• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2013.tde-27082013-111753
Document
Auteur
Nom complet
Viviane Teles de Lucca Maranhão
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Stern, Julio Michael (Président)
Cozman, Fabio Gagliardi
Gubitoso, Marco Dimas
Titre en portugais
Estudo de técnicas de paralelização de métodos computacionais de fatoração de matrizes esparsas aplicados à redes bayesianas e redes credais
Mots-clés en portugais
Computação Paralela
Matrizes Esparsas
Redes Bayesianas
Redes Credais
Resumé en portugais
Neste trabalho demos continuidade ao estudo desenvolvido por Colla (2007) que utilizou-se do arcabouço de álgebra linear com técnicas de fatoração de matrizes esparsas aplicadas à inferência em redes Bayesianas. Com isso, a biblioteca computacional resultante possui uma separação clara entre a fase simbólica e numérica da inferência, o que permite aproveitar os resultados obtidos na primeira etapa para variar apenas os valores numéricos. Aplicamos técnicas de paralelização para melhorar o desempenho computacional, adicionamos inferência para Redes Credais e novos algoritmos para inferência em Redes Bayesianas para melhor eciência dependendo da estrutura do grafo relacionado à rede e buscamos tornar ainda mais independentes as etapas simbólica e numérica.
Titre en anglais
Study of parallelization techniques of computational methods for sparse matrix factorization applied to Bayesian and credal networks
Mots-clés en anglais
Bayesian Networks
Credal Networks
Parallel Computing
Sparse Matrixes
Resumé en anglais
In this work we continued the study by Colla (2007), who used the framework of linear algebra techniques with sparse matrix factorization applied to inference in Bayesian networks. Thus, the resulting computational library has a clear separation between the symbolic and numerical phase of inference, which allows you to use the results obtained in the rst step to vary only numeric values. We applied parallelization techniques to improve computational performance, we add inference to Credal Networks and new algorithms for inference in Bayesian networks for better eciency depending on the structure of the graph related to network and seek to become more independent symbolic and numerical steps.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2013-09-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.