• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2004.tde-20210729-140900
Document
Auteur
Nom complet
Daisy Gomes de Souza Tu
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2003
Directeur
Titre en portugais
Regressão com erros de medida e pontos de mudança utilizando metodologia bayesiana.
Mots-clés en portugais
Inferência Estatística
Resumé en portugais
O objetivo principal dese estudo foi analisar os modelos de regressão linear estrutural Normal e t-Student com erros nas variáveis, com mudança abrupta em um ou mais parâmetros após o k-ésimo ponto desconhecido (ponto de mudança) de uma seqüência finita de observações, utilizando métodos bayesianos de análise de dados. A análise inferencial envolveu o problema de detectar a existência de mudança nos parâmetros, estimar o ponto de mudança k e os demais parâmetros, e também fazer a análise preditiva. O modelo Normal com erros de medida e sem pontos de mudança foi analisado sob diferentes escolhas de distribuição à priori incluindo também prioris impróprias. Foram demonstrados teoremas que estabelecem condições para a existência das distribuiçòes posterioris nos modelos Normal e t-Student com erros deoendentes (com e sem ponto de mudança) sob algumas escolhas específicas de prioris impróprias. Alguns algoritmos do tipo MCMC ('Markov Chain Monte Carlo') foram utilizados com o objetivo de amostrar das posterioris, como os algoritmos de 'Gibbs', 'Grouped Gibbs', 'Modified and Collapsed Gibbs' e 'Metrópolis-Hastings em Gibbs'. Foi feita uma análise de sensibilidade a variações nos valores dos seguintes hiperparâmetros: razão das variâncias residuais (nos modelos identificáveis) e o número de graus de liberdade da distribuição t (quando este é assumido conhecido). A qualidade do ajuste dos modelos foi avaliada utilizando resíduos bayesianos de validação cruzada
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TuDaisyGomesSouza.pdf (13.53 Mbytes)
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.