if, (h, U ) is rational. It will also be proved that when h is a Smales horseshoe, the rotation number (h, U ) is rational. To conclude, we will prove that if there exists a C r -diffeomorphism, in a generic set to be defined, with U = W u (p) for a saddle point p with transverse homoclinal intersection and such that the rotation number (h, U ) is irrational, then h must satisfy a property that is not valid for Smales horseshoes.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Tese_Diego_Barboza.pdf (835.08 Kbytes)
Data de Publicação
2019-04-24
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.