• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2000.tde-20210729-115136
Document
Author
Full name
Magen Danielle Infante Rojas
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1999
Supervisor
Title in Portuguese
Densidades preditivas no modelo de regressão linear
Keywords in Portuguese
Análise Multivariada
Abstract in Portuguese
Neste trabalho, dedicamo-nos ao estudo de funções de verossimilhança preditivas e densidades preditivas para um vetor de observações futuras com base num conjunto de dados observados, apresentando várias aplicações em modelos de regressão linear.Sob estes modelos, apresentamos quatro diferentes densidades preditivas, analisando propriedades relativas à consistência e otimalidade. Posteriomente, descrevemos um método para detectar pontos influentes na análise de regressão através do usode densidades preditivas. Na última parte do trabalho, essas funções são utilizadas na seleção da melhor equação de regressão
Title in English
not available
Abstract in English
In this dissertation we present predictive likelihood functions and predictive densities for an unobserved vector of random variables based on an observed sample, with many applications in the Linear Regression Model. Under this model, fourpredictive densities are described and some properties, like consistency and optimality, are analyzed. Further, it is shown a method of assessing the influence of specified subsets of the data in the regression analysis using predictivedensities. The last part of the work is devoted to the use of predictive densities in the selection of the best linear regression model
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.