• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2007.tde-20230727-113630
Document
Author
Full name
Alexandre Ribeiro Leichsenring
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
 
Title in Portuguese
Teoremas limite para um modelo epidêmico no grafo completo
Keywords in Portuguese
Passeios Aleatórios
Processos Estocásticos
Teoria Dos Grafos
Abstract in Portuguese
Estudamos o seguinte sistema de passeios aleatórios a tempo contínuo no grafo completo: em cada vértice do grafo existem partículas ativas e inativas, e cada partícula ativa realiza um passeio aleatório simétrico a tempo contínuo pelos vértices do grafo. Quando uma partícula ativa entra em contato com uma partícula inativa, esta é ativada e também passa a realizar um passeio aleatório independente pelo grafo. Cada partícula ativa morre no instante em que faz um número inteiro L de saltos (consecutivos ou não) sem ativar nenhuma partícula. O processo morre assim que não há mais partículas ativas. Provamos uma Lei dos Grandes Números e um Teorema Central do Limite para a proporção de sítios visitados ao final do processo.
 
Title in English
not available
Abstract in English
We study the following system of continuous time random walks on the complete graph: there are active and inactive particles living on the vertices of the complete graph, and each active particle performs a continuous time symmetric random walk through the vertices of the graph. When an active particle hits an inactive one the latter becomes active and starts an independent random walk through the graph. Each active particle dies at the moment it reaches an integer number L of jumps ( cosecutive or not) without activating any particle. The process dies out as soon as there are no more active particles. We prove a Law of Large Numbers and a Central Limit Theorem for the proportion of visited vertices at the end of the process.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2023-07-27
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.