• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2018.tde-25102018-112308
Document
Auteur
Nom complet
Hugo Cattarucci Botós
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2018
Directeur
Jury
Zani, Sergio Luis (Président)
Bergamasco, Adalberto Panobianco
Medeira, Cléber de
Santos Filho, José Ruidival Soares dos
Titre en portugais
Propriedades globais de uma classe de complexos diferenciais
Mots-clés en portugais
Análise de Fourier.
Condições diofantinas
Hipoeliticidade global
Resolubilidade global
Vetores de Liouville
Resumé en portugais
Considere a variedade Tn x S1 com coordenadas (t;x) e considere uma 1-forma diferencial fechada e real a(t) em Tn. Neste trabalho consideramos o operador Lpa = dt +a(t) Λ ∂x de D'p em D'p+1, onde D'p é o espaço das p-correntes da forma u = ∑ Ι I Ι = puI (t, x)dtI. O operador acima define um complexo de cocadeia formado pelos espaços vetoriais D'p e pelos homomorfismos lineares Lpa : D'p → D'p+1. Definiremos o que significa resolubilidade global no complexo acima e caracterizaremos para quais 1-formas a o complexo é globalmente resolúvel. Faremos o mesmo com respeito a hipoeliticidade global no primeiro nível do complexo.
Titre en anglais
Global properties of a class of differential complexes
Mots-clés en anglais
Diophantine conditions
Fourier analysis.
Global hypoellipticity
Global solvability
Liouville vector
Resumé en anglais
Consider the manifold Tn x S1 with coordinates (t;x) and let a(t) be a real and closed differential 1-form on Tn. In this work we consider the operator Lpsub>a = dt +a(t) Λ ∂x de D'p from D'p to D'p+1, where D'p is the space of all p-currents u = ∑ Ι I Ι = puI (t, x)dtI . The above operator defines a cochain complex consisting of the vector spaces D'p and of the linear maps Lpa : D'p → D'p+1. We define what global solvability means for the above complex and characterize for which 1-forms a the complex is globally solvable. We will do the same with respect to global hypoellipticity on the first level of the complex.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2018-10-25
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.