Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2004.tde-20210729-140900
Document
Author
Full name
Daisy Gomes de Souza Tu
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2003
Supervisor
Title in Portuguese
Regressão com erros de medida e pontos de mudança utilizando metodologia bayesiana.
Keywords in Portuguese
Inferência EstatÃstica
Abstract in Portuguese
O objetivo principal dese estudo foi analisar os modelos de regressão linear estrutural Normal e t-Student com erros nas variáveis, com mudança abrupta em um ou mais parâmetros após o k-ésimo ponto desconhecido (ponto de mudança) de uma seqüência finita de observações, utilizando métodos bayesianos de análise de dados. A análise inferencial envolveu o problema de detectar a existência de mudança nos parâmetros, estimar o ponto de mudança k e os demais parâmetros, e também fazer a análise preditiva. O modelo Normal com erros de medida e sem pontos de mudança foi analisado sob diferentes escolhas de distribuição à priori incluindo também prioris impróprias. Foram demonstrados teoremas que estabelecem condições para a existência das distribuiçòes posterioris nos modelos Normal e t-Student com erros deoendentes (com e sem ponto de mudança) sob algumas escolhas especÃficas de prioris impróprias. Alguns algoritmos do tipo MCMC ('Markov Chain Monte Carlo') foram utilizados com o objetivo de amostrar das posterioris, como os algoritmos de 'Gibbs', 'Grouped Gibbs', 'Modified and Collapsed Gibbs' e 'Metrópolis-Hastings em Gibbs'. Foi feita uma análise de sensibilidade a variações nos valores dos seguintes hiperparâmetros: razão das variâncias residuais (nos modelos identificáveis) e o número de graus de liberdade da distribuição t (quando este é assumido conhecido). A qualidade do ajuste dos modelos foi avaliada utilizando resÃduos bayesianos de validação cruzada
Title in English
not available
Abstract in English
not available
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29