• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2005.tde-20210729-144309
Document
Auteur
Nom complet
Daniel Morgato Martin
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2005
Directeur
 
Titre en portugais
Coloração de grafos e método probabilístico
Mots-clés en portugais
Teoria Dos Grafos
Resumé en portugais
Nesta dissertação estudamos alguns problemas envolvendo coloração de grafos, e focamos em alguns resultados a respeito desse assunto que usam o método probabilístico. Vamos, primeiramente, demonstrar o Teorema de Brooks e o Teorema de Vizing, que são os dois primeiros resultados que qualquer estudante da área vê a respeito de coloração de vértices e arestas respectivamente. Em seguida, introduzimos o conceito de lista-coloração e mostramos uma prova do Teorema de Galvin, que até recentemente era um problema em aberto. O Teorema de Galvin afirma que para qualquer grafo bipartido G, o número cromático e o número lista-cromático são iguais. Ainda na primeira parte do texto, explicamos o que é coloração total e enunciamos a principal conjectura que existe a respeito desse assunto. Depois disso, numa segunda parte do texto, fazemos um resumo de conceitos probabilísticos e de algumas ferramentas como o Lema Local e algumas desigualdades importantes. Esses conceitos são usados no restante do texto. Em seguida, mostramos algumas aplicações do método probabilístico para resolver problemas de lista-coloração e problemas de coloração total.
 
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
MartinDanielMorgato.pdf (1,008.11 Kbytes)
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.